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Summary

� Vast population movements induced by recurrent climatic cycles have shaped the genetic

structure of plant species. During glacial periods species were confined to low-latitude refugia

from which they recolonized higher latitudes as the climate improved. This multipronged

recolonization led to many lineages that later met and formed large contact zones.
� We utilize genomic data from 5000 Picea abies trees to test for the presence of natural

selection during recolonization and establishment of a contact zone in Scandinavia.
� Scandinavian P. abies is today made up of a southern genetic cluster originating from the

Baltics, and a northern one originating from Northern Russia. The contact zone delineating

them closely matches the limit between two major climatic regions. We show that natural

selection contributed to its establishment and maintenance. First, an isolation-with-migration

model with genome-wide linked selection fits the data better than a purely neutral one. Sec-

ond, many loci show signatures of selection or are associated with environmental variables.

These loci, regrouped in clusters on chromosomes, are often related to phenology.
� Altogether, our results illustrate how climatic cycles, recolonization and selection can estab-

lish strong local adaptation along contact zones and affect the genetic architecture of adaptive

traits.

Introduction

Tree species do not stand still and, although they are sessile
organisms, their ranges expand and contract. During their evolu-
tion, most species ranges were forced into cycles of contraction
and expansion by the alternation of contrasting climatic periods
(Bennett, 1997). Some species disappeared while others survived.
Among the survivors, demographic cycles were generally accom-
panied by separation into divergent genetic clusters, reflecting the
location of the surviving populations during periods of harsh cli-
mate. As climatic conditions progressively improved, species
regained lost ground and, often, the lineages created by the sepa-
ration into different refugia met, thereby creating large contact
zones. These contact zones, many of which are fairly young as
they were established after the Last Glacial Maximum (LGM,
c. 18 000 yr ago), can be viewed as large-scale competition experi-
ments between divergent lineages and are therefore a rich source

of information on the interplay between demography and selec-
tion in shaping the genetic structure of species (Johannesson
et al., 2020).

In contrast to hybrid zones where the two species will generally
experience some level of reproductive barrier (Moran
et al., 2021), contact zones are expected to be rapidly homoge-
nized by gene flow, unless selection is present and acts swiftly.
Stabilizing selection with different optima across an ecological
transition (ecotone) was shown to be maintaining contact
zones in a variety of species (Alberto et al., 2013; Johannesson
et al., 2020). One can expect such contact zones to settle on eco-
logical transitions even though the primary contact might have
happened elsewhere. In turn, the position of the contact zones
can inform us on ecological transitions and their movements with
climate change (Wielstra, 2019, 2021). Stabilizing selection,
along with gene flow, can lead to specific genetic architectures,
where genes under selection tend to be clustered in a few specific
regions of the genome, instead of being randomly distributed
(Yeaman & Whitlock, 2011; Yeaman, 2013). Because of the rela-
tive youth of the contact zones and despite migration and drift,
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the genes under selection are expected to remain polymorphic
(Savolainen et al., 2013), and thus contribute to the high evolu-
tionary potential of these populations. More generally, recent
studies have shown that even long-lived species such as forest
trees are able to respond rapidly to abrupt environmental changes
(Dauphin et al., 2021; Saleh et al., 2022). The study of recent
contact zones can therefore provide much needed information
for forecasting species reactions to current global climate change.

The recolonization of Scandinavia after the LGM led to a postu-
lated zone of postglacial contact in many species (Hewitt, 2000;
Tollefsrud et al., 2008). Such a contact zone is, for instance,
observed in humans (G€unther et al., 2018; Peter et al., 2020),
aspens (De Carvalho et al., 2010), brown bears (Bray et al., 2013)
and rodents (Jaarola et al., 1999). In all these organisms, the contact
zone has been initially interpreted as the meeting point between the
two main lineages that recolonized Scandinavia after the LGM.

Norway spruce (Picea abies (L.) H. Karst.) is one of the most
common boreal tree species. Since the seminal study of Lager-
crantz & Ryman (1990), a large number of studies have outlined
the most salient features of the demographic history of Norway
spruce (Bucci & Vendramin, 2000; Vendramin et al., 2000;
Heuertz et al., 2006; Tollefsrud et al., 2008, 2009, 2015; Chen
et al., 2012, 2019; Tsuda et al., 2016; Fagern€as, 2017; Wang
et al., 2020). Current populations emerged from three main gla-
cial refugia located in the Alps, the Carpathians and the Russian
plains. A recent study indicated that these main lineages did not
evolve independently, but were instead influenced by contact
zones (Chen et al., 2019). The nature of these contact zones
remains to be elucidated: they could simply be a reflection of past
distribution shifts, correspond to ecological zones and be associ-
ated with local adaptation, or be the result of both. In Norway
spruce, as is often the case for forest trees, local adaptation is
strong, in particular along latitudinal gradients (Savolainen et al.,
2007, 2013). As expected under strong local adaptation, the pat-
tern of differentiation of genotypic, phenotypic and environmen-
tal variables at the site of origin of the trees are highly correlated
(Milesi et al., 2019). Patterns of local adaptation can, for
instance, be linked to changes in phenology. For example, growth
cessation follows a latitudinal cline and is controlled by some
major candidate genes (e.g. FTL2, Chen et al., 2012, 2014). The
initial studies were based on a handful of candidate genes, but
more recent studies relying on a much larger number of markers
(e.g. Milesi et al., 2019; Chen et al., 2021) indicate that
phenology-related traits have a polygenic inheritance with loci
involved in local adaptation distributed across the genome.

