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Abbreviations 

DT: developed tension 

eNOS: endothelial nitric oxide synthase 

H/R: hypoxia/reoxygenation 

HH: hypobaric hypoxia 

HIF: hypoxic inducible factor 

Ht: total heat production 

iNOS: inducible nitric oxide synthase 

ISO: isoproterenol hydrochloride 

L-arg: L-arginine 

L-NNA: Nω-Nitro-L-arginine 

LVP: left ventricular pressure 



 

 

This article is protected by copyright. All rights reserved. 

N: normoxic 

nNOS: neuronal nitric oxide synthase 

NO: nitric oxide 

NOS: nitric oxide synthase 

Nx -: Nitrites-nitrates 

p-eNOS: phospho endothelial nitric oxide synthase-Ser1177  

PM: papillary muscles 

LVP/Ht:  contractile economy 

SD: standard deviation 
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What is the central question of this study? 

Exposure to hypobaric hypoxia increased tolerance to hypoxia/reoxygenation, which is known as 

endogenous cardioprotection in heart of adult rats. This process involves the participation of the 

nitric oxide system and modulation of mitochondrial oxygen consumption. Taking in account the 

impact of the degree of somatic maturation on physiology, in the present work we evaluate the 

cardio energetic response in prepubertal rats exposed to hypobaric hypoxia.  
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What is the main finding and its importance? 

Prepubertal rats, as opposite to adult ones, were unable to increase tolerance to 

hypoxia/reoxygenation by acute exposure to hypobaric hypoxia, which impaired cardiac contractile 

economy. This finding could be related to the failure for increasing nitric oxide synthase expression, 

and thus modulation of mitochondrial oxygen consumption and ATP production.  

 

Abstract  

Studies in our laboratory showed that exposure of rats to hypobaric hypoxia (HH) increased the 

tolerance of heart to hypoxia/reoxygenation (H/R), involving mitochondrial and cytosolic NOS 

systems. The objective of the present study was to evaluate how the degree of somatic maturation 

could alter this healthy response. 

Prepubertal male rats were exposed 48 h to 4400 m simulated alti tude in a hypobaric chamber. The 

mechanic-energetic activity in perfused hearts and the contractile functional capacity of nitric oxide 

synthase (NOS) in isolated left ventricle papillary muscles (PM) were evaluated during H/R. Cytosolic 

nitric oxide (NO), nitrites/nitrates (Nx -) production, NOS isoforms expression, mitochondrial O2 

consumption and ATP production were also evaluated. 

Heart left ventricular pressure (LVP) during H/R was not improved by HH. However the energetic 

activity (Ht) was increased. Thus, the contractile economy (LVP/Ht) got worse in HH. Nitric oxide did 

not modify PM contractility after H/R. Cytosolic p-eNOS -Ser1177and iNOS expression were 

decreased by HH but no changes were observed in NO production. Interestingly, HH increased Nx 

levels but O2 consumption and ATP production in mitochondria were not affected by HH.  

Conclusions: prepubertal rats exposed to HH preserved cardiac contractile function, but with a high 

energetic cost, modifying contractile economy. Although this could be related to the decreased NOS 
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expression detected, cytosolic NO production was preserved, may be through the Nx metabolic 

pathway, without modifying mitochondrial ATP production and O2 consumption. In that scenario, the 

treatment was unable to increase tolerance to H/R as we observed in adult animals.  

 

Keywords 

Hypobaric hypoxia; Cardioprotection, Prepubertal heart, Cardiac economy, Nitric oxide Cardiac 

mitochondria. 

 

1. Introduction 

 

Several studies show that the acclimatized heart to chronic hypoxia develops cardioprotection 

through the involvement of the nitric oxide synthase (NOS) system, (Costa & La Padula, 2019). We 

previously reported that long-term exposure of rats to hypobaric hypoxia increased tolerance to one 

episode of hypoxia/reoxygenation (H/R) involving mitochondrial NOS and modulation of the 

respiratory chain (La Padula & Costa, 2005; Zaobornyj et al., 2005). In a previous study, in which 

initially prepubertal rats (7-wk-old) were exposed to HH during lifetime, no changes in NO 

production or improvement of papillary muscle tolerance to H/R were observed after only seven 

days of HH (La Padula & Costa, 2005; Zaobornyj et al., 2005). However, we found later an increase in 

cytosolic left ventricle nitric oxide (NO) production after 48 h exposure of 3-mo old rats to HH, 

associated to an improvement of the tolerance of papillary muscles to one episode of H/R (La Padula 

et al., 2018). These results support the idea that cytosolic NO modulates left ventricle contractile 

machinery and has an impact on cardiac tolerance to H/R, besides the action on mitochondrial 

function. These HH studies (La Padula & Costa, 2005; Zaobornyj et al., 2005; La Padula et al., 2018), 

suggest that the apparent contradiction found between the observed cardioprotection after only 48 
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h and the failure after 7 days of HH might be due to the difference in somatic maturity of the 

animals. 

The mechanism triggered by acute hypoxia could have an important practical advantage in terms of 

clinical therapy over the chronic HH models. As in chronic hypoxia, resistance to myocardial ischemia 

developed by exposure to acute hypoxia has been consistently associated with modulation of NOS 

activity (Xi et al., 2002; La Padula et al., 2018). Nitric oxide system seems to play an essential role in 

the development of endogenous cardioprotection (Hare, 2003; Manukhina et al., 2006). The three 

main isoforms of NO synthase, namely, neuronal NOS (nNOS), endothelial NOS (eNOS), and the 

inducible NOS (iNOS), have been implicated in cardioprotection in two different models of systemic 

hypoxia, at mitochondrial and cytosolic levels (Baker et al., 1999; Xi et al., 2002; Kolář & Ošťádal, 

2004; Baker, 2004; La Padula et al., 2008, 2018). Nitric oxide actions appeared to be site specific and 

concentration-dependent (Hare, 2003; La Padula et al., 2008). At mitochondrial level, NO modulates 

oxygen consumption and free radicals production (Poderoso et al., 1996; Cassina & Radi, 1996; 

Brown & Borutaite, 2007). Also, in cytosol, NO modulates specific myocytes calcium channels 

involved in mechanical activities (Xu et al., 1998; Hare, 2003; Csordás et al., 2006; Rastaldo et al., 

2007). In accordance, we previously reported an enhanced NOS activity and expression in 

mitochondrial fraction from left ventricles during acclimatization to hypobaric hypoxia (Zaobornyj et 

al., 2005; La Padula et al., 2008). On the other hand, during deacclimatization the normalization time 

of both NOS activity and expression decline at the same time as the loss of the cardioprotective 

effects, reaffirming the involvement of NO in cardioprotection after hypoxia exposure (La Padula et 

al., 2008).  

