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Abstract
The material point method can be regarded as a meshfree extension of the finite
element method. This fact has two interesting consequences. On the one hand,
this puts a vast literature at our disposal. On the other hand, many of this inheri-
tance has been adopted without questioning it. A clear example of it is the use of
the Voigt algebra, which introduces an artificial break point between the formu-
lation of the continuum problem and its discretized counterpart. In the authors’
opinion, the use of the Voigt rules leads to a cumbersome formulation where the
physical sense of the operations is obscured since the well-known algebra rules
are lost. And with them, the intuition about how stresses and strains are related.
To illustrate it, we will describe gently and meticulously the whole process to
solve the nonlinear governing equations for isothermal finite strain elastody-
namics, concluding with a compact set of expressions ready to be implemented
effortless. In addition, the classic Newmark-𝛽 algorithm has been accommo-
dated to the local maximum-entropy material point method framework by means
of an incremental formulation.
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1 INTRODUCTION

Large deformation problems are still considered challenging and a rich source of research in the field of computational
mechanics. Classically, the finite element method (FEM) has dominated this field due to its natural robustness, mod-
erate computational cost, and many other desirable properties. It is worth mentioning that the quality of the results
in FEM simulations is highly dependent on the element aspect ratio*. This drawback takes special relevance in the
large deformation regime, since mesh-based techniques are prone to suffer severe element distortion that might lead
to unfinished simulations in the worst cases. To overcome this limitation, remeshing techniques have been devel-
oped within FEM. Unfortunately, these techniques are usually computationally prohibitive and its implementation
is far from been trivial. Accuracy and efficiency at the finite deformation regime were the leading ideas behind the

*This aspect is controlled at the very beginning of the modelization, specifically during the meshing process.
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development of mesh-free techniques. In the present days, these methods have gained a new stage of maturity and are
fully established and recognized as alternatives in those scenarios where traditional mesh-dependent approaches fail.
Among the wide range of proposals, the material point method (MPM) has become a robust alternative to the FEM.
The MPM, originally developed in the middle of 1990s by Sulsky and coworkers,1 benefits from a twofold description:
i) a Lagrangian description where material points represent the continuum media carrying the physical information
during the simulation and ii) an Eulerian description where a fixed set of nodes is considered to solve the equilib-
rium. Other mesh-free variational approaches share this dual description, for example, optimal transportation meshfree
(OTM)2 or element-free Galerkin method (EFGM).3 When compared with the OTM or the EFGM, it can be observed
that shape functions in the MPM are evaluated in an undeformed background set of nodes while this is not the
case for the OTM or the EFGM. This strategy simplifies the computation of the shape functions and related gradi-
ents within the MPM while helps to preserves the accuracy of the mesh even when large deformations occur. The
MPM algorithm can be described by the following three main steps: (i) a variational recovery process, where parti-
cle data are projected onto a set of fixed background nodes; (ii) an Eulerian step, where the balance of momentum
equation is computed in the nodes; and finally (iii) a Lagrangian advection of the particles using the updated nodal
information.

One of the most commonly cited shortcomings of the classical MPM approach is its inherent grid-crossing insta-
bility. It is caused by the lack of continuity in the first derivative of the shape functions between the elements.
Among the different possibilities to overcome this issue, Molinos and coworkers4,5 have proposed the use of the local
maximum-entropy (LME) approximants under the MPM providing very robust results for demanding dynamic cases.
The LME was originally introduced by Arroyo and Ortiz6 as a class of convex approximation schemes, which pro-
vides a seamless transition between FEM and meshfree interpolations. The key idea behind the LME is to ensure
an optimal compromise between minimizing the width of the shape function support and maximizing the entropy
of the approximation. It possesses many other desirable properties for meshfree algorithms:6 (i) they are entirely
defined by the nodal set and the domain of analysis, (ii) they are also nonnegative, (iii) satisfy the partition of unity
property, and (iv) provide an exact approximation of affine functions. In addition to its robustness, they are flexible
enough to adapt them to a wide number of scenarios.7 Unfortunately, this technique is computationally demanding
since a minimization algorithm is required to obtain the optimal approximation for each particle. Even though, this
shortcoming can be obviated by means of an efficient implementation and the use of high-performance computing
techniques.

Regarding the time integration scheme, it is well known that a considerable number of current MPM researchers
employs an explicit scheme†instead of using an implicit scheme. The reason for this choice might be the additional com-
plexity associated with the linearization of the nonlinear equilibrium equations. This step plays a crucial role in the
resolution algorithm and may be cumbersome and not trivial for complex materials if the traditional Voigt approach
is considered. Conversely, the implicit solvers9,10 might display many desirable benefits like: (i) unconditional stabil-
ity, (ii) precise control of error evolution, and (iii) large load step size. Furthermore, if the linearization is done in a
consistent way, the quadratic convergence of the Newton–Raphson might be achieved, and therefore, the computa-
tional cost is reduced drastically. One of the earliest papers to consider an implicit integration rule in the MPM was
proposed by Guilkey and Weiss11 who solved the nonlinear equilibrium of an hyperelastic material via the application
of the trapezoidal rule along with a lumped mass approximation. Later, Sulsky and Love12 proposed an uncondition-
ally stable energy-momentum method taking as starting point the pioneer work of Simó and Tarnow.13 To avoid the
issues of the original formulation,14 Sulsky and Love combined the algorithmic formula for the second Piola–Kirchhoff
stress tensor S proposed by Gonzalez15 and a Newton–Krylov matrix-free solver for the nonlinear system.16 Unfortu-
nately, the quadratic convergence of the Newton–Raphson is affected since the tangent matrix is not obtained in a
consistent way. The recent developments of the implicit MPM in the finite deformation regime has been focused in solv-
ing the quasi-static equilibrium equations. First, Charlton et al.8 introduced the implicit GIMP (iGIMP) as an implicit
formulation of an elastoplastic generalized interpolation material point (GIMP) method. Iaconeta et al.17 developed a
stabilized mixed implicit formulation for nonlinear incompressible solid mechanics, and recently, Coombs et al.18 pro-
posed a new Lagrangian statement for large deformation elastoplasticity, the Previously converged formulation. In this
article, we will extend the work of Guilkey and Weiss11 to a general Newmark-𝛽 algorithm9 formulated in an incre-
mental fashion, that is, fluid implicit particle (FLIP) scheme.19 These type of schemes are more convenient, since
allow to preserve the complete history of stress and strain for each particle than overwriting the kinematic magnitudes

†This assumption was corroborated by Charlton et al.8
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of each material point employing the particle in cell (PIC) scheme.20 A common drawback of several of the afore-
mentioned implicit algorithms is that they can exhibit spurious dissipative behavior in difficult situations such as
collisions or other high-frequency loads. This limitation can be surmounted if algorithms like energy-momentum con-
serving ones13,15,21 are consider to deal with these sort of scenarios. However, sophisticated structure of these algorithms
leads to a nontrivial linearization process that is artificially difficult when algebraic manipulations are done through
Voigt’s rules.

As was mentioned before, when implicit algorithms are employed, a consistent linearization is required to preserve
the quadratic convergence of the Newton–Raphson algorithm. A tangent elastic matrix is then obtained by the direc-
tional derivative of the residual, with respect to the displacement field. This matrix is usually computed by means of
the classical9,22 operation BTDB, which does not require further introduction. However, a closed expression for matrix
D may be cumbersome for certain material models or stress integration algorithms, and even more, in finite strain
problems. Typically, to obtain this matrix for an arbitrary material, one finds the expression of the fourth-order ten-
sor and, before programming it, it is converted into a matrix through the transformation rules of the Voigt algebra.
Although in some materials like the St. Venant–Kirchhoff10 model this transformation can be done easily, for other
materials, with more elaborated constitutive laws, this operation is error prone. To the authors’ knowledge, all the
existing implicit MPM implementations are constructed following the BTDB setting. According to Planas et al.23 all quan-
tities needed to be evaluated in order to formulate and implement the FEM equations can be expressed in a natural
fashion in term of vectors and second-order tensors in R3. Consequently, the so-called B, and D matrices and Voigt vec-
tors are not required anymore. The authors23 highlight two main advantages: (i) the resulting expressions are much
clearer, and provide a seamless transition from mathematical formulation to the implementation, which means that
equations are implemented from the continuum mechanics derivation and therefore have a more natural interpretation
and (ii) the compact resulting formulation allows a simple implementation which naturally exploits material symme-
tries to result in a very efficient code. In a later publication, Stickle et al.24 applied the B-free setting to the governing
equations describing the consolidation process in saturated poroelastic medium with intrinsically incompressible solid
and fluid phases. Recently, Antolín25 applies this methodology for a fast assembly of stiffness matrices for laminated
composites.

The originalB-free publication23 set the advantages of leaving the less familiar Voigt’s algebra in favor of a tensor-based
approach in a large strain context. However, no detailed derivation of the nodal equilibrium and related linearization
was presented. This last linearization step is in our understanding where the advantages of the B-free formulation
are even more dramatic in the large strain regime. Furthermore, in the aforementioned publication, no benchmark
was provided to verify the performance of the B-free approach. In order to extend Planas’s work, the authors of the
present research have described the complete procedure using a Lagrangian description for the nonlinear elastodynamic
problem, providing expressions for the Ciarlet26 Neo-Hookean material and proposing several benchmarks, see Stickle
et al.27 Some of them are also reproduced in the present research. The previously cited publications exploit the bene-
fits of the B-free formulation under the FEM context. In the present piece of research we fully describe the complete
linearization process under the MPM framework, and provide a set of algorithms which highlight the immediate ben-
efits of the proposal due to its natural clarity and simplicity. To the authors’ knowledge the present work is the first
attempt toward a B-free approach for the MPM and could also be considered for any other variational-based meshfree
technique.

The article is organized as follows: in Section 2 the strong and weak versions of the nonlinear elastodynamic problem
are described. The variational problem is discretized in space by the B-free approach and in time by an implicit Newmark
scheme in Section 3 so that it can be solved by means of computational techniques. In Section 4, the goodness of the
LME approximation scheme and the incremental Newmark-𝛽 in the nonlinear regime, within the B-free formulation, are
tested against analytical solution and Lagrangian FEM solutions. Comparison with Voigt-based solution is also included.
Finally, conclusions are exposed in Section 5.

