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Abstract: Diabetic kidney disease (DKD) is a frequent, potentially devastating complication of
diabetes mellitus. Several factors are involved in its pathophysiology. At a cellular level, diabetic
kidney disease is associated with many structural and functional alterations. Autophagy is a cellular
mechanism that transports intracytoplasmic components to lysosomes to preserve cellular function
and homeostasis. Autophagy integrity is essential for cell homeostasis, its alteration can drive to cell
damage or death. Diabetic kidney disease is associated with profound autophagy dysregulation.
Autophagy rate and flux alterations were described in several models of diabetic kidney disease.
Some of them are closely linked with disease progression and severity. Some antidiabetic agents have
shown significant effects on autophagy. A few of them have also demonstrated to modify disease
progression and improved outcomes in affected patients. Other drugs also target autophagy and are
being explored for clinical use in patients with diabetic kidney disease. The modulation of autophagy
could be relevant for the pharmacological treatment and prevention of this disease in the future.
Therefore, this is an evolving area that requires further experimental and clinical research. Here we
discuss the relationship between autophagy and Diabetic kidney disease and the potential value of
autophagy modulation as a target for pharmacological intervention.

Keywords: diabetic kidney disease; autophagy; pharmacological treatment; podocytes; proximal-
tubular cells; metformin; SGLT2 inhibitors; GLP1 receptor agonists; renin-angiotensin-aldosterone
system inhibitors (RAASi)

1. Introduction

Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycemia [1].
There is a worldwide increase in the prevalence of this pathology, accounting for approxi-
mately 10% of the population over the age of 20 (close to 460 million people) in 2019. It
is forecasted to affect 11% (700 million) by 2045 [2]. Chronic hyperglycemia may arise
from a lack of insulin production (type 1 diabetes mellitus, T1DM) or to an exaggerated
resistance to the cellular effects of insulin, accompanied by a decline in insulin production
(type 2 diabetes mellitus, T2DM; the most frequent form). This condition is associated with
macro-and microvascular complications. The kidney is the main target for microvascular
damage in both T1DM and T2DM [3]. Near one out of two adults with T2DM and one out
of three adults with T1DM will develop DKD.

Autophagy is an elemental cellular mechanism that transports intracytoplasmic com-
ponents to lysosomes to preserve cellular function and homeostasis [4]. Considered a
self-protection response to stress, it degrades and recycles endogenous materials to main-
tain energy levels [5]. Moreover, it operates as a quality assurance system through the
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elimination of injured or old cells in anticipation of further damage that contributes to
human diseases [6]. For instance, in response to oxidative stress, autophagy increases to
remove oxidatively damaged organelles, such as mitochondria [7]. However, dysregulated,
or exaggerated autophagy may lead to autophagy impairment, which has been linked to a
range of acute, chronic, age-related, or degenerative diseases [8].

There are three conventional types of autophagy: microautophagy, chaperone-mediated
autophagy, and macroautophagy; however, the latter has a significant capacity to de-
grade entire organelles and large protein aggregates [9]. Macroautophagy is a multistep
process whereby a double-membrane vesicle, called autophagosome, sequesters the cy-
toplasmic cargo. This eventually fuses with lysosomes to form autolysosomes, resulting
in cargo degradation [10]. Additionally, microautophagy involves the intake of small
macromolecules by invagination or protrusion of either the lysosome or the mature endo-
some [11]. Lastly, chaperone-mediated autophagy describes a more selective approach that
targets specific proteins and transfers them to the lysosome for degradation [9].

The rate of autophagy in a determined tissue is biologically relevant. However, au-
tophagosome density at any specific cell results from macroautophagy activation and
intensity, as well as the rate of the terminal stage processes driving autolysosome formation.
This ‘autophagic flux’ is of key importance when evaluating the contribution of macroau-
tophagy to cell metabolism, homeostasis, and survival [12]. Autophagic flux is a measure
of autophagic degradation activity [13].

The accumulation of damaged proteins and organelles due to hyperglycemia and
other diabetes-related metabolic changes is highly associated with the development of
diabetic nephropathy. Recent studies have suggested that both podocytes and proximal
tubular cells exhibit altered autophagy activity under diabetic conditions. In addition,
other non-conventional autophagic processes play a role in the pathophysiology of diabetic
kidney disease (DKD).

A non-canonical type known as secretory autophagy (SA), which involves the release
of proteins that lack a signal peptide, has been recently described [14]. Generally, cells
secrete proteins to the extracellular compartment through exocytosis [15] following a
specific pathway led by an N-terminal signal peptide. This permits the entry of proteins
into the endoplasmic reticulum (ER), the Golgi apparatus, the secretory vesicles and
finally, their release into the extracellular space by the fusion of membrane vesicle with the
plasma membrane [16]. In the absence of a signal peptide, the non-conventional process of
autophagy known as SA can cause the secretion of the protein [17–19]. Alterations in SA
can accompany immunoinflammatory processes linked partly to renal kidney damage in
diabetic nephropathy.

Therefore, diabetic nephropathy is associated with alterations in the different types of
autophagic processes. Nevertheless, macroautophagy (hereafter referred to as autophagy)
dysregulation is the best studied in the pathophysiology of DKD. These alterations may be
clinically relevant in terms of disease prognosis and response to therapy.

