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1 Introduction

It is a major goal in high energy theoretical physics to fully understand the partition
function of AdS3 quantum gravity. It encodes the spectrum of the putative quantum theory
and can be used to gain insight about a possible dual CFT. In [1], Giombi et al. took an
important step by computing from the gravitational theory the one-loop partition function
Z(1-loop)(τ, τ̄) on a solid torus. More precisely, they departed from the quadratic action
around thermal AdS3, chose a gauge, introduced ghosts fields, and by the heat-kernel
method computed the relevant functional determinants in the solid torus H3/Γ. Here Γ
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implements the appropriate quotient which we will explain in more detail later. They
landed at the following result,

Z(1-loop)(τ, τ̄) =
∞∏
m=2

1
|1− qm|2 , q := e2πiτ , (1.1)

where τ is the modular parameter of the (conformal) boundary torus. Such a partition
function is the product of two characters over an irreducible representation of the Virasoro
algebra. This was a robust indicative of the existence of an underlying two-dimensional
CFT. This fact has a classical precursor: Brown and Henneaux in [2] showed that, with
sensible asymptotic boundary conditions on Lorentzian metrics in General Relativity with
negative cosmological constant, the algebra of conserved charges is nothing but two copies
of the Virasoro algebra with central charge c = 3`

2G . It is worth noticing that in [1] the
expectation and confirmation of the appearance of the Virasoro algebra in the partition
function did not came from the imposition of Brown-Henneaux boundary conditions, but
from an argument borrowed by from [3].

In 2007 Maloney and Witten had already argued that if Brown-Henneaux boundary
conditions are imposed, the computation of the gravity partition function as a trace of
e−βH−iθJ should give a Virasoro character. In short, the reason is that with Brown-Henneaux
asymptotic boundary conditions the physically different gravitational configurations are
organized in Virasoro coadjoint representations [4, 5]. Coming back to the work [1], we see
that although it was reasonable to expect that a Virasoro character would show up in the
Euclidean computation of the partition function, the Brown-Henneaux boundary conditions
were not really imposed at any moment. And moreover, we can wonder how is it that a
Virasoro character makes its appearance by a purely Euclidean path-integral computation.

Motivated by the question of where are implicitly assumed/imposed the asymptotic
boundary conditions of Brown-Henneaux in the path-integral of [1], we found in [6] that the
square integrability of the metric perturbations directly imply the (Euclidean version of)
Brown-Henneaux boundary conditions. Even more, it was possible to make a distinction,
within the space of asymptotic symmetry generators, between proper asymptotic vectors
(those square integrable, which are trivial under the coadjoint representation) and improper
asymptotic vectors (those which are not square integrable, implying that are not trivial
under the coadjoint representation, modulo proper ones). This distinction is essentially the
same as that of [2].

However, a few but important points were left to be clarified in our previous work.
First of all, the ghost fields in [1] appear from the start in the path integral but is not a
priori clear if they should belong to the space of L2 vectors or to the space of vectors which
generate L2 metric perturbations. This issue is relevant because of the following: if the
space of vector fields is too small, it might not include the proper asymptotic vectors. On
the contrary, if it is too big, it might exceed the domain of the operator whose determinant
appears in the partition function (see [7] for a discussion on these possibilities and the
implications on partition functions).

Second, and relevant for any gauge theory, is the matter of the accessibility of the
gauge condition: can the de Donder gauge be reached from any L2 perturbation by an
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infinitesimal diffeomorphism? This is crucial since ensures that the Faddeev-Popov method
actually works and it is also needed in order to implement a “constraint first” quantization
procedure. As we will see, this is closely related to the question about the space to which
the ghost fields belong.

In third place, we have the issue of describing in detail the spectrum of the relevant
operators entering in the 1-loop partition function. This is crucial for understanding the
computation of the functional determinant of such operators. In order to be as clear as
possible, let us first introduce these operators. The result (1.1) of [1] comes from the
expression of the 1-loop partition function as a quotient of functional determinants,

Z(1-loop)(τ, τ̄) =
det

(
−∆(1)

)
√
det

(
−∆(2)) det (−∆(0)) , (1.2)

where ∆(i) are Laplacian-like operators with different masses acting on tensor fields of rank
i. The operator ∆(2) acts on traceless-symmetric tensors. In [1] the determinants were
computed using a combination of the heat-kernel method for H3 and the method of images
to find the heat kernel in H3/Γ. It is hard to say if this procedure manages to capture the
full spectrum of the operators in H3/Γ when it starts from the essential spectrum in H3. It
is known in the mathematical literature that the spectrum of Lichnerowicz Laplacians on
H3 is a purely essential spectrum [8, 9]. In order to simplify the previous expression, it is
possible to work with one less operator, as showed for example in [10],

Z(1-loop)(τ, τ̄) = det1/2T

(
−∇2 + 2

)
det1/2TT (−∇2 − 2)

. (1.3)

Here the determinant in the numerator is computed over transverse vector fields, while the
one in the denominator is computed over transverse-traceless symmetric rank-2 tensors.
In [10] the heat kernels in H3/Γ are obtained from a clever analytic continuation from the
heat kernel on a quotient of S3. Again, it is hard to say whether this procedure captures
the full spectrum of the operators, or may be it misses some possible isolated points in
the spectrum.

Although there are available computations related to the spectrum of the operators
in (1.3) for the BTZ [11], and as we mentioned the heat kernel of thermal AdS3 was computed
in [10] and [1], to the best of our knowledge there is no known result of the full spectrum
of the relevant operators in Thermal AdS3. In the mathematics community it has been
studied in great depth the essential spectrum of Laplacian-like operators in asymptotically
hyperbolic manifolds in arbitrary dimensions. In particular, in [8] and [9] it was shown
that the essential spectrum of the Lichnerowicz Laplacian of a symmetric-traceless rank-2
tensor is the ray [(n − 1)(n − 9)/4,∞). Also they showed that for Hn this is the whole
spectrum. For n = 3 this dimensions implies that −∇2 − 2 has essential spectrum [1,∞),
for any asymptotically hyperbolic 3-manifold. What is not clear if there is a non-empty
discrete spectrum, in other words isolated eigenvalues. A similar situation holds for vector
fields [12, 13].
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Having this in mind, in this paper we address the following questions:

1. What are the sensible boundary conditions on the ghost fields?

2. Is de Donder gauge accessible with proper asymptotic diffs?

3. What is the complete spectrum of the relevant operators in thermal AdS3?

These questions guide the organization of this work. In section 2 we show that the ghost
fields must belong to L2 by scrutinizing the differential operators acting on a convenient
decomposition of the metric fluctuations inside the path integral. In addition, we show that
indeed de Donder gauge is accessible by gauge transformations generated by L2 vector fields.
This is another way of seeing that ghost fields must belong to L2. Finally, in section 3 we
compute the full spectrum of the relevant operator in the path integral in thermal AdS3,
following and improving [11].