In addition, we recently found a positive interaction between NO and β-adrenergic systems after 

acute hypobaric hypoxia exposure but not specifically associated with tolerance to H/R (La Padula et 

al., 2018). This observation together with many other evidences collected by both in vivo and in vitro 

experiments suggests a crosstalk between NO and β-adrenergic systems (Balligand, 1999; Conti et 
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al., 2013; Vanhoutte & Gao, 2013). The importance of this interaction lies in the fact that both 

systems modulate contractility, being NO production directly linked to stimulation of β-adreno-

receptors in many instances (Balligand, 1999; Queen & Ferro, 2006). 

The objective of the present study was to evaluate the effect of acute HH in heart and  the 

interaction of endogenous NO and cardiac β-adrenergic system before and after a single H/R 

episode, in somatically immature rats. For this purpose, mechanical and energetic activities were 

simultaneously determined in left ventricles of rats subjected to HH for 48 h, before and after 

cardiac H/R. Also, NO functional capacity was evaluated in response to β-adrenergic stimulation and 

during H/R. At biochemical level, left ventricle cytosolic NO production and the expression of NOS 

isoforms were characterized; mitochondrial oxygen consumption and ATP production as well as 

cytochrome oxidase activity were also evaluated. 

 

2.  Methods 

2.1. Ethical Approval 

Experimental protocol was conducted in compliance with the Principles and standards for reporting 

animal experiments in The Journal of Physiology and Experimental Physiology and in accordance 

with “Guide for the Care and Use of Laboratory Animals” prepared by the Institute of Laboratory 

Animal Research and published by the National Institutes of Health (NIH Publications No. 8023, 

revised 2011). - Also, the present study had the legal ethical accreditation from Ethics Committee for 

Laboratory Animal Handling of the School of Medicine from Universidad de Buenos Aires where the 

protocol was performed (RES (D) N° 981/2019). 

 

2.2. Experimental design 

 Six and a half-week-old male Wistar rats of the CHbbTHOM albino strain (acquired from School of 

Medicine) were subjected during 48 h to a simulated 4,400 m altitude (58.7 kPa = 440 mmHg) in a 
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hypopressure chamber as previously described (La Padula & Costa, 2005). A group of the same 

number of sibling rats remained as controls at sea level atmospheric pressure (101.3 kPa = 760 

mmHg). Food and water were administered ad-libitum. Pressure changes were achieved slowly, and 

the renewal of air in the chamber was sufficient to ensure the composition of atmospheric air. The 

partial pressure of O2 in the inspired air was, therefore, 11.3 kPa = 85 mmHg and 21.2 kPa = 159 

mmHg, for hypoxic and control rats, respectively. Both groups were maintained at the same 

temperature (22ºC) on a scheduled 12 h light-dark cycle. Rats received care in accordance with the 

6344/96 regulation of the Argentinean National Drug, Food, and Medical Technology Administration 

(ANMAT) and the study was carried out in accordance with the “Guide for the Care and Use of 

Laboratory Animals” prepared by the Institute of Laboratory Animal Research and published by the 

National Institutes of Health (NIH Publications No. 8023, revised 2011). Immediately after removing 

hypoxic rats from the hypobaric chamber, as well as the control ones, the thoraxes were opened 

under anesthesia with heparinized (2000 U) pentobarbital overdose (60 mg/kg). The beating heart 

was excised and rinsed in warm Krebs solution (La Padula & Costa, 2005) before the isolation of 

papillary muscles (PM) or cannulation of the whole heart as described below.  

 

2.3. Functional study in the whole heart 

2.3.1. Left ventricle mechanical and energetic measurements 

Hearts excised from the animals (n: 32) were quickly cannulated and arterially perfused at 6 

ml/min/g through Langendorff technique with a Krebs-Ringer-NaHCO3 solution that contained (in 

mM):  120 NaCl, 6 KCl, 25 NaHCO3, 0.5 NaH2PO4, 1 MgCl2, 1.35 CaCl2, and 8 glucose (Krebs-C), 

continuously bubbled with a gas mixture (95% O2-5% CO2) at pH 7.4. Both atria were removed and a 

small cut in the interventricular septum close to the aorta was done to keep the ventricles at rest. A 

latex balloon of adjustable volume filled with water and connected to a pressure transducer (Gould 

Statham P23db, Hato Rey, Puerto Rico) was introduced into the left ventricle to measure the 
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interventricular pressure (Bonazzola & Takara, 2010). The ventricles were mounted in the inner 

chamber of a flux calorimeter (Ponce-Hornos et al., 1995). The calorimeter was submerged in a large 

water bath maintained at constant temperature (30°C), in which the perfusion solutions were also 

equilibrated. Ventricles were stabilized at optimal length in Krebs-C and were electrically stimulated 

at 2 Hz with 5 V, 5 ms duration pulses delivered from a Grass SD9 stimulator (Baintree, Quincy, 

Massachusets). Heat rate (Ht) and the left ventricular pressure (LVP) were continuously and 

simultaneously measured. Both signals were recorded at optimal vol ume in an 8 channels Grass 

polygraph (Grass Instruments, Quincy, Massachusetts) with A/D acquisition system (TL-1 DMA Axon 

Instruments Inc, Foster City, California). Ht was calculated at any time from the difference between 

the signal obtained with the heart into the inner chamber of the calorimeter and the baseline that 

comes from the perfused chamber without the organ. Calorimeter calibration was accomplished by 

applying a constant and known electrical power from a sinusoidal current generator (2 kHz, 1 V ) 

through the heart that acts as impedance. Ht was expressed in mW/g wet weight. Total muscle 

economy was calculated as LVP/Ht ratio (in mm Hg. g/mW). 