2 THE CONTINUUM PROBLEM

The goal of this section is to present the variational formulation of the initial boundary value problem (IBVP) of
nonlinear elastodynamics. The equations here described are well known, and further reading can be found in the
vast bibliography available.10,28,29 The section is organized as follows: (i) the framework description is briefly intro-
duced in Subsection 2.1, then, (ii) the nonlinear IBVP is introduced in Subsection 2.2, and finally (iii) the variational
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statement of the problem is presented in Subsection 2.3. The following convention is adopted in the present work:
Three kind of subscripts or superscripts are considered: superscripts □p denotes a particle variable, superscripts □I

is reserved for nodal variables, the subscripts □n means time evaluation. The convention adopted for the operators
is as follows: □̇ and □̈ are considered for the first and second material time derivative, □⊗□ means the dyadic
operator, □ ⋅□ and □ ∶ □ are the single and double contraction of tensor index, □◦□ means function composi-
tion, DIV(□) denotes the divergence operator, and GRAD(□) denotes the gradient operator both in the reference
configuration.

2.1 Framework description

In order to calculate the deformation of a continuum, we must be able to mathematically describe its dynamics and its
motion, also called kinematics. Specifically, we will be interested in describing the displacement, velocity, and accelera-
tion following the motion of each individual material point that compose the body. This way of describing the motion is
called material or Lagrangian description. To this end, consider t ∈ [0,T] ⊂ R+ as the time interval of interest and define
0 ⊂ Rndim as the reference configuration of a continuum body with particles X ∈ 0, the so-called material coordinates
relative to an inertial frame. As the body change its configuration‡with time t this leads to instantaneous or current con-
figuration defined as  ⊂ Rndim . We refer to x ∈  as a point in the current configuration. The previous description of the
motion is summarized in Figure 1. The set 0 is assumed closed, and with smooth boundary Γ0. The reference boundary
Γ0 is introduced as a disjoint subsets such that Γ0 = Γ𝜑 ∪ Γ𝜎 , where Γ𝜑 ∩ Γ𝜎 = ∅ and the overline denoting closure. Γ𝜑
and Γ𝜎 are respectively Dirichlet and Neumann boundaries. Assume there exists a smooth deformation described by the
differentiable mapping:

𝜑 ∶ 0 × [0,T] →  ∈ R
ndim ∀ t ∈ [0,T], (1)

𝜑 is a bijective operator which relates the reference configuration 0 and the current configuration  at time t as

x = 𝜑(X, t) = X + u(X, t), (2)

where u is the displacement vector. The kinematic relation expressed within Equation (2) can be articulated graphically
by means of Figure 1. To describe the deformation process locally, the deformation gradient tensor F is introduced as a
(two-point) tangent map between the reference configuration and the deformed configuration:

F ∶= 𝜕𝜑(X, t)
𝜕X

≡ GRAD(𝜑) = I + GRAD(u). (3)

Also, the deformation gradient must satisfy the local invertibility condition:

J(𝜑) ∶= det[F] > 0, (4)

where J represents the determinant of F, that is, the jacobian of the deformation. With the previous definitions, it is
possible to define the smooth manifold  of admissible configurations:

 ∶= {𝜑 ∶ 0 × [0,T] → R
ndim |J(𝜑) ∶= det[F] > 0 and 𝜑|Γ𝜑 = 𝜑}, (5)

where 𝜑 ∶ Γ𝜑 × [0,T] → Rndim . The material velocity of a point is defined as v(X, t) = 𝜑̇(X, t) for a fixed X, in the same
way the material acceleration is defined as the time derivative of the material velocity a(X, t) = 𝜑̈(X, t) for a fixed X. As
we can see, in the Lagrangian description, the motion is described in terms of material points. Conveniently, this way
of describing the motion allows to compute easily velocity and accelerations for a given material point as we have seen
before. In addition, all tensorial variables and their rates are by definition objective. Meanwhile tensorial rates expressed
in deformed configuration are not necessary objective leading us to introduce intermediate mechanisms to get objective
rates in the deformed configuration. In the present research we are focused in solving problems where the stress–strain

‡This includes displacements as a deformable body or displacements and rotations as a solid rigid.
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F I G U R E 1 Scheme of reference and current configuration

relationship are derivable consistently from a scalar-valued strain energy density function W . These are the so-called
hyperelastic materials, which also obeys frame invariance:28

W = Ŵ(C) = Ŵ(FTF) = W(F). (6)

Being C the right Cauchy–Green tensor. In order to derive the large strain isothermal elastodynamic equations in the
reference configuration, the nonsymmetric Piola–Kirchhoff stress tensor P, which is energy conjugated to F, is introduced
as:

P = 𝜕W
𝜕F

= 2 F 𝜕Ŵ
𝜕C

= F S. (7)

The previous equation introduces the existence of the symmetric Piola–Kirhhoff stress tensor S, which is energy
conjugated to C. Both magnitudes are related to the Eulerian Kirchhoff stress tensor 𝝉 via the a contravariant
pullback:

S = F−1 P = F−1 𝝉 F−T . (8)

As we are interested in working with symmetrical magnitudes in the reference configuration, we will consider the stress
tensor S for the subsequent developments. Whereas the nominal traction is prescribed on Γ𝜎 as:

T|Γ𝜎 ∶= P ⋅ N = FS ⋅ N on Γ𝜎 × [0,T] → R
ndim (9)

where N ∶ Γ0 → S2 is the outward unit normal vector to the material boundary Γ0. In addition, the continuum may be
affected upon by an external acceleration denoted by B ∶ 0 × [0,T] → Rndim .

2.2 The initial boundary value problem (IBVP)

Once the framework has been clearly described in the reference configuration, the IBVP is stated in this section. First,
the equilibrium is defined locally in the reference configuration as:

Π̇(X, t) = DIV(FS) + 𝜌0 B ∀ X ∈ 0, (10)

where Π represents the canonical momenta in the reference configuration. The equilibrium equation, Equation (10), is
supplemented by the local relations:

Π ∶= 𝜌0 v(X, t), and v(X, t) = 𝜑̇(X, t) in 0 × [0,T] (11)

Finally, initial conditions are:

Π|t=0 = 𝜌0 v(X, 0), and 𝜑|t=0 = 𝜑(X, 0) in 0. (12)
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In the absence of heat conduction, the energy function is required to satisfy the following dissipation inequality:28,30

int ∶=  int − Ẇ ≥ 0 ∀ t ∈ [0,T], (13)

being int the internal dissipation and  int the stress power, which is defined as a function of the right Cauchy–Green
tensor C:

 int = 1
2

S ∶ Ċ. (14)

Equation (13) can be regarded as an equivalent statement of the Clausius–Duhem inequality form of the second law of
thermodynamics. In this article, we will focus on those cases where internal dissipation is zero. The thermodynamic
requirement expressed in Equation (13) is automatically satisfied by the Equation (7). Once the Equations (10), (11), (12),
and (7) have been defined, the solution for the IBVP is closed. A natural extension of the present research is the resolution
of the nonlinear viscoelasticity equation, where the internal dissipation is not zero.

2.3 The weak form of balance of momentum

The IBVP enunciated in the previous section, Subsection 2.2, describes the motion of a continuum within a set of partial
differential equations (PDEs). These equations could be solved analytically for some simple problems,27 but have to be
solved numerically for most of real problems. The approach followed by numerical techniques, such as the MPM, is first
establishing a weak form, which is equivalent to the original PDEs with their initial and boundary conditions, and then
solving it numerically. Following the standard arguments of variational principles, we define the following space. Let 
denote the space of the test functions 𝜓 associated with the admissible configurations in the manifold . According to
this definition,  is:

 ∶= {𝜓 ∶ 0 → R
ndim |𝜓 ∈ 1, 𝜓|Γd = 0}, (15)

where 1 is the first-order vector-valued Sobolev space. For the subsequent developments, Equation (10) is expressed in
a more convenient residual form as:

r(𝜑) = Π̇(X, t) + DIV(FS) − 𝜌0 B ∀ X ∈ 0. (16)

The variational formulation of the nonlinear problem described in Section 2.2 starts premultiplying Equation (16) by the
test functions 𝜓 previously defined. Later, the resulting expression is integrated in 0 to obtain the integral expression
of equilibrium. Hereinafter, the derived expression is integrated by parts and employing the divergence theorem and
introducing the traction boundary condition (Equation 9), the following energetic functional (or Lagrangian) (𝜑,𝜓) is
derived:

(𝜑,𝜓) ∶= ∫0

Π̇ ⋅ 𝜓 dV + ∫0

F S ∶ GRAD(𝜓) dV − ∫0

𝜌0 B ⋅ 𝜓 dV − ∫Γ𝜎
T ⋅ 𝜓 dA. (17)

Equation (17) represents the weak form equivalent to the momentum equation (Equation 16). Finally, the variational
problem to solve is:

Given a time t ∈ [0,T], find 𝜑 ∈  ∶ (𝜑,𝜓) = 0 ∀ 𝜓 ∈  .

subjected to

{
𝜑(X, 0) = 𝜑0

Π̇(X, 0) = Π̇0.

This expression defines the weak form of the problem, which will be the foundation of the MPM formulation in Section 3.

3 THE DISCRETE PROBLEM: THE B-FREE LME-MPM FRAMEWORK

Once the continuum variational problem has been stated, it is necessary to discretize it in time and space in order to be
solved by means of computer techniques. There is a whole family of variational techniques which are supported by the
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T A B L E 1 The 𝛼-parameters of the Newmark
scheme

𝛼1 = 1
𝛽Δt2 𝛼2 = 1

𝛽Δt
𝛼3 = 1−2𝛽

2𝛽

𝛼4 = 𝛾

𝛽Δt
𝛼5 = 1 − 𝛾

𝛽
𝛼6 =

(
1 − 𝛾

2𝛽

)
Δt

framework derived in the previous section. The main difference between them is how spatial magnitudes are discretized.
The present work focuses on the MPM technique, which relies on two different discretizations: particles and nodes.
This dual approach will be further clarified across this section, which is organized as follows: first, time discretization
is briefly described in Subsection 3.1; next, the spatial discretization is detailed in Subsection 3.2, continuing with the
consistent linearization in Subsection 3.3 under a B-free paradigm; finally, some implementation details are considered
in Subsection 3.4.