2 The partition function

2.1 Identifications and coordinates of hyperbolic spaces

The hyperbolic space H3 can be described by the half-space model as (X,Y, Z) ∈ R3 with
Z > 0 and with metric

ds2 = dX2 + dY 2 + dZ2

Z2 . (2.1)

We are going to consider the quotient H3/Γ where Γ is the group generated by an isometry
γ which combines a rotation in the X,Y plane by a fixed amount θ and a global dilation by
a factor eβ XY

Z

 ∼ γ ·
XY
Z

 = eβ

cos(θ)X − sin(θ)Y
sin(θ)X + cos(θ)Y

Z

 . (2.2)

This identifies the semispheres of radius 1 with the semisphere of radius eβ , e2β and so on.
We are going to consider the fundamental region inside the semispheres of radius 1 and eβ

(see figure 1). Usually, the parameters θ and β are combined into a new one τ = 1
2π (θ+ iβ).

The quotient H3/Γ can be thought of as a solid torus where τ is the modular parameter of
its conformal boundary.

Performing the following change in the coordinates of H3

λ =

√
X2 + Y 2

Z2 ,

ψ = 1
2 log

(
X2 + Y 2 + Z2

)
,

ϕ = arctan (Y/X) ,

(2.3)

we arrive to the familar (Euclidean) AdS3 metric

ds2 = 1
(ρ2 + 1)dρ

2 +
(
ρ2 + 1

)
dψ2 + ρ2dϕ2 , (2.4)
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here ϕ is the 2π-periodic angular coordinate. The identification (2.2) acts on the coordinates
as

(ψ , ϕ) ∼ (ψ , ϕ+ 2π) ∼ (ψ + β , ϕ+ θ) . (2.5)

On the other hand, performing the following change in the coordinates

tanh2(ζ) =
r2 − r2

+
r2 + r2

−
= X2 + Y 2

X2 + Y 2 + Z2 ,

x− = r+τ + r−φ = arctan (Y/X) ,

x+ = r+φ− r−τ = 1
2 log

(
X2 + Y 2 + Z2) ,

(2.6)

we obtain the metric

ds2 = dζ2 + sinh2(ζ)dx2
− + cosh2(ζ)dx2

+

= r2(
r2 − r2

+
) (
r2 + r2

−
)dr2 +

(
r2 − r2

+
) (
r2 + r2

−
)

r2 dτ2 + r2
(
dφ− r+r−

r2 dτ

)2
,

(2.7)

which corresponds to the Euclidean version of the so-called BTZ black hole [14, 15]. The
(x+, x−) coordinates are now identified as

(x+ , x−) ∼ (x+ , x− + 2π) ∼ (x+ + β , x− + θ) . (2.8)

The parameters θ and β can be expressed in terms of r+ and r− by writing (τ, φ) in terms
of x± and imposing the periodicity condition φ ∼ φ+ 2π. We obtain β = 2πr+, θ = 2πr−
and the periodicity of the coordinates become

(x+ , x−) ∼ (x+ , x− + 2π) ∼ (x+ + 2πr+ , x− + 2πr−) ,

(τ , φ) ∼ (τ , φ+ 2π) ∼
(
τ + 2πr+

r2
+ + r2

−
, φ+ 2πr−

r2
+ + r2

−

)
.

(2.9)

To visualize the coordinates (r, x−, x+) in the half-space model it is useful to invert the
transformations (2.6)

X =
(
r2 − r2

+
r2 + r2

−

)1/2

cos(x−)ex+ ,

Y =
(
r2 − r2

+
r2 + r2

−

)1/2

sin(x−)ex+ ,

Z =
(
r2

+ + r2
−

r2 + r2
−

)1/2

ex+ .

(2.10)

For a fixed r these are the equations of cones through the origin, which means r can be
thought of as a zenithal angle. The coordinates x− and x+ are coordinates on those cones,
acting as angular and radial coordinates respectively.

After the identification, the intersections between the r-constant cones and the funda-
mental region are tori. Any such torus serves as a boundary dividing two regions inside
the fundamental region, one inner and one reaching the conformal boundary. Because of
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Figure 1. The fundamental region of H3/Γ lies between the two domes. The surface of the inner
dome is identified with the surface of the exterior one. The red line indicates the contractible cycle
and the blue line indicates the non-contractible one.

this, an r-constant torus can be used to evaluate boundary terms by computing them at a
fixed value of r and then taking limit r →∞ (see [16] for a broader discussion). One might
be tempted do this procedure by taking horizontal planes at a fixed value of Z and then
take the limit Z → 0. However, due to the identification, the surfaces of constant Z are not
the boundaries of any region inside the fundamental region. Put differently, constant Z
surfaces are not invariant under the quotient.

2.2 Decomposition of metric perturbations

Here we describe the decomposition that we use for the rank-2 tensors in order to evaluate
the action. It is customary to split the perturbations in a transverse-traceless component, a
longitudinal component and a tracefull component. Following [17] we further impose the
trace component to be transverse, this cannot be done in general but it is possible when
the background spacetime is maximally symmetric. This extra condition guarantees the
orthogonality between the three components and allows us to rewrite the action in a very
convenient form.

We are going to consider tensors that are square integrable with respect to the inner
product

〈T | T ′〉 =
∫
d3x
√
g T̄ · T ′ , (2.11)

where T̄ · T ′ refers to the full contraction with respect of the metric g. Thus, for example,
for rank-2 tensors the inner product is

〈T | T ′〉 =
∫
d3x
√
g T̄µνT ′µν =

∫
d3x
√
g gµαgνβT̄µνT

′
αβ . (2.12)

A square-integrable symmetric tensor Tµν can be decomposed into a transverse and a
longitudinal part as follows

Tµν = T tµν + (∇µVν +∇νVµ) = T tµν + LµνV , with ∇µT tµν = 0 , (2.13)

where the vector V is also square integrable with respect to (2.11). The divergence of the
original tensor is a square-integrable vector and it is carried by the longitudinal part

∇νTµν = Bµ = ∇ν (∇µVν +∇νVµ) . (2.14)
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By integrating by parts it can be shown that the operator that takes Vµ into Bµ is negative-
semi-definite∫

dx3√gV ν∇µ(∇νVµ +∇µVν) = −1
2

∫
dx3√g(∇νVµ +∇µVν)2 ≤ 0 , (2.15)

where the boundary term vanishes if the vectors are square integrable. Thus, it can be
inverted and we can always find the vector Vµ of the decomposition (2.13).