In the present study we sequenced all individuals from the base
population of the Swedish P. abies breeding program using
exome capture (4769 individuals, 12Mb sequenced, > 500 000
single nucleotide polymorphisms (SNPs)), generating an
unprecedentedly large and dense sampling along a latitudinal gra-
dient ranging from c. 55°N to c. 67°N (Fig. 1a). Through analy-
sis of these data, we characterized the population genetic
structure at a global scale and identified its local drivers along the
latitudinal post-LGM contact zone in Sweden. More specifically,
we tested for isolation-by-distance, identified barriers to gene
flow and tested whether they reflect physical or environmental

barriers or simply historical contingencies. We show that the
northern range of Norway spruce is divided into two main
genetic clusters that significantly match the two main climatic
zones of the region. Coalescent simulations and Approximate
Bayesian Computation allowed the rejection of a purely neutral
divergence model between the two main clusters. Furthermore,
genome scans indicated that adaptive loci were localized in clus-
ters distributed across the 12 linkage groups of the Norway
spruce genome. These clusters correspond to genomic areas of
high genetic differentiation and are associated with environmen-
tal variables discriminating the two climatic zones. The current
distribution of genetic diversity in Norway spruce across Scandi-
navia therefore appears to be the result of both ancient demo-
graphic processes associated with the main climatic cycles and
rapid adaptation to local conditions after the LGM.

Materials and Methods

Sample collection

The study was based on 4769 trees (Fig. 1). Most individuals
(4607) were ‘plus trees’ (trees of outstanding phenotype) collected
in natural populations to establish the breeding population. They
were sampled in Skogforsk (The Forestry Research Institute of
Sweden) trials across Sweden. Geographic information on the ori-
gin of 873 of those trees was missing (Table S1). An additional
162 individuals were also collected in natural populations across
the range of Norway spruce (40 individuals from the hybrid zone
between P. abies and P. obovata, 69 unadmixed P. abies and 53
unadmixed P. obovata) (Chen et al., 2019). These trees were geno-
typed (Chen et al., 2019, BioProject PRJNA511374; and Chen
et al., 2021, BioProject PRJNA731384) using an exome capture
strategy (c. 12MB sequenced with 40 018 diploid 120 bp probes
spread over 26 219 P. abies genes; Vidalis et al., 2018). For further
details see Methods S1.

Single nucleotide polymorphism calling

Raw reads were mapped to the P. abies genome reference v.1.0
(Nystedt et al., 2013) and SNPs were identified using HAPLO-

TYPECALLER v.3.6 (Li et al., 2009) and quality filtered. Individuals
with more than 50% missing data were also removed (N = 282).
The filtered dataset included 4508 individuals and 504 110 SNPs.
Those SNPs were annotated based on the most recent genome
annotation available for P. abies (v.1.0, http://congenie.org/). For
further details see Methods S1.

Population structure and genotype assignment

For population structure analyses, sites in high linkage disequilibrium
(r2 > 0.2) as well as singletons were removed using PLINK v.1.9
(Chang et al., 2015). Among the remaining 302 793 SNPs, 155 211
putatively neutral SNPs (i.e. synonymous sites, or sites within introns
and intergenic regions) were kept for demographic analyses. Popula-
tion structure was first characterized using a principal component
analysis (EIGENSOFT, v.7.2.0 with default parameters, https://github.
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com/DreichLab/EIG, Galinsky et al., 2016) and UMAP (Diaz-
Papkovich et al., 2019). Trees with unknown geographic origin were
assigned to a genetic cluster using Random Forest classification as in
Chen et al. (2019). We also analyzed population structure with
ADMIXTURE v.1.3 (Alexander et al., 2009) and calculated pairwise fix-
ation indices (Hudson’s estimator of FST; Hudson et al., 1992)
between P. obovata, admixed P. abies9 P. obovata populations and
the P. abies genetic clusters defined through the UMAP analysis.