 

2.3.2 Mechanical and energetic response to hypoxia/ reoxygenation  

After an equilibration period of about 90 min to reach steady LVP and Ht, the ventricles were 

challenged by 60 min of acute hypoxia perfusing with Krebs solution bubbled with 95% N 2-5% CO2. 

Finally, ventricles were reoxygenated in Krebs-C during 60 min (Consolini & Bonazzola, 2008). During 

the whole protocol Ht and LVP were recorded. Eight experiments per group were performed.  

 

2.3.3. Mechanical sensibility to mitochondrial uncoupling protein 2 (UCP-2) 

After an equilibration period of about 90 min to reach steady LVP and Ht, the ventricles were  

perfused with 5 μM of genipin, an UCP-2 mitochondrial blocker. After the first 10 minutes of 

exposure to genipin, the ventricles were subjected to 60 min of acute hypoxia perfusion with Krebs 

solution added with genipin and bubbled with 95% N2-5% CO2. Finally, ventricles were reoxygenated 
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in Krebs-C with genipin during 60 min. During the whole protocol Ht and LVP were recorded. Eight 

experiments per group were performed. 

 

2.4. Modulation of contractile papillary muscles activity by NO  

2.4.1. Isolated papillary muscles mechanical preparation  

Twelve rats were kept in a hypobaric chamber for two days, and other twelve were maintained out 

of the chamber under normoxic conditions (controls). Once the heart was excised from the animal, it 

was rinsed and transferred to a Ringer solution of the following composition (mM): 128.3 NaCl, 4.7 

KCl, 20.2 NaHCO3, 0.35 NaH2PO4, 1.05 MgSO4, 1.35 CaCl2, and 5.5 glucose, pH 7.4, bubbled with 95% 

O2-5% CO2, at 30ºC. Left ventricle was opened, and both papillary muscles were removed while 

submerged in buffer. The chordae end of each muscle was tied with 10-0 nylon suture, which was 

attached to a Statham force transducer and 9853 coupler (Gould-Statham) mounted on a movable 

support controlled by a micrometer for accurate length adjustment. The bottom end of each 

papillary muscle was inserted into a stainless-steel spring clip, and the muscles were mounted 

vertically in two temperature-controlled chambers containing 30 ml of the Ringer solution each one. 

Solutions were equilibrated with a mixture of 95% O2 and 5% CO2, with pH and temperature kept 

constant at 7.4 and 30ºC, respectively. Heart, trimmed of atria and large vessels, was dissected into 

the left ventricle plus septum (LV) and right ventricle (RV), which were weighed separately (La 

Padula & Costa, 2005).  

 

2.4.2. Papillary muscle mechanical activity modulated by NO  

Papillary muscles were allowed to stabilize for 45 min after mounting. Rectangular pulses of 10 ms 

with amplitude 20% higher than the threshold of each preparation was digitally delivered by means 

of a stimulator controlled by a data acquisition and analysis software (FPE). Contraction frequency 

was kept constant at 12 beats min -1. The muscles were then stretched until maximal developed 

tension occurred. Isometric mechanograms were recorded on a Beckman R511A connected to the 
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force transducer, and simultaneously the computer utilizing FPE digitized and stored the force -

pacing signal for later analysis. Mechanical activity was determined as developed tension (DT).  Each 

data result was the mean of three successive twitches (La Padula & Costa, 2005). After recording 

basal contractility, papillary muscles (PM) were incubated 10 min with 2 mM L-arg, a NOS substrate, 

to obtain the maximal endogenous NO production or with 2 mM L-NNA, a NOS blocker, to obtain the 

minimum production of endogenous NO. After pretreatment with both drugs, an accumulative dose-

response curves from 10-9 to 10-4 M isoproterenol hydrochloride (ISO) was performed. A 60-min 

period of hypoxia was then established by using a gas mixture of 95% N2 and 5% CO2, followed by a 

30-min period of reoxygenation (95% O2 and 5% CO2), and mechanical events were recorded every 

10 min (La Padula & Costa, 2005). At the end of each experiment, muscle length was measured with 

a caliper. The PM were then blotted dry and weighed, and cross-sectional area of each one was 

calculated, assuming the muscle to be a cylinder with a density of 1.0 g/cm3. Mechanical parameters 

were normalized for muscle cross-sectional area (La Padula & Costa, 2005). 

 

2.5. Isolation of left ventricle cytosol and mitochondrial fraction  

Left ventricles deprived from the papillary muscles were weighed, chopped, and homogenized in an 

ice-cold homogenization medium (1:10) containing 0.23 M mannitol, 0.07 M sucrose, 10 mM Tris-

HCl, and 1 mM EDTA, pH 7.4. Homogenates were centrifuged at 700 g for 10 min to discard nuclei 

and cell debris, and the supernatant was centrifuged at 8,000 g for 10 min. Supernatant, containing 

the cytosolic fraction, was separated from the mitochondrial pellet. Mitochondrial  pellet was 

washed and resuspended in the homogenization medium. All these operations were carried out at 

2–4°C (Boveris et al., 2002). Protein concentration was determined with the Folin reagent and BSA as 

standard. 