Now, we want to decompose the transverse part T tµν into a traceless and a tracefull
part while keeping the transversality property. This can be done by defining

T tµν = T TTµν + 1
2
(
gµν∇2 −∇µ∇ν

)
χ− gµνχ = T TTµν + Θµνχ , (2.16)

where Θµνχ is given by
Θµνχ = 1

2
(
gµν∇2 −∇µ∇ν

)
χ , (2.17)

and χ is a square-integrable function. Taking trace in the equation (2.16) we find that the
relevant operator is

gµνT tµν = T t = (∇2 − 3)χ , (2.18)

where the trace T t is a square-integrable function. By integrating by parts again, we can see
that this operator is also negative semi-definite. Therefore, any square-integrable symmetric
tensor can be decomposed as

Tµν = T TTµν + Θµνχ+ LµνV = TTT + TΘ + TL , (2.19)

where we denote the transverse-traceless part as TTT , the transverse-tracefull part by TΘ,
and the longitudinal part by TL. To find the vector field V and the scalar field χ one has to
invert the operators appearing in (2.14) and (2.18) respectively. The orthogonality between
the components in (2.19) follows from the respective transverse and traceless properties
when implemented in the inner product (2.11).

2.3 Computation of the partition function

In this section we proceed to compute the one-loop partition function around AdS3

Z =
∫
Dhe−S

(2)[h] , (2.20)

where S(2) is the Einstein-Hilbert action expanded to quadratic order in the perturbation
h around the Euclidean AdS3 background, i.e., ḡ = g + h with g the background metric.
From now on, all contractions, raising and lowering of indices, and inner products such
as (2.11) are taken with respect to the background metric g. The quadratic action, fixing
Λ = −1 and taking into account the Gibbons-Hawking term, is [18]

S(2) = S = −
∫
d3x
√
g

(1
4hµν(∇2 + 2)hµν − 1

8h∇
2h+ 1

2G(h)2
)
. (2.21)

The last term in the above expression invites to define the de Donder gauge functional

Gν(h) = ∇µhµν −
1
2∇νh . (2.22)

– 7 –
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As expected, the quadratic action (2.21) is invariant under linearized diffeomorphisms, i.e.,
hµν → hµν + Lξgµν , for h and ξ in L2. As a result of this and the orthogonality properties
of the decomposition (2.19), (2.21) factorizes into two independent pieces and no longer
depends on the longitudinal component, that is

S[hµν ] = S[hTT + hΘ + hL] = S[hTT ] + S[hΘ] . (2.23)

The explicit form of the actions can be easily written as quadratic operators acting of
each component as follows

S[hTT ] =
∫
d3x
√
g

(1
4(hTT )µν

(
−∇2 − 2

)
(hTT )µν

)
, (2.24)

S[hΘ] = −
∫
d3x
√
g

(1
8χ
(
−∇2 + 3

) (
−∇2 + 2

)2
χ

)
. (2.25)

We see that the action for the trace mode is negative definite. This is a well-known
problem for the Euclidean action [19] and the standard procedure to deal with it is to rotate
the contour of integration to be parallel to the imaginary axis. The partition function can
be easily computed using the decomposition (2.19) and the property (2.23)

Z =
∫
Dhe−S[h] =

∫
DhTTDhVDhΘ e

−S[hTT+hV +hΘ]

=
∫
DhTTDVDχJV Jχe

−S[hTT+hΘ(χ)+LV g]

= JV Jχ

(∫
DV

)(∫
DhTT e

−S[hTT ]
)(∫

Dχe−S[hΘ(χ))]
)
,

(2.26)

where JV and Jχ are the Jacobians associated to the change in the integration variables
hV → V and hΘ → χ respectively. The integral over the vectors diverges and it is nothing
but the volume of the space of square-integrable vectors which can be identified with proper
diffeomorphims [6]. The last two integrals are Gaussian and they can be written in terms of
the determinants of the operators appearing in (2.24). The explicit computation of the Jaco-
bians JV and Jχ is carried out in the appendix A. Collecting everything together we obtain

Z =
det1/2VT

(
−∇2 + 2

)
det1/2hTT

(−∇2 − 2)
, (2.27)

where the operator in the numerator acts on square-integrable transverse vectors and the
operator in the denominator on square-integrable transverse-traceless rank-2 tensors. This
is precisely the result of [20] using the de Donder gauge-fixing condition.

2.3.1 Accessibility of the gauge choice

Even though we have not explicitly chosen a gauge in the previous computation, let us
discuss briefly what would have happened if we had chosen one. The usual gauge-fixing
procedure consists in picking a gauge condition G(h) = 0 and, using the Faddeev-Popov
procedure, write an identity operator as follows

1 = Jη

∫
Dη δ(G(h+ Lηg)) , (2.28)

– 8 –
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were Jη is the Jacobian associated to the change of variables from the metric h to the ghost
vector field η. The next step is to insert (2.28) in the path integral with the objective of
factorize the gauge redundancy. In order to do this, the previous expression has to be valid
for all square-integrable perturbations h. That is, the gauge has to be accessible, which
means that for every square-integrable h there must exist a perturbation h0 which fulfills
the gauge condition and a vector η such that

hµν = h0 + Lηg . (2.29)

Using the decomposition (2.19) for h, the de Donder gauge condition (2.22) turns out to be

G(hTTµν ) +G(Θµνχ) +G(LµνV ) = G(h0) +G(Lµνη) . (2.30)

Given that hTT and h0 fulfill the gauge condition, the above expression is simply given by

− 1
2∇

ν
(
∇2 − 3

)
χ− P ν(V ) = −P ν(η) , (2.31)

where P ν is defined by
P ν(η) =

(
−∇2 + 2

)
ην . (2.32)

In order to guarantee the accessibility of the gauge choice we need to be able to
solve (2.32) for the auxiliary ghost vector field η. Notice that P is definite positive when
acting on square-integrable vectors and therefore it can, at least formally, be inverted.1

Thus, because the two terms in the l.h.s. of (2.32) are square integrable, it suffices to
demand the ghost fields to belong to the space of L2 vector fields and not to the space of
vectors which generate L2 metric perturbations.