Spatialized analyses of genetic variation

For the following analyses, only trees that were of confirmed
Swedish origin (based on genetic clustering) and with known
geographic coordinates were considered (N = 1758). To account
for the continuous distribution of Norway spruce and to identify
barriers to gene flow, we used CONSTRUCT v.1.03 (Bradburd
et al., 2018). To visualize the variation in effective migration rate
across Sweden we fitted the data to a model of isolation-by-
distance with EEMS v.0.0.9000 (Petkova et al., 2015). Finally, we
also quantified the pattern of isolation by distance (IBD) by
regressing a function of pairwise FST, namely FST/(1–FST), over
the logarithm of the distance between pairs of populations (Rous-
set, 1997). According to Rousset (1997), the inverse of the slope
of the regression provides an indirect estimate of the neighbor-
hood size (Ns).

Contribution of linked selection to the contact zone

To test whether natural selection contributed to the establish-
ment and maintenance of the contact zone in Sweden between
the northern (hereafter NFE) and the southern (hereafter CSE)
genetic domains, we used the program DILS (Fra€ısse et al., 2021),
which implements a coalescent-based approach to simulate a pre-
defined set of isolation with migration models, and which calcu-
lates their posterior probabilities with an Approximate Bayesian
Computation (ABC) approach (for detailed explanations see
‘Contribution of linked selection to the contact zone’ in Methods
S1). Briefly, in the presence of linked selection, one would expect
a larger variance in effective population size, Ne, among loci than
under a strictly isolation with migration model. Considering that
the genetic distance between individuals from NFE and CSE
might influence demographic inferences (e.g. admixed individu-
als have a different history than unadmixed ones), we created
three different datasets, each made up of 20 individuals (10 from
each genetic domain). The individuals were selected as represen-
tative of the Northern and the Southern genetic cluster (ADMIX-

TURE, K = 6), but with different levels of admixture between the
two clusters. The admixture index (Aind) is defined as
Aind = ANFE/(ANFE + ACSE) where AX stands for the ancestry coef-
ficient of cluster x. As the genetic distance varies with the geo-
graphic distance to the contact zone, we defined three datasets.
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The ‘close’ dataset comprises individuals with 0.37 < Aind < 0.63,
the ‘intermediate’ one, individuals with 0.14 < Aind < 0.36 or
0.64 < Aind < 0.87, and the ‘far’ dataset individuals with
Aind < 0.04 or Aind > 0.96. Each of these datasets was used as
input for DILS (Notes S2). We also used forward simulations to
test whether a neutral model could explain the data and reached
the same conclusion as with DILS (Notes S2).

Testing for local adaptation

First, to assess whether the contact zone between the main genetic
clusters corresponded to a shift in abiotic conditions across Swe-
den, we defined climatic zones based on 19 bioclimatic variables
(Chelsa database v.1.2, http://chelsa-climate.org, 30 arc-second
resolution). We then tested for the concordance between climatic
and genetic variation along the contact zone. To do so we investi-
gated the strength of association between the coordinates on the
two first principal components of the principal components anal-
ysis (PCA) based on climatic variables at tree locations with cor-
responding admixture index (Aind) of the trees (see Notes S1 for
more details). Second, we scanned our genomic data for loci
showing extreme differentiation pattern using either an
individual-based approach (PCADAPT v.4.3.2 R package, Luu
et al., 2017; Priv�e et al., 2020), or allelic frequency variation
between the 47 populations (BAYENV2, X

T
X score, Coop

et al., 2010; G€unther & Coop, 2013). Third, we used BAYENV2
and LFMM2 (Caye et al., 2019) to detect significant genotype–en-
vironment associations (GEAs). Genome scans and GEA analyses
were conducted on a subset of 142 765 SNPs with an minimum
allele frequency > 0.05 and stringent criteria were used to control
for false-positive detection risk associated with multiple testing
(details are provided ‘Testing for local adaptation’ in Methods
S1).

Candidate genes putative functions and genetic mapping

The genes putatively involved in local adaptation were tested for
gene ontology (GO) term enrichment using the TOPGO v.2.44.0
R package (Alexa & Rahenfuhrer, 2009). They were first grouped
into four nonexclusive main categories depending on whether
they were genetic differentiation outliers, or associated with
temperature-related, precipitation-related or seasonality-related
climate variables. Since GO term annotation for the P. abies gen-
ome is incomplete, we also adopted an ad hoc approach, specifi-
cally focusing on functions of interest, namely response to
photoperiod, cold or detection of abiotic stimuli, growth, flower-
ing and circadian clock.

We furthermore identified, with a newly developed approach,
chromosome regions enriched for outlier SNPs (either low P-
values in PCADAPT and LFMM2 analyses, or high Bayes factor in
BAYENV2). The method (Tiret & Milesi, 2021) is described in the
online methods and is freely accessible at https://github.com/
milesilab/peakdetection. To do so, we used the consensus genetic
map developed by Bernhardsson et al. (2019) with an overlap-
ping set of probes and the same reference genome. We success-
fully placed on the Norway spruce consensus genetic map 89 940

SNPs, captured with 16 559 probes, covering 15 137 different
genes (c. 66% of the genes for which at least one SNP was called)
and including c. 17% of the 28 354 ‘Well-supported genes’
described in Nystedt et al. (2013).