2. Molecular Basis of Autophagy

The mammalian (or mechanistic) target of rapamycin (mTOR) and AMP kinase
(AMPK) are two critical molecules associated with the core molecular mechanisms linked
with autophagy regulation. The latter acts as an energy sensor. It regulates cell metabolism
and energy homeostasis. The former integrates growth factors and the nutrient signals that
regulate cell growth [20]. The biology of autophagy also implicates the autophagy related
(ATG) genes and proteins. mTOR is usually responsible for the inhibition of autophagy,
whereas AMPK acts as an upstream regulator of the process [21] (Figure 1).
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Figure 1. Autophagy activators in renal tissue. Putative AMPK-mTOR-dependent and -independent
mechanisms are pointed on the schematic overview of the authophagic pathway. AMPK stimu-
lators and mTOR inhibitors induce autophagosome biogenesis, while AMPK-mTOR-independent
mechanisms can modulate the whole process along the autophagy flux. ULK1: unc-51-like kinase 1;
VMP1: Vacuole membrane protein 1; PI3KC3 Phosphatidylinositol 3-kinase C3; FYVE. FYVE zinc
finger domain; DFCP1, Double FYVE containing protein 1; PI3P Phosphatidylinositol 3-phosphate;
GLP1, Glucagon like peptide 1; ATG, Autophagy-related gen or protein: ATG12-ATG5 complex;
LC3, Microtubule-associated proteins 1A/1B light chain 3B (also known as MAP1LC3B); WIPI, WD
repeat domain phosphoinositide-interacting protein; ATG12-ATG5-ATG16 complex; STX17 Sintaxin
17; RAB7 Ras-related protein 7; mTOR, mammalian Target of Rapamycin; SGLT2, Sodium Glucose
Cotransporter 2; AMPK, AMP-activated Kinase.

The first step in the biogenesis of autophagosomes involves the phosphorylation of
ULK1 that the activation of AMPK or the inhibition of mTOR signaling produces [22–24].
Once ULK1 becomes active, subsequent phosphorylation of the P13KC3 complex occurs.
This complex forms under the action of BECN1, ATG14/15, and Vps34, which are crucial
members of autophagosome formation [20].

The vacuole membrane protein 1 (VMP1) is a transmembrane protein whose expres-
sion is rapidly induced in the kidney under experimental hypoxia in vivo [25] and is
implicated in the activation of autophagy [26]. Under certain biological conditions, after
ULK1 activation, VMP1 interacts with the BH3 domain of BECN1 through its ATG domain,
resulting in the recruitment of the P13KC3 complex to the autophagosome membrane.
Thus, VMP1 plays an important role in the correct organization of ATG conjugation systems
involved in the initial steps of autophagosome formation [20,27] (Figure 1).

The phosphorylation of ATG12 and LC3 by the BECN1-PI3KC3 complex ensue from
these events, resulting in the correct recognition of P13P [28]. The double FYVE domain-
containing protein, DFCP1, then recognizes PI3P on the omegasome structure [29]. Hence,
we consider DFCP1, a PI3P effector, as a marker of omegasome formation [30]. The
resultant ATG12-ATG5 complex then recruits LC3 to the autophagosomal membrane. The
ATG16L protein arbitrates this step, through its interaction with ATG5 to form the ATG12-
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ATG5-ATG16L complex [31]. The WIPI protein then recruits this complex to the isolation
membrane [32].

The LC3 protein plays a major role in autophagy because of its involvement in elonga-
tion, maturation, and fusion of the autophagosome-lysosome [33,34]. The lipidated LC3
(LC3B) forms part of both sites of the autophagosome isolation membrane. It is considered
a marker of autophagosomes, along with other ATG8 family proteins [35]. When the
autophagosome presents to the lysosome, the hydrolases degrade the LC3 reservoir; the
ATG4b cleaves the LC3 confined in the external membrane then recycles it [36]. Finally, the
fusion between the autophagosome and the lysosome relies on the HOPS complex through
STX17 and RAB7 [37,38]. Recent studies have implied the involvement of ATG14 in this
process through its interaction with the SNARE protein STX17 [39] (Figure 1).

As mentioned before, the secretion related to autophagy may also play a role in the
development, progression, and prognosis of DKD. Unconventional autophagy-mediated
secretory pathways have shown biological relevance in recent years [40] due to their par-
ticipation in the release of several aggregation-prone proteins [41]. Despite its lack of
elucidation, the mechanism involving unconventional protein secretion relates to ATG-
proteins [16], in that both canonical and non-canonical pathways may share their machin-
ery [42]. Moreover, autophagy has shown association with exosome secretion [41]. Studies
have proposed that the exosome secretion pathway begins with early endosomes that
mature into multivesicular bodies (MBVs) inside the endosomal lumen. The latter may
fuse with the plasma membrane to release its vesicles [43]. Furthermore, evidence suggests
that ATG5, an essential protein for canonical autophagy, also participates in exosome
production [44].