3.1 Temporal discretization: The Newmark-𝜷 method

In this subsection, the time interval of interest [0,T] is discretized into Nt time steps of length Δt through a finite collec-
tion of temporal nodes 0 < … < tn < tn+1 < … < T. The classical Newmark-𝛽31 time integration scheme is used in the
present research, since it allows a comprehensive analysis of the further developments without getting lost in the details
of a more sophisticated time integration scheme. Then, evaluating Equation (17) at time tn+1, it is possible to solve the
temporal evolution as:

Given 𝜑n, vn and an, find 𝜑n+1 ∈  ∶ (𝜑n+1, 𝜓) = 0 ∀ 𝜓 ∈  . (18)

subjected to

{
an+1 = 𝛼1(𝜑n+1 − 𝜑n) − 𝛼2vn − 𝛼3an

vn+1 = 𝛼4(𝜑n+1 − 𝜑n) + 𝛼5vn + 𝛼6an
. (19)

The 𝛼-parameters are listed in Table 1 according to Wriggers.10 On the other hand, 𝛽 and 𝛾 are user parameters that
might be related via the stability condition 𝛽 = (𝛾 + 0.5)2∕4. Details about the incremental implementation are provided
in Subsection 3.4. In the current work, solutions are obtained with the trapezoidal integration rule (𝛽 = 0.25 and 𝛾 = 0.5)
being unconditionally stable with second-order accuracy.9

3.2 Spatial discretization: The local max-ent approximation as interpolation technique

Here we examine the Galerkin MPM projection of the state space  onto the finite dimensional state subspace h ⊂ 
spanned by a convenient approximation set of interpolation functions NI(x) ∶  → R. Standard Bubnov–Galerkin proce-
dure is considered, in which the space of weighting functions  is projected onto a finite dimensional subspace h ⊂
spanned by the same functions used to approximate the configuration chart𝜑. The ambient space Rndim is discretized with
a set of uniformly distributed spatial nodes xI , and a finite subset  of these spatial nodes is chosen such that  ⊂ conv
where conv is the convex hull associated with the subset .6 For the sake of brevity, we will denote a node xI contained
in  as I ∈ . Spaces h and h might be expressed as:

h ∶= {𝜑 ∈ |𝜑 =
∑

I ∈ 
𝜑I NI(x)}, (20)

h ∶= {𝜓 ∈ |𝜓 =
∑

I ∈ 
𝜓 I NI(x)}. (21)

The spatial derivative of 𝜑 and 𝜓 can also be computed through the support of the background set of nodes. In this
article, NI(x) fall within the class of convex approximation schemes;6 however, other approximation techniques can be
applied32-36 in the framework of the MPM. Besides, the continuum  is discretized with a finite set of material points§

 ⊂ . Seeking clarity for the subsequent developments, a particle xp contained in  will be denoted as p ∈ . This set of
material particles allow the definition of a configuration field 𝜑p, a velocity field vp, a mass field mp, and stress field Sp,

§Also known as particles in this article.
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such that the expression 𝜁p is just the evaluation 𝜁(xp) for each particle p. Equation (20) shows that the value of a field in
a particle is performed by means of its approximation using the nodal values associated with the particle. The integrals
that appear throughout the document are evaluated by means of the Riemann integral37 applied to a finite set of points
with associated volumes V p, interpreted as quadrature weights.

∫Ω
𝜁 dV =

∑
p ∈ 

𝜁p V p. (22)

The spatial discretization described so far has been done for a generic interpolation technique. A typical pitfall of the
simulations performed with the original MPM is the presence of numerical noise when particles cross the cell boundaries,
commonly denoted as “cell-crossing instability.” Solving this issue is the main goal4 of the employment of the LME6

shape functions in the MPM. The key idea behind this approximation technique is to interpret the shape function NI(x)
as a probability. This allows to introduce two important limits: the principle of maximum-entropy (max-ent) statistical
inference,38 and the Delaunay triangulation which ensures the minimal width of the shape function. This approximation
scheme represents an optimal compromise, in the sense of Pareto, between the unbiased statistical inference based on the
nodal data which leads to the principle of Maximum-Entropy stated by Jaynes,38 and the definition of local shape functions
of least width the least biased shape functions. According to Arroyo and Ortiz,6 the entropy of a discrete random variable
can be defined as the uncertainty of the random variable. A measure of this uncertainty can be obtained by means of
Shannon’s entropy:

H(pI) = −
N∑

I=1
pI log pI , (23)

where pI stands for probability of the random variable outcomes, and N is the size of . By interpreting these probabilities
as the shape functions NI(x) of an approximation scheme, Equation (23) can be regarded as a measure of the uncertainty of
the approximation. Thus, according to Jaynes’s principle of maximum entropy,38 the least-biased approximation scheme
can be given by the one that maximizes the information entropy. Thus, the control of the shape function width and its
decay with distance away from the corresponding nodes is a desirable property. To reach this objective, Arroyo and Ortiz6

propose to minimize the shape function width U(xp,NI) defined as the second moment of the shape function nodal
value NI about the position of the node xI . To reach a compromise between the two competing objectives, a Pareto set is
considered:

(LME)𝛽 For fixed x minimize f𝛽(x,NI) ≡ 𝛽U(x,NI) − H(NI)

subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

NI ≥ 0, I = 1, … ,n
N∑

I=1
NI = 1

N∑
I=1

NIxI = x

.

The regularization or (in analogy to statistical mechanics) thermalization parameter, 𝛽, between both criterion, has Pareto
optimal values in the range 𝛽 ∈ (0,∞). Once the optimization problem is established, the unique solution6 of the local
max-ent problem LME𝛽 is:

NI,∗(x) =
exp

[
−𝛽|x − xI|2 + 𝜆∗ ⋅ (x − xI)

]
Z(x, 𝜆∗)

, (24)

where Z(x, 𝜆∗) is:

Z(x, 𝜆) =
N∑

I=1
exp

[
−𝛽|x − xI|2 + 𝜆 ⋅ (x − xI)

]
(25)

being 𝜆∗(x) the unique minimizer for the function log Z(x, 𝜆). The traditional way to obtain such a minimizer is applying
Equation (26) to calculate small increments of 𝜕𝜆 in a Newton–Raphson solver. J is defined as the Hessian matrix, obtained
by:
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J(x, 𝜆, 𝛽) ≡ 𝜕r
𝜕𝜆
, (26)

r(x, 𝜆, 𝛽) ≡ 𝜕 log Z(x, 𝜆)
𝜕𝜆

=
N∑
I

pI(x, 𝜆, 𝛽) (x − xI). (27)

In order to obtain easily the first derivatives of the shape function ∇NI,∗, Arroyo and Ortiz6 propose to consider 𝛽 as a
constant over the domain. Therefore, employing the chain rule over Equation (24), and rearranging terms, the following
expression for the gradient is obtained:

∇NI,∗ = −NI,∗
I (J∗)−1 (x − xI). (28)

The regularization parameter 𝛽 may be controlled by adjusting a dimensionless parameter, 𝛾̂ = 𝛽h2, where h is defined
as a measure of the nodal spacing.6 The definition of the dimensionless parameter 𝛾̂ is independent of the number of
dimensions since the thermalization parameter 𝛽 is attached to the second-order moment definition U(xp,NI). Therefore,
𝛽 has always [L]2 units. On the other hand, the nodal distance measure adopted may depend on the number of dimensions
as it is a measure of the nodal spacing.

The support of the shape functions is the entire domain conv, that is, the local max-ent shape functions are globally
defined. From a practical perspective, their evaluation in the complete computational domain would result in an excessive
computational cost. However, since the shape function decay as exp(−𝛽r2) with distance r to the corresponding node, its
evaluation can be truncated to the set of nodes close to the particle whose basis function value is greater than a given
tolerance TOL0

¶, this would ensure a reasonable range nodes to compute the shape function. Indeed, it is possible to
define a circular truncation region taking the position of the particle as the center and Ra = h

√
− log(TOL0)∕𝛾̂ as the

radius of such circle. Let us represent it as the set S1(xp,Ra). This leads to a nodal subdomain p ⊂  which is define
by the nodes I ∈  such that also belong to S1(xp,Ra). The domain of the LME shape functions proposed in the present
work is convp, being convex by definition. Compared with other meshfree methods, like OTM, in the MPM the fixed
background set of nodes is a discretization of the ambient space Rndim , and not of the continuum body that could be
nonconvex. This particular characteristic of the MPM contributes to guarantee the convexity of the LME shape function
domain, avoiding the lack of the weak Kronecker-delta property, an issue widely discussed by previous authors.6,39,40

Some remarks clarifying some of the computational aspects regarding the LME shape function as approximation
technique in the MPM are introduced for the sake of completeness.

Remarks on computational aspects
1. It is computationally expensive compared with traditional approaches such as the linear interpolation of the standard

MPM or the uGIMP shape functions, since the construction of both shape functions are reduced to a mere evaluation,
meanwhile for LME a Newton–Raphson is required to compute the Lagrange multiplier 𝜆∗ in each particle. How-
ever, the convergence is usually reached in few iterations.6 In addition, the larger support of the shape functions has
a negative impact in the number of the operations in each time step. By contrast, accurate results and excellent con-
vergence properties are observed when local max-ent approximants are employed, see Section 4. These issues can be
surmounted if high performance computing techniques are employed.41

2. According to Greco and Sukumar,42 the computation of the Lagrange multipliers may blow up when the position of
the particle (xp) tends toward the boundary of the computational domain. This causes problems when imposing the
Neumann boundary conditions. The simplest approach to overcome this is to employ the well-known “ghost nodes.”
This technique introduces additional nodes surrounding the computational domain, so that the particle will never
reach the real boundary of the computational domain. Moreover, it is widely used in the context of the MPM for bound-
ary condition imposition, see Sadeghirad et al.33 Alternatively, by applying the l’Hôpital’s rule, Greco and Sukumar42

derive expressions to determine the derivatives of the basis functions on the boundary of a convex domain.
3. The intersection between S1(xp,Ra) and conv may be a task computationally expensive for large nodal sets. There-

fore, a suitable alternative is here proposed. First, let us define the neighborhood of a node I as a subset of  which
contains the surrounding nodes close to the node I, we will denote it as I,n, where second superindex n denotes the
number of “rings” of nodes close to the node I, see Figure 2(C) for details. In contrast to the heretofore implementa-
tions of the MPM search algorithm#, a closest-node algorithm is proposed instead. The target of the search algorithm

¶In this research, TOL0 is equal to 10−6 according to the proposed value given by Arroyo and Ortiz.6
#Nodal connectivity of a given particle p is obtained doing a cell search.
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(A) (B) (C)

F I G U R E 2 Comparison between the connectivity definition in the standard MPM (Q4), the uniform GIMP (uGIMP), and the LME

proposed is to obtain the closest node to a given particle p. This can be done searching in the connectivity list of
nodes from the last time step. Once this node I has been found, a nodal neighborhood attached to it is I,n. In gen-
eral, the size of I,n is much less than the size of I . The election of I,n will depend of the value of 𝛽 adopted for
the simulation, see Figure 2(C). This reduction of the search domain simplifies the reconstruction of the nodal sup-
port for the shape function of each particle. A detailed explanation of the proposed search algorithm can be found in
Algorithm 3.

