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Few equilibrium—even less so nonequilibrium—statistical-mechanical models with continuous degrees
of freedom can be solved exactly. Classical hard spheres in infinitely many space dimensions are a notable
exception. We show that, even without resorting to a Boltzmann distribution, dimensionality is a powerful
organizing device for exploring the stationary properties of active hard spheres evolving far from
equilibrium. In infinite dimensions, we exactly compute the stationary state properties that govern and
characterize the collective behavior of active hard spheres: the structure factor and the equation of state for
the pressure. In turn, this allows us to account for motility-induced phase separation. Finally, we determine
the crowding density at which the effective propulsion of a particle vanishes.
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Understanding the collective behavior of simple liquids
has been a fundamental statistical mechanical challenge
since its early days [1]. The absence of a well-defined and
versatile approximation method able to capture collective
effects in liquids has led to the development of a branch in
its own right: the art of elaborating approximations leading
to correlations in fluids is almost as old as statistical
mechanics itself [2,3]. It was only in the mid-eighties that
Frisch, Rivier, andWyler [4] were able to devise a bona fide
mean-field approximation. The latter takes the form of a
controlled large dimensionality limit in which they could
derive, among other thermodynamical properties, an exact
equation of state for classical hard spheres. The physical
price to pay by going to large space dimensions is heftily
compensated by the mathematical gain: not only the
equation of state [4,5], but also thermodynamic quantities,
such as the entropy [6] and even transport coefficients
inferred from the collision dynamics [7] can be determined
exactly. Perhaps more importantly, the greatest insight is to
be found in the pair-correlation function in that it, alone,
controls the spatial organization of the fluid [8], and, thus,
can be used as an educated starting point for density
functional approaches [9] (see [10] for a recent overview).
The realization that classical infinite-dimensional hard

spheres lent themselves to analytical treatment, especially
regarding the determination of entropy, laid the ground for
the idea that they could also be used to investigate meta-
stability issues (understood in terms of free energy minima)
[11–13]. Thus, they have become the workhorse of the
theory of jamming and of the static approach to glasses.
More recent inroads into dynamical behavior [14–17]
address relaxation properties, including with nonequili-
brium evolutions [18]. For some of these glassy-behavior-
related questions, the high dimensionality comes with its

own share of hotly debated issues as towhat exactly survives
finite dimensions [19]. A pivotal starting point common
to all static approaches is the celebrated equilibrium
Boltzmann weight. In stark contrast, no such shortcut exists
for the stationary properties of active matter systems, and
thus, it is no surprise that a many-body exactly solvable
model of particles interacting with pairwise forces has, so
far, remained elusive. In active systems, the motion of the
individual particles requires a net consumption of energy
taken from the environment [20–22]. Breaking the delicate
balance between dissipation and injection of energy at the
particle level inevitably drives even the simplest versions of
such interacting particle systems away from equilibrium.
Among microscopic models ubiquitous in the active matter
literature, the simplest ones involve overdamped dynamics
in the presence of a self-propulsion force, the statistics of
which strongly deviate from the Gaussian white noise
familiar in equilibrium. For such systems, even with
short-range repulsive interactions, the possibility of a phase
separation into a coexisting dense phase and a dilute one is a
direct consequence of the genuine nonequilibrium character
of the dynamics. This so-called motility-induced phase
separation (MIPS) occurs when the typical run length due
to self-propulsion notably exceeds the range of repulsive
interactions. MIPS is a phenomenon that has received
considerable attention [23–25], as it is probably the
simplest activity-driven emerging collective phenomenon.
Understanding collective behavior in active matter com-
bines the hurdles of strongly correlated liquids with those of
nonequilibrium physics. Our purpose is to show how
working in infinite dimension allows us to overcome both,
and to eventually bridge the microscopic behavior to the
macroscopics. In this Letter, we begin by defining the proper
infinite-dimensional scalings of the model parameters so as
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to maintain a competition between activity and repulsive
pairwise interactions leading to a complex spatial organi-
zation. Then, we solve the two-body problem and use our
result to explain how working in large dimension allows us
to truncate the hierarchy of correlations to second order.
Relevant physical quantities are then explicitly derived. The
effective propulsionvelocity [26] is shown to vanish linearly
at a crowding density which we identify. The equation of
state [27] for the homogenous phase exhibits a regime of
negative compressibility that signals the MIPS spinodal, the
shape of which is also found exactly.
Our starting point for the dynamics of each particle is an

