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Graphical abstract 

 

HIGHLIGHTS 

 

 Evaluated a novel CNN-based model (Entelai Pic) for brain volume estimation. 

 Entelai Pic had excellent correlation and agreement with FreeSurfer. 

 Entelai Pic provided robust segmentations of brain volumes. 

 Post-processing time is 480 minutes for FreeSurfer and 5 minutes for Entelai 

Pic. 

 This novel CNN-based model is suitable for brain volumetry on clinical practice. 
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ABSTRACT 

 

Background and purpose: There are instances in which an estimate of the brain 

volume should be obtained from MRI in clinical practice. Our objective is to calculate 

cross-sectional robustness of a convolutional neural network (CNN) based software 

(Entelai Pic) for brain volume estimation and compare it to traditional software such 

as FreeSurfer, CAT12 and FSL in healthy controls (HC). 

Materials and Methods: Sixteen HC were scanned four times, two different days on 

two different MRI scanners (1.5T and 3T). Volumetric T1-weighted images were 

acquired and post-processed with FreeSurfer v6.0.0, Entelai Pic v2, CAT12 v12.5 

and FSL v5.0.9. Whole-brain, grey matter (GM), white matter (WM) and 

cerebrospinal fluid (CSF) volumes were calculated. Correlation and agreement 

between methods was assessed using intraclass correlation coefficient (ICC) and 

Bland Altman plots. Robustness was assessed using the coefficient of variation 

(CV). 

Results: Whole-brain volume estimation had better correlation between FreeSurfer 

and Entelai Pic (ICC (95% CI) 0.96 (0.94-0.97)) than FreeSurfer and CAT12 (0.92 

(0.88-0.96)) and FSL (0.87 (0.79-0.91)). WM, GM and CSF showed a similar trend. 

Compared to FreeSurfer, Entelai Pic provided similarly robust segmentations of brain 

volumes both on same-scanner (mean CV 1.07, range 0.20–3.13% vs. mean CV 

1.05, range 0.21–3.20%, p=0.86) and on different-scanner variables (mean CV 3.84, 

range 2.49–5.91% vs. mean CV 3.84, range 2.62–5.13%, p=0.96). Mean post-

processing times were 480, 5, 40 and 5 minutes for FreeSurfer, Entelai Pic, CAT12 

and FSL respectively. 
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Conclusion: Based on robustness and processing times, our CNN-based model is 

suitable for cross-sectional volumetry on clinical practice. 

 

KEYWORDS 

Magnetic Resonance Imaging; Brain; Deep Learning; Segmentation; Freesurfer. 

 

ABBREVIATIONS 

ANTs, Advanced normalization tools 

BET, Brain extraction tool 

CAT, computational anatomy toolbox 

CNN, convolutional neural networks 

CSF, cerebrospinal fluid 

CV, coefficient of variation 

DC, Dice coefficient 

DDDS, different-day different-scanner 

DDSS, different-day same-scanner 

FAST, FMRIB's automated segmentation tool 

FSL, FMRIB Software Library 

GM, grey matter 

HC, healthy controls 

ICC, intraclass correlation coefficients 

MRI, magnetic resonance images 

SDDS, same-day different-scanner 

SDSS, same-day same-scanner 

SPM, Statistical parametrical mapping 
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WM, white matter 
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MANUSCRIPT 

 

Introduction 

 

There are many instances in which an estimate of the brain volume should be 

obtained from magnetic resonance images (MRI) in clinical practice (e.g.: cognitive 

impairment, developmental delay, multiple sclerosis, etc.). Even though several 

visual rating scales have been developed to provide semi quantitative measures of 

the degree of atrophy, their domain is limited to specific brain regions, subjective –

prone to intra and interrater variations– and cumbersome [1].  

To be easily integrated in the clinical practice workflow of a radiology department, 

brain volume quantification methods should be fast, reliable and robust. This is why 

automated brain volume estimation may be the best method available to be 

incorporated in clinical practice. There are several available tools for automated 

brain volume estimation, and these have been tested both in healthy subjects and 

patients with neurological conditions. These tools can be broadly divided in atlas-

based, deformable, region-based and learning-driven methods [2]. The most 

commonly used software includes FreeSurfer [3], Computational Anatomy Toolbox 

(CAT12) [4], and the FMRIB Software Library (FSL) [5]. 

