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Abstract
This study investigates the impact of applying different types 

of initial and boundary perturbations for convective-scale ensem-
ble data assimilation systems. Several observing system simula-
tion experiments (OSSEs) were performed with a 2-km horizontal 
resolution, considering a realistic environment, taking model error 
into account, and combining different perturbations’ types with 
warm/cold start initialization. Initial perturbations produce a long- 
lasting impact on the analysis’s quality, particularly for variables 
not directly linked to radar observations. Warm-started experi-
ments provide the most accurate analysis and forecasts and a more 
consistent ensemble spread across the different spatial scales. 
Random small-scale perturbations exhibit similar results, although 
a longer convergence time is required to up-and-downscale the 
initial perturbations to obtain a similar error reduction. Adding 
random large-scale perturbations reduce the error in the first assimil-
ation cycles but produce a slightly detrimental effect afterward.

(Citation: Maldonado, P., J. Ruiz, and C. Saulo, 2021: Sen-
sitivity to initial and boundary perturbations in convective-scale 
ensemble-based data assimilation: imperfect-model OSSEs. 
SOLA, 17, 96−102, doi:10.2151/sola.2021-015.)

1. Introduction

Over the past decade, much insight has been gained regard-
ing the process of optimally perturbing the initial conditions of  
convective-scale ensemble prediction systems. Generating multi-
scale initial conditions perturbations using ensemble-based data 
assimilation systems (EDAS) has proven to enhance convective- 
scale forecasts compared to downscaled initial conditions from 
a coarser-resolution ensemble (Johnson et al. 2014; Johnson and 
Wang 2016; Raynaud and Bouttier 2016; Surcel et al. 2017). 
However, the design of initial perturbations for convective-scale 
EDAS remains a significant challenge, mainly related to the diffi-
culty of recovering all the resolved scales over a regional domain  
(Gustafsson et al. 2018). Therefore, a multiscale approach is neces-
sary to produce ensemble perturbations that capture the synoptic- 
scale forcing, the mesoscale phenomena, and the convective scales 
to be predicted.

Snyder and Zhang (2003) were among the first to address 
the issue of ensemble initialization in the context of radar data 
assimilation (RDA). Each ensemble member was initialized by 
adding Gaussian noise to the velocity field and the liquid-water 
potential temperature, considering a horizontally homogeneous 
environment based on a real-sounding. One method applied 

independent noise at each grid point, and the other localized it to 
the surroundings of the storm position. The authors found that the 
choice of the initial ensemble strongly affected the performance of 
the ensemble Kalman filter (EnKF; Evensen 1994) as the localized 
noise method reduced the development of spurious convection 
within the domain. In this direction, Dowell et al. (2004) also 
localized the initial perturbations to the storm location but added 
ellipsoidal perturbations to the model fields in a local region of the 
domain. Smooth random perturbations produced better retrievals 
and more ensemble spread throughout the assimilation period than 
a random grid-point noise initialization.

In convective-scale EDAS, the use of regional models requires 
an appropriate specification of lateral boundary conditions (LBC) 
perturbations to capture the associated uncertainty and prevent 
the loss of ensemble variance with increasing time (Nutter et al. 
2004; Clark et al. 2008). A mesoscale EDAS could be the optimal 
method to generate an ensemble of LBC as it provides state- 
dependent covariances. Many recent studies have used a nested- 
grid EnKF strategy to account for mesoscale uncertainties through 
the initial ensemble and LBC perturbations (Stensrud and Gao 
2010; Yussouf et al. 2013; Snook et al. 2015; Maejima et al. 
2017). However, this method can be computationally expensive. 
In the absence of a global/mesoscale ensemble, Torn et al. (2006) 
presented several approaches to generate a LBC ensemble. They 
assumed different relationships of the LBC spatiotemporal covari-
ances. The results suggest that these methods produce errors that 
are limited to the lateral boundaries and decay inside the limited- 
area domain. Moreover, the impact of LBCs uncertainty upon 
the ensemble spread was studied by Ouaraini et al. (2015) for a 
mesoscale EDAS. The results indicate that the ensemble spread 
is sensitive to the amplitude of the LBC perturbations that are 
randomly drawn from an error covariance model (as suggested by 
Torn et al. 2006).

This study assesses the sensitivity of a convective-scale radar 
data assimilation system to different types of initial and boundary 
conditions (IC-BC) perturbations. Several observing system sim-
ulation experiments (OSSEs) of a mesoscale convective system 
(MCS) case study were conducted with realistic environmental 
conditions, taking model error into account and using different 
combinations of perturbations. The sensitivity of the analyses 
mean and short-range precipitation forecasts to the perturbations’ 
type and amplitude is studied. We focus on the impact of perturba-
tions on ensemble spread and the analysis error at different spatial 
scales. The rest of the paper is outlined as follows: Section 2 
describes the experimental design, section 3 discusses the results, 
and section 4 summarizes the conclusions.