4. Likewise nonpolynomial meshfree basis functions, the LME approximation scheme requires more than d + 1 nodes
to determine the values of the shape functions as well as their derivatives at any point in the convex hull of the nodal
set, where d is the dimension of the problem.6

The advantages enumerated in this section concerning the use of max-ent approximants, make them a promising
alternative to the existing MPM shape functions in order to mitigate problems such as cell-crossing4 or stress instabili-
ties in a wide range of problems. The performance of the max-ent approximants when dealing with the aforementioned
problem under the finite strain regime is exhibited in Section 4.

3.3 Resolution of the nonlinear system: A B-free approach

The system described by Equation (18) has a nonlinear dependence on 𝜑n+1. To face the resolution of the IBVP the
approach followed in this research is the consistent linearization of the equilibrium equation. Since (𝜑n+1, 𝜓) is differ-
entiable in the sense of Fréchet,28 the best linear approximation for (𝜑n+1, 𝜓) at 𝜑∗

n+1 is the tangent plane 𝛿(𝜑n+1, 𝜓)
at 𝜑∗

n+1:
𝛿(𝜑n+1, 𝜓) = (𝜑∗

n+1, 𝜓) + D(𝜑∗
n+1, 𝜓)D𝜑n+1 ∀𝜓 ∈  , (29)

being 𝜑∗
n+1 the last known equilibrium configuration and D(𝜑∗

n+1, 𝜓)D𝜑n+1 the directional derivative at 𝜑∗ in the
direction D𝜑n+1 as:

D(𝜑∗
n+1, 𝜓)D𝜑n+1 = lim

𝜖→0

(𝜑n+1 + 𝜖D𝜑n+1, 𝜓) − (𝜑n+1, 𝜓)
𝜖

= d
d𝜖

(𝜑n+1 + 𝜖D𝜑n+1, 𝜓)
|||𝜖=0

= ∫0

𝜌0 𝛼1D𝜑n+1 ⋅ 𝜓 dV + ∫0

GRAD(D𝜑n+1) Sn+1 ∶ GRAD(𝜓) dV

+ ∫0

Fn+1 [C ∶ GRAD(D𝜑n+1)TFn+1] ∶ GRAD(𝜓) dV . (30)

A detailed explanation of the linearization of Equation (30) can be found in Appendix A. Additionally, Equation (30)
can be obtained alternatively by means of numerical approximation43 or Newton–Krilov16 approaches. These techniques
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make possible to avoid the derivation of an analytical expression for D(𝜑n+1, 𝜓). Unfortunately, they lead to a nonconsis-
tent tangent matrix and, therefore, the quadratic convergence of the Newton–Raphson is lost. Conversely, the numerical
derivation of the tangent matrix may be convenient in cases with sophisticated stress integration rules or for a fairly gen-
eral class of isotropic/nonisotropic hyperelastic materials, where the construction of the D matrix using the Voigt rules
may be cumbersome. As was mentioned in the Abstract, the MPM relies upon many developments done in the field of
the FEM. One of this is the use of the Voigt map which allow to reduce the order of fourth-order tensors to second-order
tensor, and at the same time, second-order tensor to first-order tensors. These rules exploit the symmetries of some ten-
sor structures, not necessary present in the case of nonisotropic materials, to construct the well-known derivative matrix
B and the material elasticity matrix D. Both of them have been traditionally presented as convenient operators which
enable the matrix formulation and FEM implementation of field theories in continuum mechanics. The simplicity in
the construction of this matrix relies upon the symmetry of the some tensorial structures. A common choice in the FEM
classical literature10,29 is, once equilibrium has been linearized in the reference configuration, applying the standard con-
travariant push-forward operator to get the description of the motion in the deformed configuration. The late motive of
this step is to recover the well-known structure of the deformed configuration and the symmetry of the associated stress
measures||. It is worth mentioning that the employment of the deformed configuration is done typically with the purpose
of simplifying the constructions of the aforementioned structures. Due to the principle of covariance, the equilibrium
can be stated in any desired configuration.44 There is no limitation in this sense, only in the cumbersome manipula-
tion of the Voigt structures in the reference configuration. Working in the reference configuration has some interesting
properties: it is the ideal framework to linearize the nonlinear problem due to the frame invariance of 0; the conserva-
tion of mass is ensured by default; and any rate of a tensorial magnitude is objective by definition. Further discussion
between B-free structure and B-based in the context of the FEM can be found in a previous research of the authors, see
Stickle et al.27 As will be seen in the subsequent developments, to overcome the clear limitations of the Voigt algebra
the authors’ bet for the use of the standard tensor calculus in pursuit of simplicity. At this stage of the development, the
spatial discretization and related linearization is introduced in Equations (18) and (19) to obtain a nonlinear system of
algebraic equations. Taking into account that ∀ 𝜓 I ∈ h, this leads onto the nodal evaluated counterpart of the discrete
problem:

Given 𝜑I
n, vI

n, and aI
n, find 𝜑I

n+1 ∈ I ∶ 𝛿(𝜑n+1)I = 0, (31)

subject to

{
aI

n+1 = 𝛼1(𝜑I
n+1 − 𝜑

I
n) − 𝛼2vI

n − 𝛼3aI
n

vI
n+1 = 𝛼4(𝜑I

n+1 − 𝜑
I
n) + 𝛼5vI

n + 𝛼6aI
n
. (32)

The linearized nodal equilibrium problem here defined can be regarded as a root finding problem. A typical strategy to
solve it is using the Newton–Raphson method. See Appendix C for a detailed description of the implemented algorithm.
Hereafter, all the terms required to obtain the linear approximation 𝛿(𝜑n+1)I will be exposed. The first structure, is the
nodal discretization of the functional (𝜑n+1)I :

(𝜑n+1)I = ∫0

N(x)I 𝜌0 N(x)JdV aI
n+1 + ∫0

Fn+1 Sn+1 ∶ GRAD(N(x)I) dV − ∫0

𝜌0 Bn+1N(x)I dV . (33)

Note that this expression can be implemented directly without using the matrix B expressed in the reference
configuration10 and the vectorized stress tensor. The implementation of Equation (33) demands some standard tensor
operations, which are detailed in Algorithm 2. Hereinafter, the next step is the derivation of the directional derivative
given by Equation (30) and the subsequent spatial discretization given the following expression for nodal directional
derivative D(𝜑n+1)IJD𝜑J

n+1:

D(𝜑n+1)IJD𝜑J
n+1 = 𝛼1 ∫0

N(x)IN(x)J 𝜌0 I dV ⋅ D𝜑J
n+1 + ∫0

Sn+1 ∶ (GRAD(N(x))I ⊗ GRAD(N(x))J)I dV ⋅ D𝜑J
n+1

+ ∫0

Fn+1[C ∶ (Fn+1D𝜑I
n+1 ⊗ GRAD(N(x))J )] ⋅ GRAD(N(x))J dV . (34)

||Those are the Kirchhoff (𝝉) and Cauchy (𝜎) stress tensors
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A complete description of the derivation for each term is detailed in the Appendix B, therefore minimal details are given in
the subsequent developments. The first term in the right-hand side of Equation (34) is the contribution of inertial forces to
the linearization, the coefficient 𝛼1 arises due to the linearization of the nodal acceleration. The second term corresponds
to the geometrical nonlinearity and arises after the linearization of the deformation gradient. The third term represents the
contribution of the material nonlinearity to the tangent elastic matrix. The final expression of this term deserves further
discussion since D𝜑J

n+1 needs to be factored out from the expression to allow the realization of the Newton–Raphson solver
for the problem stated in Equation (31). Following the classical implementation approach employed for any variational
technique, Voigt rules can be introduced to factorize out D𝜑J

n+1 which leads to a closed expression for the material tangent
elastic:

∫0

[BT D B]IJ dV D𝜑J
n+1, (35)

where D is the outcome for the order reduction of the fourth-order tensor C ∶ □, and B, the linearized strain matrix at
the reference configuration. Both operators have been widely described in the classical literature. The matrix B depends
on Fn+1 and GRAD(N(x)) according to the following expression:10

B = 1
2
(Fik

n+1GRAD(N(x))I,j + GRAD(N(x))I,jFki
n+1), (36)

which leads to a dense nontrivial matrix operator. Conversely, introducing the material tangent density Cmat{□,□}
defined by Planas et al.23 as:

T{v,b} 𝛿a = [T ∶ (𝛿a⊗ b)]v. (37)

for any vectors v,b, 𝛿a ∈ Rndim and any fourth-order tensor T ∶ □. Considering v = GRAD(N(x))J , b = GRAD(N(x))I ,
𝛿a = Fn+1D𝜑I

n+1, and T ∶ □ = C ∶ □. Substituting these expression into Equation (34), particularizing Cmat{□,□} for a
certain material and rearranging with simple algebra operations the following expression for the material tangent elastic
matrix is derived:

∫0

Fn+1 Cmat{GRAD(N(x))I ,GRAD(N(x))J} FT
n+1 dV D𝜑J

n+1. (38)

Observe the mathematically clear expression of Equation (38), which respects the classical notation from differential
geometry45 on which it is built continuum mechanics theory. As we can see, this compact expression is free of Voigt’s alge-
bra structures present in Equation (35). For the special case of Neo-Hookean hyperelastic material, the material tangent
density reads as follows:

Cmat{v,b} = ΛJ2(C−1v⊗ C−1b) −
(Λ

2
(J2 − 1) − G

)
(C−1b ⋅ v)C−1 −

(Λ
2
(J2 − 1) − G

)
(C−1b⊗ C−1v), (39)

where G and Λ are the well-known Lamé parameters. The derivation details of the above expression are fully detailed
in Appendix B.1. Notice that, up to this point, the resolution procedure for the nonlinear equations (18) is anal-
ogous to the FEM or any other variational method; the main difference introduced by a meshfree method MPM
is the evaluation of the integrals and the update of quantities. Following a B-free approach, a transparent imple-
mentation much easier to maintain is obtained. It is probably much more efficient since assembling and operation
process occurs simultaneously. The complete Newton–Raphson solver is described thorough a pseudo-algorithm 2
in Appendix C.