In recent years, learning-based methods –and more specifically convolutional neural 

networks (CNN)– have grown exponentially outperforming traditional methods and 

human-level performance [6,7].  

Our purpose is to calculate cross-sectional correlation and robustness of a novel 

CNN-based software (Entelai Pic) for brain volume estimation and compare it to 

traditional software such as FreeSurfer, CAT12 and FSL in healthy controls (HC). 
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Material and methods 

 

Subjects and MRI acquisition 

 

We recruited 20 HC for this study. Three subjects did not show on the day of the 

study. All acquired images were visually inspected by a neuroradiologist. One 

subject was excluded because of an incidental finding on MRI (white matter lesions 

and an extra-axial lesion). Sixteen subjects were finally included in the study. The 

study was approved by the institutional review board and subjects gave informed 

consent.  

All subjects were scanned four times, two different days on two MRI scanners 

(Philips Achieva 1.5T and GE Discovery 750 3T). Group A included 9 subjects who 

were scanned twice on the same scanner on the first day and twice on the other 

scanner on the second day. Group B included 7 subjects who were scanned twice 

on different scanners on each day. Same-day scans were separated by 30-60 

minutes, different-day scans were separated by 1-3 weeks (Fig. 1). On same-day 

scans, subjects were allowed to drink water and/or use the restrooms, but they were 

asked not to leave the MRI facilities. 

We acquired a 3D FLAIR and A 3D T1-weighted images without contrast 

administration on each scan session. MRI sequences parameters are summarized in 

Table 1. This study was approved by an ethics committee and was performed in 

accordance with the ethical standards laid down in the 1964 Declaration of Helsinki 

and its later amendments. All persons gave their informed consent prior to their 

inclusion in the study. 
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Post-processing 

 

3D T1-weighted images were post-processed with FreeSurfer v6.0.0, Entelai Pic v2, 

CAT12 v12.5 and FSL v5.0.9. The whole-brain, grey matter (GM), white matter (WM) 

and cerebrospinal fluid (CSF) volumes were calculated (Fig. 2). 3D FLAIR images 

were not used in any post-processing pipeline. Average post-processing times were 

calculated for each segmentation software. 

 

FreeSurfer 

 

Volumetric segmentation was performed with the Freesurfer image analysis suite, 

which is documented and freely available for download online 

(http://surfer.nmr.mgh.harvard.edu/). Briefly, this processing includes motion 

correction, removal of non-brain tissue, automated Talairach transformation and 

intensity normalization for surface and intensity-based segmentation of the cortex, 

subcortical white matter and deep gray matter volumetric structures [8]. Procedures 

for the measurement of cortical thickness have been validated against histological 

analysis [9,10], and manual measurements [11,12]. Segmentation was carried out 

using the standard ‘recon-all’ command, which performs all cortical and subcortical 

reconstruction processes. Using Python, SimpleITK and NumPy, FreeSurfer 

segmentation output was converted into GM, WM and CSF masks. 

 

Entelai Pic 
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MRI images are first preprocessed to reduce bias, normalize the brightness 

distribution (to zero mean and unitary SD) and ensure a homogeneous resolution 

(1x1x1 mm voxel size). Bias reduction is carried out using the N4BiasFieldCorrection 

routine from Advanced Normalization Tools (ANTs). All remaining preprocessing 

steps are performed using Python libraries and SimpleITK. Once this step is 

completed, images are fed to a series of deep convolutional networks that first 

separate the brain from the rest of the skull and later produce labeled images for 

both cortical and subcortical structures. The volume for every structure is calculated 

from these labeled images. The architecture selected for these deep learning 

networks is a 20-layer 3D convolutional network with residual connections. This type 

of architecture has been shown to be especially well suited for 3D parcellation of 

MRI images into a large number of classes (>100) [13]. The models were trained 

with over 1,500 visually inspected and corrected FreeSurfer masks. Training was 

done using Niftynet [14], a deep learning framework for medical images. 