2. Experimental setting

Based on an OSSE approach, the Weather Research and Fore-
casting model v3.6 (WRF; Skamarock et al. 2008) is used to gen-
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floor[(t - ts )/Δ t ], and β  = δ/Δ t is a linear interpolation time 
factor to compute perturbations at arbitrary times (not necessarily 
a multiple of Δ t ), with δ  = ts - nΔ t.

Seven assimilation experiments are performed combining 
warm/cold initialization with a given type and amplitude of the 
perturbations to generate the IC-BC ensembles (Table 1). CS- 
LS5% and CS-LS10% are cold-started using only large-scale 
perturbations with a different amplitude scaling factor. SSCS, 
SSCS-LS5%, and SSCS-LS10% are cold-started using small-scale 
perturbations with increasing LS amplitude scaling factor, being 
zero for SSCS. Similarly, SSWS and SSWS-LS5% include small-
scale perturbations, but only SSWS-LS5% includes large-scale 
perturbations, and both are warm-started with the spin-up model 
run using the corresponding random perturbations.

For each experiment, 2-hr ensemble forecasts are initialized 
at 1830 UTC, 1900 UTC, and 1930 UTC from the corresponding 
60-member analysis ensemble. The forecast LBC ensemble uses 
the same random perturbations as in the corresponding assimila-
tion experiment. A free model run with no assimilation of obser-
vations (NoDA) is performed for comparison. NoDA is a warm-
started deterministic forecast initialized at 1730 UTC from the 
mean of the 60-member ensemble taken from the same spin-up 
model run used in SSWS-LS5%. Verification metrics to assess the 
performance of both analysis and forecasts are computed using a 
smoothed version of the high-resolution nature run (i.e., applying 
a box-averaging interpolation technique to match the assimilation 
experiment’s resolution).

3. Results and discussion

An example of the impact of RDA on short-range forecasts 
is given by comparing NoDA and SSWS-LS5% against the 
nature run. Figure 1 shows the time evolution of 30-min accu-
mulated precipitation and 30-min maximum 10-m wind fields 
of the forecast initialized at 1830 UTC, as the analysis could 
correctly retrieve the squall line structure from that time onward 
(not shown). Forecast lead times of 30, 60, and 90 minutes (i.e., 
valid at 1900 UTC, 1930 UTC, and 2000 UTC) are shown. 
SSWS-LS5% can accurately retrieve the location, intensity, and 
extension of the squall line up to a 90-min lead time. Even though 
NoDA can forecast a convective system similar to that in the 
nature run, the MCS location and timing are not as accurate as in 
SSWS-LS5%, and some isolated spurious cells developed west 
of the squall line. Therefore, when the forecast’s initial condition 
contains information on the mesoscale (through RDA), it becomes 
more skillful.

The sensitivity to the perturbations applied to generate the 
ensemble is assessed through grid point metrics. Space-averaged 
root-mean-square error (RMSE) and ensemble spread (SPREAD) 
are computed over grid points where reflectivity is greater than 
0 dBZ either in the analysis ensemble mean or in the nature run. 
Figure 2 shows, the RMSE and SPREAD of zonal wind, tempera-
ture, and ref-condensates (defined as the sum of rain, snow, and 

erate a high-resolution nature run consisting of a long-lived squall 
line that produced intense surface winds and high-precipitation 
rates on 22 January 2014. The nature run is integrated between 
1200−2200 UTC and consists of a three-nested domain simulation 
with 10-km, 2-km, and 500-m horizontal grid spacing. The Global 
Forecast System (GFS; NCEP) operational analysis data with 0.5° 
horizontal grid spacing and 6-hr frequency is used as IC-BC in the 
outer domain. The high-resolution nature run domain covers 500 
km2 of the Argentine central region and uses 60 vertical levels. 
Reflectivity and radial velocity observations are simulated every 
5 minutes in radar coordinates considering a radar placed in the 
center of the high-resolution nature run domain. The radar obser-
vation operator of Tong and Xue (2005) is applied to simulate and 
assimilate the observations, with a Gaussian distributed random 
observational error with zero mean and standard deviation of 2.5 
dBZ for reflectivity and 1 m s−1 for radial velocity.