overdamped equation of motion for its position riðtÞ

dri
dt

¼ −
X
j≠i

∂riVðri − rjÞ þ v0ui; ð1Þ

where the particle’s mobility has been set to unity for
convenience, VðrÞ is the interaction potential between two
particles, v0 is a self-propulsion velocity scale, while ui is a
random orientation vector. A variety of models enter this
schematic description: for the run-and-tumble particles
(RTPs) we consider here, ui is a unit vector that picks a
random direction at rate τ−1 (but, as we discuss in [28], our
conclusions extend to active Brownian [29] and active
Ornstein-Uhlenbeck [30] particles). Throughout, the poten-
tial V, we have in mind is a smooth repulsive potential of
the form VðrÞ ¼ V0 exp f−½dðr − σÞ=σε�g where the d
factor keeps it short ranged in the large-dimensional limit
[31], and where ε → 0þ further allows us to take a hard-
sphere limit of diameter σ. The run length between two
tumbles l ¼ v0τ and the particle density ρ are the other two
dimensionful quantities entering our problem. For non-
interacting RTPs the diffusion constant is ðv20τ=dÞ and we
choose, as d → ∞, to keep it fixed. We choose to work at
fixed persistence time τ which leads to keeping v̂0 ¼
v0=

ffiffiffi
d

p
fixed. Thus, the limit of interest is one of a highly

ballistic nature where l ¼ v̂0τ
ffiffiffi
d

p
≫ σ (i.e., of very large

persistence length to particle size ratio v0τ=σ). While other
scalings maintaining the nonequilibrium nature of the
dynamics are possible (see [28]), this is the only one
yielding a phenomenology of collective effects such as
MIPS similar to that of lower dimensional systems. By
contrast, the equilibrium limit, while keeping the diffusion
constant fixed as well, requires working at a persistence
length vanishingly small with respect to any other relevant
scale. Sending d → ∞ first and then τ → 0 does not allow
us, here, to recover the equilibrium phenomenology. As in
[4,11,13,32], we work at density scales such that
ρVdðσÞ ∼OðdÞ, so that a given particle typically has d
neighbors [here, VdðσÞ is the exclusion volume of a
particle], hence, leaving room for nontrivial collective
behavior. Therefore, potential gradients are also endowed
with a characteristic scale, as we show now. During a

collision event between two particles, their relative velocity
along the direction of the collision vanishes. The latter
features three contributions. The first one accounts for self-
propulsion and is of order v0=

ffiffiffi
d

p
due to the randomization

of the ui’s. The second is the two-particle direct interaction
of order ∂rV, and the third one contains collisions with the
rest of the particles: it is a sum over d random contributions
(that, for now, we assume to be weakly correlated), each of
them being of order ∂rV=

ffiffiffi
d

p
, hence, a global contribution

of order ∂rV as well. Thus, altogether, we expect that ∂rV
is of order v̂0.
Now, let us discuss the picture that emerges at d ≫ 1 for