Optimization was carried out with the Adam algorithm + L2 regularization. Data 

augmentation transformations included: scalings, rotations, flips and quadratic bias 

field additions.  

 

CAT12 

 

CAT12 toolbox is a free extension to Statistical Parametrical Mapping 12 (SPM12) to 

provide computational anatomy (http://www.neuro.uni-jena.de/). 3D T1-weighted 

images are interpolated, normalized using an affine followed by non-linear 

registration, denoised, corrected for bias field inhomogeneities, and then segmented 

into GM, WM, and CSF components. The segmentation approach is based on an 
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AMAP (Adaptive Maximum A Posterior) technique without the need for a priori 

information on the tissue probabilities, and Partial Volume Estimation with a 

simplified mixed model of a maximum of two tissue types [15]. Cross-sectional 

segmentation was carried out using default settings, activating the option to output 

GM, WM and CSF masks on patients’ native space. 

 

FSL 

 

Brain tissue volume was estimated with FMRIB's Automated Segmentation Tool 

(FAST), part of FSL toolbox (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Before running 

FAST an image of the brain should first be extracted, using Brain Extraction Tool 

(BET) from FSL toolbox. The resulting brain-only image can then be fed into FAST. 

FAST starts by extracting brain and skull images from the single whole-head input 

data. Next, tissue-type segmentation with partial volume estimation is carried out 

with FAST in order to calculate total volume of brain tissue (including separate 

estimates of volumes of GM, WM and CSF), whilst also correcting for spatial 

intensity variations (i.e.: bias field). The underlying method is based on a hidden 

Markov random field model and an associated Expectation-Maximization algorithm. 

The whole process is fully automated. We used default processing parameters, 

activating the option to output binary segmentation images of 3 tissue classes. 

Brain tissue volume, normalized for subject head size, was estimated with SIENAX, 

part of FSL [16]. SIENAX starts by extracting brain and skull images from the single 

whole-head input data. The brain image is then affine-registered to MNI152 (using 

the skull image to determine the registration scaling); this is primarily in order to 
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obtain the volumetric scaling factor, to be used as normalization for head size. Next, 

tissue-type segmentation with partial volume estimation is carried out in order to 

calculate total volume of brain tissue (including separate estimates of volumes of 

GM, WM and CSF). 

 

Statistical analysis 

 

To obtain a concurrent estimate of consistency and agreement between volumes 

derived from the different segmentation techniques, we computed intraclass 

correlation coefficients (ICC) [16]. An ICC value of 1 indicates a perfect 

reproducibility between two (or more) raters and a value of 0 or less, a reproducibility 

that is lower than what is expected on the basis of chance alone. A strong correlation 

would confirm a good consistency between techniques. ICCs were computed 

automatically specifying a two-way mixed-effect model.  

To further investigate agreement between volumes derived from different 

techniques, we computed Bland–Altman plots. This graphical method is used to 

illustrate differences in estimation between two techniques or raters [17]. Bland–

Altman plots are created using the mean of the two studied techniques as the 

estimation of reference.  

To assess spatial agreement, we used Dice coefficient (DC) between the output 

segmentations generated by the different software, using FreeSurfer as a gold 

standard [18]. FreeSurfer segmentations were visually checked and manually 

corrected or excluded by a neuroradiologist with experience in segmentation. A DC 

of 1 indicates a perfect spatial agreement between 2 segmentations. 
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The robustness (repeatability and reproducibility) of repeated measures was 

assessed using the within-subject coefficient of variation (CV). CV may be defined as 

the ratio of the standard deviation of a number of measurements to the arithmetic 

mean [19]. A software is considered to be robust if its output is consistently accurate 

even if one or more of the input variables are changed.  

All the statistical analyses were performed using STATA version 14. Group 

comparisons between the four software were tested using the Kruskal-Wallis rank 

test, and in case of significant differences among the software, post hoc paired 

analysis were performed using the Wilcoxon rank-sum test. A p<0.05 was 

considered statistically significant. 