3.4 The incremental Newmark-𝜷 algorithm: An updated-Lagrangian formulation

The goal of this subsection is the description of the primary steps in the proposed algorithm. Implementation details can
be found in Appendix C. Given the particle data 𝜑p, vp, Fp from the last converged configuration, the goal is to compute



MOLINOS et al. 13

the particle data at the next time step according to the discretization techniques described in Subsections 3.1, 3.2, and 3.3.
The MPM algorithm is as follows:

Nodal mask generation
In contrast to FEM, in the MPM not all the background set of nodes contain physical information since no particles may
contribute to the nodes. A direct consequence is that, in MPM, only active nodes take place in the calculations. To simplify
the implementation, an interesting option is to create in each time step a list with the active nodes and renumbering them.
This allows to keep the nodal connectivity information, which is crucial to compute the gradients, and at the same time,
to work with a reduced set of nodes.

Material point to grid projection
In the MPM the mass of each material point mp = 𝜌0(xp)V p

0 > 0 is constant. This ensures the mass conservation along the
simulation. Using the material point masses, the consistent mass matrix MIJ is defined with nodal components:

MIJ = ∫0

NI 𝜌0 NJ dV ≈
∑

I,J ∈ p

NIp mp NJp. (40)

According to Sulsky and Love,12 it is convenient to consider an effective mass matrix M̃IJ since there exist some material
points layouts, relative to the set of nodes for which the consistent mass matrix is singular.46 The possible singularity of
the consistent mass matrix is a direct consequence of the nonoptimal quadrature rule generated, see Equation (22) in
Subsection 3.2. This can be avoided if a lumped mass matrix M

IJ
is employed. Unfortunately it causes an 𝒪(hΔt2) error

in angular momentum conservation. Moreover, it introduces numerical damping of the order of 𝒪(hΔt2), meanwhile
energy is conserved exactly for the consistent mass matrix.12 The use of an effective mass matrix is a compromise between
numerical stability and accuracy of the solution. It is defined as the convex combination of the consistent and lumped
masses:

M̃IJ ∶= (1 − 𝜖) MIJ + 𝜖 M
IJ
. (41)

If 𝜖 > 0, the effective mass matrix M̃IJ remains positive defined. No typical values of 𝜖were proposed by Sulsky and Love;12

however, a value of 𝜖 = 0.8 was adopted by the aforementioned authors for some benchmarks.12 Once the effective mass
matrix has been defined, nodal velocities and accelerations are calculated solving two system equivalent to a variational
recovery process:

M̃IJ vJ
n =

∑
p ∈ 

NIp mp vp
n and M̃IJaJ

n =
∑

p ∈ 
NIp mp ap

n. (42)

The conservation properties of this step were extensively studied by Burgess et al.,46 in addition, some concluding remarks
of this step are enumerated in Love and Sulsky.12 After getting vI

n, nodal values of 𝜑I
n→n+1 are easily computed within

Δ𝜑I∕Δt = vI
n.

Updated-Lagrangian mesh dynamics
So far, the adopted formulation matches with a Lagrangian description. To transform the formulation into an
updated-Lagrangian approach, the previous converged solution n is used as a support to compute the equi-
librium in the reference configuration. Exploiting the group structure of 𝜑 it is possible to relate previ-
ously converged configuration n with configuration n+1 using an intermediate mapping 𝜑n→n+1(xn, t) as in
Figure 3:

xn+1 = 𝜑n→n+1(xn, t) = 𝜑n→n+1(𝜑n(X, t), t) = (𝜑n→n+1◦ 𝜑n)(X, t) = 𝜑n+1(X, t). (43)

Assuming the same fixed coordinate system for all three configurations:

𝜑n→n+1 = xn + Δ𝜑 = xn + (𝜑n+1 − 𝜑n)(X, t) = xn + (𝜑n+1 − 𝜑n)(𝜑−1
n (xn, t), t) = xn + ((𝜑n+1 − 𝜑n) ◦ 𝜑−1

n )(xn, t). (44)
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F I G U R E 3 Illustration of the updated-Lagrangian description where n is referenced to n+1 via the incremental deformation
gradient ΔFn→n+1

Using the derivation chain rule is possible to get the deformation gradient at step n + 1 as a multiplicative composition of
the deformation gradient in the deformed configuration at step n and an incremental deformation gradient which takes
the configuration n as reference:

Fp
n+1 = 𝜕xn+1

𝜕X
= 𝜕𝜑n→n+1(xn, t)

𝜕X
= 𝜕𝜑n→n+1(xn, t)

𝜕xn

𝜕𝜑n(X, t)
𝜕X

= ΔFp
n→n+1Fp

n. (45)

Therefore, the incremental deformation gradient ΔFp
n→n+1 is defined as a tangent map which relates the body at step n

with the deformed configuration at step n + 1 as

ΔFp
n→n+1 = 𝜕𝜑n→n+1

𝜕xn

|||p = I +
∑

I ∈ p

Δ𝜑I ⊗ GRADn(NIp), (46)

where GRADn(□) is the gradient operator evaluated in the converged solution. Therefore, the incremental deformation
gradient can be regarded as a deformation gradient taking the configuration in the step n as a reference configuration.
Hence, the updated-Lagrangian description allows to compute the equilibrium in the reference configuration just pulling
back the gradient operator from the n configuration to the reference as:

GRAD(□) = (Fp
n)T GRADn(□). (47)

This fact has been exploited in the MPM environment by several authors.8,12,47 On the other hand, the incremental defor-
mation gradient ΔFp

n→n+1 can be applied to update other quantities such as the density. Since in the MPM the mass
conservation is enforced, density and volume are updated according to Li et al.2 as:

𝜌
p
n+1 =

𝜌
p
n

det(ΔFp
n→n+1)

, and V p
n+1 = V p

n det(ΔFp
n→n+1). (48)

Since the equilibrium is computed in the reference configuration, the current volume or density of the particle is relegated
to a postprocess. Consequently, only the initial volume V p

0 and mass mp of the particle are required during the compu-
tations. This have a clear advantage which is the removal of a possible error source performing the operations stated in
Equation (48). A final consideration of this step is that in the absence of external forces FI

Ext,n+1 = 0, the total mesh linear
momentum is exactly conserved.

Proof. Since during Lagrangian phase the mass matrix is held constant, the proof for the conservation of the total mesh
linear momentum is simple algebra:

ΔLI
n→n+1

Δt
=

∑
I,J∈

1
Δt

M̃IJ (vJ
n+1 − vJ

n) =
∑

I,J∈
M̃IJ

(
𝛾

𝛽Δt2 Δ𝜑
I − 𝛾

𝛽Δt
vJ

n −
(
𝛾 − 2𝛽

2𝛽

)
aJ

n

)
= 𝛾

∑
I,J∈

M̃IJ
(

1
𝛽Δt2 Δ𝜑

I − 1
𝛽Δt

vJ
n −

(
1 − 2𝛽

2𝛽

)
aJ

n

)
+ (1 − 𝛾)

∑
I,J∈

M̃IJaJ
n
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= 𝛾
∑

I,J∈
M̃IJ (𝛼1Δ𝜑I − 𝛼2vJ

n − 𝛼3aJ
n) + (1 − 𝛾)

∑
I,J∈

M̃IJaJ
n

= −𝛾
∑
I∈

FI
Int + (1 − 𝛾)

∑
I,J∈

M̃IJaJ
n = 0, (49)

which implies that LI
n = LI

n+1. ▪

Material point update
Finally, the material point information is updated using the nodal increment of the kinematic variables (Δ𝜑I , ΔvI ,
ΔaI). While Δ𝜑I is obtained by solving the nonlinear system defined by Equation (18), the increments of nodal velocity,
ΔvI , and nodal acceleration, ΔaI , are computed rearranging the Equation (18). Consequently, the position, velocity, and
acceleration of each particle are updated via:

ap
n+1 = ap

n +
∑

I ∈ p

NIp
n ΔaI = ap

n +
∑

I ∈ p

NIp
n (𝛼1Δ𝜑I − 𝛼2vI

n − (𝛼3 + 1)aI
n), (50)

vp
n+1 = vp

n +
∑

I ∈ p

NIp
n ΔvI = vp

n +
∑

I ∈ p

NIp
n (𝛼4Δ𝜑I + (𝛼5 − 1)vI

n + 𝛼6aI
n), (51)

xp
n+1 = xp

n +
∑

I ∈ p

NIp
n Δ𝜑I . (52)

Using an incremental description of the motion allows to preserve energy more precisely than through a PIC scheme.20

Update particle nodal connectivity of each particle
With the new position of each particle, the nodal connectivity of each particle is updated using the neighborhood of the
closest node. See Subsection 3.2 for a theoretical perspective of this step and the Algorithm 3 for further implementation
details.

4 NUMERICAL SIMULATIONS

This section enables the verification of the performance of the incremental Newmark-𝛽 time integration scheme as well
as the local max-ent approximants in the finite strain regime, under the B-free framework. In the first benchmark, the
longitudinal propagation of an initial discontinuity in the velocity field over an infinite homogeneous hyperelastic bar is
analyzed (Subsection 4.1). The second simulation consists of the compaction, under self-weight, of a hyperelastic block
(Subsection 4.2). Finally, a test proposed by Love and Sulsky12 is depicted in order to study energy conservation properties
after multiple collisions of a hyperelastic disk (see Subsection 4.3). The proposed algorithms have been implemented
in our in-house software.4 All the numerical simulations were performed with the compressible Neo-Hookean material
model described in Appendix B.1.