3 Spectrum of Laplacian operators

In this section we are going to analyze the H3/Γ spectrum of the operators appearing
in (2.27) acting on rank-2 symmetrical transverse-traceless tensors and transverse vector
fields respectively. The spectra of these operators are fully understood in H3, for example,
it is a well-known fact that the full spectrum of the Lichnerowicz Laplacian ∆LL acting on
rank-2 symmetrical traceless tensors in H3 is [−3,∞) with no eigenvalues below it [9, 21].
The Lichnerowicz Laplacian in this case is related with the ordinary Laplacian by [22]

(∆LL + 4)Tµν =
(
−∇2 − 2

)
Tµν , (3.1)

which means the spectrum of the operator (−∇2−2) is [1,+∞). If the space is asymptotically
hyperbolic (as it is H3/Γ) with dimension n = 3, then [−3,∞) is the essential spectrum of
the Lichnerowicz Laplacian and there might exist some eigenvalues below −3. A similar
scenario holds for the case of the vector fields [12, 13].

1In section 3.1.2 we prove that 0 does not belong to the spectrum of P and therefore P is invertible.
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In order to study the spectra of the operators we are going to use an auxiliary first-order
differential equation and prove that their spectra are closely related. We use coordinates
(z, x+, x−) which are related to the coordinates described in (2.6) by

z = tanh2(ζ) =
r2 − r2

+
r2 + r2

−
. (3.2)

In these coordinates the metric is

ds2 = dζ2 + sinh2(ζ)dx2
− + cosh2(ζ)dx2

+

= 1
4z(1− z)2dz

2 + z

1− z dx
2
− + 1

1− z dx
2
+ ,

(3.3)

where the x+ and x− have the periodicity (2.9). In these coordinates it turns out that the
components of the solutions of the differential equations can be written in terms of the
boundary components {ξ+ , ξ−} for vectors, and {h++ , h−− , h+−} for the rank-2 tensors.
The resulting differential equations can be solved with hypergeometric functions. As usual,
we are going to impose a delta-like normalization condition upon the solutions to analyze
the spectra of the operators.2

3.1 Rank-1 tensor field

3.1.1 Vector Laplacian and its equivalent first-order operator

Our goal is to determine the spectra of the operators appearing in (2.27) subject to
tranversality conditions. We will start with the rank-1 case in which we have(

−∇2 + 2
)
ξµ = α2ξµ , (3.4)

with the constraint
∇µξµ = 0 . (3.5)

Let us notice that the above system of differential equations can be formally factorized in
terms of first-order differential operators as follows

m2Pνµ(−m)Pρν (m)ξρ = (∇2 + 2 +m2)ξµ , (3.6)

where P(±m) is defined by3,4

Pνµ(±m)ξν =
(
δνµ ±

1
m
ε ρν
µ ∇ρ

)
ξν , (3.7)

and m is given by
m2 = α2 − 4 . (3.8)

2Notice that it is possible to obtain L2 functions by multiplying by a bump-like function with an
appropriate localized support in the interior of the space and as close to the asymptotic region as one
wants [23].

3Since we will find later on that m belongs to the spectrum of ε νρ
µ ∇ν if m ∈ R− {0}, and the spectrum

is a closed set of the complex plane, m = 0 necessarily belongs to the spectrum of ε νρ
µ ∇ν . So we do not

need to consider the case m = 0 independently.
4We denote the Levi-Civita symbol by εµνρ and the Levi-Civita pseudo tensor by εµνρ = √gεµνρ.
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The factorization from above suggests that, instead of solving the second-order problem
of (3.4), we might solve the first-order one given by5

ε νρ
µ ∇νξρ = −mξµ , (3.9)

or, in terms of the operator P(±m),

Pνµ(±m)ξν = 0 . (3.10)

As we said before, we will prove that if one obtains the spectra of (3.10) then one automat-
ically obtains the spectra of (3.4).

As a first step, we will show that the eigenfunctions6 of (3.9) are eigenfunctions of (3.4)
too. Notice that taking derivative in both sides of (3.9) we obtain

−m∇µξµ = εµνρ∇µ∇νξρ = 1
2ε

µνρ [∇µ,∇ν ] ξρ = −1
2ε

µνρRλρµνξλ

= −1
2ε

µνρ (gλνgρµ − gλµgρν) ξλ = 0 ,
(3.11)

therefore, solutions of (3.9) are automatically transverse.
To recover the second-order differential equation (3.4) we just need to replace in (3.9)

a solution ξ of the equation itself. What we obtain is

m2ξµ = ε νρ
µ ε αβ

ρ ∇ν∇αξβ = (gµαgνβ − gµβgνα)∇ν∇αξβ = ∇β∇µξβ −∇2ξµ

= ∇µ∇βξβ + [∇β ,∇µ] ξβ −∇2ξµ =
(
−∇2 − 2

)
ξµ ,

(3.12)

where we have used the transverse condition (3.5) in the last step. Therefore, the eigen-
functions of (3.9) also satisfy (

−∇2 + 2
)
ξµ =

(
4 +m2

)
ξµ , (3.13)

which is the second-order equation (3.4) with α2 = 4 +m2.
The above computations give us a hint that we might find the spectra of (3.4) by finding

the spectra of (3.9) instead. However, knowing the eigenfunctions of P are eigenfunctions
of the second-order operator in (3.4) is not enough. We can ask ourselves if the converse
holds (and it does by a simple argument). But the difficult question is whether the essential
spectrum (the part of the spectrum that are not isolated eigenvalues) of P is enough to
reconstruct the essential spectrum of the operator in (3.4). In the following subsection we
will show that this is indeed the case by relating both spectra.

5It is common to find in the literature that this is a shortcut first shown in [24]. However, as there are
unbounded operators involved, it seems to be more complicated than just finding the eigenvalues of P. For
example, it is obvious that an eigenfunction of P(m) with zero eigenvalue must be an eigenfunction of (3.4)
by the identity (3.7). However, how do we know that the spectrum of the second order differential operator
comes completely from that of the first order differential operator? It will turn out to be the case, but as far
as we know, it has not been analyzed at all in the present context.