 

Results 

 

Subjects 

 

Sixteen healthy subjects were included in the study (8 females and 8 males, age 

range: 25 to 37 years, mean age = 30.4 ± 2.9 years). Subjects reported no history of 

neurological or psychiatric disease. 

For CV estimation, four variables were defined (Fig. 3): same-day same-scanner 

(SDSS), different-day same-scanner (DDSS), same-day different-scanner (SDDS) 

and different-day different-scanner (DDDS). 

 

Correlation and agreement of brain volumetry  
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There were differences in the numeric brain tissue segmentation output from 

FreeSurfer, Entelai Pic, CAT12 and FSL as detailed in Table 2.  

Whole brain volume estimation had better correlation between FreeSurfer and 

Entelai Pic (ICC (95% CI) 0.96 (0.94-0.97)) than FreeSurfer compared to CAT12 

(0.92 (0.88-0.96)) and FSL (0.87 (0.79-0.91)). WM, GM and CSF volume estimation 

showed a similar trend (Table 3). 

Bland-Altman plots show better agreement between whole brain, WM, GM and CSF 

volume measures obtained by FreeSurfer and Entelai Pic, compared to the 

agreement between FreeSurfer and CAT12 or FSL (Fig. 4). 

Entelai Pic tissue segmentation masks had also better spatial agreement with 

FreeSurfer when compared to FSL and CAT12. WM mask had the highest (mean 

DC (range) 0.89 (0.77-0.94) and CSF had the lowest (0.64 (0.45-0.80)) spatial 

agreement in all three methods (Table 4 and Fig. 5). To further analyze the 

difference observed in the CSF mask, we averaged the differences in CSF 

segmentations for the three evaluated methods and our gold standard (Fig. 6). Each 

method has a unique error pattern, convexal subarachnoid space CSF segmentation 

seems clearly problematic for all three. Ventricles segmentation was fairly similar 

among the three methods when compared to the gold standard. GM masks had a 

good spatial agreement for all three methods (0.84 (0.72-0.88)). We analyzed the 

GM masks in the same fashion as CSF masks. Differences were higher in the 

striatum, thalami and mesencephalon for FSL and CAT12 compared to the gold 

standard (Fig. 7).  

 

Robustness of brain volumetry  
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Mean CV for the whole brain, GM, WM and CSF from FreeSurfer, Entelai Pic, CAT 

12 and FSL are summarized in Table 5. Whole brain segmentation had the lowest 

CV among all methods, except for Entelai Pic in which GM segmentation had the 

lowest CV. On the contrary CSF segmentation was the tissue class that had the 

highest CV among all methods.  

FreeSurfer and Entelai Pic mean CV were very similar among all tissue classes. 

CAT12, achieved the highest robustness of all in whole brain segmentation (mean 

CV 0.57) and the lowest robustness of all in CSF segmentation (mean CV 9.68). 

CAT12 GM and WM segmentation robustness were slightly worse compared to 

FreeSurfer and Entelai Pic. Mean FSL CV was higher than the other three methods 

for all tissue classes, except for CSF when compared to CAT12. All methods CV 

were lowest among same-scanner (SDSS and DDSS) compared to different-scanner 

(SDDD and DDDS) variables (CV range 0.31–2.70% vs. 2.75–5.49%, p<0.0001) 

(Fig. 8). 

Compared to FreeSurfer, Entelai Pic provided similarly robust segmentations of brain 

volumes both on same-scanner (mean CV 1.07, range 0.20–3.13% vs. mean CV 

1.05, range 0.21–3.20%, p=0.86) and on different-scanner variables (mean CV 3.84, 

range 2.49–5.91% vs. mean CV 3.84, range 2.62–5.13%, p=0.96). Specifically, 

whole brain different-scanner CV were statistically significant lower in FreeSurfer 

compared to Entelai Pic (mean CV 2.58 vs 4.27, p=0.0058 for SDDS and 3.42 vs 

4.69, p=0.016 for DDDS) and, on the other hand GM different-scanner CV were 

statistically significant higher in FreeSurfer compared to Entelai Pic (mean CV 3.48 

vs 1.48, p=0.001 for SDDS and 3.64 vs 2.02, p=0.0013 for DDDS). 