 

2.6. Expression of cytosolic nitric oxide synthase isoforms  
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Protein expression of p-eNOS-Ser1177, eNOS, nNOS and iNOS was evaluated. Equal amounts of 

cytosolic protein (40 μg) were loaded into 7% SDS-PAGE separated and blotted onto PVDF 

membranes in Tris-glycine-MeOH buffer. Non-specific binding was blocked by incubation of the 

membranes with 5% non-fat dry milk in PBS for 1 hour at room temperature. Blots were probed 

with 1:1000 dilution of primary antibody specific for p-eNOS (rabbit monoclonal, #9570, Cell 

Signaling Technology, Danvers, Ma, USA), eNOS (rabbit polyclonal, #sc-654, Santa Cruz 

Biotechnology, Santa Cruz, CA, USA), nNOS (rabbit, amino terminus, H-299, Santa Cruz 

Biotechnology, Santa Cruz, CA, USA), iNOS (mouse monoclonal, #sc-7271 Santa Cruz Biotechnology, 

Santa Cruz, CA, USA) or β-tubulin (mouse monoclonal #ab131205, Abcam). Primary antibodies were 

incubated in 1% BSA in PBS overnight at 4 ºC with rocking. The blots were rinsed three times for 15 

min with PBST (PBS with 0.15% Tween 20). Biotin conjugated secondary anti-rabbit or anti mouse 

(Code: RPN1025V, GE healthcare, Buckingham, UK) and streptavidin-horseradish peroxidase complex 

(Code: RPN1051, GE healthcare, Buckingham, UK) were used at 1:10,000 dilution. Blots were rinsed 

three times for 10 min with PBS and then exposed to ECL reagent. Densitometric analysis of bands 

was performed using the NIH Image 1.54 software. All experiments were performed in triplicate.  

 

2. 7. Nitric oxide production 

NO production was measured in cytosolic fractions by following spectrophotometrically at 577–591 

nm *molar extinction coefficient (e) = 11.2 mM-1 cm-1] (Beckman DU 7400 diode array 

spectrophotometer) the oxidation of oxyhemoglobin to methemoglobin, at 37°C (Murphy & Noack, 

1994; Boveris et al., 2002). The reaction medium consisted of 50 mM phosphate buffer (pH 7.4), 50 

µM L-arginine, 100 µM NADPH, 1 mM CaCl2, 10 µM dithiothreitol, 4 µM Cu,Zn-SOD, 0.1 µM catalase, 

20 µM oxyhemoglobin and cytosolic fractions (0.5– 0.8 mg protein/ml). NO production was 

expressed as nanomoles of NO/min. mg protein (Boveris et al., 2002). 

 

2.8. Nitrites/nitrates content 
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The content of nitrites was evaluated spectrophotometrically in cardiac cytoplasmic fractions by the 

modified method of the Griess reaction. Total content of nitrites + nitrates was determined by the 

same method after reduction of the nitrates to nitrites, with vanadium (III) chloride (VCl 3). Initially, 

to deproteinize the samples, they were incubated with ethanol in a 1: 1 ratio (v:v), at -20 °C for 2 h. 

Subsequently, the mixture was centrifuged at 4,000 g for 10 minutes at 4 °C, and the pellet was 

discarded. The deproteinized samples were incubated with 8 mg/ml VCl 3 for 30 min at 37 °C to 

reduce the nitrates present to nitrites. Nitrite detection was performed by Griess reaction, by 

determining the absorbance at 540 nm. Calibration curves were performed using NO 2
- and NO3

- as 

standard. The results were expressed as μM NO x
- (Miranda et al., 2001). 

 

2.9. Mitochondrial oxygen consumption 

A respirometer for high-resolution respirometry (Hansatech Oxygraph, Hansatech Instruments Ltd., 

Norfolk, England) was used. Mitochondrial respiratory rates were measured in a reaction medium 

containing 120 Mm KCl, 200 mM KH2PO4, 1mM EGTA, 3 mM HEPES, 1 mg/ml BSA, pH 7.2 and 

mitochondrial samples (0.5–1 mg protein/ml) at 30 °C. 2 mM malate and 5 Mm glutamate were used 

as substrates to measure state 4 respiration and 1 mM ADP was added to evaluate state 3 

respiration. Oxygen consumption was evaluated at maximal levels of NO production by the addition 

of L-arg (0.1 mM). Oxygen uptake was expressed in ng-at O/min. mg protein. The respiratory control 

ratio (state 3 respiration/state 4 respiration) was determined in order to evaluate whether isolation 

procedure or treatment affected mitochondrial physiology (Boveris et al., 1999) (Estabrook, 1967). 

 

2.10. Determination of mitochondrial ATP production rates 

Mitochondrial ATP production was determined by luciferin-luciferase chemiluminescent method at 

maximal levels of NO production by the addition of L-arg 0.1 mM. Fresh isolated mitochondria (10-

20 μg) were added to a medium containing 8 mM K 2HPO4 / KH2PO4, 20 mM Tris–HCl, 120 mM KCl, 1.6 

mM EDTA, 0.08% BSA, 0.08 mM MgCl 2, pH 7.4, 40 μM luciferine, 1 μg/ml luciferase at 28 °C. 6 mM 
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malate, 6 mM glutamate, 1 mM ADP, and 0.15 mM di (adenosine) pentaphosphate were added to 

the reaction medium (Drew & Leeuwenburgh, 2003). Measurements were made for 3 minutes in a 

Varioskan Lux microplate reader (Thermo Scientific) with chemiluminescence detector. A calibration 

curve was performed using ATP as standard (0-20 nmoles), and the production of ATP in the 

presence of 2 μg/ml oligomycin was determined as a control. ATP production rate was expressed as 

nmol ATP/min. mg protein. 

 

2.11. Cytochrome oxidase activity  

Cytochrome oxidase activity (Complex IV) was assayed spectrophotometrically at 550 nm by 

following the rate of oxidation of reduced cytochrome c (Hatefi,.1985) Cytochrome c was reduced 

with dithionite that was removed afterwards by eluting through a Sephadex -G25 column with 

potassium phosphate buffer (10 mM), pH 7.4. The reaction was initiated by the addition of 50 µM 

reduced cytochrome c to submitochondrial membranes (0.5 mg/ml)  and the rate of reduced 

cytochrome c oxidation was determined as a pseudo-first-order reaction constant (k’) (expressed as 

k’/mg protein). 

 

2.12. Statistics 

Results are expressed as mean values ± SD. One-way ANOVA plus the post ANOVA Bonferroni t test 

for multiple comparisons were used for statistical analysis of the data as appropriate (Microcal 

Origin 6.0 statistical software and Graph Pad Prism version 6.0). For comparing only two samples, 

the unpaired Student t test was used. A value of p < 0.05 was considered statistically significant. 