Results

Population structure and contact zone

We first investigated global population structure using the whole
dataset (N = 4769), including Picea obovata samples. A limited
number of P. obovata samples were used as an outgroup to help
interpret P. abies genetic variation and population structure in a
global context. We retrieved three main domains, Boreal,
Carpathians and the Alps, and three additional clusters resulting
from their admixture: Central Europe, Russia-Baltics and North-
ern Poland (Figs 1, S1, S2). Sweden is itself divided into two
main genetics clusters, one including southern and central Swe-
den (hereafter, CSE) and the other one including the northern
part of the country (hereafter, NFE). Many trees in southern
Sweden also correspond to recent introductions from the rest of
the Norway spruce natural range as historically documented
(Myking et al., 2016) and then genetically inferred (Chen
et al., 2019). Despite their current geographic closeness, the CSE
and NFE clusters are divergent and CSE is more closely related
to the Russia-Baltics cluster than to NFE (FST = 0.009 and
0.018, respectively, Table S1). This general pattern is consistent
with a recolonization of the Scandinavian peninsula from refugia
with different genetic components and through two different
routes, a Northern one and a Southern one. To study more finely
the genetic structure of the contact zone and identify the evolu-
tionary forces that shaped it, we focused in the rest of the study
on the subset of trees that were native to Sweden and belonged to
the CSE (N = 974) and the NFE (N = 784) clusters.

Regardless of the number of layers considered in CONSTRUCT
analysis, a model including IBD within layers predicts the genetic
variation pattern better than a nonspatial model (Fig. S3). The
lowest cross-validation error (five-fold) was found for three layers
(Fig. S3) but, in line with ADMIXTURE, two ancestry components
explained most of the genetic variation and distinguished south-
ern trees from northern ones (Fig. 1c). The contact zone between
these two main clusters occurred between 60°N and 63°N
(Fig. 2a). Contributions from the southern cluster into the north-
ern one can be detected at latitudes as high as 66°N along the
East coast while the northern cluster barely contributed to the
populations outside of the contact zone. Finally, populations
from high latitudes (close to 67°N) also presented a specific
ancestry component (Fig. 2a). Based on ADMIXTURE results this
ancestry component probably represents more recent introgres-
sion from P. obovata into the northernmost P. abies populations
(Fig. 1c), as supported by the large discrepancy in ancestry coeffi-
cients found between two Russian populations located at the
same longitude (Fig. 1c). The effective migration surfaces esti-
mated by EEMS result in a complex pattern, but regions with low
effective migration rate correspond to the contact zone already
detected by CONSTRUCT and to mountainous regions in the north.
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North–South barriers, such as the one along the west coast, are
probably artifacts due to the difficulty of EEMS to account for ani-
sotropy (Petkova et al., 2015) (Fig. 2b). Finally, considering all
pairs of populations and using the framework developed by Rous-
set (1997), we detected a strong pattern of IBD, with a neighbor-
hood size of NS = 209� 33 individuals (Fig. S4). Gene flow was
much less pronounced along a latitudinal gradient (Ns = 228� 33)
than along a longitudinal gradient (Ns = 680� 187).

To investigate whether ecological barriers to gene flow con-
tributed to the establishment of the contact zone, we analyzed
environmental variation across Sweden. Using an unsupervised
clustering approach, we delineated three climatic zones (Fig. 2c):
the two main ones separate the northern part from the southern
part of the country and the differentiation is mainly explained by
temperature-related variables (annual mean temperature, mini-
mum or average temperature of the coldest months, seasonality,
Figs 2c, S5). The third climatic zone corresponds to the moun-
tainous area and the west coast and is characterized by higher pre-
cipitation than the two other climatic zones. The genetic contact
zone between the northern (NFE) and the southern (CSE) clus-
ters almost perfectly overlaps the transition between the northern
and southern climatic zones (Figs 2c, S5). Highly admixed trees
between NFE and CSE (0.33 < Aind ≤ 0.66, see definition in the
Materials and Methods section) were located along the transition
zone and evenly distributed between the two climatic zones (Wil-
coxon’s rank-sum test, W = 789, P = 0.18; Fig. 2c), while most of
the unadmixed trees belonging to the CSE cluster (Aind ≤ 0.33)
or to the NFE cluster (Aind ≥ 0.66) were restricted to the southern
or the northern climatic zone, respectively (W = 79 10�5,
P < 0.001). Furthermore, there is a highly significant and quanti-
tative relationship between the admixture index (Aind) and the
bioclimatic variables that strongly discriminate the two main

climatic zones (Notes S1). While it could simply be the result of
drift and migration, such a match between the main environmen-
tal zones and the genetic structure suggests that natural selection
contributed to the creation and maintenance of the contact zone
between the two genetics clusters.