Data assimilation experiments are carried out with the WRF-
LETKF system developed by Miyoshi and Kunii (2012) between 
1730−2000 UTC and using a 60-member ensemble. The assimi-
lation domain is the same as the 500-m resolution nature run, but 
a coarser horizontal resolution of 2 km is employed to take model 
error into account (Maejima et al. 2019). Additionally, IC-BC 
are taken directly from the GFS model with no downscaling. 
“No-precipitation” observations, deemed as less than 0 dBZ, are 
assimilated to prevent the development of spurious convection 
(Tong and Xue 2005; Aksoy et al. 2009). The configuration of the 
assimilation system closely follows the one used in Maldonado 
et al. (2020). Supplement 1 provides detailed information about 
the model domain and the WRF-LETKF system configuration.

The initial background ensemble is generated at 1730 UTC 
using a cold-start (CS) or a warm-start (WS) approach. For both, 
ensemble members are created by adding random perturbations 
to the GFS analysis data. The WS approach considers the spin-up 
time of moist processes through a free forecast ran 5.5-hr before 
the initial time of RDA experiments (spin-up model run hereafter). 
It allows small-scale perturbations to develop throughout the 
domain as the model can generate an MCS by 1730 UTC. The 
LBC ensemble is provided every 5 minutes and is obtained by 
adding random perturbations to the GFS analysis data.

Two classes of random perturbations are employed to repre-
sent the multiscale nature of IC-BC uncertainty. On the one hand, 
small-scale perturbations (SS) are added to the wind, temperature, 
and relative humidity fields within the assimilation domain, 
sampling them from a Gaussian distribution with zero mean and 
standard deviation of 0.25 m s−1, 0.25 K, and 2.5 g kg−1, respec-
tively. Previous assimilation experiments using a larger amplitude 
showed detrimental results as spurious convection developed 
in the analysis, significantly modifying the MCS environment. 
The SS perturbations are smoothed spatially by applying a two- 
dimensional Lanczos filter (Duchon 1979) in the horizontal 
direction followed by a vertical one-dimensional filter. The chosen 
horizontal and vertical length-scales are 40 km and ~ 5 km,  
respectively, similar to the correlation scales of the simulated 
mode of convection organization (Dowell and Wicker 2009).

On the other hand, large-scale perturbations (LS) are gener-
ated as scaled differences between two random atmospheric states 
with a smooth time evolution as in Necker et al. (2020). In this 
way, we preserved the nearly hydrostatic and geostrophic equilib-
rium of larger scales. A large sample of atmospheric states of size 
N = 5840 is obtained from the Climate Forecast System Reanaly-
sis (CFSR) data between 2006−2009, with 6-h time-frequency (Δ t) 
and 0.5° horizontal grid spacing. In the first assimilation cycle at 
time t = ts , the i-th perturbation is computed as:

′ = −X t X t X tLS
i

s LS( ) ( ) ( )[ ]α 1 2

where αLS is the amplitude scaling factor, X (t1) and X (t2) are the 
CFSR analysis states at times t1 = ni

1 Δ t and t2 = ni
2 Δ t, respec-

tively, with ni
1, 2 Î [0; N ] randomly chosen and only restricted to t1 

and t2 corresponding to the same time of the year. In the following 
assimilation cycles at time t > ts , the i-th perturbation is computed 
as:

Table 1. List of assimilation experiments describing the initialization ap-
proach, the use of small-scale (SS) perturbations, and the large-scale (LS) 
perturbations amplitude scaling factor αLS.

Experiment name Initialization SS perturbation LS perturbation

CS-LS5%
CS-LS10%
SSCS
SSCS-LS5%
SSCS-LS10%
SSWS
SSWS-LS5%

Cold-start
Cold-start
Cold-start
Cold-start
Cold-start
Warm-start
Warm-start

No
No
Yes
Yes
Yes
Yes
Yes

αLS = 0.05
αLS = 0.1
αLS = 0
αLS = 0.05
αLS = 0.1
αLS = 0
αLS = 0.05
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graupel mixing ratios as these species are involved in the reflec-
tivity computation). All variables RMSE is considerably reduced 
during the first assimilation hour, and afterward, it stabilizes for all 
experiments, suggesting a filter spin-up period from 1730−1830 
UTC.