Autophagy also mediates secretion of the pro-inflammatory cytokine interleukin-1β
(IL-1β). The LC3B-positive carriers sequester IL1β from the cytosol and fuse with the
plasma membrane to release this cytokine through a secretory autophagy process [16]. The
role of autophagy in pro-inflammatory mediator secretion is not restricted to inflammasome
substrates. It extends to the secretion of other cytosolic inflammatory proteins lacking
leader peptides that play a role in the progression of DKD. Insulin-degrading enzyme
(IDE) is a zinc metalloprotease responsible for the cleavage and further inactivation of
insulin [44,45], as well as other bioactive peptides such as glucagon, amylin, somatostatin,
endorphins, and the beta-amyloid peptide (Ab). Highly expressed in renal tissues, IDE
lacks any secretory signal sequence; therefore, it is not released through the classical
exocytic pathway. For this reason, a non-conventional pathway secretes less than 10%
of this protein, following a C-terminal Sly sequence that impedes its breakdown into
lysosomes. The IDE protein acts as a modulator of inflammatory stress. Research has
proposed that IDE can block NF-κB, a well-recognized transcription factor that regulates
the genes responsible for several pro-inflammatory responses initiated at several stages
of DKD progression [46]. Alterations in SA may affect IDE secretion and contribute to
the upregulation of the pro-inflammatory environment that characterizes the evolution
of DKD.

3. Autophagy and Kidneys

While autophagy appears to be expendable for kidney development, it appears to
be essential for its integrity and proper functioning [47]. Reportedly, autophagy plays
an important protective role in the kidneys by preventing the fibrosis and inflammation
attributed to DKD [43]. Studies on rodents with streptozocin (STZ)-induced diabetes have
shown that in diabetic nephropathy there is an early inhibition of autophagy in podocytes
and proximal tubule epithelial cells (PTEC) [48].

As mentioned, impaired autophagy generates the accumulation of damaged or-
ganelles, such as mitochondria, which play a major role in the formation of reactive
oxygen species (ROS). These also contribute to kidney damage, owing to the accumulation
of impaired products that trigger apoptosis in renal cells, especially podocytes. In short, all
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the phenomena attributed to DM result in the injury of every cell type that constitutes the
kidney. (Figure 2).

Figure 2. Altered Autophagy activity in DM results in the injury of every cell type that constitutes the kidney. Overview of
structural changes in podocytes, proximal tubule epithelial cells, mesangial and endothelial cells.

We describe the structural changes in podocytes and proximal tubule epithelial cells
in Table 1.

Table 1. Autophagy in kidney physiology and DKD pathophysiology.

Autophagy in Kidney Physiology Impaired Autophagy in DKD

• Essential for kidney’s integrity and proper
functioning [47].

• Protective role over the kidneys by preventing
fibrosis [48].

• Protective role preventing inflammation [43].
• Regulates GFB integrity [48–51].
• Contributes to renal homeostasis by regulating

autophagy flux in kidney cells [52].
• May increase glucagon level, which induces

autophagy in several tissues.

• Generates the accumulation of impaired organelles and misfolded
proteins:

• The accumulation of mitochondria plays a huge part in the
formation of reactive oxygen species (ROS) [1].

• This activates pro apoptotic signals and may result in podocyte
death. [52,53]

• Induces podocyte damage and hypertrophy [53,54].
• Induces apoptosis in podocytes and proximal tubular cells [55].
• Mediator of unconventional secretion of pro-inflammatory

molecules such as IL-1β [30] and IDE [45].
• Develops kidney fibrosis mediated by WISP-1 [56].
• Set in motion glomerulosclerosis and damage in the GFB by the

deletion of Atg5 [53].
• Increases the rate of senescence in PTEC [57,58].
• Up-regulates nephrin in the glomeruli through inhibition of

mTOR, altering podocytes cytoskeleton [49].
• Induces pryoptosis, a highly inflammatory form of programmed

cell death due to a high rate of caspase 1 that cleaves IL-1B [59,60].
• Produces alterations in ATG genes leading to kidney damage [61].
• Inhibition of mTOR may increase protein excretion, which

promotes progressive tubular injury [62].
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3.1. Podocytes

The study of podocytes has piqued the interest of investigators because their damage
can carry irreversible deleterious consequences to the kidney. Podocytes or glomerular
epithelial cells constitute a critical component of the glomerular filtration barrier (GFB).
As podocytes have no capacity to regenerate themselves, their loss, when significant,
will subsequently result in an alteration of the GBF, leading to proteinuria and renal
failure [63–66].

Under basal conditions, a high rate of autophagy maintains podocyte function. This
autophagic flux is greater than that of any other kidney cell and is crucial for its subsis-
tence [52]. Recent studies have shown that mTOR activation results in podocyte dam-
age [54] and possibly contributes to podocyte hypertrophy [53]. Moreover, the deletion of
Atg5, an autophagy regulator, results in autophagy inhibition, which causes glomeruloscle-
rosis and damage to the GFB. These findings suggest that autophagy plays an important
role in preserving the integrity of podocytes and contributes to the maintenance of normal
kidney function [53].

A decrease in podocyte number represents one of the chief histological changes
observed in DKD [67]. The injury of these cells could be a major clinical predictor of the
progression of the disease [68,69] and is responsible for micro- and macroalbuminuria [70].
Several monogenic mutations associated with albuminuria in humans link specifically to
some important proteins related to podocyte survival [71].

In animal studies, dysregulation of podocytes physiology is associated with the
aggravation of albuminuria [72–74]. These models have estimated that a podocyte popula-
tion loss beyond 20% is associated with irreversible glomerular damage and eventually,
end-stage renal disease (ESRD) [75]. We can link several other histological alterations to
irreversible kidney damage, including changes in basal membrane constitution. These al-
terations eventually impair podocyte adhesion molecules, generating a series of deleterious
chain reactions [74].