6We use, somewhat loosely, the terminology “eigenfunctions” for the objects that satisfy certain eigenvalue
differential equation, as is (3.9). It will turn out to be the case that such ξµ is not square-integrable, but
only delta-like normalizable. This will be discussed in detail later on.
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3.1.2 Proof of the relation between the spectra of P(±m) and −∇2 − 2

Some clarifications related to the computations performed in the last section are in place.
First, we had always implicitly consider the self-adjoint extensions of the differential
operators. Second, we are going to use repeatedly that P(m)P(−m) = P(−m)P(m), which
holds since we can think that the dense domain where the l.h.s. and r.h.s. are originally
defined is that of compactly supported vector fields, which is a core for the Laplacian [8].
Therefore, taking closure on both sides gives self-adjoint operators, which must coincide
since self-adjoint extensions are unique.

Starting with the isolated eigenvalues, we can say that if m2 is an isolated eigenvalue
of −∇2 − 2, then both square roots ±|m| are eigenvalues of ε νρ

µ ∇ν . This is because if
P(m)P(−m)φn = 0 holds with finite multiplicity for some vectors φn, it follows that if φ
is one of these eigenvectors associated to m2, then P(±m)φ is an eigenvector of P(∓m),
implying that both ±m are eigenvalues of ε νρ

µ ∇ν . Conversely, if m is an eigenvalue of
ε νρ
µ ∇ν , by (3.6) m2 is an eigenvalue of −∇2−2. This means that if we characterize in detail
the spectrum of the first order differential operator ε νρ

µ ∇ν , we have a full characterization of
the spectrum of the original operator −∇2−2. However, so far we have analyzed the discrete
spectrum, it remains to do the same for the essential spectrum to complete the reasoning.

Let us now show that if m2 ∈ R is in the essential spectrum of −∇2 − 2, then one of
its square roots ±|m| is in the essential spectrum of ε νρ

µ ∇ν . Conversely, for any m in the
essential spectrum of ε νρ

µ ∇ν , m2 belongs to the essential spectrum of −∇2 − 2.
First we need to recall a few facts about spectral theory of self-adjoint operators, which

we denote as A [23], and Dom(A) refers to its domain:

1. λ ∈ Spec(A) if and only if ∃ {φn} ⊂ Dom(A), ||φn|| = 1, such that limn→∞ ||(A −
λ)φn|| = 0

2. If the previous sequence {φn} ⊂ Dom(A) satisfies that limn→∞〈ψ, φn〉 = 0 for any
ψ ∈ L2, it is called a Weyl sequence and λ ∈ Specess.(A), the essential spectrum of A.
Conversely, if λ ∈ Specess.(A) there exists a corresponding Weyl sequence. This is the
Weyl criterion.

3. The remaining sequences of item 1., namely those which are not Weyl sequences (do
not have a zero weak limit) correspond to a λ in the discrete spectrum and have finite
degeneracy.

What the second statement is telling us is that λ is in the essential spectrum if and
only if there is a Weyl sequence associated to it. We then have to show that if we have a
Weyl sequence associated to m2 for the operator −∇2 − 2, then we have a Weyl sequence
for P(m) or P(−m) and λ = 0 and vice versa.

Let us start and assume that there is such Weyl sequence of vector fields {φn}, so we have

||(−∇2 − 2−m2)φn|| → 0 ,

which by (3.6) is equivalent to

||P(m)P(−m)φn|| → 0 .
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We are going to show next that one can choose either {φn} or
{
P(−m)φn
||P(−m)φn||

}
as Weyl

sequence for λ = 0 and P(−m) or P(m) respectively, depending on whether the limit
limn→∞ ||P(−m)φn|| is zero or not. Let us first assume that limn→∞ ||P(−m)φn|| = 0.
Then the original Weyl sequence {φn} is by hypothesis a Weyl sequence for P(−m) and
λ = 0. Namely, m belongs to the spectrum of ε νρ

µ ∇ν .
Now, let us consider the case in which limn→∞ ||P(−m)φn|| = k 6= 0. The vectors

ψn := P(−m)φn
||P(−m)φn|| are normalized vectors and have a weak zero limit since:7

lim
n→∞

〈ψ,ψn〉 = lim
n→∞

〈P(−m)ψ, 1
||P(−m)φn||

φn〉 = 1/k lim
n→∞

〈P(−m)ψ, φn〉 = 0 .

It remains to show that limn→∞ ||P(m)ψn|| = 0 but that follows from the assumption that
{φn} is a Weyl sequence for P(m)P(−m).

The converse also holds. This comes from another way of characterizing/defining the
essential spectrum of a self-adjoint operator, which we borrow from chapter 9 of [25] (in
particular see Theorem 1.6 for the case of self-adjoint operators in a Hilbert space):

λ is in the essential spectrum of A if and only if A − λI has either infinite
dimensional kernel or cokernel.

Using this characterization of the essential spectrum, if we assume that 0 is in
the essential spectrum of P(−m), then P(−m) has either infinite dimensional kernel
or cokernel. We have to show that the same holds for P(m)P(−m). Let us suppose that
dim KerP(−m) =∞, then P(m)P(−m) has infinite dimensional kernel as well. On the
other hand, if dim CokerP(−m) =∞, since Ran(P(−m)P(m)) ⊆ Ran(P(−m)), we have

dim Coker(P(m)P(−m)) = dim Coker(P(−m)P(m)) ≥ dim Coker(P(−m)) =∞ ,

which implies that dim Coker(P(m)P(−m)) = ∞. We have called Ran(P(−m)) to the
range of P(−m).

With the discussion above, we are now certain that by studying the spectrum of the
operators P(m) for any m, we have complete control over the spectrum of −∇2 − 2. It is
also important to note that it did not matter the tensorial structure of the operators, so we
can apply the same logic later to analyze the case of the rank-2 tensor.

3.1.3 Solutions to the first-order differential operator and its essential
spectrum

In the previous section we showed that the spectrum of −∇2 − 2 can be found by solving
the spectrum of a simpler first-order differential operator. Now, we will proceed to solve
P(m)ξ = 0 and find its (delta-like normalizable) eigenfunctions for different values of m.
Recall that we can always approximate these eigenfunctions with peaked localized packets
that serve as the (normalizable) elements of a Weyl sequence (see footnote 2 above). This
is why the “eigenvalues” that we will find next lie in the essential spectrum.