 

Post-processing times 
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Mean post-processing times for each 3D T1-WI was 480 ± 10 minutes for 

FreeSurfer, 5 minutes ± 30 seconds for Entelai Pic, 40 ± 2 minutes for CAT12 and 

15 ± 1 minutes for FSL. These times were measured on a g4dn.2xlarge Amazon 

Web Services instance with GPU. Intervals correspond to estimates of the standard 

deviation for those times.  

 

Discussion 

 

Deep learning is a subset of machine learning that learns representations of data 

based on models composed of multiple processing layers [20]. Deep learning 

algorithms, and specifically CNN models, are starting to be applied to medical image 

analysis in general [21], gaining an important role in the process of brain 

segmentation in the field of neuroimaging [22]. Here, we present a CNN-based 

software for brain tissue segmentation, and we compare it to other well-known 

traditional brain segmentation software used in the neuroimaging field such as 

FreeSurfer, CAT12 and FSL. FreeSurfer is considered as one of the most accurate 

brain segmentation tools that is available and has been used as a gold standard by 

many authors as it has been proven to have a good agreement with histologic and 

manual measurements of cortical thickness as it has been previously commented. 

We have also decided to use FreeSurfer´s segmentations as gold standard to 

assess correlation, agreement and robustness. One of FreeSurfer´s most mentioned 

drawbacks is that long processing times are inevitable [23]. In this regard, Entelai Pic 

reduced processing times in several orders of magnitude. 
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Multiple CNN-based methods for normal brain segmentation have been published in 

recent years [24–33]. Most of these papers only report their performance in terms of 

spatial agreement. As our main goal was to assess the robustness of our model, we 

opted to add a CV analysis like Guo and colleagues, after verifying for brain volume 

correlation and agreement [34]. As with other methods, CV was lowest among the 

same-scanner compared to different-scanner. As it has been previously reported, we 

found greater variability between 1.5T and 3T when measuring different brain 

structures [35–37]. This could be due to different contrast-noise ratio and signal-

noise ratio among volumetric acquisitions related to the different static magnetic 

fields on 1.5T and 3T scanners [38]. It is also worth mentioning the fact that the 

scanners were manufactured by different companies, and that the 3D T1-weighted 

images parameters were not exactly identical. However, it is difficult to estimate 

which of these factors had more weight in the observed differences. As it has been 

previously proved, this variation between scanners could be partially compensated 

by reporting volumes normalized to intracranial volume [34].  

CNN-based models have been built not only for whole brain tissues and structures 

segmentation. There are also deep learning segmentation algorithms with specific 

purposes such as subcortical structures segmentation [39–42], striatum 

segmentation [43], or brain ventricles parcellation [44], to mention a few. Although 

our paper only analyzed the segmentation performance of our model in the main 

brain tissue classes (WM, GM and CSF), it also performs cortical and subcortical 

structures segmentation. 

In their paper Moeskops and colleagues, assuming that many patients have WM 

hyperintensities of presumed vascular origin, have included the segmentation of 

these lesions with a different tissue class than normal WM, GM and CSF using a 
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multi-scale CNN with FLAIR and T1-weighted images as input [26]. For this paper, 

we recruited healthy controls and specifically excluded patients with WM 

hyperintensities, so this approach was not necessary, albeit this method could be 

incorporated in future versions of our model to make it more robust among all kind of 

patients. 

As it has been previously mentioned, labelling 3D brain images requires laborious 

efforts by expert anatomists because of the differences among images in terms of 

their noise, contrast, or ambiguous boundaries [45]. To overcome this difficulty, Ito 

and colleagues trained a deep neural network on a small number of annotated 

images, but also a large number of unlabeled images by leveraging image 

registration to attach pseudo-labels to images that were originally unlabeled [30]. To 

elude these difficulties, we opted to train our model based only on a large number of 

FreeSurfer segmentation masks that were visually checked and manually corrected 

or excluded by a neuroradiologist with experience in segmentation. 