Even when albuminuria is a marker of renal deterioration in diabetes, a considerable
number of patients with DKD do not develop albuminuria [76,77]. Other DKD biomarkers
that can even precede microalbuminuria development include podocyte-release products
that are specific markers of the “health status” of these cells. Nephrin is a transmembrane
protein involved in the regulation of the podocyte cytoskeleton. It is present in the urine of
approximately 54% of patients without albuminuria and has shown to be an early DKD
biomarker [78]. Reduction in the expression of this protein accompanies DM, resulting in
alteration of the slit diaphragm complex by abnormal rearrangement of actin [79]. Hence,
effacement of the foot process occurs, which decreases the integrity of podocyte cells, and
contributes to an aberrant GFB. The action of DM is also involved in the dysregulation of
other constituents responsible for actin cytoskeleton remodeling, such as the RHO family of
small GTPases, RhoA, Cdc-42, and Rac1 [80]. For instance, the stimulation of Rho-Gtpase
activity results in the alteration of cell motility and foot process effacement. In diabetic
mice, rapamycin reduces albumin excretion, fusion of podocyte foot process, glomerular
basement membrane thickening, and matrix accumulation [49]. By inhibiting mTOR,
rapamycin increases LC3-expressing podocytes and autophagy, inducing the upregulation
of nephrin in the glomeruli [49]. Diabetes also causes podocyte loss by increasing the
expression of α3β1 integrin. This phenomenon prevents the adhesion of podocytes to
the glomerular basement membrane; therefore, the resultant detachment between them
disintegrates the entire structure [50,51]. Research has suggested that integrin-mediated cell
attachment to the extracellular matrix modulates the autophagy response, thus influencing
cell survival after a significant loss of cell-matrix contact [81]. In summary, autophagy
appears to associate with several processes that regulate GFB integrity.

Oxidative stress plays a significant role in podocyte cell injury because it produces an
imbalance in the TGF-β signaling pathway. This action thus alters autophagy and activates
the inflammatory cascade, while increasing apoptosis [82]. As the autophagy-lysosome
pathway is downregulated, a switch towards the ubiquitin-proteasome system tends to
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reduce damage. However, this process is not as efficient, resulting in the accumulation of
impaired organelles and misfolded proteins. This series of events may result in podocyte
death due to the activation of pro-apoptotic signals [52,53].

Finally, inflammation also predicts the loss of podocytes. Hyperglycemia activates pat-
tern recognition receptors such as the nucleotide-binding domain, leucine-rich repeat, and
pyrin domain-containing-3 (NLRP3), which activates the inflammasome and accelerates
the development of DKD in diabetes patients. Inflammation is one of the main factors that
contribute to podocyte damage because there is a high rate of caspase 1 that cleaves IL-1β,
leading to pyroptosis, a highly inflammatory form of programmed cell death. Furthermore,
some studies conducted in diabetic mice have shown that inactivating IL-1β decreases the
progression of DKD through the reduction of pyroptosis [59,60]. As mentioned, autophagy
is simultaneously involved in the pathophysiology of inflammation and the IL-1β secretion
process. However, the clinical implications of this phenomenon remain unclear.

3.2. Proximal Tubule Epithelial Cells (PTEC)

Under basal conditions, PTEC generally has a lower level of autophagy in mice
compared to that in podocytes [47]. However, active transport in tubular epithelial cells
consumes large amounts of energy, making these cells more exposed to hypoxia or energy
deprivation [59]. In addition, the renal medulla offers a more hypoxic environment than
the renal cortex, compromising tubular epithelial cells substantially [60,83].

As mentioned previously, normal autophagy ensures cell vitality in hostile environ-
ments. However, this process is crucial for tubular cells; it has a more significant influence
on PTEC than distal tubules and collecting ducts do. When autophagy fails in PTEC, the
kidneys develop structural alterations, such as interstitial fibrosis. In addition, damaged mi-
tochondria and alterations in cellular transport mechanisms contribute to severe alterations
in renal homeostasis [47,59,84].

Chronic hyperglycemia generates impaired autophagy and increases the rate of senes-
cence in PTECs [46,47]. Mouse models of diabetes show alteration of ATG genes, specifically
the deletion of Atg5 and Atg7 in PTEC, which accompanies the accumulation of damaged
mitochondria, tubular cell apoptosis, and fibrosis [61]. Other studies have shown that
AGE-RAGE interaction lowers lysosomal activity, leading to the accumulation of abnormal
molecules in PTEC, thereby decreasing cell survival. Albuminuria, frequently observed
in diabetic patients, may trigger autophagy in PTECs in the short term. Excessive pro-
tein excretion alters autophagy when it becomes chronic, leading to progressive tubular
injury [62]. However, mTOR mediates this effect.