4.1 1D Riemann problem at finite strain

This numerical simulation is proposed to reproduce high-frequency shocks, which in the authors’ understanding is one
of the most demanding benchmarks to test nonlinear elastodynamics schemes. It involves the propagation of a strong
discontinuity (shock wave) in the velocity field along a 1D rectilinear bar made of a hyperelastic Neo-Hookean mate-
rial with initial density 𝜌0 = 2600 kg/m3 and the elastic constants E = 5 ⋅ 104 N/m2 and 𝜈 = 0.3. For further details
in this analytical solution, the interested reader is referred to the specialized literature.48,49 A complete description
of the proposed benchmark is observed in Figure 4, where material parameters, boundary conditions, initial condi-
tions, geometry and discretization are presented. The bar has a total length of 100 m. As it is usual in the MPM,
two kinds of spatial discretization are required. The first one is the spacing of the nodal background set of nodes.
The bar is also discretized taking as reference the same regular mesh as for the background but with four mate-
rial points per element. The total duration of the simulation is 3 ms. An special consideration must be detailed for
initial conditions in this problem. Traditionally,1 in the MPM, initial conditions are imposed in particles and later
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F I G U R E 4 Description of the materials, boundary conditions, initial conditions, geometry and discretization of the nonlinear
hyperelastic bar. The background mesh adopted for the calculations has also been plotted

transferred to the nodes as part of the standard algorithm. Nevertheless, for this research, initial conditions for velocity
are imposed directly in the background set of nodes. This is a crucial decision when a nonlinear analysis is performed,
and it is not relevant for a linear analysis as we can see in the propagation of a jump discontinuity50 under the MPM
framework provided by a previous research.4 The differences between both scenarios are subtle but essential for the
comprehension of why imposing initial conditions in particles instead of nodes may lead to undesired results under
some special problems. In the linear case, the discontinuity is advected, not propagated, since the balance of linear
momentum equations do not consider by themselves the presence of rarefaction and shock waves. In order to repre-
sent such solutions, the energy conservation equation must be introduced as an additional constraint.51 In the case of
a nonlinear problem, shocks and rarefaction waves naturally appear due to the nature of the equations. If the jump
of velocities is imposed directly on the particles, when these velocities are transferred to the nodes, where real equi-
librium is computed, the initial condition is degenerated into a spurious initial condition which leads to nonphysical
behaviors.

4.1.1 Sensibility of Newmark’s parameters 𝛾 and 𝛽

For this example, a regular nodal spacing of 0.1 m is set, meanwhile Courant number of 1.0 controls the time
step. In addition, we take 𝜖 = 0.8 for the construction of the effective mass matrix, since offers reasonable results
in terms of efficiency and stability. Figure 5 shows the final frame of the evolution of the discontinuity. This pic-
ture shows a comparison between FEM solution and MPM solution with two different spatial approximations, the
standard linear interpolation Q4 and the LME approximants described in Section 3.2. About the FEM solution, a
noisy solution is obtained when nondissipating configuration (𝛾 = 0.5 and 𝛽 = 0.25) is set in the Newmark solver,
and as the value of 𝛾 increases, this noise is damped. However, in the MPM solution, even the solution with
a nondissipating configuration of the Newmark solver has a severe damping promoted by kinetic energy dissipa-
tion during the material point to grid velocity projection. Other remarkable aspect to discuss from this figure is
the presence of overshots in the solution obtained with linear interpolation, meanwhile the LME4 solution**does
not exhibit them. The overshot appears suddenly due to an ill-alignment between particles and the background
nodes for which the consistent mass matrix is singular.12 As was mentioned before, the nature of the equation
allows the presence of shock waves, therefore, this discontinuity starts propagating. This figure highlights the
importance of the spatial interpolation technique when strong discontinuities appear in the context of the large
deformations.

4.1.2 Spatial and time convergence study

In order to clarify the performance of the LME shape functions for nonlinear elasticity problems, a spatial and temporal
convergence study is performed. The results of both convergence studies are reported as the L2 norm of the error between
the exact and computed velocity for the 1D Riemann problem described in Section 4.1 according to

||e||L2 =
(
∫

|v − vI|2dx
)1∕2

,

**The subscript four (LME4) is referred to the value of 𝛾̂ .
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F I G U R E 5 Evolution of the horizontal component of the velocity in the middle section of the bar (37–63 m) plotted at the integration
points at the final step 3 ms. Three cases are analyzed, the first one is the FEM solution with an eight nodes element. The following two cases
represent the MPM solution for two different spatial interpolations. The standard linear Q4 elements and the LME approximants. All
configuration have been tested with three different configurations for the time integration scheme

where vI is the velocity obtained by applying the algorithm, whereas v is the exact solution.48,49 Results are presented in
Figure 6. Regarding the spatial convergence study, five different nodal spacing where tested (0.1, 0.075, 0.05, 0.025, and
0.01), while the number of material points per element considered for each background element was four. A Courant
number of one is imposed for all simulations to control the time step. Figure 6 shows how the L2 error decreases when
the nodal spacing decreases in the case of the LME solution. In the case of the standard MPM the trend is the opposite.
The L2 error increases with the mesh size. A graphical interpretation of this result is provided in the right-hand side of the
Figure 6, where the velocity profile for both solutions (Q4 and LME) is plotted against the analytical solution. As we can
see, the overshots observed in Figure 5 increases drastically when nodal spacing decreases. Meanwhile, the LME solution
does not exhibit the presence of overshots. This result may be unexpected a priori if one considers the previous research
of the authors,4 where in both solutions the error decreases with the mesh size in a “similar” benchmark. However, in
contrast with the former research, a hyperelastic constitutive model is considered, as well as the solution is calculated in
the finite regime.

Concerning the temporal convergence analysis a fixed mesh size of 0.1 m is adopted for all simulations as well as
the initial particle distribution per element which is fixed to four. Different values of the Courant number (1.0, 0.5, 0.1,
0.05, and 0.01) give us the time steps employed for the computation of the time convergence analysis, see Figure 7. From
the interpretation of the Figure 7 it can be seen the poor behavior of the Newmark-𝛽 time integration scheme for the
MPM in the finite strain regime. Although there is a minor difference between LME and Q4 solutions, this difference
remains almost unchanged as the time step decreases. Therefore, the encountered discrepancy is caused by the spatial
approximation technique. A natural extension of the present work should be a comparative study between different time
integration schemes. The symplectic family of time integration schemes seems to be a promising alternative12 to surmount
the clear limitations of the Newmark-𝛽.

4.2 Compaction under self-weight

This case of study aims to test the performance of the algorithm under low-frequency loads along a prolonged period
of time which are more frequent in the engineering field. It consist of the (plain strain) self-weight compaction of a
square hyperelastic block of side 1 m in the dynamic regime. The initial density is 𝜌0 = 2700 kg/m3 and the elastic con-
stants are 𝜆 = 5 ⋅ 104 N/m2, and 𝜇 = 3 ⋅ 104 N/m2. The time step is set to Δt = 0.01 s and 500 time steps are computed.
The background set of nodes consists of a cartesian grid with nodal space Δx = 0.1 m. Meanwhile, the material point
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F I G U R E 6 Evolution of the ||e||L2
error for five different mesh sizes (0.1, 0.075, 0.05, 0.025, and 0.01)

F I G U R E 7 Evolution of the ||e||L2
error for five different time steps (5e−7, 2.5e−6, 5e−6, 2.5e−5, and 5e−5)

discretization consists of four material point per element of the background mesh. A lumped mass matrix (𝜖 = 1.0) has
been adopted for this example. The complete description of the problem is sketched in the Figure 8, where geome-
try, materials and boundary conditions are presented. In addition to this figure, load curve for the gravity is presented
in Figure 9(A). Figure 9(B) shows the evolution of the vertical displacement measured in a point at the middle top of
the block. In this figure, FEM and MPM solutions are compared††. As we can see, both solution are qualitatively and

††Q8 elements where adopted for the FEM simulation, and LME 𝛾̂ = 3.0 for the MPM simulation.
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F I G U R E 8 Sketch with the geometry of the block, the elastic parameters, and the initial particle layout

(A) (B)

F I G U R E 9 Description of the gravity load and the subsequent response of the solid block

quantitatively similar. Although the nodal internal virtual work and the tangent density matrix of the proposed B-free
MPM approach are, in principle, completely different from those derived in the standard Voigt-based MPM formula-
tion, no significant differences can be appreciated between both formulations from Figure 9(B). It is worth mentioning
that this assertion has been validated by the authors in Stickle et al.27 under the FEM framework. It can be seen that
both solutions tend to diverge on time, but respecting the amplitude of the oscillations. This almost negligible difference
between both solutions in the time evolution is perfectly attributable to the overall difference between the two numer-
ical techniques. However, no significant numerical damping is observed, as expected from the Newmark’s parameters
choice.

4.3 Rebound of an elastic cylinder

This numerical example was taken from Love and Sulsky12 and involves the (plain strain) impact and rebound, under
plain strain conditions, of an elastic cylinder against a rigid and frictionless wall. This benchmark has no dimensions,
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therefore, they are assumed to be consistent. The cylinder moves in a box of dimensions 15.0 × 5.0 like the sketched in
Figure 10. The cylinder has an initial radius of 1.5 and its center is initially located at (2.5, 2.5). The initial velocity is
(2.5, 0) positive in the x-axis. The initial density is 𝜌0 = 4.0 and the elastic constant are G = 30 and K = 170. The time
step is set to Δt = 0.05 and 1600 time steps are computed. The background set of nodes consist of a cartesian grid with
nodal space Δx = 0.5. Two different Newmark’s integration rules has been used in this example. On the one hand, the
trapezoidal rule (𝛾 = 0.5, 𝛽 = 0.25) and on the other hand a damped configuration (𝛾 = 0.6, 𝛽 = 0.3). Figure 11 shows
the sequence of deformed particle configuration from a simulation made with a lumped mass matrix (𝜖 = 1.0) matrix. The
initial configuration is sketched in Figure 11(A). The cylinder translates to the right, impacts to the wall, Figure 11(B), and
rebounds. After translating to the left, the cylinder impacts to the left boundary, Figure 11(C), and rebounds. Translation
to the right, and another impact and rebound from the right boundary occurs, Figure 11(D). These results look like those
presented in the original research.12 Figure 12 shows the evolution of the energy for different interpolation techniques and
values of the Newmark parameters 𝛾 and 𝛽. As expected, the employment of nondamping parameters for the Newmark
time integration scheme (𝛾 = 0.5 and 𝛽 = 0.25) allow us to reproduce precisely the oscillation in the energy evolution due
to the ringing after each impact. A careful examination of the figure shows that the use of standard linear interpolation (Q4
solution) introduces an extra damping, probably caused by integration errors. Moreover, more sophisticated interpolation
techniques such as uGIMP and LME solutions perform this integration more precisely. It is worth mentioning that after
the second impact, the LME solution exhibits and increase of the oscillations in the kinetic and mechanical energy due
to the ringing of the elastic cylinder. Meanwhile, the uGIMP suffers an unphysical decrease of the oscillation analogous
to the linear interpolation solution. However, despite their good results, the LME shape functions are computationally
expensive, see Table 2. The large number of active nodes and the computation of Lagrange multipliers for each particle
at each time step, make the use of the LME shape functions a challenging tool from the computational point of view.
Therefore, for larger simulations, high-performance computing techniques should be employed in order to make this

F I G U R E 10 Description of the materials, boundary conditions, geometry and discretization of the nonlinear hyperelastic cylinder.
Initially, the cylinder moves with a velocity (2.5, 0) positive in the x-axis