just two particles, which amounts to considering the motion
of the relative particle with orientation u ¼ u2 − u1 around
a fixed spherical obstacle. The impact parameter is given by
b ¼ r sin θ (r ¼ jjrjj) as depicted in Fig. 1, but we
anticipate that the typical values of interest for θ are
such that cos2 θ ∼ d−1 due to the randomization of u.
The relative motion of an incoming particle a distance r ¼
σ þ δr away from this spherical obstacle is unaffected
by the obstacle unless δr=σ ¼ Oð1=dÞ. Indeed, if
δr=σ ¼ Oð1Þ, a collision event can occur if and only if
cos θ ¼ Oð1Þ, which is exponentially rare in d. When a flip
does occur, δr=σ will remain at least of Oð1Þ so that the
particle typically misses the obstacle again. Down to these
scales, the obstacle is invisible and the particle undergoes a
free run-and-tumble motion. This means the density is
uniform up to distances δr=σ ∼Oð1Þ. If, however, δr=σ
becomes Oðd−1Þ the probability that u points towards the
obstacle is not negligible anymore so that collision events
potentially shape a nontrivial density profile around the
obstacle over a scale δr ∼ σ=d. We justify this by comput-
ing g0ð0; r;u1;u2Þ, the two-point function of the two-body

FIG. 1. A collision of an active hard sphere (black, rightmost)
with diameter σ and impact parameter b ¼ r sin θ < σ (and
cos θ < 0) onto a pinned (black, leftmost) one. The incoming
particle with direction u hits the target sphere (at the magenta
position) and then skids around by occupying the sequence of
green positions. It eventually takes off at the blue position when
its orientation u becomes tangent to the target sphere. No tumble
can occur over the typical skidding distances considered here,
which are of order σ=

ffiffiffi
d

p
.
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problem for having a particle at 0 with orientation u1 and a
particle at r with orientation u2. The equation for g0 reads

−v0ðu2 − u1Þ · ∇rg0 þ 2∇r · ½g0∇rVðrÞ� þRg0 ¼ 0; ð2Þ

whereR is a linear operator acting on g0 and accounting for
the dynamics of u1 and u2 which occurs at a rate 1=τ. A
stimulating inspiration for the solution of Eq. (2) comes
from the one-dimensional cases of two particles on a ring
[33], or of one particle between two hard walls [34] where
density profiles exhibit delta peak contributions. In the
hard-sphere limit of Eq. (2), as we show in [28], this also
holds in arbitrary dimension d where g0ð0; r;u1;u2Þ takes
the form

g0ð0; r;u1;u2Þ ¼ fðr;u1;u2Þθðr − σÞ

þ Γðr̂;u1;u2Þδ
�
r − σ

σ

�
; ð3Þ

where f and Γ are functions yet to be determined, with
Γ ≠ 0 only for colliding particles with ðu2 − u1Þ · r < 0.
The extra δ contribution in Eq. (3) expresses that, when a
particle collides on another, it skids along at contact for a
finite amount of time as depicted in Fig. 1. In any
dimension d (see [28]), the regular part f of the profile
satisfies

−v0ðu2 − u1Þ · ∇rf þ ðRfÞ ¼ 0; ð4Þ

while the singular part Γ is a solution of

− v0ðu2 − u1Þ · ½fðσr̂;u1;u2Þr̂þ∇r̂Γ − ðd − 1ÞΓr̂�
þ ðRΓÞ ¼ 0: ð5Þ

This equation expresses the flux balance of incoming
particles on the obstacle with those leaving in the course
of their skidding around. Given the scale separation
between σ and the run length

ffiffiffi
d

p
v̂0τ, the contributions

involving R can safely be discarded as d → ∞ in Eqs. (4)
and (5). This allows us to obtain an exact expression for the
functions f and Γ. Denoting, by θ, the angle between r̂ and
ðu2 − u1Þ, we obtain

g0ð0; r;u1;u2Þ ¼ Θðr − σÞ½1 − Θðcos θÞΘðσ − r sin θÞ�

þ Θð− cos θÞδ
�
dðr − σÞ

σ

�
: ð6Þ

For colliding particles (cos θ < 0), there is an accumulation
at contact expressed by a delta peak. Since flipping while
skidding does not occur in the infinite dimensional limit,
there is a depletion of particles away from r ¼ σ (hence, the
conditions cosθ>0 and σ − r sin θ > 0 in the regular part).
In practice, this depletion is felt over distances r − σ ¼
Oðσ=dÞ (since 1 − sin θ ∼ 1=d) and, thus, bears no effect