Transforming growth factor-beta 1 (TGF-β1) is one of the main regulators of kidney
fibrosis [85] due to its capacity to act as an autophagy mediator. It promotes vacuole
formation, LC3 expression, phosphorylation of P13K, and modulation of mTOR in human
kidney cells [86]. It appears that WNT1-inducible signaling pathway protein-1 (WISP-1)
might be involved in the evolution of kidney fibrosis through the process of autophagy
too [56], especially in tubular epithelial cells. According to Wang, Chong, Shang, and
Maiese [56], WISP-1 appears to decrease the expression of LC3 and BECN1 while increasing
p62 activity in neuronal cell cultures. In rats, the increase or decrease in the expression of
WISP-1 correlates with tissue response to the fibrotic stimuli prompted by TGF-B1. This
suggests an existing relationship between them [87].

4. Diabetic Kidney Disease (DKD) and Autophagy

The duration of diabetes determines at least in part the difference between the two
types of diabetes in terms of the prevalence of DKD. Other determinants include diverse
associated comorbidities such as obesity, aging, insulin resistance, hypertension, and
vascular diseases, including atherosclerosis [3].

The renal community regards DKD as the main cause of end-stage renal disease
(ESRD) [20] in both developing and developed countries. Treatment of the end stages of
the disease requires dialysis and/or transplantation. In many countries, DKD is present
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in at least 50% of patients requiring renal replacement treatment [88] and is responsible
for the increased morbidity and mortality of patients [4]. For that matter, it places a huge
financial burden on health insurance systems, especially considering the need for long-term
replacement therapies [89]. There have been several identified risk factors that contribute
to the progression of DKD, including hyperglycemia, hypertension, cardiovascular disease,
obesity, and dyslipidemia. However, changes in lifestyle habits and/or pharmacological
treatments can mitigate the effects of these conditions [55].

The Diabetes Complication and Treatment (DCCT) trial showed that intensive glycemic
control could reduce the progression of DKD in T1DM [90]. In patients with T2DM, the
United Kingdom Prospective Diabetes Study (UKDPS) trial showed that intensive blood
glucose control resulted in a 33% reduction in the relative risk of development of microalbu-
minuria or clinical grade proteinuria after 12 years. The latter trial also showed a significant
reduction in the percentage of patients doubling their plasma creatinine [91]. Similarly,
the VADT study indicated that 6 years of intensive glycemic control resulted in marked
reductions in renal outcomes after a 15-year follow-up [92]. In contrast, other studies have
suggested that intensive glycemic control can reduce albuminuria and proteinuria but is
insufficient to improve renal outcomes [91]. This necessitates a better understanding of the
interplay between different factors, to elucidate the pure effect of hyperglycemia on the
development and progression of DKD.

When persistently elevated glycemia exceeds the capacity of body antioxidant de-
fenses, it leads to an increase in reactive oxygen species (ROS) [1]. In addition, hyper-
glycemia contributes to the assembly of advanced glycation end-products (AGEs), ac-
tivation of the renin-angiotensin-aldosterone system (RAAS), disruption of the klotho
anti-aging factor, and the activation of protein kinase C (PKC) among other damaging
processes. All these effects, including the downregulation of vitamin D receptors, have
accompanied DKD [21].

Renal glucose excretion increases proportionally with increasing glycemia. Under
physiological conditions, the glomeruli filter approximately 180g of glucose per day. The
proximal tubules then reabsorb almost all of the filtered glucose. The glucose-sodium
coupled transporter, SGLT2, within the proximal tubules, is responsible for reabsorbing
90% of the glucose filtered at the glomerulus. Another transporter, SGLT1, acts on the
other 10% [93]. These homeostatic mechanisms change in patients with diabetes. Renal
glucose resorption also increases in patients with diabetes. The pathophysiology of DKD
encompasses the alterations in several coupled mechanisms linked with glucose renal
resorption. These changes may directly and/or indirectly affect autophagy flux and rate in
kidney tissues. In addition, alterations in autophagy may result in significant imbalances
in renovascular physiology, with implications for the progression of DKD, as we will
discuss below.

Inflammatory mechanisms play an important role in the pathophysiology of DKD.
Dysregulation between pro- and anti-inflammatory mediators has a marked impact on
several processes associated with DKD evolution. These mediators can affect autophagy in
several ways. These alterations in autophagy can profoundly alter the pro-inflammatory
tone in renal tissues [94]. Not only is canonical autophagy associated with the inflammatory
status, but SA may be implicated in: (1) some inflammatory mediators, such as IL-1beta,
released through this pathway [41]; (2) some inflammation-related enzymes in DKD, such
as insulin-degrading enzyme (IDE), which are also released following an autophagy-linked
secretion process; and (3) a close interplay between secretory and canonical autophagy [16].

Autophagy has been described as a benign mechanism that preserves renal func-
tion [21]. Under normal conditions, autophagy flux is critical for maintaining renal
podocytes, proximal tubular epithelial cells, and mesangial and endothelial cell physiology,
contributing to renal homeostasis. However, chronic hyperglycemia induces significant
changes in the autophagic rate and flux, thus contributing to cell damage and progression
of DKD [55]. It is worth considering these roles of autophagy in the kidneys when helping
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patients through the development of innovative therapeutic strategies to delay or prevent
nephropathy [95].

5. Potential Implications for the Pharmacological Treatment and Prevention of DKD.
Focus on New Antidiabetic Agents

In addition to their effects on blood glucose levels, some antidiabetic agents may
modify canonical and non-canonical autophagy, adding potential benefits to DKD pre-
vention and/or treatment (Table 1). Some of these agents activates AMPK and/or inhibit
mTOR signaling (directly or indirectly). For some other, mechanisms are AMPK-mTOR
independent (Figure 1).