Warm-started experiments outperform cold-started ones as 
they exhibit higher SPREAD and lower RMSE during the first 
assimilation hour. Moreover, CS experiments approach a similar 
SPREAD value as in WS experiments after roughly 30, 75, and 
100 minutes for temperature, zonal wind, and ref-condensates, 
respectively. The initial SPREAD of SSCS, CS-LS5%, and SSCS- 
LS5% is very similar. However, the growth rate during the filter 
spin-up is quite different, ultimately impacting the analysis error. 
For instance, CS-LS5% shows the slowest growth rate during the 
filter spin-up and the largest mean error after that period. The most 
substantial impact of initial perturbations is observed in tempera-
ture, presenting large RMSE differences between experiments, 
even though the SPREAD differences are not so notorious. Up to 
60 minutes, SSCS-LS5% and SSCS-LS10% RMSE are lower than 
SSCS. Afterward, this effect is reversed, suggesting that applying 
LS perturbations helps the filter converge faster to the nature run 
but slightly degrades the analysis once it reaches convergence. 
Additionally, all experiments are under-dispersive after the filter 
spin-up, even when using optimal inflation and localization 

parameters (Maldonado et al. 2020).
To investigate how different perturbations impact the ensem-

ble spread within convective areas and their environment, Fig. 3 
presents the ensemble spread evolution in convective and non- 
convective regions, defined as grid points where reflectivity is 
greater than 0 dBZ and less than −10 dBZ, respectively. Large-
scale perturbations allow maintaining a high SPREAD throughout 
the assimilation in non-convective areas and after the filter spin-up 
inside convective cells. However, this does not have a positive 
impact on the analysis skill as the ensemble is under-dispersive. 
Additionally, the perturbations’ structure impacts the initial con-
vergence as it modulates the SPREAD growth rate during the first 
few cycles. For instance, SPREAD increases more rapidly in con-
vective regions when a larger amplitude of the LS perturbations 
or when both SS and LS perturbations are applied. Figure 4 illus-
trates the impact of initial perturbations during the filter spin-up 
(at 1750 UTC) upon the assimilation of radar observations. The 
developing convective system is better retrieved by WS exper-
iments and by CS experiments using LS and SS perturbations. 
However, the MCS representation is quite different in experiments 
with a similar initial SPREAD (e.g., SSCS and CS-LS5%), sug-
gesting that the perturbations’ structure rather than its magnitude 
mostly control the process of convection initiation.

The influence of the perturbation type on different spatial 

Fig. 1. Time evolution of 30-min accumulated precipitation field (shaded) and 30-min maximum 10-m wind field (vectors; m s−1) of the ensemble forecast 
initialized at 1830 UTC, with forecast lead times of 30, 60, and 90 minutes. The 10 dBZ contour (black line) outlines the edge of the squall line and red 
arrows indicate wind magnitude larger than 17 m s−1. Radar maximum range (dashed black line) and location (black dot) are shown for reference. (a)−(c) 
Nature run, (d)−(f) SSWS-LS5% forecast ensemble mean, and (g)−(i) NoDA deterministic forecast.
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scales is investigated by performing a spectral decomposition 
of the squared analysis ensemble perturbations (SAEP), defined 
as the square difference between an ensemble member and the 
ensemble mean. A discrete Fourier transform is applied to the 
SAEP longitudinal series followed by a latitudinal average to 
obtain a one-dimensional spectrum for each ensemble member. 
Finally, the SAEP mean spectrum is obtained by averaging over 
all ensemble members. Figure 5 shows the 8-km zonal wind 
SAEP mean spectrum and ensemble mean square error spectra, for 
CS-LS10%, SSCS, and SSWS. At this height, the spatial scales 
the analysis can correctly capture extend up to 6 km wavelength 
(Maldonado et al. 2020).

CS-LS10% initial spectrum concentrates the energy at wave-
lengths larger than 100 km. An energy cascade from large to small 
scales is observed once the assimilation starts, taking approxi-
mately 20−40 minutes to significantly increase the spectral energy 
for wavelengths close to 10 km. For SSCS, the initial spectrum 
concentrates the energy for wavelengths longer than 40 km. Once 
the spectrum starts to evolve under the system dynamics, energy 
increases both upscale and downscale from the perturbation’s 
characteristic length of 40 km. The downscale process takes more 
time than the upscale one, taking approximately 30−50 minutes 

to develop small-scale structures. Lastly, SSWS initial spectrum 
distributes the energy throughout the different spatial scales with 
a maximum in the large-scale part of the spectrum, and the energy 
decreases with assimilation time.

Compared to the analysis mean square error spectrum (Figs. 
5b, 5d, and 5f), all experiments underestimate the spectral energy 
intensity at the mesoscale, consistent with the ensemble being 
under-dispersive (cf. Fig. 2). CS-LS10% keeps a high ensemble 
variance throughout the assimilation time but lacks enough 
variance at small-scales at the beginning of the cycle. The error 
spectrum’s time-frequency variability is better represented by 
SSWS (especially at the initial time), allowing for a more consis-
tent reduction of the analysis error at scales below 100 km, where 
radar data most effectively constrain the model solution.