 

3. Results 

3.1. Biological parameters 
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After 48 h exposure to 4400 m simulated altitude, body weight decreased 2%, while in controls it 

increased 8% (t-test p = 0.0462). Heart weight was not affected: 0.66± 0.14 and 0.69 ±0.14 for N and 

HH respectively. Ventricles weight and papillary muscle areas were similar in both groups. 

 

3.2. Functional study in the whole heart 

3.2.1. Mechanical and energetic responses 

In the N group, acute hypoxia for 60 min induced a fall  in left ventricle pressure (LVP) to 19.4 ± 8,7 % 

from its initial value (61.8 ± 16.3 mm Hg). Simultaneously, the heat released (Ht) fell to 21.7 ± 11.6 % 

of its pre-hypoxic value (10.8±1.4 mW/g). Reoxygenation allowed a partial recovery of LVP (up to 

62.1 ± 11.6%) and Ht (up to 82 ± 11 %). In the HH group, basal LVP was similar compared with N 

group, and the energetic cost (Ht) remained as in N hearts (12.1 ± 2.2 mW/g). The behavior of LVP 

during the whole period of H/R was similar as in N group. However, Ht was higher in HH during both 

periods of hypoxia (4.8 ± 1.7 vs. 2.4 ± 1.1 mW/g, for HH and N groups, respectively, p<0.05) and 

reoxygenation (10.7 ± 1.4 vs. 8.9 ± 1.1 mW/g for HH and N groups, respectively, p<0.05) (Fig. 1).  

 

 

 
Fig 1. (A) Mechanical response to 60 min of hypoxia and 60 min of reoxygenation of left ventricle from 

normoxic rats (N) and rats submitted to hypobaric hypoxia  (HH). (B) Energetic response to 60 min of hypoxia 

and 60 min of reoxygenation of left ventricle from normoxic rats (N) and rats submitted to hypobaric hypoxia 

(HH). Values are means ± SD. ANOVA. * P < 0.05, vs HH group. Open symbols, N; Closed symbols, HH. 
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3.2.2. Changes in contractile economy 

In normoxic ventricles, 60 min of acute hypoxia induced a transient reduction in contractile economy 

expressed as LVP/Ht and the following reoxygenation strongly reduced it. The behavior was different 

in HH group which presented a strongly reduced LVP/Ht, during H/R related to N group (Fig. 2).  

 

 
Fig. 2. (A) Contractile economy response to 60 min of hypoxia and 60 min of reoxygenation of left ventricle 

from normoxic (N) and submitted to acute hypobaric hypoxia (HH) rats. Only mean values are shown. (B) 

Graphical representation of the area under the curve in response to 60 min of hypoxia and 60 min of 

reoxygenation of left ventricle from normoxic (N) and rats submitted to hypobaric hypoxia (HH). Values are 

means ± SD (n:8). ANOVA. * P < 0.05, vs HH group. Open symbols or bars, N; Closed symbols or bars, HH. 

 

3.2.3. Contractility modulation by UCP-2 

The hypobaric treatment did not modify the response of the ventricles to genipin (G) indicating that 

UCP-2 does not participate in the effects observed during the exposure to acute hypobaric 

hypoxia.  The blockage of UCP-2 modified the contractile response in the same way in both groups 

(N and HH), increasing the LVP recovery after H/R. The values expressed in % are: 62 ± 11 vs. 82 ± 17 

for N and N+G, respectively, p: 0.0187 and 67 ± 17 vs. 88 ± 14 for HH and HH + G, respectively, p: 

0.0326. The Ht released showed a tendency to decrease in both groups (N and HH). As a 

consequence, genipin improved the mechanical contractile economy evaluated as LVP/Ht ratio, in 

both, N and HH hearts. The values, expressed in % were: 78 ± 22 vs. 102 ± 14 for N and N+G, 

respectively, p: 0.0371, and 73 ± 22 vs. 104 ± 19 for HH and HH + G, respectively, p: 0.0214. 
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3.3. Modulation of contractile papillary muscles activity by NO.  

3.3.1. Basal mechanical function  

Developed tension (DT) was similar in rats exposed to 48 h of simulated high altitude than in those 

from normoxic animals: 1.5 ± 1.0 (g.mm-2) for both groups. Contractile activity was not affected by 

the addition of the NOS substrate L-arg or the NOS blocker L-NNA. 

 

3.3. 2. Mechanical ß–adrenergic response   

The normoxic papillary muscles response to isoproterenol  (ISO) stimulation was modulated by 

NO. Under conditions of maximum and minimum NO production, the DT increase with ISO 10 -4 M 

was 205 ± 42 % with substrate and 128 ± 17% with the NOS blocker (Fig. 3), respect to the pre-β-

stimulation values (100%). Therefore, the mechanical functional capacity of NOS (LVP+L-arg - LVP+L-

NNA) over the cardiac reserve was 77%. On the contrary, the β-adrenergic response of papillary 

muscles from HH was not modulated by NO: 173 ± 59 % vs 176 ± 62 %, for L-arg and L-NNA 

respectively (Fig. 3).  

 
 

Fig. 3. Response to isoproterenol  (ISO) of papillary muscles from N and HH rats expressed as the percentage 

increase respect to basal values taken as 100%. A: dose response curve to ISO, and B: percentage of change 
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expressed in bars at maximum ISO dose. Values are means ± SD. ANOVA * P < 0.05 vs. all  groups. Open 

symbols, N; Closed symbols, HH.  
 

 

3. 3. 3. Tolerance to hypoxia/reoxygenation 

At the end of 60 min of hypoxia, DT decreased similarly (93-88 %) in all the experimental groups. The 

recovery of contractile functions, expressed as % of pre  hypoxic DT values is shown in Table 1. 

Similar results were observed for both normoxic and hypoxic groups.   