This work has some limitations. First of all, we included only healthy patients to 

evaluate the performance of our brain tissue segmentation model. There are many 

issues regarding brain tissue segmentation in patients with WM hyperintensities of 

presumed vascular origin, multiple sclerosis, brain malformations or tumors that were 

not contemplated in this work. Second, we only included adult patients. Tissue 

segmentation is more complex in pediatric patients who have not reached a 

complete myelination, this problem is particularly difficult to surpass in the isointense 

stage (approximately 6–8 months of age) were WM and GM exhibit almost the same 

level of intensity in both T1- and T2-weighted images. Zhang and colleagues used a 

CNN-based method for segmenting isointense stage brain tissues using multi-

modality MR images [25]. They showed that their CNN approach outperforms prior 
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methods and classical machine learning algorithms like support vector machine and 

random forest classifiers. Nie and colleagues extended the conventional CNN 

architectures from 2D to 3D, and integrated coarse and dense feature maps to better 

model tiny tissue regions [33]. They obtained improved results compared to Zhang 

and colleagues [25]. Third, we trained our CNN model with neuroradiologists-curated 

FreeSurfer masks, and we also used FreeSurfer masks as the gold standard. So, it 

could be expected to find better agreement between the segmentations produced by 

our model and the defined gold standard.  

 

Conclusions 

 

In this paper, we developed a CNN-based model for automatically segmenting brain 

tissues from 3D T1-weighted images, named Entelai Pic, and analyzed its 

performance. 

Our results show that consistent use of the same scanner is essential for accurate 

brain volume estimation with both CNN and traditional brain segmentation software. 

Based on robustness and processing times, our CNN-based model is particularly 

suitable for cross-sectional volumetry on clinical practice. 
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FIGURES 

 

Fig. 1 Subjects were divided in two groups and scanned on two different days. On 

group A, subjects were scanned on the same scanner on day 1 and on the other 

scanner on day 2. First day scans were acquired either on the Philips 1.5T scanner 

(first row) or on the GE 3.0T scanner (second row). On group B, subjects were 

scanned on different scanners both on day 1 and 2. First day scan were acquired on 

the Philips 1.5T scanner and GE 3.0T scanner subsequently (third row) or on the GE 

3.0T scanner and Philips1.5T scanner subsequently (fourth row) 
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Fig. 2 Original 3D T1-weighted images and segmentation masks from a subject 

obtained by FreeSurfer, FSL, Entelai Pic and CAT12. Coronal (top row), axial 

(middle row) and sagittal (bottom row) images are shown. Color coded 

segmentations shown include WM (green), GM (blue) and CSF (teal) 
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Fig. 3 Graphical explanation of the four variables defined for CV estimation based on 

the MRI acquisition design: same-day same-scanner, SDSS (red); different-day 

same-scanner, DDSS (green); same-day different-scanner, SDDS (orange); and 

different-day different-scanner, DDDS (blue) 
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Fig. 4 Bland-Altman plots depicting the agreement between quantitative 

measurements obtained by Entelai Pic (first column), CAT12 (second column) and 

FSL (third column) compared to FreeSurfer. Whole brain (first row), WM (second 

row), GM (third row) and CSF (fourth row) volumes comparisons are shown 
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Fig. 5 Distribution of Dice coefficients for each method and tissue type are shown as 

violin plots. Notice in every method WM Dice > GM Dice > CSF Dice. Statistically 

significant differences with FreeSurfer (p<0.05) are marked with an asterisk (*) 
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Fig. 6 Average differences in CSF segmentations for the three evaluated methods 

(viewed in coronal, axial and sagittal slices). Each voxel is colored according to the 

average discrepancy between the segmentations of each method and our gold 

standard (FreeSurfer). Voxels where the method tends to undersegment (i.e.: voxels 

which are not marked as CSF and should be) are painted blue. Conversely, voxels 

that were segmented as CSF and should have been labeled as something else, are 

marked in red. Difference maps for all sessions were registered to a reference image 

(in this case the first session of the first subject) before averaging. Notice each 

method has a unique error pattern, though some areas are clearly problematic for all 

three. 
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Fig. 7 Average differences in GM segmentations for the three evaluated methods 