Genomic signatures of selection

We used coalescent simulations and an ABC framework to test
for the presence of differential linked selection using DILS. We
considered three datasets depending on the distance to the con-
tact zone (‘far’, ‘intermediate’ and ‘close’). For each dataset, the
most likely model was the one with linked selection, with poste-
rior probabilities of 71.24, 93.39 and 87.94%, respectively
(Table 1). This suggests that linked selection occurred over the
entire range of each climate zone. These results were further con-
firmed by forward simulations (Notes S2).

Genome scans identified 440 and 990 SNPs showing extreme
allele frequency differences between geographic regions, using
PCADAPT or X

T
X statistics respectively (32% overlap at the gene

level). With GEA, a total of 1616 (BAYENV2) and 1298 (LFMM2)
SNPs were associated with at least one of the bioclimatic variables
(21% overlap at the gene level). The number of significant associ-
ations per bioclimatic variable was correlated between the two
analyses (Spearman’s rho = 0.53, S = 1070, P < 0.01) (Table S2).
Most of the significant associations were with the climatic vari-
ables that contributed the most to the discrimination of the two
main climatic zones (Spearman’s rho = 0.76, S = 229.8,
P < 0.001 and rho = 0.65, S = 350.15, P < 0.01, respectively for
LFMM2 and BAYENV2).

Candidate genes were significantly enriched for GO terms
associated with biological processes related to environmental
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stimulus detection, metabolic pathways, growth and morphogen-
esis regulation, as well as biotic interactions (Fig. S6). Using an
ad hoc approach specifically focusing on functions of interest
(growth or phenology – related to or associated with detection of,
or response to environmental variation), we identified 134 candi-
date SNPs located within or in the vicinity of 81 unique genes
involved in these functions. We used a heatmap to illustrate how
allele frequencies at these SNPs changed across populations
(Fig. S7). Populations clustered according to latitude and this
clustering was mostly driven by genes associated with the circa-
dian clock and therefore to phenology and growth rhythm: XAP5
time keeper (Spearman’s rho between allele frequencies and lati-
tude = 0.70), flowering-time-like loci (FTL, rho = 0.59), early flow-
ering loci 3 (EFL3, rho = 0.92), early flowering loci 3 high (EFL3-
high, rho = 0.91), sensitivity to red light reduced 1 (SSR1,
rho = 0.78) and gigantea (rho = 0.76) (Fig. 3a).

Genes putatively involved in local adaptation clustered in a
limited number of genomic regions spread across the genome
(four genes on average per region, maximum 14 for BAYENV2
analysis; six on average and maximum 22 for LFMM2), with one
or several clusters on most linkage groups (Fig. 3b,c; Notes S1).
All candidate regions with extreme allele frequency differences
between geographic regions were associated with at least two
environmental variables, suggesting a direct or indirect causal
relationship between high genetic differentiation and environ-
mental factors. Regions enriched for candidate genes were more
often associated with temperature-related variables (on average
4.5� 3.6 regions across the two GEA analyses, the maximum
being nine for temperature annual range) than to precipitation-
related ones (0.94� 1.1, maximum being three for precipitation
of driest quarter). The climatic variables that contributed the most
to the discrimination of the two main climatic zones were also
those for which we detected the highest number of genomic
regions enriched for candidate genes (Spearman’s rho = 0.65;
S = 469.32; df = 18; P = 0.002 for BAYENV2). Similar results were
obtained with LFMM2, the number of candidate genomic regions
per variable being highly correlated between the two analyses

(rho = 0.63, S = 853, P < 0.001 and Fig. 3c). Genomic regions
associated with local adaptation were found across all linkage
groups but formed large clusters on individual chromosomes.
Together, these results and those of the ABC analysis strongly
support a significant contribution of natural selection to the
establishment and maintenance of the contact zone.

Discussion

Contact zones are a rich source of information on the interplay
between demography and selection in shaping the genetic struc-
ture of species (Johannesson et al., 2020). In spite of their impor-
tance in shaping the genetic structure of most species, the origin
and mechanism behind the maintenance of contact zones have
received relatively little attention. Utilizing genomic data from
almost 5000 trees sampled across Sweden and the natural range
of Norway spruce, we reconstructed the origin of the contact
zone separating the south and the north of Scandinavia and
showed that the contact zone corresponds to a major climatic
transition, and natural selection acting on gene clusters dispersed
across the whole genome contributes to the maintenance of the
differentiation between the two sides of the contact zone. Given
that Norway spruce has been present in Scandinavia for a limited
number of generations (Giesecke & Bennett, 2004; Nota
et al., 2022), this is an important result with respect to climate
change because, unless trees were preadapted before invading
Scandinavia, it suggests rapid local adaptation. It has often been
assumed that trees, because of their long generation times, will be
poorly equipped to respond rapidly to climate change (e.g. Dau-
phin et al., 2021) but a recent study based on temporal change in
allele frequencies in three oak stands from central France indi-
cates that oaks responded readily to the climatic conditions of the
Little Ice Age as well as, later on, to the warming period (Saleh
et al., 2022). Interestingly, as in the present case, the response to
selection was highly polygenic and genome-wide.