Even when contraindicated in patients with low glomerular filtration rates, metformin
(an antihyperglycemic agent widely used as first-line treatment for T2DM) has demon-
strated significant effects on autophagy in several tissues and under different experimental
conditions. It increases AMPK activity, which in turn inhibits mTOR [96]. Metformin may
also inhibit mTOR independently of AMPK. Since mTOR inhibition leads to increased
removal of autophagic material, research has suggested that metformin promotes the
generation and subsequent elimination of autophagic vesicles through the inhibition of
mTOR [87]. In a diabetic rat model, by high-fat feeding and an intraperitoneal injection
of streptozotocin, metformin was associated with renoprotective effects by upregulating
autophagy [97]. Metformin also reduced oxidative stress in renal tissue and correlated
with reduced structural changes in the glomeruli. Metformin also inhibited the expression
of the extracellular matrix. A recent study showed that Sirt1 inhibition partially blocked
the protective effect of metformin on the kidney. This suggests that metformin may have
some protective effects against kidney damage through induction of the Sirt1/FoxO1 path-
way [97]. Moreover, in rat mesangial cells cultured under high glucose concentrations,
metformin upregulated autophagy and reduced abnormal cell proliferation through the
AMPK/SIRT1-FoxO1 pathway [98]. In animal models, metformin may protect the kidneys
from chemical agents with proven nephrotoxic effects and is even more toxic than hyper-
glycemia. For instance, metformin appears to protect against cisplatin-induced toxicity by
inducing autophagy via AMPK activation [99].

Some of the newest agents used in the treatment of T2DM have significant effects
on autophagy. By inhibiting glucose reabsorption in the proximal tubules, SGLT2 in-
hibitors, such as empagliflozin, dapagliflozin, canagliflozin, and ertugliflozin, reduce blood
glucose and body weight [100]. These agents have natriuretic effects and block Na/H+ ex-
changer NHE3, decreasing blood pressure, and modifying hemodynamics and endothelial
function. In experimental models, these effects on the NHE3 exchanger modify intracellu-
lar and mitochondrial calcium concentrations, which may have significant physiological
implications [101].

SGLT2 inhibitors decrease intraglomerular pressure. Under physiological conditions,
these agents have marked effects on tubule-glomerular feedback, which maintain the
glomerular filtration rate through modification of the preglomerular arteriole tone. Di-
abetes accompanies the increased expression of SGLT2 in the proximal tubules. This
increases sodium and glucose reabsorption, thus reducing sodium concentration in the jux-
taglomerular apparatus. Consequently, this affects the afferent arteriole tone and increases
the intraglomerular pressure. This effect leads to hyperfiltration. An increased concen-
tration of sodium delivery at the macula densa follows the SGLT2 inhibition, partially
restoring the equilibrium in the glomerular vascular tone and intraglomerular pressure.
These actions may explain, at least in part, the renoprotective effects that exhibited in both
patients with and without type 2 diabetes [102]. Clinical trials carried out in patients with
type 2 diabetes showed a consistent reduction in DKD progression in a statistically and
clinically relevant manner [103].

Increased glucagon levels also accompany SGLT2 inhibition. Glucagon elevation
is associated with lipolysis and ketogenesis. Hypothetically, ketone bodies could lead
to more efficient energy generation in some tissues, such as the myocardium and renal
tissues. The increased glucagon/insulin ratio complement AMPK activation and mTOR
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inhibition. These mechanisms drive an increased mitophagy rate. Research suggests that
this effect facilitates mitochondrial physiology by restoring mitochondrial cycling and
renovation [104]. However, the clinical relevance of these processes in humans remains
unclear. Some of these effects may explain the reduction in the energy demands of the
proximal tubule associated with SGLT inhibition, as observed in several experiments. The
SGLT2 inhibitors increase erythropoietin levels via the hypoxia-inducible factor (HIF). This
effect results in an increase in hematocrit, which may explain some of the clinical outcomes
associated with the use of these agents in clinical practice [105].

Moreover, SGLT2 inhibitors have demonstrated the ability to reduce sympathetic
nervous system activity [106]. Sympathetic stimulation increases tubular Na-K-ATPase
activity, and sodium reabsorption and retention. In addition, activation of beta-1 adrenergic
receptors in the juxtaglomerular apparatus are responsible for upregulating renin release,
with a general increase in the renin-angiotensin-aldosterone system (RAAS). Overactivation
of the RAAS plays a critical role in DKD progression; RAAS blockade plays an important
role in the prevention and treatment of DKD [107]. By reducing sympathetic system and
renal activities, SGLT2 inhibitors induce several beneficial hemodynamic and metabolic
changes. This contributes to a reduction in oxidative stress and inflammation.

In sum, these effects on glycemia, tubule-glomerular feedback, renal hemodynamics,
energy generation, oxygen consumption, and oxidative stress may have important implica-
tions on the inflammatory processes that usually characterize some phases of DKD [108].