Table 1. Percentage of ISO- stimulated developed tension at 60 min of hypoxia and recovery during 

30 min of reoxygenation in papillary muscles of rats submitted 48 h to 58.7 kPa (HH) and of the 

control group at 101.3 kPa (N) after L-arg or L-NNA addition  

 

Experimental 

group 

60 min 

Hypoxia 

10 min reoxygenation 20 min reoxygenation 30 min reoxygenation 

 

 N  

 

 

L-arg 

 

8 ± 5 

 

35 ± 15 

 

41 ± 15 

 

49 ± 10 

L-NNA 12 ± 10 

 

26 ± 12 

 

34 ± 19 

 

41 ± 12 

 

 HH  

 

L-arg 7 ± 7 28 ± 17 41 ± 22 45 ± 19 

L-NNA 9 ± 5 25 ± 12 38 ± 19 40 ± 22 

 

Values are means ± SD expressed as percentage.  

 

 

3.4. Cytosolic NOS expression and NO production  

Cytosolic fractions from N and HH left ventricles responded differently to anti-iNOS, anti-nNOS, anti-

eNOS and anti-p-eNOS-Ser1177 antibodies (Fig. 4). As presented in Fig. 4 A and C, densitometric 

quantification of the western blot bands showed a significant decrease in the ratio p-eNOS-
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Ser1177/eNOS (62 %) and iNOS (32 %) protein expression and a non-significant tendency to decrease 

in nNOS (18 %) and eNOS (51%) expression in hypoxic hypobaric rats compared to normoxic ones 

(Fig. 4 B and D).  

 

 
Fig. 4. (A) Left ventricle cytosolic p-eNOS-Ser1177 expression; (B) Left ventricle cytosolic eNOS expression; (C) 

Left ventricle cytosolic iNOS expression; (D) Left ventricle cytosolic nNOS expression. N: Normoxic group; HH: 

hypobaric hypoxia 48 h. Values are means ± SD. * P < 0.05 vs. N group. 

 

 

Nitric oxide production rates were measured in cytosolic fractions of left ventricles from normoxic 

and hypoxic rats. Nitric oxide production was similar in both groups: 1.91 ± 1.72 nmol NO min -1 mg 

protein-1 and 2.04 ± 0.54 nmol NO min-1 mg protein-1, for normoxic and hypoxic rats, respectively 

(Fig. 5 A). The indirect evaluation of NO production by nitrites-nitrates detection was 1.83 ± 0.9 and 

4.06 ± 3.2 nmol NO2 / mg.protein, for normoxic and hypoxic groups, respectively (Fig. 5 B). 
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Fig. 5. (A) Left ventricle cytosolic NO production. (B)  Left ventricle cytosolic nitrite-nitrate production. N: 

Normoxic group; HH: hypobaric hypoxia 48h. Values are means ± SD. * P < 0.05 vs. N group.  

 

 

3. 5. Cardiac mitochondrial function 

Mitochondrial function was assessed using two independent determinations: A) oxygen 

consumption and B) ATP production.  

Table 2 shows oxygen consumption rates of left ventricle mitochondria isolated from both 

experimental groups. Mitochondria from animals exposed to hypobaric hypoxia showed similar 

respiratory rates to controls in, both, state 4 (resting or controlled respiration) and state 3 (active 

respiration, the maximal physiological rate of O 2  uptake and ATP synthesis) conditions. Accordingly, 

no significant changes were observed in respiratory control ratio after hypobaric hypoxia exposure, 

indicating the conservation of the mitochondrial inner membrane integrity  and function. 

Furthermore, no significant changes were observed either in ATP production rates or in ATP/O rat io 

in hypoxic left ventricle mitochondria as compared to normoxic group. All together, these results 

indicated the preservation of mitochondrial function after exposure to hypobaric hypoxia. Oxygen 

consumption and ATP production were modulated in the same way in both groups after the addition 

of L-arginine. NOS substrate decreased oxygen consumption by 20% and 14% in N and HH groups, 

respectively. Similarly, ATP production was lowered by L-arg in the two groups: 63% and 56% for N 
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and HH, respectively.  As a consequence, the ATP/O ratio (calculated as ATP production rate/state 3 

oxygen consumption) diminished in both groups: 52% and 44% for N and HH, respectively.  

The cytochrome oxidase activity (cox) expressed as k´/min.mg.prot ± standard deviation in normoxic 

group was 146,3 ± 16,8 (N) and 135,3  ± 13,3 with the addition of L-arg (N-L-arg). The HH group 

presented 107,1 ±  20,8 (HH) and 102,4 ± 14,7 (HH-L-arg). The HH and HH-L-arg showed a decreased 

activity respect to normoxic tissue (* P < 0.05 vs N). 

 

Table 2. Oxygen consumption and ATP production in mitochondria from the left ventricle of  rats 

submitted 48 h to 58.7 kPa (HH) and of their controls at 101.3 kPa (N).  

 

 Group N HH 

      Oxygen consumption 

 

 

 

State 4 34 ± 14 31 ± 7 

State 3     176 ± 41      154 ± 27 

State 3+ L-arg 140 ± 38*  133 ± 25* 

    

       Respiratory  control                  State 3/ State 4 

 

5.2 ± 3 5.0 ± 4 

      ATP production 

 

State 3 426 ± 108 389 ± 92 

State 3 + L-arg 159 ± 56*   170 ± 78* 

    

      ATP/O State 3 2.4 ± 0.8  2.5 ± 0.8 

 State 3 + L-arg   1.1 ± 0.5*  1.4 ± 0.6 

 

Values are means ± SD. Oxygen consumption and ATP production were expressed in ng-at 

O/min.mg protein and nmol ATP/min.mg protein, respectively. * P < 0.05 vs. state 3 group. 
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4. Discussion 

We have previously reported that acclimatization of rats to chronic hypobaric hypoxia improved 

cardiac tolerance to H/R, related to an increase in NO production and NOS protein expression (La 

Padula & Costa, 2005; Zaobornyj et al., 2005; La Padula et al., 2008). We showed later that young 

adult rats (3 mo old) exposed to acute hypobaric hypoxia (48 h at 4400 m simulated altitude) were 

able to develop cardioprotection involving similar mechanisms (La Padula et al., 2018). The present 

study shows that prepubertal rats exposed to acute (48 h) HH decreased NOS expression without 

affecting mitochondrial oxygen consumption and ATP production, and worsening contractile 

economy, without improving tolerance to H/R (Fig. 6).  