(A) time t = 0.0 (B) time t = 22.0

(C) time t = 48.0 (D) time t = 76.0

F I G U R E 11 Rebound of an elastic cylinder. Sequence of deformed particle configurations for a consistent mass simulation. The red
circles represents the material points and the black squares surrounding the particles are the active nodes at each time step
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F I G U R E 12 Rebound of an elastic cylinder. Evolution of total, kinetic, and internal energies for a consistent mass calculation

T A B L E 2 Comparison between the three shape
functions employed in terms of execution time (in
seconds)

Q4 uGIMP LME3

256.32 265.31 826.01

approach computationally cheaper. On the other hand, the employment of damping parameters for the Newmark time
integration scheme (𝛾 = 0.6 and 𝛽 = 0.3) has a severe impact in the conservation properties for the simulation performed
with linear interpolation. Conversely, uGIMP and LME solutions seem to preserve an important amount of energy, and
at the same time to reduce the oscillations as can be anticipated from this choice of parameters. As can be seen, the
total amount of energy is not preserved after each impact even in the case of the trapezoidal rule. As expected, kinetic
energy decreases after each collision due to the posterior ringing of the elastic cylinder. At the same time, mechanical
energy should increase in the same quantity as kinetic energy decreases; however, it seems to not increase after each
collision. This leads us to think that the origin of this loose of energy is due to a poor stress integration approach. These
results are in line with previous observations by other researchers. See for instance the pioneering research of Dolbow
and Belytschko52 who studied the quadrature deficiency of Galerkin weak forms for meshfree methods. Recently, and
under a MPM framework, Steffen et al.53 observed a lack of convergence for the case of standard (piecewise-linear) shape
functions, meanwhile, quadrature errors are drastically reduced if smoother basis functions, such as quadratic and cubic
B-splines, are employed. This statement can be extended to the LME approximants case according to further research.4,6,54

In the subsequent years, an increasing number of publications is this direction55-57 shows that the issue of numerical
integration is still an active trend of research among the meshfree community.

Other source of energy dissipation is the current time integration scheme since the same benchmark performed by the
energy-momentum conserving algorithm employed by Sulsky and Love12 does not exhibits numerical damping. Never-
theless, this issue can be surmounted in Newmark’s using a small enough time step according to Kane et al.21 They prove
that Newmark can perform badly on nonlinear systems with moderate time steps as a reflection of the short time numer-
ical stability behavior of Newmark. Regarding the numerical behavior of this approach, as occurs in Sulsky and Love,12

convergence issues arise when a consistent matrix is employed. On the other hand, quadratic convergence is preserved if
a lumped mass matrix (𝜖 = 1.0) is considered, see Table 3, since it is better conditioned.
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T A B L E 3 Convergence of the solver during the first impact (t = 22.0)

Iteration number Absolute error Relative error

0 1.3336e+02 1.0000e+00

1 2.0710e−02 1.5529e−04

2 2.4353e−08 1.8260e−10

Note: This results were obtained using a lumped mass matrix (𝜖 = 1.0).

5 CONCLUSIONS

The present research advocates for a change in the current large strain MPM paradigm within the employment of a
tensor-based implementation which is simpler and free of the artificial Voigt algebra. This approach seems to be well
suited for variational meshfree approaches such as the MPM. Throughout this research, we have shown that, following the
B-free philosophy, it is possible to set a robust numerical framework to solve a continuum problem at large strains where
the time and space discretization process, as well as the implementation can be performed without leaving the standard
R3 tensor algebra. Moreover, since the B-free approach is actually a component-free approach where only intrinsic oper-
ations are required the extension of the proposed algorithm from a Cartesian coordinate system to a general curvilinear
coordinate system or even from 2D to 3D is straightforward when compared with the use of Voigt’s Algebra, allowing for
a smooth transition from the handwriting equations to the implementation. The results presented in this research shows
that LME approximants exhibit remarkable properties in terms of convergence and smoothing the presence of spurious
overshots without introducing excessive damping. What is more, the use of these special interpolation techniques seems
to be more crucial for large deformation scenarios where the grid-crossing error present in standard linear interpolation
cannot be tolerated. At the same time, the interpretation of the LME approximant here proposed circumvent the presence
of nonconvex nodal domains, safeguarding the weak Kronecker-delta property. Therefore, the combination between these
two techniques seems to be a promising and robust alternative to the existing MPM approaches. On the other hand, the
Newmark-𝛽 method has been implemented under an incremental configuration and validated with satisfactory results
against challenging cases exhibiting good accuracy.

In future research, more elaborated and mathematically challenging formulations will be sought to reinforce the
appropriateness of this paradigm. Some of them are (i) the extension of this approach to include viscoelasticity sources.
A first approach to consider this situation is the implementation of the viscoelastic Kelvin model,58 or introducing a
generalized relaxation model.28 (ii) The formulation of soil–water coupled problems adapting the previous work of the
authors59 to a B-free Lagrangian setting. (iii) Finally, revisiting some sophisticated time integration schemes12 to provide
an analytical expression to the tangent elastic matrix.
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NOMENCLATURE
D𝜑 directional derivative of the configuration mapping
J Jacobian of the deformation gradient tensor
W strain energy function
DIV(□) divergence operator in the reference configuration
GRAD(□) gradient operator in the reference configuration 0
GRADn(□) gradient operator in the reference configuration n
Γ0 reference boundary
Γ𝜎 natural or Neumann boundary conditions over Γ0
Γ𝜑 essential or Dirichlet boundary conditions over Γ0
Π Canonical momenta
□̈ second material time derivative
□̇ first material time derivative
C ∶ □ constitutive fourth-order tensor
Cmat ∶ {□,□} material tangent density operator
X material coordinates
x spatial coordinates
p list of nodes for each particle
0 reference configuration
 deformed configuration
int internal dissipation
1 vector Sobolev space of degree 1
 int stress power
 smooth manifold of admissible configurations
 space of the test functions 𝜓
B standard strain-displacement matrix
𝜓 test functions
𝜎 Cauchy stress tensor
□ ⋅□ single contraction operator
□◦□ function composition
□ ∶ □ double contraction operator
□⊗□ dyadic operator
□I nodal variable
□p particle variable
□n time evaluation of a variable at t = n
C right Cauchy–Green strain tensor, C ∶= FTF
F deformation gradient tensor
P first Piola–Kirchhoff stress tensor
S second Piola–Kirchhoff stress tensor
𝝉 Kirchhoff stress tensor 𝜏 = J𝜎
u displacement field
𝜑 configuration mapping
𝛽 regularization or thermalization parameter of the LME𝛽 Pareto set
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APPENDIX A. DETAILED DESCRIPTION OF THE RELATED CONSISTENT LINEARIZATION
FOR THE NONLINEAR RESIDUAL

This appendix contains a detailed description of the linearization process briefly introduced in Section 3.3. The derivation
is algebraically tedious. As such, a number of intermediate results as well as the following lemmas are established for the
later use.

Lemma 1. The derivative of the inverse any nonsingular tensor A can be expressed as 𝛿A−1 = −A−1 𝛿A A−1.

Proof. Consider the relation A−1A = I as starting point:

𝛿A−1 A + A−1 𝛿A = 𝛿I = 0,
𝛿A−1 A = −A−1 𝛿A,
𝛿A−1 = −A−1 𝛿A A−1.

▪

Lemma 2. The inverse of a symmetric tensor A is the symmetric tensor A−1 = A−T .

Proof. By application of the Hamilton–Cayley theorem:

A−1 = 1
I3
(A2 − I1A + I2I).

The tensor A−1 can be constructed as a combination of the symmetric tensor A and its invariants (I3, I2, I1), therefore,
the resulting tensor must be symmetric. ▪

Here some useful intermediate linearization are presented to simplify further developments. Firstly, the acceleration
term is linearized considering the Newmark scheme expressed in the Equation (18):

d
d𝜖

|||𝜖=0
a(𝜑n+1 + 𝜖D𝜑) = 𝛼1D𝜑. (A1)

In second place, the deformation gradient tensor F is linearized as:

d
d𝜖

|||𝜖=0
F(𝜑n+1 + 𝜖D𝜑) = GRAD(D𝜑). (A2)

In third place, the determinant of the deformation gradient tensor I3, also named as J, is linearized by the application
of the Hamilton–Cayley theorem:

d
d𝜖

|||𝜖=0
I3(𝜑n+1 + 𝜖D𝜑) = 𝜕I3

𝜕F
∶ d

d𝜖
|||𝜖=0

F(𝜑n+1 + 𝜖D𝜑) = (F2 − I1F + I2I)T ∶ GRAD(D𝜑) = I3F−T ∶ GRAD(D𝜑). (A3)

In fourth place, the right Cauchy–Green tensor C herein linearized:

d
d𝜖

|||𝜖=0
C(𝜑n+1 + 𝜖D𝜑) = GRAD(D𝜑)TFn+1 + FT

n+1GRAD(D𝜑). (A4)

Finally, the second Piola–Kirchhoff stress tensor S linearization reads:

d
d𝜖

|||𝜖=0
S(𝜑n+1 + 𝜖D𝜑) = 𝜕S

𝜕C
∶ d

d𝜖
|||𝜖=0

C(𝜑n+1 + 𝜖D𝜑) = 2 𝜕S
𝜕C

∶ FT
n+1GRAD(D𝜑) = C ∶ FT

n+1GRAD(D𝜑). (A5)

Observe that the symmetry of C has been taken in to account to reach the final expression. Once these aux-
iliary expressions have been linearized, at this point, let us introduce the following tensorial equality proposed by
Planas et al.:23
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[T ∶ (𝛿a⊗ b)]v = T{v,b} 𝛿a (A6)

for any vectors v,b, 𝛿a ∈ Rndim and any fourth-order tensor T ∶ □. After these definitions, the linearization process for
the functional (𝜑n+1, 𝜓) yields:

.

At this point of the derivation, the spatial discretization described in Section 3.2 is introduced. Hereinafter,
in aims of clarity in the notation, the Einstein’s summation convention for repeated index has been adopted,
and each term of the functional derivative is developed separately. The first term is easily identified as a mass
matrix:

∫0

𝜌0 𝛼1D𝜑 ⋅ 𝜓 dV = 𝛼1 ∫0

𝜌0 D𝜑J
n+1N(x)J ⋅ 𝜓 IN(x)I dV

= 𝛼1 ∫0

𝜌0 D𝜑J
n+1N(x)J ⋅ 𝜓 IN(x)IdV

= 𝜓 I ⋅ 𝛼1 ∫0

N(x)I 𝜌0 N(x)JdV D𝜑J
n+1. (A8)

The second term corresponds to the geometrical contribution of the tangent stiffness

.