Many of the effects of SGLT2i may result in important changes in the autophagy rate
and flux, as well as in SA. Glucagon increases, for instance, induces autophagy in several
tissues [109]. In contrast, SGLT1 inhibitors have proven to directly stimulate autophagy in
cardiomyocytes through AMPK, sirtuin-1, and hypoxia-inducible factors-1α/2α [110]. In
db/db rodents, empagliflozin demonstrably enhanced the areas of glomerular staining for
beclin-1 and LAMP-1, two widely used markers of autophagy [111]. The volume density
of autophagosomes and autolysosomes in podocytes increased. These effects may increase
podocyte survival and protect against GFB. Research suggests that SGLT2 inhibitors activate
SIRT1/AMPK, suppress Akt/mTOR signaling and modulate autophagy [112]. As a result,
it restores mitochondrial function, reducing oxidative stress and inflammation [113]. We
cannot dismiss the potential additional effects of these agents on SA. However, there is yet
a poor understanding of the direct and indirect effects of SGLT2i on SA and this merits
further research.

GLP1 receptor agonists (exenatide, liraglutide, dulaglutide, semaglutide, etc.) are
highly effective antidiabetic agents with some renoprotective effects mediated by GLP-1
receptor signaling [114]. They have shown some natriuretic effects in rats [115]. These GLP1
receptor agonists decrease proximal sodium reabsorption by reducing NHE3 transport
activity and research suggests that they may increase the glomerular filtration rate [116].
Reportedly, liraglutide suppresses autophagy in human kidney-2 cells and diabetic rat
kidneys [117]. In experimental models, however, GLP-1 appears to regulate autophagy
flux positively through the AMPK-mTOR signaling pathway [117–120]. In addition, GLP1
receptor agonists can also contribute to the restoration of autophagy balance in kidney
tissues through the reduction of glycemia, inflammation, and oxidative stress [118,119].

Other non-antidiabetic nephroprotective agents induce profound changes in au-
tophagy. Renin-angiotensin-aldosterone system inhibitors (RAASi) and mineralocorticoid
receptor antagonists frequently used in clinical practice are among them [120]. As with
metformin, SGLT2 inhibitors and GLP1 agonists these agentes modulate AMPK-mTOR
signalling but also exhibit mTOR independent mechanisms of action. Other new agents
under research appear to modify autophagy rates and flux by AMPK-mTOR dependent
and independent mechanisms: bardoxolone (an activator of antioxidant pathways that acts
on nuclear factor-erythroid 2-related factor 2 [Nrf2]), apoptosis signal-regulating kinase
(ASK)-1 inhibitors, and several drugs with anti-inflammatory effects are among them [120].
Unmet needs and potential gaps in that area merit further research. Autophagy and drugs
in DKD are summarized in Table 2.
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Table 2. Autophagy and drugs in DKD.

Agent Key Mechanisms Additional Comments

Metformin [99,100]

• Modifies autophagy by activating
AMPK and inhibiting mTOR.

• Induction of Sirt1/FoxO1.

• First-line treatment in patients with
type 2 DM.

SGLT2 inhibitors (e.g., canagliflozin,
dapagliflozin, empagliflozin, other)
[100–113]

• It would activate SIRT1/AMPK,
suppress Akt/mTOR signaling.

• Multiple indirect effects (associated
with changes in glucagon, HIF and
EPO concentrations hemodynamic
effects, changes in
glomerulo-tubular balance, in
RAAS, sympathetic tone, etc.).

• Relevant benefits on renal
preservation consistently proven in
human beings in several clinical
trials.

• Proven cardiovascular benefits,
particularly in patients with heart
failure.

GLP1 receptor agonists (liraglutide,
semaglutide, dulaglutide, other)
[114–118]

• GLP1 receptor mediated actions:
AMPK-dependent and
-independent mechanisms
(natriuresis, effects on NH3, other).

• Some positive effects observed in
clinical trials.

• Proven cardiovascular benefits.
• Role of autophagy as a potential

explanation for these benefits still
uncertain.

Renin-angiotensin-aldosterone system
inhibitors (RAASi) and mineralocorticoid
receptor antagonists [120,121]

• Direct (AMPK- and
mTOR-mediated) and indirect
mechanisms associated with
reduction in RAAS activity.

• Clinically proven benefits on renal
preservation.

• Role of autophagy as a potential
explanation for these benefits still
uncertain.

Rapamycin, everolimus, other mTOR
inhibitors [121–123]

• Direct mTOR inhibition
• Autophagy upregulation in several

models and in biopsies of human
transplants.

Other (investigational) agents [120]

• Factor-erythroid 2-related factor 2
[Nrf2] activators.

• Apoptosis signal-regulating kinase
(ASK)-1 inhibitors.

• Several drugs with
anti-inflammatory properties.

• Clinical benefits on renal outcomes
still to be demonstrated.