A recent contact zone

The general clustering is congruent with what was observed in
previous studies using smaller sample sizes (Chen et al., 2019) or
different markers (Tsuda et al., 2016). According to these popu-
lation genetics studies and the paleoecological record (pollen fos-
sil data but also macrofossils) (Giesecke & Bennett, 2004;
Latałowa & van der Knaap, 2006; Binney et al., 2009, 2017;
Lehsten et al., 2014), current European populations of P. abies
originated from at least three main ancient refugia located in the
Alps, in the Carpathians, and in the Russian and Western Siberia
Plains. What our data show is that these three lineages did not
evolve independently but rather entered into contact at many
points in response to cyclic variation in climate. For example, as
apparent from the ADMIXTURE analysis, both Northern Poland
and the Russian-Baltic domain are three-way admixture zones,
with a major contribution from the Carpathians and more lim-
ited contributions from the Alps and P. obovata.

The recolonization of Northern Europe by P. abies started rela-
tively late, and spruce migration rates for Fennoscandia varied

Table 1 Pairwise comparison of different models with Demographic
Inference with Linked Selection (DILS) for individuals at varying distance
from the center of the contact zone in Scandinavian Picea abies.

Distance to
contact zone AM vs SI IM vs SC

M-homo vs
M-hetero

Ne-homo vs
Ne-hetero

Close AM (P = 1.00) IM (P = 0.52) M-homo
(P = 0.89)

N-hetero
(P = 0.88)

Intermediate AM (P = 1.00) IM (P = 049) M-homo
(P = 0.95)

N-hetero
(P = 0.93)

Far AM (P = 1.00) IM (P = 0.55) M-homo
(P = 0.89)

N-hetero
(P = 0.71)

Demographic models: Strict Isolation (SI), Ancient Migration (AM),
Isolation with Migration (IM), Secondary Contact (SC), Homogeneous and
Heterogeneous migration (Nm) (M-homo and M-hetero), and Homoge-
neous and Heterogeneous effective population size (Ne) (Ne-homo and
Ne-hetero). The value in parentheses, P, is the posterior probability of the
best demographic model. Distance to contact zone (‘close’, ‘intermediate’,
‘far’) is defined according to the admixture index.

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation.

New Phytologist (2022) 236: 1976–1987
www.newphytologist.com

New
Phytologist Research 1981

 14698137, 2022, 5, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.18480 by Sw

edish U
niversity O

f A
gricultural Sciences, W

iley O
nline L

ibrary on [03/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



between 200 and 500 m yr�1 (Lehsten et al., 2014). As for many
other species, for example humans (G€unther et al., 2018; Peter
et al., 2020), aspens (De Carvalho et al., 2010), brown bears
(Bray et al., 2013) and rodents (Jaarola et al., 1999), our data
support the existence of two routes of recolonization of Scandi-
navia, both from east to west, but one entering Scandinavia from

the north and moving southward and one entering Scandinavia
at a lower latitude and moving both northward and southward
(Giesecke & Bennett, 2004; Nota et al., 2022). The two routes
joined between 60°N and 63°N and created an admixture zone
that was identified in the present study. Fossil data indicate that
trees entered Scandinavia around 13 000–12 000 yr ago from the
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south and 4000–3000 yr ago from the north (Latałowa & van
der Knaap, 2006). The recolonization of Scandinavia by Norway
spruce occurred in two phases: a first phase during which small
outposts were established and, later on, a second phase when dis-
persal from those and from a larger front started (Latałowa & van
der Knaap, 2006). If their average migration rate was 300 m yr�1,
trees should have reached the current location of the contact zone
after around 3300 and 2000 yr ago, respectively. So, the contact
zone would have been created some 2000 yr ago, or, assuming a
generation time of around 50 yr, some 40 generations ago. The
pollen fossil record suggests a somewhat lower migration rate and
the fronts reaching central Sweden some 3000 yr ago, so around
60 generations ago. Of course, these are approximate dates and
we do not expect the northwards and southwards migrations to
progress at similar speed as it is a well-established fact that Nor-
way spruce can easily be transferred some 3–4 degrees of latitude
northwards without much loss in growth but that a southwards
move is generally much less successful (Eriksson &
Ekberg, 2001). We indeed observed an asymmetry, with the
southern cluster contributing to the northern one at a latitude as
high as 66°N while the northern cluster contribution to the
southern one was much more limited. Regardless, given that gene
flow is important in Norway spruce, this implies that we would
have expected the contact zone to have started to be eroded by
gene flow unless it were maintained by selection.