The third term corresponds to the material contribution of the tangent stiffness.
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.

Equation

Finally, introducing Equations (A8), (A9), and (A10) in Equation (A7), and taking in to account that ∀ 𝜓 I ∈ h, the
final expression for the tangent matrix under the B-free approach is obtained:

D(𝜑n+1, )IJD𝜑J
n+1 = 𝛼1 ∫0

N(x)I 𝜌0 N(x)JdV D𝜑J
n+1

− ∫0

Sn+1 ∶ (GRAD(N(x)I) ⊗ GRAD(N(x)J))I dV D𝜑J
n+1

− ∫0

Fn+1 C{GRAD(N(x)I),GRAD(N(x)J)} FT
n+1 dV D𝜑J

n+1. (A11)

APPENDIX B. DETAILED FACTORIZATION PROCESS

This appendix contains a detailed description of the factorization process for two kinds of well-known hyperelastic
constitutive models, the St. Venant–Kirchhoff material B.2, and the Ciarlet’s26 Neo-Hookean material B.1.

B.1 Factorization of the Neo-Hookean material model
A general definition of this model is given by the equation:

W e(C) = g(J) + 1
2

G(IC − 3), (B1)

where g(J) is a function which contains the compressible part, which changes in different constitutive laws depending on
the authors. According to Ciarlet:26

g(J) = c(J2 − 1) − d ln J − G ln J with c > 0, d > 0, (B2)

c and d are constant that depends of Λ. Finally, G and Λ are the well-known Lamé parameters. From the derivation
of the energy with respect to the own right Cauchy–Green tensor, it can be obtained the second Piola–Kirchhoff stress
tensor:

S = 2 𝜕W e(C)
𝜕C

= Λ
2

(J2 − 1) C−1 + G (I − C−1). (B3)

Finally, C ∶ □ is the symmetric fourth-order tensor, known as the Lagrangian or material elasticity tensor:

C = 2 𝜕S
𝜕C

= ΛJ2C−1 ⊗ C−1 + (Λ (J2 − 1) − 2G)𝜕C−1

𝜕C
. (B4)
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From the derivation of Equation (A10) we got the following expression:

[C ∶ (FT
n+1D𝜑J

n+1 ⊗ GRAD(N(x)J))] GRAD(N(x)I).

According to Planas et al.23 we pretend to factoring out the variation of the displacement, FT
n+1D𝜑J

n+1, in the foregoing
expression, a new tensor-valued linear operation is found in Equation (A6). Doing the following change of variables to
simplify the manipulation:

v = GRAD(N(x))J , b = GRAD(N(x))I , 𝛿a = Fn+1D𝜑I
n+1, and T ∶ □ = C ∶ □.

For the particular case of the Neo-Hookean the factorization process in the following:

Particularizing with Equation (B4).

Applying Lemma 1 together with Equation (A4).
Applying Lemma 2.

(B5)

Finally, after undoing the change of variable, the final expression, yields as:

C{GRAD(N(x))I ,GRAD(N(x))J} Fn+1D𝜑I
n+1

= ΛJ2(C−1GRAD(N(x))I ⊗ C−1GRAD(N(x))J)Fn+1D𝜑I
n+1

−
(Λ

2
(J2 − 1) − G

)
(C−1GRAD(N(x))J ⋅ GRAD(N(x))J)C−1Fn+1D𝜑I

n+1

−
(Λ

2
(J2 − 1) − G

)
(C−1GRAD(N(x))J ⊗ C−1GRAD(N(x))I)Fn+1D𝜑I

n+1. (B6)

B.2 Factorization of the St. Venant–Kirchhoff Material
A general definition of this model is given by the equation:

W e(E) = 1
2
Λtr(E)2 + GE ∶ E, (B7)

where G and Λ are the well-known Lamé parameters. From the derivation of the energy with respect to the own right
Cauchy–Green tensor, it can be obtained the second Piola–Kirchhoff stress tensor:

S = 𝜕W e(E)
𝜕E

= Λ tr(E)I + 2GE. (B8)

Finally, C ∶ □ is the symmetric fourth-order tensor, known as the Lagrangian or material elasticity tensor is obtained
as:

C = 𝜕S
𝜕E

= ΛI⊗ I + G𝜕E
𝜕E
. (B9)

From the derivation of Equation (A10) we got the following expression,

[C ∶ (FT
n+1D𝜑J

n+1 ⊗ GRAD(N(x)J))] GRAD(N(x)I).
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According to Planas et al.23 we pretend to factoring out the variation of the displacement, FT
n+1D𝜑J

n+1, in the foregoing
expression, a new tensor-valued linear operation is found in Equation (A6). Doing the following change of variables to
simplify the manipulation:

v = GRAD(N(x))J , b = GRAD(N(x))I , 𝛿a = Fn+1D𝜑I
n+1, and T ∶ □ = C ∶ □.

For the particular case of the St. Venant–Kirchhoff, the material tangent density tensor has the following expression:

Particularizing with Equation (B4).

well-known

Finally, after undoing the change of variable, the final expression, yields as:

C{GRAD(N(x))I ,GRAD(N(x))J} Fn+1D𝜑I
n+1 = Λ(GRAD(N(x))I ⊗ GRAD(N(x))J)Fn+1D𝜑I

n+1

+ G(GRAD(N(x))I ⋅ GRAD(N(x))J)Fn+1D𝜑I
n+1

+ G(GRAD(N(x))J ⊗ GRAD(N(x))I)Fn+1D𝜑I
n+1. (B11)

APPENDIX C. PSEUDO- CODES FOR HYPERELASTIC BOUNDARY VALUE PROBLEM

The following algorithms summarize the numerical realization of the presented B-free updated-Lagrangian material point
method.

Algorithm 1. Incremental Newmark-𝛽 algorithm

1: Generate Nodal Mask.
2: Compute Nodal Effective Matrix:

M̃IJ = (1 − 𝜖) MIJ + 𝜖 M̄IJ

3: Compute Nodal Velocity and Acceleration fields solving:

M̃IJ vJ
n =

∑
p ∈ 

NIp
n mp vp

n and M̃IJaJ
n =

∑
p ∈ 

NIp
n mp ap

n

4: Impose the Dirichlet boundary conditions.
5: Compute nodal displacement increments Δ𝜑I by assembly and iterative solution (Algorithm 2)
6: Update particles quantities:

ap
n+1 = ap

n +
∑

I ∈ p

NIp
n ⋅ (𝛼1 Δ𝜑I − 𝛼2 vI

n − (𝛼3 + 1) aI
n),

vp
n+1 = vp

n +
∑

I ∈ p

NIp
n ⋅

(
𝛼4 Δ𝜑I + (𝛼5 − 1) vI

n + 𝛼6 aI
n
)
,

xp
n+1 = xp

n +
∑

I ∈ p

NIp
n Δ𝜑I .

7: Update the connectivity p for each particle (Algorithm 3).
8: Reset nodal values and updating solution n + 1 → n:

ap
n = ap

n+1, vp
n = vp

n+1, xp
n = xp

n+1, and Fp
n = Fp

n+1
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Algorithm 2. Assembly and solver
1: Input
2: p List of neighborhood nodes for each particle p
3: V p Reference volume for each particle p
4: GRAD(□) Gradient operator in the reference configuration, 0
5: GRADn(□) Gradient operator in the n configuration, n
6: Fp

n, Fp
n+1 Deformation gradient at the instants n and n + 1

7: Cmat{□,□} Factorised material tangent stiffness
8:

9: while i‖I‖ Relative > Tolerance do
10:

11: Update local state from n to n + 1:
12: for p to np do
13: Compute incremental deformation gradient: ΔFp

n→n+1 = I +
∑

I ∈ p
i[Δ𝜑I]⊗ GRADn(NIp)

14: Compute total deformation gradient: Fp
n+1 = ΔFp

n→n+1Fp
n

15: Compute Second Piola-Kirchhoff tensor: Sp = S(Fp
n+1)

16: end for
17:

18: Compute nodal residual i[I
n+1

]
:

19: for I to nI do
20: i[I

n+1
]
← i[I

n+1
]
+

[
M̃IJ] ⋅ (𝛼1

i[Δ𝜑J] − 𝛼2
[
vJ

n
]
− 𝛼3

[
aJ

n
]
)

21: end for
22: for p to np do
23: for I ∈ p do
24: i[I

n+1
]
← i[I

n+1
]
+ Fp

n+1Sp GRAD(NIp) V p − NIp bp mp

25: end for
26: end for
27:

28: Assemble the non-linear tangent matrix i[KI
n+1

]
:

29: for p to np do
30: for I ∈ p do
31: for J ∈ p do
32: i[KI

n+1
]
← i[KI

n+1
]
+ i

[
Fp

n+1Cmat{GRAD(NIp),GRAD(NJp)}Fp,T
n+1

]
V p

33: i[KI
n+1

]
← i[KI

n+1
]
+ i[Sp ⋅

(
GRAD(NIp)⊗ GRAD(NJp)

)
I
]
V p

34: end for
35: end for
36: end for
37: for I to nI do
38: for J to nJ do
39: i[KI

n+1
]
← i[KI

n+1
]
+ 𝛼1

[
M̃IJ]

40: end for
41: end for
42:

43: Newton-Raphson step:
44: i+1[Δ𝜑I] = i[Δ𝜑I] − i[KIJ

n+1
]−1

⋅ i[J
n+1

]
45:

46: Check the number of iterations:
47: if i > Max number of iterations then
48: Failure
49: end if
50:

51: end while
52:
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Algorithm 3. Reconstruction of the particle nodal connectivity

1: Input
2: p

old Old connectivity list for each particle p
3: I0 Closest node for each particle
4: INodes(I) Returns the neighborhood of the node I
5: 𝛽 Thermalization parameter
6: TOL0 Shape function decay tolerance6. Typical value 10−6

7: d(x, y) Computes the Euclidean distance between two points x and y.
8: Output
9: p

new Updated the connectivity list for each particle p
10:

11: for p to Np do
12: R =

√
−log(TOL0)∕𝛽

13: I0 = Find I ∈ p
old ∣ min d(xp, xI)

14: I,n = INodes(I0)
15: p

new = Find xI ∈ I,n | √(xp − xI) ⋅ (xp − xI) < h
√
−log(TOL0)∕𝛾̂

16: end for