As mentioned, some of these compounds have certain mechanisms in common. Ra-
pamycyn, everolimus and other mTORC1 inhibitors have well recognized effects in vitro as
well as in vivo. Rapamycin was initially discovered as an antifungal agent and possess im-
munosuppressive and anti-proliferative effects in eukariotic cells. In renal cells, rapamycin
augments autophagy by inhibiting the mTORC1-ULK1 pathway. In MRLlpr/lprmice
model of Lupus Nephritis rapamycin induces autophagy upregulation through mTORC1
inhibition [121,122]. In this model, rapamycin-associated increase in autophagy resulted
cytoprotective against podocyte injury by antibody and interferon [122]- Other agents
increases kidney autophagy rate in animals by mTOC1-ULK1 signaling inhibition: ursolic
acid, notoginsenoside R1, pyridoxal-derivates among them [122]. Astragaloside upregu-
lates autophagy in kidneys of streptozotocin-induced diabetic animals via AMPK-mTORC1.
In transplant biopsies of human patients receiving rapamycin, electron microscopy showed
a significant increase in podocyte autophagosomal volume fractions when compared with
patients treated without mTOR inhibitors [123]. However, more research is needed to
understand the potential functional consequences of this observation on clinical outcomes
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in patients with DKD treated with mTOR inhibitors [123], and many agents have been as-
sociated with an AMPK-mTOR or mTOR-ULK independent increase in autophagy in renal
cells (carbamazepine, minoxidil, xetospongin B, atrasentan, for instance) [121] (Figure 1).
Even when several agents have common mechanisms of action that may explain some
beneficial effects on DKD progression, it is important to point out that almost all the agents
mentioned in this description have multiple effects on several non-autophagy related
mechanisms with potential clinical benefits. The specific role of autophagy modulation on
DKD evolution is still uncertain and deserves for further investigations.

6. Some Areas of Uncertainty and Suggestions for Future Research

Relevant information on the role of autophagy in the pathophysiology of DKD is still
missing. Many of the published studies do not explore autophagy flux and remain confined
to a static description of the process. Canonical pathways are more frequently described
than other non-classical processes, including secretory autophagy. Besides, studies on the
interlinks between macroautophagy and secretory autophagy are lacking in the literature.

As mentioned before, the precise role of autophagy on the renal effects of drugs
with potential benefits on DKD outcomes remains as one of the most relevant gaps in
knowledge. Complexity of metabolic, hemodynamic, neural, cellular, subcellular and
microenvironmental events are difficult to disect to evaluate the specfic role of autophagy
modulation on outcomes. In addition, many of these actions were observed and described
in ‘in vitro’ and/or in animal models of the disease. Uncertainty remains high on the
extrapolation of these effects to human beings. On the other hand, evaluation of autophagy
in living human kidney tissues is difficult. Well powered studies on series of biopsies from
patients at different stages of evolution, with different comorbidities, complications, ages
and degrees of metabolic control are almost impossible on rutinary basis. DKD represents a
very heterogeneous population with a high load of patient individual covariates; as a result,
this kind of studies would require a considerable number of patients to keep imprecision
under control. In general, well controlled dose-response studies in human are also lacking.

As observed by Tang and col. [21] some of the effects of any specific agent may result
beneficial for some processes and detrimental for other in the same tissue. In addition,
autophagy may play different roles in different cell types. In summary, critical information
on modification of autophagy by potentially nephroprotective agents in different DKD
stages and conditions is still lacking. The contribution of autophagy modulators on DKD
outcomes in humans remains unclear and deserves for further research.

7. Conclusions

Impaired autophagy is involved in the pathophysiology of DKD, which increases
ROS formation, induces kidney cell damage and apoptosis, and mediates inflammatory
responses and fibrosis. Glomeruli, tubules, interstitial tissues, and the vascular renal com-
partment suffer from the impact of autophagy dysregulation observed in several stages of
chronic kidney disease (CKD). At the same time, alterations in the renal microstructure
and physiology promote relevant changes in the surrounding environment. These, in turn,
induce new modifications in autophagy rates and flux. Several factors contribute to the
impact of autophagy dysregulation: age, diabetes duration, metabolic control (including
glycemic and lipid levels), inflammatory factors, and hypertension. Genetic and epigenetic
factors are also influential factors. Diabetes is the primary cause of CKD in the occidental
world and, ultimately, this highly prevalent complication leads to increased mortality,
morbidity, and deterioration of quality of life. However, some new antidiabetic drugs
appear to exhibit renoprotective effects. These agents seem to modify autophagy signifi-
cantly through several mechanisms. Other potentially nephroprotective non-antidiabetic
drugs appear to partially reverse autophagy dysregulation. The modulation of autophagy
could be relevant for the pharmacological treatment and prevention of DKD in the future.
Therefore, this is an area that requires further research.
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Abbreviations/Acronyms

ULK1 unc-51-like kinase 1
VMP1 Vacuole membrane protein 1
PI3KC3 Phosphatidylinositol 3-kinase C3
FYVE FYVE zinc finger domain
DFCP1 Double FYVE containing protein 1
PI3P Phosphatidylinositol 3-phosphate
GLP1 Glucagon like peptide 1
ATG Autophagy-related gen or protein: ATG12-ATG5 complex

LC3
Microtubule-associated proteins 1A/1B light chain 3B
(also known as MAP1LC3B)

LAMP Lysosomal-associated membrane protein
WIPI WD repeat domain phosphoinositide-interacting protein
ATG12-ATG5-ATG16 complex
STX17 Sintaxin 17
RAB7 Ras-related protein 7
mTOR mammalian Target of Rapamycin
SGLT2 Sodium Glucose Cotransporter 2
AMPK AMP-activated Kinase

BECLIN 1
mammalian ortholog of the yeast autophagy-related gene 6 (Atg6)
and BEC-1 in the C. elegans nematode

BECN1 Coiled-Coil Moesin-Like BCL2-Interacting Protein
Vps34 PI3K activity of the catalytic subunit
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