In addition to the main contact zone, in the CONSTRUCT analy-
sis, northernmost populations contain an ancestral component
that was specific to those populations (Fig. 2a, red component).
A similar result was obtained by Androsiuk et al. (2013) that
showed, based on 15 SRR gene loci, that breeding populations
from the northernmost range of Sweden clustered separately and
presented signs of a bottleneck. Those populations are also char-
acterized by a higher contribution from P. obovata (Tollefsrud
et al., 2009). Our study provides further support for asymmetri-
cal introgression from P. obovata into the western range of P.
abies with a larger contribution at high latitudes (c. 65°N and
above) than at intermediate ones (c. 60°N) (Tsuda et al., 2016;
Fagern€as, 2017; Chen et al., 2019). This pattern at high latitudes
is not specific to the P. abies–P. obovata species pair. A similar sit-
uation is observed between Larix sibirica and L. gmelinii with
introgression of mitochondrial DNA from the local species in the
west, L. sibirica, into the invading species from the East, L. gmeli-
nii (Polezhaeva et al., 2010; Semerikov et al., 2013; Schulte et al.,
2021). This trend does not preclude migration in the opposite
direction. For example, Pinus sylvestris apparently dispersed
primarily from western Europe (Semerikov et al., 2020).

Finally, pollen analysis, genetic data and simulations sup-
ported a moving front of recolonization of Scandinavia (Giesecke
& Bennett, 2004; Giesecke, 2005; Lehsten et al., 2014; Nota
et al., 2022) rather than population expansion from local refugia
(Parducci et al., 2012). Putative local refugia have been found in
mountainous areas of central Sweden (Kullman, 1996) and might
have had a local impact, but the fit to an IBD pattern, together
with the importance of the contribution of P. obovata, would
rather argue for a recolonization from populations located out-
side of the main glaciated areas. Also, these refugial populations

consist of small trees that reproduce mainly asexually (Kull-
man, 1996) and it is unlikely, even if they started to reproduce
sexually and expanded once the climate became warmer, that they
could have contributed massively to surrounding populations.
More generally, comparison between Picea and Larix in eastern
Siberia suggests that the biology of Picea (relatively heavy seeds,
low genetic diversity in survival pockets) might explain why Larix
and not Picea was capable of population expansion from small,
scattered refugia (Herzschuh, 2020).

Polygenic architecture of local adaptation along the contact
zone and ecological drivers

We have so far discussed the data in terms of demographic
events. However, the major contact zone observed in Scandinavia
corresponds to a discontinuity in bioclimatic factors, is better
explained by a model incorporating linked selection than by a
purely neutral one and is accompanied by a large number of
genomic areas containing clusters of genes characterized by high
genetic differentiation and association with climatic variables
related to latitude (e.g. photoperiod, temperature-related climatic
variables). While this is not the first study of forest trees to indi-
cate the presence of selection along a latitudinal gradient, it is the
first to demonstrate the genome-wide impact of local adaptation.
The observed genomic pattern is expected under polygenic adap-
tation for different optima when populations are linked by gene
flow (Yeaman & Whitlock, 2011; Yeaman, 2013) and could be
further reinforced or even caused by structural rearrangements
that allow the spread of coadapted alleles. Unfortunately, the cur-
rent state of the P. abies genome assembly (20 Gb, >15 million
scaffolds) does not enable us to investigate this hypothesis fur-
ther. However, as the largest region includes up to 22 genes car-
ried by different scaffolds, we can expect that some regions
enriched for candidate genes are structural variants that can fur-
ther limit gene flow between the northern and southern clusters.

A large number of genes were significantly associated with
environmental variables and were differentiation outliers: 205
unique genes carried at least one significant SNP associated with
environmental variables and 91 were outliers in genome scans.
Among the latter, some may be false positives as the populations
are recent and not at demographic equilibrium (Bierne
et al., 2013; Lotterhos & Whitlock, 2014). However, because of
the confounded effects of population structure and of the main
environmental gradient, these numbers are likely to be underesti-
mated (Milesi et al., 2019), but this result, nevertheless, suggests
a high degree of polygenicity of local adaptation in Norway
spruce, in line with Milesi et al. (2019) and Chen et al. (2021).
Notably, the pattern of IBD was stronger at the identified candi-
date genes than at all genes considered together. Many candidate
genes were involved in circadian clock control (XAP5, FTL, EFL-
3, EFL-3 high, Gigantea, CEN1, SRR1, LHY), together suggesting
that selection on phenology could partly explain the maintenance
of the contact zone in Norway spruce by inducing differences in
reproductive period and limiting gene flow. Interestingly, three
important genes for phenology, FTL, EFL-3 and Gigantea, are
located nearby on linkage group 8 (Fig. 3c). This colocalization
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could be advantageous in the context of strong selection pressure,
such as the one exerted on juvenile trees by frost in late spring
and early fall (Hannerz, 1998), as it allows for the cosegregation
of adaptive loci involved in the control of phenology.