 

Fig.6. Hypothetical main myocyte differential molecular response activated during acute hypobaric hypoxia 

(HH) related to age. (A) Prepubertal. HH increased nitric oxide (NO) production by vascular endothelial cells 

through their own endothelial NOS (eNOS), triggering, by negative feedback over the nucleus of the 
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surrounding myocytes a drop down of RNA messenger (mRNA) and nitric oxide synthase (NOS) synthesis (dash 

square). That drop in NO production by NOS may be compensated by the xanthine oxidoreductase (XOR), 

which would produce NO from the nitrites-nitrates (Nx) reservoir, coming largely from the diet (Moretti  et al, 

2019), and also possibly from the previous oxidized vascular NO cited above. This keeps normal intracellular 

NO levels, resulting in a maintenance of mitochondrial and contractil e function (LVDP) as in normoxic 

conditions, preventing from developing endogenous cardioprotection (LVDP dash square). The increased heat 

(Ht) detected could be attributed to a major relative participation of active transport mechanisms like Na /Ca 

exchanger (NCX) and Na/K pump vs SR-Ca pump (SERCA). (B) Young mature. HH increased cytoplasmic and 

mitochondrial myocyte NOS synthesis (NOS and mNOS with solid square, respectively) and NO production. NO 

modulates mitochondrial function, as ATP availability and reduction of oxidative reactive species production 

(dashed lines).  Also, it regulates contractile activity at lower oxygen pressure (pO 2), with cardioprotection 

(LVDP with solid square) related to NO nitrosylation of L-Ca Channel (L-Ca+) and ryanodine channel (RyR). 

Dashed lines indicate inhibition, solid l ines stimulation and the width of the line the degree of stimulation: 

thick l ine: strong, thin l ine: steady state; B-A: Beta adrenergic receptor; AC: adenylate cyclase; GC: guanylate 

cyclase; UCP-2: uncoupling protein. 

 

 

4.1. Biological parameters  

Upon exposure of rats to simulated high altitude, the body weight decreased. Weight loss has been 

associated with hypoxia inducible factor (HIF) (Costa, 2007; Semenza, 2004a, 2004b) throughout a 

variation in leptin levels. This impacts in a decrease in food intake, with a marked reduction in fat 

content (Costa et al., 1979; Debevec et al., 2016). In the present work, normoxic animals increased 

body weight 8% during 48 h growth, while hypoxic rats decreased body weight by 2%, resulting in 

the previously reported value of 10% of body weight loss by HH (La Padula et al., 2018). On the other 

hand, the weight of the whole heart, left and right ventricles and papillary muscles areas were not 

affected by HH. These determinations guarantee the same physical conditions in normoxic and 

hypoxic rats tissues.  

 

4.2. Mechanical and energetic responses in the whole heart 

The tolerance to acute H/R evaluated by the LVP was low in prepubertal hearts from normoxic rats 

related to adult animals (La Padula et al., 2018), and was unaffected by hypobaric hypoxia. The 

contractile economy evaluated as LVP/Ht was lower in hypoxic animals compared to the normoxic 
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group during the whole experiment. This means that HH hearts spent more heat for the same 

contractile activity than control ones (Fig. 1). The increased heat could be related to active calcium 

ions transport systems involved in the contraction/relaxation cycle, like Na+/Ca2+ exchanger via 

Na+/K+ pump and SERCA (Chen et al., 2006; Pei et al., 2003; Guo et al., 2011; Chen & Li, 2012; Ma et 

al., 2014), and not to the mitochondrial respiratory chain, which appeared unaffected in these 

hypoxic conditions. The results obtained after addition of mitochondrial UCP-2 blockade with genipin 

reinforces that idea, because Ht was not decreased differentially in N and HH groups in presence of 

genipin. According to the “uncoupling to survive” hypothesis postulated by Brand (2000), UCP 

function could be involved in cardioprotective models, due to the fact that its activation leads to 

physiological mitochondrial depolarization and the consequent reduction of ROS production by the 

respiratory chain (Brand, 2000, Mookerjee et al, 2010). However, this mechanism does not seem to 

be involved in the present results, because HH heart does not respond to the UCP blocker genipin 

and it does not exhibit cardioprotection due to HH treatment. So, an increased cytosolic activation of 

sarcolemmal ionic transport systems by HH may be responsible for keeping cardiac contractile levels 

similar to N hearts working with lower oxygen levels and extra-energetic cost. 

 

4.3. Mechanical activity in papillary muscle. Modulation by NO  

Basal contractility in papillary muscles preparations, which are vascular tone independent, was not 

affected by NO, but cardiac reserve was modulated by 77% in the normoxic group (Fig. 4) probably 

by micro domains actions of the NO over the β-adrenergic receptor via AC-AMPc stimulation (Fig.6). 

Acute hypoxia treatment decreased NOS protein expression, impairing the cardiac relevance of NOS 

system in prepubertal rats. The percentage recovery of DT in normoxic rats after H/R (49 ± 4) was 

unaltered by HH treatment (45 ± 8), and it was similar to our previous studies in adult normoxic rats 

(51 ± 4), and opposite to the increased tolerance to H/R (78 ± 6) found after 48 h HH in adult rats (La 

Padula et al., 2018). As mammalian fetus lives at an oxygen partial pressure corresponding to 8000 
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m altitude, newborn mammals are normally adapted to hypoxia. Neonatal tolerance to oxygen 

deprivation seems to be primarily based on the ability to maintain tissue aerobiosis as long as 

possible. It seems that decreasing tolerance to ischemia during early postnatal life is counteracted by 

the development of endogenous protection (Oštádalová et al., 1998; Oštádalová et al., 2002). In our 

study, prepubertal rats have lost gestational acclimatization as expected and hy poxic 

cardioprotection cannot be evidenced yet, in contrast with results reported by other authors in 

younger animals (Vornanen, 1996a, 1996b; Oštádalová et al., 1998; Richardson & Bocking, 1998; 

Oštádalová et al., 2002). 