7If limn→∞ ||P(−m)φn|| does not exist, then there is a subsequence ψnk := P(−m)φnk
||P(−m)φnk

|| which satisfies
ε < ||ψn|| for some ε > 0 and by the same arguments it is a Weyl sequence for P(m) and λ = 0.
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It will be useful to rewrite the equation (3.9) for 1-forms using coordinates (3.3)

ε[ξ]µ = ε νρ
µ ∇νξρ = −mξµ

= − 1
2z (∂+ξ+ − ∂−ξ−)dz − 2z(z − 1)(∂+ξz − ∂zξ+)dx− − 2(z − 1)(∂zξ− − ∂−ξz)dx+ .

(3.14)
The solutions of this equation also have to satisfy the equation (3.12). Writing down the
components of the Laplacian acting on 1-forms, it can be shown that

(∇2ξ)− −∆ξ− + 2ε[ξ]+ = −2ξ− ,
(∇2ξ)+ −∆ξ+ − 2ε[ξ]− = −2ξ+ ,

(3.15)

where ∆ is the scalar Laplacian acting on the components of the 1-form. Using the fact
that ξ is a solution of (3.14) the equation (3.12) can be written in terms of the following
matrix equation

(
∇2 + 2

)(ξ−
ξ+

)
= ∆

(
ξ−
ξ+

)
+
(

0 2m
−2m 0

)(
ξ−
ξ+

)
= −m2

(
ξ−
ξ+

)
. (3.16)

This can be diagonalized using ξ1,2 = 1/2(ξ+ ∓ iξ−) obtaining(
∆ + (−2im+m2) 0

0 ∆ + (2im+m2)

)(
ξ1
ξ2

)
= 0 . (3.17)

To solve this for ξ1 and ξ2 we use the ansatz

ξ1 = ei(k+x++k−x−)zα1(1− z)β1F1(z) ,

ξ2 = ei(k+x++k−x−)zα2(1− z)β2F2(z) ,
(3.18)

where k− has to be an integer and k+ = (n − k−r−)/r+ with n an integer due to the
periodicity conditions (2.9). Explicitly, the differential equation for the functions F1,2(z) is
given by[

z(1− z)∂
2Fi
∂z2 + ((2αi + 1)− z(2αi + 2βi + 1))∂Fi

∂z
−
(
k2

+
4 + (αi + βi)2

)
Fi

]

− 1
z

(
k2
−
4 − α

2
i

)
Fi + 4βi(βi − 1) +m(m− 2iεi)

4(1− z) Fi = 0 ,
(3.19)

where i = 1, 2 and (ε1, ε2) = (1,−1). We see that it is enough to study the case k+ ≥ 0 and
k− ≥ 0. If we choose the coefficients of the 1/z and the 1/(1− z) terms to be zero, i.e. if
we choose αi and βi to be

α1,2 = α = k−
2 , β1 =

{
1 + i

m

2 ; −im2

}
, β2 =

{
1− im2 ; im2

}
, (3.20)

the above differential equation becomes the hypergeometric differential equation

z(1− z)∂
2Fi
∂z

+ (c− (ai + bi + 1)z)∂Fi
∂z
− aibiFi = 0 , (3.21)
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with

c = 2α+ 1 = k− + 1 , ai = k−
2 + i

k+
2 + βi , bi = k−

2 − i
k+
2 + βi . (3.22)

The solutions are hypergeometric functions 2F1(ai, bi; ci; z) or F (ai, bi, ci, z) for simplicity.
It is important to note that k− is an integer because of the periodicity of x−. This is
a pathological case for the differential equation where the two usual solutions are not
independent and a second independent solution can be constructed by Frobenius’ method
and it looks like (see for example [26])

F (a, b, k− + 1, z) log(z)−
k−∑
i=0

ai(−z)−i +
∞∑
i=0

biz
i . (3.23)

We are going to neglect these solutions because they make the norm of the vectors diverge
at z ∼ 0. For the solutions of the form F (a, b, c, z) because of the transformation rules of
the hypergeometric function, the two possibilities of β yield to the same result. We are
going to choose

β1 = −im2 = β , β2 = −im2 + 1 = β + 1 . (3.24)

Then the solutions to the equations (3.17) are

ξ1 = Aei(k+x++k−x−)zα(1− z)βF (a, b, c, z) ,

ξ2 = Bei(k+x++k−x−)zα(1− z)β+1F (a+ 1, b+ 1, c, z) ,
(3.25)

with

α = k−
2 , c = k− + 1 , a = k−

2 + i
k+
2 + β , b = k−

2 − i
k+
2 + β . (3.26)

The constants A and B are not independent. This is because ξ+ and ξ− still have to satisfy
the first order equation (3.14). The deduction of the relation is in the appendix B.1 and
the result is

B

A
= 2β − k

2β + k̄
, (3.27)

with k = k− + ik+. To obtain the ξ+ and ξ− components we have to invert the relation
that we used to diagonalize the matrix (3.17). Then the z component of the equation (3.14)
allows us to find the ξz component in terms of the two others

ξ− = iAzα(1− z)βei(k+x++k−x−)
[
F (a, b, c, z)− (1− z)

(2β − k
2β + k̄

)
F (a+ 1, b+ 1, c, z)

]
,

ξ+ = Azα(1− z)βei(k+x++k−x−)
[
F (a, b, c, z) + (1− z)

(2β − k
2β + k̄

)
F (a+ 1, b+ 1, c, z)

]
,

ξz = 1
4βz (k+ξ+ − k−ξ−) = − 1

2βz (kξ2 + k̄ξ1) . (3.28)

For the above solutions the norm does not diverge for z ' 0 therefore we only8 need to check
the behavior for z ' 1. It is easier to analyze the asymptotic behavior of these solutions

8It might seem, by looking at (3.29), that if α = 0 (i.e. k− = 0) the contribution of the ξ− component
gives a problem near z = 0 in the norm, but it is not the case. If k− = 0, then the constant (3.27) becomes 1
and the terms O(0) of the two hypergeometrics in ξ− cancel each other.
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using the coordinate z = tanh2(ζ) where the norm of the vectors is

〈ξ, ξ〉 =
∫
dzdx−dx+

(
|ξz|2 z + |ξ−|2

(1− z)z + |ξ+|2

(1− z)

)
,

=
∫
dζdx−dx+

(
|ξζ |2 sinh(ξ) cosh(ξ) + |ξ−|2

cosh(ξ)
sinh(ξ) + |ξ+|2

sinh(ξ)
cosh(ξ)

)
.