Considering the overall low population genetic differentiation
together with the relatively short time spent by trees in Scandi-
navia, the establishment of such a strong clinal gradient would
seem to imply a rather strong selection pressure, even at individ-
ual loci. Assuming that local refugia did not contribute signifi-
cantly to the recolonization of Scandinavia, Norway spruce
entered Scandinavia around 10 000–12 000 cal yr BP and reached
central Sweden around 3000 cal yr BP (Latałowa & van der
Knaap, 2006; Tollefsrud et al., 2009), and considering a genera-
tion time of about 50 yr implies that the observed gradient at
adaptive loci over Sweden was established in around 150–200
generations. However, it cannot be ruled out that preadapted loci
also contributed to local adaptation in newly colonized areas. As
trees from the two main clusters originated from similar latitudes
to those found today in Scandinavia, a certain level of preadapta-
tion seems likely. Additional samples from northwestern Russia
and from the Baltics would be necessary to test this hypothesis.

Predicting the response to climate change of the contact
zone and practical implications

Our results indicate that the current contact zone is maintained
by natural selection and will therefore change as the climate
changes. Three main scenarios for the response of Scandinavian
populations under rapid climate change seem plausible. First,
trees from the northern cluster (NFE) are progressively going to
be introgressed with genes from the southern cluster (CSE) as
the latter moves northwards and the contact zone progressively
disappears. Second, barriers to gene flow are strong enough
between the two clusters for the contact zone to persist and shift
northwards. Third, assuming that growth traits are a good proxy
for fitness, global change will be advantageous for populations
with more southern origins, for instance favoring trees with an
Alpine or Carpathian genetic background and those will progres-
sively replace existing populations. Given that Milesi et al. (2019)
showed that, at least in the southern and central parts of Sweden,
trees with an Alpine or a Carpathian origin outperformed the
trees from local provenance for growth traits, this may well
occur.

The response of the Scandinavian population of Norway
spruce to climate change will strongly impact breeding, especially
if breeding is based on genomic selection (Meuwissen et al.,
2001). Genomic selection is increasingly being adopted in forest
tree breeding programs (Grattapaglia et al., 2018), but it lacks
accuracy when the training set is grown in an environment that
differs from the target environment (Resende Jr. et al., 2012).
The evolution of the contact zone will thus need to be monitored
and incorporated into future genotype-by-climate zone interac-
tion studies to optimize the delineation of breeding zones, some-
thing that, to the best of our knowledge, has not yet been
implemented in forest tree breeding. Indeed, the prediction of
genotype by environment interactions in an unobserved

environment is today still challenging, so that genomic prediction
is preferentially implemented with at least one training set per
breeding zone in forest trees (Grattapaglia, 2017).

Predicting the future evolution of natural populations given
global change, for instance for conservation and breeding, is and
will remain a complex task, even more so for species such as Nor-
way spruce that are tightly associated with human activity. The
detection of adaptive loci that are associated with phenotypic
traits and/or the environment will not be sufficient to predict
future adaptation under climate change scenarios without in-
depth knowledge of both global and local genetic diversity and
how this diversity translates into fitness under various environ-
ments. Indeed, adaptation to a highly dimensional environment
requires a high degree of polygenicity. It is therefore intrinsically
challenging to extrapolate both genotype–phenotype and geno-
type–environment relationships under various scenarios involving
either demographic or environmental changes. A possible
approach would be to consider monitoring the delineation of
breeding zones, and performing association analyses such as the
one carried out in the present paper in each of them. The robust-
ness of the genomic prediction will then no longer be a matter of
genotype by environment interactions, but of the predictive
power of future environments (Grattapaglia, 2017). The final
challenge would be to incorporate introgression from closely
related species (or from individuals from outside the focal range),
and account for its role in the prediction in shaping genetic diver-
sity and response to the environment. Predicting the phenotypes
of crossbred populations is a challenging task and requires the
implementation of special training sets (e.g. Misztal et al., 2020),
therefore warranting further studies to adapt these methods to
natural population studies.
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Fig. S2 Admixture plot (K = 2 to 7) and cross-validation error
plot.

Fig. S3 Construct cross-validation and layer contribution plots.

Fig. S4 Isolation by distance pattern for all single nucleotide
polymorphisms (SNPs) or candidate SNPs.

Fig. S5 Relative contribution of the climatic variable to each of
the three climate zones.

Fig. S6 Scatter plot based on GO term enrichment analysis.
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the ad hoc procedure.

Methods S1 Additional online methods.
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