 

4.4. NO production 

At systemic level, NO main effect is to bring up peripheral vasodilation (Manukhina et al., 2006; 

Ignarro, 2000) promoting a better supply of oxygen to tissues (Costa, 2007; Poderoso et al., 1999). In 

the pulmonary system, NO functions to counteract the tendency to develop pulmonary hypertension 

(Eichstaedt et al., 2015). On the other hand, increased NO production was involved in 

cardioprotection in adult rats after acute or chronic HH, preserving basal contractility and increasing 

the tolerance after one H/R episode (La Padula et al., 2008, 2018). In the present work, we found 

that exposure of prepubertal animals to acute HH fails to induce an increase in cytosolic NO 

levels   and to develop cardioprotection. The main NOS isoforms responsible for the establ ishment 

of cardioprotection during exposure to HH are the eNOS and nNOS throughout the modulation by 

cGMP and nitrosylation of ion channels like sarcolemmal calcium channels respectively, improving 

the mechanical heart activity. In the present work we found the three NOS isoforms decreased. The 

phosphorylated eNOS S1177, which stimulates the NO production (in the opposite way of the 

phosphorylation of residues T495 and Y657 which tends to attenuate nitric oxide generation) 

(Fleming, 2010), was also decreased (Fig.4 A).  
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During acute hypoxia there is an early high vascular production of NO by eNOS (Chang et al., 2004; 

Molina et al., 2013) (Fig. 6). Inhibition of the myocyte cytosolic NOS expression by negative 

feedback, would preserve normal O2 consumption and mitochondrial ATP production, to maintain 

the mechanical heart activity. On the other hand, the lack of modulation of respiratory chain by NO 

would impair oxygen diffusion to the deepest tissues, hindering the emergence of the hypoxic 

cardioprotection. 

Increased nitrates found in this study, through the mammalian xanthine oxidoreductase (Jansson et 

al., 2008; Huang et al., 2010; Kapil et al., 2020) may keep cytosolic NO levels invariable, 

compensating for the drop of NO generation by NOS isoforms  (Zhang et al., 1998; Dejam et al., 

2004; Gladwin, 2005; Gladwin et al., 2005, 2006; Lundberg & Weitzberg, 2005; Jansson et al., 2008; 

Molina et al., 2013).The source of nitrates could be the vascular endothelial NO generated during 

the early exposure to HH, which could be oxidized and accumulated in the form of nitrates. This 

reservoir of nitrates could be then transformed by xanthine oxidoreductase (XOR) and proteins with 

nitrite reductase activity into NO to keep stable its physiological function on the mitochondrial 

respiration, which we found unaltered by HH.  

 

4.5. Oxygen consumption and ATP production  

Mitochondrial electron transport chain has long been suspected as a site of oxygen sensing (Guzy & 

Schumacker, 2006). In isolated papillary muscle, the increase in NO production was involved in the 

establishment of cardioprotective mechanisms developed during acclimatization to hypobaric 

hypoxia. This may be due to the effect of NO on mitochondrial function (La Padula & Costa, 2005; 

Zaobornyj et al., 2005; La Padula et al., 2008) in parallel to its cytosolic actions.  In our previous work, 

cytochrome oxidase activity was decreased after 48 h of HH (La Padula et al., 2018), probably 

modulated by NO. The present study shows that 48 h of HH did not increase NO production in 

prepubertal hearts, preserving O2 consumption similar to normoxic group. This effect is in 
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accordance to the unaffected ATP production, and the absence of a differential UCP-2 blocker action 

at the LVP mechanical activities and Ht delivered, which would keep unaltered the mechanical 

contractile function (Fig. 6). In this work, NO physiological effects on respiratory chain were 

confirmed by adding NOS substrate to the mitochondrial fraction, which decreased O2 consumption 

and ATP production. Although non-statistically significant, we can see a tendency in the HH group to 

show a minor response to L-arg, so to present a minor modulation of the mitochondrial functions: 

inhibition of oxygen consumption 20 % for N and 14% for HH and 63% and 56% decrease in ATP 

production for N and HH respectively. So, the increased heat delivered during 

contraction/relaxation, must be sought outside the mitochondria, possibly at the active sarcolemma 

ions transport systems (Vornanen, 1996b; Guo et al., 2011; Chen & Li, 2012; Ma et al., 2014; Ponce-

Hornos et al., 1993), such as Na+-Ca2+ exchanger and Na+- K+ pump, which are involved in the active 

control of calcium overload during exposure to HH (Pei et al., 2003; Chen et al., 2006). Finally, COX 

activity was significantly decreased in HH, may be following a tendency in the same way of O 2 

consumption and ATP production. 

 

Conclusion 

The degree of somatic maturation modifies the response to HH. Immature animal s exposed to acute 

hypoxia maintained normal NO production in spite of the decreased NOS expression, possibly 

through the accumulation of nitrates as a NO source, and then by the NO production by the nitrates-

nitrites-nitric oxide pathway (Gladwin, 2005; Jansson et al., 2008; Molina et al., 2013). In this sense, 

HH prepubertal heart keeps O2 consumption, ATP production and UCP-2 activity at physiological 

levels, preserving cardiac mechanical activity as normoxic animals with a high energetic cost, 

modifying contractile economy and without the ability to develop endogenous cardioprotection (Fig. 

6). The lack of cardioprotection in the present model could be attributed to unaltered NO levels and 

lower expression of NOS, which would impact at cellular specific micro domains, close to active ions 
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systems (Hare, 2003), probably involved in the high heat delivered during cardiac mechanical 

activity. Once more, this work presents evidence that cardiac tolerance to hypoxia/reoxygenation 

would be closely related to the NO system, but it depends on the degree of maturity of the 

organism. The present results are important for the translation to the experimental clinic, because 

the prepubertal organism does not respond as the canonical HH-NO-cardioprotective pathway in 

experimental models. 
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