beyond these scales. In arbitrary dimension, the dimension-
less function Γ depends on the ratio v0τ=σ. As d ≫ 1 this
ratio goes to infinity and our final result for g0 is, indeed,
independent of the dynamical parameters v0 and τ. The
spatial distribution function eventually reads

g0ðrÞ ¼
1

Ω2
d

Z
u1;u2

g0ð0; r;u1;u2Þ

¼ θðr − σÞ
�
1þ σ

2
δðdðr − σÞÞ

�
; ð7Þ

where Ωd is the solid angle in d dimensions. In the hard-
sphere limit, products of the type g0ð0; r;u1;u2Þ∇rVðrÞ,
which are found, e.g., in the virial formula for pressure, also
converge to a well-defined distribution. From Eq. (2), we
show (see [28]) that

lim
hard sphere

Z þ∞

σ
drg0ð0; r;u1;u2Þ∂rVðrÞ

¼ v0
2
½ðu2 − u1Þ:r̂�Γðr̂;u1;u2Þ: ð8Þ

The typical scaling of potential gradients ∂rVðrÞ ∼ v̂0
discussed earlier is now confirmed.
Now, we turn to the N-body problem. In the thermody-

namic limit, we must deal with the infinite hierarchy of
correlation functions inferred from the dynamics. Now, we
sketch the argument that allows us to solve this hierarchy
exactly in the d ≫ 1 limit. This will lead us to conclude that
the N-body two-point function gð2Þ actually reduces to g0
determined in Eq. (6). The second equation of the hierarchy
is given by

− v0ðu2 − u1Þ:∇rgð2Þ þ ðRgð2ÞÞ þ 2∇r:ðgð2Þ∇rVðrÞÞ

þ ρ∇r:

�Z
du0

Ωd
dr0ðgð3Þð0; r; r0;u1;u2;u0Þ

þ gð3Þð0; r; r0;−u1;−u2;u0ÞÞ∇r0Vðr0Þ
�

¼ 0; ð9Þ

and solving it requires, as usual, the knowledge of gð3Þ.
Assuming a truncation of the hierarchy at the level of the
equation for gð3Þ itself, we show that the resulting equation
for gð2Þ is that of the two-body system. This is at the basis of
the systematic proof presented in [28]. The truncated
equation for gð3Þð0; r; r0;u1;u2;u0Þ reads

−v0ðu2−u1Þ:∇rgð3Þ−v0ðu0−u1Þ:∇r0gð3ÞþðRgð3ÞÞ
þ∇r:fgð3Þ½2∇rVðrÞþ∇r0Vðr0Þþ∇rVðr−r0Þ�g
þ∇r0 :fgð3Þ½2∇r0Vðr0Þþ∇rVðrÞþ∇r0Vðr0−rÞ�g¼0: ð10Þ

This equation has the solution gð3Þð0;r;r0;u1;u2;u0Þ¼
g0ð0;r;u1;u2Þg0ð0;r0;u1;u0Þg0ðr;r0;u2;u0Þ up to Oðd−1=2Þ
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corrections. This structure is identical to the one encoun-
tered in equilibrium systems when truncating the hierarchy
of correlations to the same order. It survives in the infinite-
dimensional nonequilibrium steady state due to the ampli-
tude of collision forces remaining 1=

ffiffiffi
d

p
weaker than those

of the self-propulsion ones and because the flipping term

Rgð3Þ is negligible. Now, we want to evaluate the last two
terms in Eq. (9), which in the hard-sphere limit first requires
us to regularize the product gð3Þ∇r0Vðr0Þ. In the same spirit
as in Eq. (8), we can take the hard-sphere limit for Vðr0Þ
[for now VðrÞ and Vðr0 − rÞ are kept short-ranged and
regular] and we find, using Eq. (10), that