(viewed in coronal, axial and sagittal slices). Each voxel is colored according to the 

average discrepancy between the segmentations of each method and our gold 

standard (FreeSurfer). Voxels where the method tends to undersegment (i.e.: voxels 

which are not marked as GM and should be) are painted blue. Conversely, voxels 

that were segmented as GM and should have been labeled as something else, are 

marked in red. Difference maps for all sessions were registered to a reference image 

(in this case the first session of the first subject) before averaging. Notice some 

areas are clearly problematic for FSL and CAT12. 
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Fig. 8 Box and whisker plots depicting CV estimation: same-day same-scanner, 

SDSS (first row); different-day same-scanner, DDSS (second row); same-day 

different-scanner, SDDS (third row); and different-day different-scanner, DDDS 

(fourth row). CV for the whole brain (first column), WM (second column), GM (third 

column) and CSF (fourth column) are shown. Statistically significant differences with 

FreeSurfer (p<0.05) are marked with an asterisk (*) 

Jo
ur

na
l P

re
-p

ro
of



 

35 
 

TABLES 
 

Table 1 

3D T1-WI acquisition parameters 

Scanner GE Discovery 750 Philips Achieva 

Field Strength 3T 1.5T 

Field-of-view, mm2  250 256 

Number of acquisitions 1 1 

Repetition time, ms  8.19 7.14 

Inversion time, ms  450 - 

Echo time, ms  3.2 3.4 

Flip angle, °  12 8 

Voxel size, mm  1 x 1 x 1.2 0.7 x 0.7 x 1.2 

ms: milliseconds, wi: weighted images 
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Table 2 

Mean ± SD of brain volume estimation (in cm3) 

 FreeSurfer Entelai Pic CAT12 FSL 

Whole brain 1635 ± 154 1624 ± 159 1536 ± 145 1450 ± 155 

Grey matter 675 ± 61 647 ± 53 668 ± 65 639 ± 66 

White matter 524 ± 67 539 ± 60 550 ± 73 586 ± 80 

CSF 436 ± 40 449 ± 46 297 ± 55 225 ± 28 

CSF: cerebrospinal fluid 
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Table 3 

ICC (range) of WM, GM and CSF brain volumes compared to FreeSurfer 

 Entelai Pic CAT12 FSL 

White matter 0.96 (0.53-

0.99) 

0.88 (0.24-0.97) 0.65 (-0.07-0.87) 

Grey matter 0.84 (0.38-

0.94) 

0.92 (0.74-0.96) 0.69 (0.23-0.87) 

CSF 0.84 (0.61-

0.92) 

0.04 (-0.04-0.15) 0.02 (-0.01-0.15) 

CSF: cerebrospinal fluid 
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Table 4 

Mean Dice coefficient (range) of WM, GM and CSF brain volumes compared to 

FreeSurfer 

 Entelai Pic CAT12 FSL 

White matter 0.92 (0.89-

0.94) 

0.90 (0.88-0.92) 0.85 (0.77-0.90) 

Grey matter 0.86 (0.82-

0.88) 

0.86 (0.83-0.88) 0.79 (0.72-0.84) 

CSF 0.74 (0.69-

0.80) 

0.64 (0.55-0.72) 0.54 (0.45-0.61) 

CSF: cerebrospinal fluid. 

 

 

  

Jo
ur

na
l P

re
-p

ro
of



 

39 
 

Table 5 

Mean (range) coefficient of variation (CV)  

 FreeSurfer Entelai Pic CAT12 FSL 

Whole 

brain 

1.50 (0.01-

5.66) 

1.99 (0.01-

6.38) 

0.57 (0.00-

2.71) 

4.14 (0.27-

13.85) 

Grey matter 1.64 (0.01-

6.75) 

1.19 (0.00-

4.48) 

2.63 (0.00-

10.89) 

4.28 (0.01-

17.88) 

White 

matter 

1.77 (0.01-

5.41) 

1.82 (0.00-

6.03) 

2.60 (0.00-

12.10) 

4.90 (0.12-

16.06) 

CSF 3.13 (0.06-

12.12) 

3.00 (0.01-

8.95) 

9.68 (0.00-

32.26) 

5.81 (0.06-

16.07) 

CSF: cerebrospinal fluid 
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