Finally, a spatial verification of short-range precipitation fore-
casts is assessed by using a probabilistic version of the fraction 
skill score (FSS; Roberts and Lean 2008) in which the forecast 
probability is used instead of the ensemble forecast mean. Figure 
6 shows the FSS of 30-min accumulated precipitation for 1-mm 
and 15-mm threshold, as a function of spatial scale and forecast 
lead time. For a 1 mm threshold, CS-LS5%, CS-LS10%, and 
SSCS-LS10% exhibit a lower FSS than the rest of the experiments 
for spatial scales smaller than 100 km and forecast lead times 
longer than 50 minutes. For a 15-mm threshold, the sensitivity to 
the type of perturbations is more significant both as a function of 
spatial scales and forecast lead times. In particular, experiments 
using the largest amplitude of large-scale perturbations exhibit 
the lowest FSS, while SSWS shows the highest score. Moreover, 
including LS perturbations in WS experiments slightly seems to 
degrade the forecast.

Fig. 2. Time evolution of the space-averaged analysis mean RMSE (solid 
line) and SPREAD (dashed line) for CS-LS5% (cyan line), CS-LS10% 
(blue line), SSCS (yellow line), SSCS-LS5% (red line), SSCS-LS10% 
(purple line), SSWS (olive line), and SSWS-LS5% (green line). NoDA 
RMSE (black line) is shown for reference. Scores average include grid 
points where reflectivity is greater than 0 dBZ either in the assimilation 
experiment or in the nature run. The horizontal line next to the graph indi-
cates the time mean between 60−150 min of assimilation time. (a) Zonal 
wind, (b) temperature, and (c) ref-condensates.

Fig. 3. Time evolution of the space-averaged analysis ensemble spread in 
convective (solid line) and non-convective (dashed line) regions, for CS-
LS5% (cyan line), CS-LS10% (blue line), SSCS (yellow line), SSCS-
LS5% (red line), SSCS-LS10% (purple line), SSWS (olive line), and 
SSWS-LS5% (green line). Convective and non-convective regions are de-
fined as grid points where reflectivity is greater than 0 dBZ, and less than 
−10 dBZ, respectively. (a) Zonal wind, and (b) temperature.
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Fig. 4. Analysis mean reflectivity field (shaded) and horizontal wind field (vectors; m s−1) at z = 1 km and 1750 UTC. Thick arrows indicate wind magnitude 
larger than 20 m s−1. Radar maximum range (dashed black line) and location (black dot) are shown for reference. (a) CS-LS5%, (b) CS-LS10%, (c) SSCS,  
(d) SSWS, (e) SSCS-LS5%, (f) SSWS-LS5%, (g) SSCS-LS10%, and (h) Nature run.

Fig. 5. Time evolution of the squared analysis ensemble perturbations (SAEP) mean spectrum and analysis ensemble mean square error spectra of zonal 
velocity at z = 8 km. (a)−(b) CS-LS10%, (c)−(d) SSCS, and (e)−(f) SSWS.
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4. Summary

Seven OSSEs were performed to study the impact of applying 
different IC-BC perturbation types on the WRF-LETKF RDA 
system. The amplitude and type of IC-BC perturbations have a 
long-lasting impact on the analysis and forecast quality.

Warm-started experiments produce the best results probably 
because they provide a consistent distribution of ensemble spread 
across different spatial scales at the initial time. Random small-
scale perturbations yield consistent results, but the time required 
to downscale and upscale the initial perturbations degrades the 
analysis quality (particularly during the first hour). Large-scale 
perturbations lead to even larger filter spin-up since more time is 
required for the spread to grow at small-scales where radar data 
more effectively constrains the model solution. Combined with 
SS perturbations, LS cooperates to maintain the ensemble spread 
outside the convective system and reduce the error during the first 
assimilation cycles. However, their long-term impact is slightly 
detrimental to both the analysis and forecast quality for this 
MCS system. As mentioned by Torn et al. (2006), the technique 
described in this paper to generate large-scale perturbations is not 
optimal, and a regional mesoscale analysis ensemble could be 
employed to produce dynamically consistent large-scale perturba-
tions.

All experiments resulted in an under-dispersive ensemble. As 
mentioned by Dowell and Wicker (2009), using additive inflation 
perturbations could alleviate this problem. Therefore, it might be 
useful to conduct experiments to evaluate the impact of different 
perturbation types in that context.
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