lim
hard sphere

2

Z þ∞

σ
dr0gð3Þ∂r0Vðr0Þ ¼ ½v0ðu0 − u1Þ − ∇rVðrÞ − ∇r0Vðr0 − rÞ�:r̂0 lim

x→0þ

Z ð1þxÞσ

σ
dr0gð3Þ; ð11Þ

which holds irrespective of the d ≫ 1 limit. We will now
substitute our result for gð3Þ in terms of g0 into Eq. (9) using
Eq. (11) first. From the geometrical argument of [4],
configurations with three particles at contact are exponen-
tially rare as d → ∞ (see also [28]). If r − σ ¼ Oðσ=dÞ,
which is the domain of interest of Eq. (9), and given that
r0 ¼ σ, we know that ðkr − r0k=σÞ − 1 ¼ Oð1Þ except in an
exponentially small fraction of the volume over which r0 is
integrated. Thus, it is safe to set ∇rVðr − r0Þ ¼ 0 and
g0ðr; r0;u2;u0Þ ¼ 1 in Eq. (9). This leads to

ρ

�Z
du0

Ωd
dr0gð3Þð0;r;r0;u1;u2;u0Þ∇r0Vðr0Þ

�

¼−
ρVdðσÞ
4d

g0ð0;r;u1;u2Þ½v0u1þ∇rVðrÞ�
�
1þOðd−1=2Þ

�
;

ð12Þ

which, in turn, enforces gð2Þ ¼ g0 up to Oðd−1=2Þ correc-
tions as claimed in our introduction. This analytically
supports the relevance of the Baxter model [35] as a proxy
for analyzing the structure of active fluids as suggested
in [36]. In addition, as shown in [28], the pair product
structure extends to n-point distributions

gðnÞðr1;…; rn;u1;…;unÞ ¼
Y
i<j

g0ðri; rj;ui;ujÞ; ð13Þ

up to Oðd−1=2Þ corrections. For the three-body function,
this shows that the Kirkwood approximation (used in d ¼ 2
in [37]) becomes exact in infinite dimension. We are now in
a position to determine the effective self-propulsion veloc-
ity of a tagged particle as introduced in [26]. From the
equation of motion (1) averaged at given ui, we define vðρÞ
with ðdhriii=dtÞ ¼ vðρÞui, so that

vðρÞ¼v0−
ρ

Ωd

Z
uj;rj

gð2Þðri;rj;ui;ujÞ∇riVðri−rjÞ ·ui: ð14Þ

Using our result for gð2Þ, Eq. (6), and Eq. (8), we arrive at a
central result of this Letter

vðρÞ ¼ v0

�
1 −

ρ

ρcr

�
; ρcr ¼

4d
VdðσÞ

: ð15Þ

This immediately defines the range of validity of our
calculation, such that ρ < ρcr. Indeed, ρ > ρcr leads to a
negative vðρÞ, which is unphysical, so that for ρ > ρcr the
system cannot be, at a microscopic level, in a homogeneous
state, which echoes the findings of [38,39] in two-dimen-
sional systems. The crowding density ρcr which controls
this transition, is a density scale independent of the
dynamical parameters v0 and τ. In the analysis of existing
numerical simulations, a linear function vðρÞ has appeared
to be an excellent fit both in two and three dimensions
[24,27,40]. Numerics also show the vanishing of vðρÞ
beyond a threshold that was observed to be independent of
dynamical parameters [27]. We conjecture that this arrest
density is the crowding density ρcr of our calculation. Our
large-dimensional prediction is that the transition occurs at
a volume fraction ϕ ¼ ρVdðσ=2Þ ¼ 4d2−d which is smaller
than the corresponding jamming density of hyperspheres
(which goes as 6.26d2−d [12] for d ≫ 1). Paradoxically,
even though the crowding threshold depends on geometry
only, it is tempting to view it as a new, intrinsically
dynamical, jamming scale. Finally, considering the relative
motion of two particles, the quantity vðρÞ not only
describes their effective self-propulsion velocity, but, sur-
prisingly it also controls their effective mobility by reduc-
ing the amplitude of their direct interaction. Indeed, at
given i and j self-propulsion velocities and positions,

d
dt
hri− rjiij¼ vðρÞðui−ujÞ−2

vðρÞ
v0

∇riVðri− rjÞ; ð16Þ

after making use of Eq. (12). Another interesting property of
active particles interacting with pairwise forces is the exist-
ence of an equation of state for the pressureP, in the sense that
it only depends on bulk properties of the fluid. Following
[27], the pressure in a homogeneous state is given by