(3.29)

Because of the decomposition (3.18) the integral in x+ and x− are deltas. The radial part
of the integral can be divergent depending on the asymptotic behavior of the functions ξ1
and ξ2. Using the asymptotic behavior computed in B.3 we obtain

ξ1 ∼ c1e
(−2−im)ζ + c2e

imζ ,

ξ2 ∼ c3e
−imζ + c4e

(−2+im)ζ ,

ξz ∼ e−2ζ
(
kξ1 + k̄ξ2

)
.

(3.30)

First, it is important to note that both choices of β in (3.20) give the same asymptotic
behavior. It is easy to see that if Im(m) 6= 0 this norm is infinite. The only case where the
form ξµ can be delta-like normalizable is when m ∈ R. Therefore, the equation (3.13) turns
out to be

(−∇2 + 2)ξµ = α2ξµ = (m2 + 4)ξµ . (3.31)

This means that the spectrum of the operator −∇2 + 2 is [4,+∞) with no eigenvalues
below. It is consistent with the spectral function computed it [27] and with the spectrum
of the Hodge Laplacian acting on forms computed in [12, 13].

3.2 Rank-2 tensor field: first-order differential operator, its solutions and the
essential spectrum

For the rank-2 tensor case, the equation we want to solve is(
−∇2 − 2

)
hµν = α2hµν , (3.32)

subject to the constraints

∇µhµν = 0 ,
gµνhµν = 0 ,

(3.33)

where hµν is symmetric. Analogously as in the vector case, it can be shown that for
symmetric tensors the eigenfunctions and the spectrum of these equations are related to
the eigenfunctions and the spectrum of the following first order equation (see proof in
section 3.1.2)

ε[h]µσ = ε νρ
µ ∇νhρσ = −mhµσ . (3.34)

It can be shown that the solutions of (3.34) are transverse and traceless. Using (3.34) a
second time we can show that its solutions satisfy the original differential equation with
α = m2 + 1,

(−∇2 − 2)hµν = (1 +m2)hµν . (3.35)
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Looking at the (z−) and (z+) components of the equation (3.34) we have

ε[h]z− = −hz+ + 1
2z

(
∂h−−
∂x+ −

∂h+−
∂x−

)
= −mhz− ,

ε[h]z+ = hz− + 1
2z

(
∂h+−
∂x+ −

∂h++
∂x−

)
= −mhz+ .

(3.36)

These equations together with the traceless condition allow us to write all the components
in terms of the boundary components h++, h+−, h−−. With help of the equation (3.34) we
can write

(∇2h)−− −∆h−− − 4ε[h]+− =− 4h−− + 2h++ ,

(∇2h)+− −∆h+− + 2ε[h]−− − 2ε[h]++ =− 6h+− ,

(∇2h)++ −∆h++ + 4ε[h]+− = + 2h−− − 4h++ ,

(3.37)

where ∆ stands for the scalar Laplacian acting on the tensor components. Using that hµν
is solution of the first order equation we can write the following matrix equation

(
∇2 + 3

)h−−h+−
h++

 = ∆

h−−h+−
h++

+

−1 −4m 2
2m −3 −2m
2 4m −1


h−−h+−
h++

 = −m2

h−−h+−
h++

 , (3.38)

which can be diagonalized withh0
h−
h+

 =

 1/2 0 1/2
−1/4 i/2 1/4
−1/4 −i/2 1/4


h−−h+−
h++

 , (3.39)

to obtain ∆ +m2 + 1 0 0
0 ∆ + (m− 2i)2 + 1 0
0 0 ∆ + (m+ 2i)2 + 1


h0
h−
h+

 = 0 . (3.40)

The solutions to these equations are obtained in the same way that in the vector case. Each
component has two equivalent elections for its constant βi, choosing them properly we can
write the final result,

h+ = A+z
α(1− z)βF (a, b, c; z)ei(k+x++k−x−) ,

h0 = A0z
α(1− z)β+1F (a+ 1, b+ 1, c; z)ei(k+x++k−x−) ,

h− = A−z
α(1− z)β+2F (a+ 2, b+ 2, c; z)ei(k+x++k−x−) ,

(3.41)

with
α = k−

2 ,

β = im

2 −
1
2 ,

c = 2α+ 1 = k− + 1 ,

a = α+ β + i
k+
2 = k−

2 + i
k+
2 + β ,

b = α+ β − ik+
2 = k−

2 − i
k+
2 + β .

(3.42)
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The constants A0, A+, A− are not free and they have to fulfill the first order equation (3.34).
The relation between them is computed in the appendix B.2 and the result is

A0
2A+

= 2β − k
2β + k̄

; 2A−
A0

= 2(β + 1)− k
2(β + 1) + k̄

, (3.43)

with k = k− + ik+. To write down the components of the tensor we have to invert (3.39)
and use (3.41) together with (3.43) to obtain the boundary components h++, h+−, h−−.
Then, inverting (3.36) we can obtain the components hz+ and hz−. Finally, the traceless
conditions gives the hzz component.

Asymptotically the norm of the tensors is

〈h,h〉∼
∫
dζdx+dx−

(∣∣∣h++e
−ξ
∣∣∣2+

∣∣∣h−−e−ξ∣∣∣2+2
∣∣∣h+−e

−ξ
∣∣∣2+2 |hξ+|2+2 |hξ−|2+|hζζ |2

)
,

(3.44)
and the asymptotic behaviors of the solutions are

h+(ξ) ∼ c1e
imζe−3ζ + c2e

−imζeζ ,

h0(ξ) ∼ c3e
imζe−ζ + c4e

−imζe−ζ ,

h−(ξ) ∼ c5e
imζeζ + c6e

−imζe−3ζ .

(3.45)

It is easy to see that as well as in the vector case, this norm is badly divergent if m has an
imaginary part. The equation (3.35) says that the spectrum of the operator −∇2− 2 acting
on symmetric transverse traceless rank-2 tensors is [1,+∞) with no eigenvalues below. This
is consistent with the well-known results for the essential spectrum of the Lichnerowicz
Laplacian on H3 and H3/Γ computed in [9, 21]. It is also consistent with the spectral
functions computed in [27].

4 Summary

We have shown that vector (ghost) fields must belong to the space of square-integrable
vectors fields rather than to the space of vectors fields which generate square-integrable
metric perturbations. This distinction is important because it is precisely this condition that
splits the space of generators of asymptotic symmetries into proper and improper asymptotic
vectors [6]. We also have shown that this condition is enough to guarantee the accessibility
of the de Donder gauge, which means that the gauge-fixing procedure in the computation of
the partition function only removes the redundancies generated by proper diffeomorphisms,
leaving intact the metric perturbations with a Brown-Henneaux fall-off behavior.