P ¼ ρ
v20τ
d

vðρÞ
v0

−
ρ2

2dΩ2
d

Z
r;u1;u2

gð2Þð0; r;u1;u2Þr · ∂rVðrÞ: ð17Þ
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When ρ < ρcr, we have

P
σρcrv̂0

¼ v̂0τ
σ

ρ

ρcr

�
1 −

ρ

ρcr

�
þ 1ffiffiffi

π
p ρ2

ρ2cr
: ð18Þ

This exact equation of state is consistent with numerical
observations [27]. It allows for spinodal instability when
ρ < ρcr and ðdP=dρÞ < 0, hence, for v̂0τ > 2σ=

ffiffiffi
π

p
(in line

with the numerical observation [40] that the instability
threshold for the run length increases with dimension).When
this criterion is fulfilled, the spinodal region is defined by

1 >
ρ

ρcr
>

1

2

ffiffiffi
π

p v̂0τ
σffiffiffi

π
p v̂0τ

σ − 1
: ð19Þ

The spinodal boundaries of the phase diagram are shown in
Fig. 2. Below ρcr, they are consistent with the findings
presented in [38–41]. In infinite dimensions, we find the
ρ > ρcr region to overlap the phase separated region, a feature
which also seems to emerge in the large v0τ=σ corner of the
phase diagram in [39].
The important results of this Letter are threefold.

(i) There exists an infinite-dimensional limit in which
the stationary properties of self-propelled particles inter-
acting via a pairwise potential can be solved exactly. In the
hard-sphere limit, the pair distribution function is shown to
pick up a strongly attractive term at contact (in the form of a
δ contribution). (ii) The effective self-propulsion velocity
dressed by the interactions with other particles vanishes at a
crowding density slightly smaller than the jamming one.
Neither the pair distribution function nor the crowding
density depend on the bare self-propulsion velocity or on
the time scale governing the decay of self-propulsion
correlations. (iii) These findings allow us to obtain
the equation of state for self-propelled hard spheres in
the homogeneous phase, and to find the location of the
spinodal preempting MIPS. The range of directions our
work opens up is manifold. First, as for their equilibrium

counterparts, active hard spheres in contact with a hard wall
are characterized by a fluid-solid surface tension, the
determination of which involves not only the pair distri-
bution function [42,43] (computed in the present work in
the large d limit), but also the density profile in the vicinity
of the wall (in the spirit of [44]). Studying such a system in
infinite dimension will allow us to gain insight into the
interplay between the bulk and the near-wall physics of
interacting active particles systems. Second, it is well
known that, in equilibrium, the details of the dynamics
bear no influence on the stationary properties; this is, of
course, not so out of equilibrium. Here, we have studied the
simplest instance of self-propelled dynamics, but hydro-
dynamic interactions could be incorporated, e.g., in the
form of an Oseen motility tensor (see [45] for a d-dimen-
sional version). Third, in the spirit of [46], the study of self-
propelled rods in which alignment interactions will now
introduce an additional physical ingredient. We sense,
however, that equally interesting, though more involved,
research directions lie in exploring the vicinity of the
crowding density (at, and beyond [38,39]) and in capturing
dynamical evolution [18], allowing us to access slow
dynamics properties [47,48].

We acknowledge very insightful exchanges with L.
Berthier, M. E. Cates, D. Limmer, K. Mandadapu, and J.
Tailleur.
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