Then we switched to study the operators that appear in the final form of the one-loop
partition function. We have proven that the spectrum these operators can be studied by
looking at the spectrum of first-order operators. We concluded that there are no strictly
square-integrable eigenfunctions for these operators in H3/Γ. By imposing the solutions to
be delta-like normalizable, we have found the full essential spectra of the operators which
are, in fact, the full spectra. Our results are consistent with several spectra computed on
H3 and H3/Γ [9, 12, 13, 21].
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A Jacobians

A.1 The computation of Jχ
The Jacobian Jχ can be obtained by imposing the following normalization for the integral

1 =
∫
DhΘ e−〈hΘ|hΘ〉 . (A.1)

Using the definition of the transverse-tracefull part hΘ (2.17) and performing a change in
the integration variable we obtain

1 =
∫
DhΘ e−〈hΘ|hΘ〉=

∫
DχJχ e

−〈Θµνχ|Θµνχ〉= Jχ

∫
Dχe−

1
2 〈χ|(−∇

2+3)(−∇2+2)χ〉 . (A.2)

In the last equality we rewrite the inner product as a quadratic operator acting on the field
χ. The boundary behaviour of χ guarantees that the boundary term vanishes. The integral
is Gaussian and we can write it as a determinant. The result is

Jχ = det1/2χ (−∇2 + 3)× det1/2χ (−∇2 + 2) . (A.3)

A.2 The computation of JV
The factor JV is computed in a similar way to Jχ. We impose the normalization

1 =
∫
DhL e

−〈hL|hL〉 =
∫
DvJV e

−〈LV |LV 〉 = JV

∫
Dv e−2〈V |(−∇µLµν)[V ]〉 . (A.4)

Now, we can decompose V = VT + Vϕ where the component VT is transverse and Vϕ =
grad(ϕ). These two components are orthogonal to each other. Up to a vanishing boundary
term, we can rewrite the exponent in the last term of (A.4) as the sum of two quadratic
operators acting solely on VT and Vϕ

〈V | −∇µLµν [V ]〉 = 〈VT |
(
−∇2 + 2

)
VT 〉+ 2〈ϕ | ∇2(∇2 − 2)ϕ〉 . (A.5)

Performing a change of variables from Vϕ to ϕ with Jϕ the corresponding Jacobian, we
obtain

1 = JV

(∫
DVT e

−2〈VT |(−∇2+2)VT 〉
)(

DϕJϕe
−4〈ϕ|∇2(∇2−2)ϕ〉

)
, (A.6)

where both integrals are Gaussian. The Jacobian Jϕ can be easily computed with the same
procedure as before giving

Jϕ = det1/2ϕ (−∇2) . (A.7)

Collecting everything together we finally obtain

JV =
det1/2VT

(−∇2 + 2)× det1/2ϕ (−∇2)× det1/2ϕ (−∇2 + 2)
det1/2ϕ (−∇2)

= det1/2VT
(−∇2 + 2)× det1/2ϕ (−∇2 + 2) . (A.8)
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B The polarization constants

B.1 Rank-1 tensor

The solutions given in (3.25) must satisfy the first-order equations (3.14), in particular the
ξz component fulfills the equation

k+∂−ξz − k−∂+ξz = 0 . (B.1)

The derivatives of ξz are given in terms of ξ± and they can be found in the ± components
of the first order equation (3.14). Writing them in terms of ξ1 and ξ2 leads to the equation(
−2βk̄−2βik+(1−z)−2k̄z(1−z) d

dz

)
ξ1 =

(
−2βk+2βik+(1−z)+2kz(1−z) d

dz

)
ξ2 ,

(B.2)
where k = k− + ik+ and k̄ its complex conjugate. The equation above relates the constants
A and B. To solve it we can use the following properties of the hypergeometric functions,

z(1−z) d
dz
F (a,b,c,z) = (1−z)b(F (a,b+1, c,z)−F (a,b,c,z)) , (B.3)

z(1−z) d
dz
F (a+1, b+1, c,z) = (c−a−1)F (a,b+1, c,z)

+(a+1−c+(b+1)z)F (a+1, b+1, c,z) , (B.4)
a(1−z)F (a+1, b+1, c,z) = (c−b−1)F (a,b,c,z)−(c−a−b−1)F (a,b+1, c,z) . (B.5)

The l.h.s. of the equation (B.2) can be written with the help of (B.3) as

l.h.s. = −2Abzα(1− z)β+1
[
ik+F (a, b, c, z) + k̄F (a, b+ 1, c, z)

]
. (B.6)

For the r.h.s. of (B.2) we use (B.4) first and then (B.5) to obtain

r.h.s.= 2Bzα(1−z)β+1 [ik+a(1−z)F (a+1, b+1, c,z)+k(c−a−1)F (a,b+1, c,z)]

= 2B(c−b−1)zα(1−z)β+1
[
ik+F (a,b,c,z)+k̄F (a,b+1, c,z)

]
,

(B.7)

which means A and B satisfy

B

A
= −c− b− 1

b
= 2β − k

2β + k̄
. (B.8)

B.2 Rank-2 symmetric tensor

The boundary components of the first order equation (3.34) in this case are

−mh−− = −h+− + 2z(1− z) (∂zh+− − ∂+hz−) ,
−mh++ = h+− + 2(1− z) (∂−hz+ − ∂zhz+) ,
−mh+− = h−− + 2z(1− z) (∂zh++ − ∂+hz+)

= −h++ + 2(1− z) (∂−hz− − ∂zh−−) ,

(B.9)
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where the transversality condition for hµν was used to write down the last equation. The
hz+ and hz− component must fulfill equations similar to (B.1)

0 = 2z(1− z) (k−∂+hz− − k+∂−hz−) ,
0 = 2z(1− z) (k+∂−hz+ − k−∂+hz+) .

(B.10)

Using the relations (B.9) we can write this in terms of the following matrix equation

0 =
[(
k−m −k−+k+mz −zk+
k− k+z+k−m k+mz

)
+2z(1−z)

(
−k+∂z k−∂z 0

0 −k+∂z k−∂z

)]h−−h+−
h++

 . (B.11)

In order to write this in terms of the solutions of the hypergeometric equation h0, h− h+
listed in (3.41) we need to invert the equation (3.39), givingh−−h+−

h++

 =

1 −1 −1
0 −i i

1 1 1


h0
h−
h+

 . (B.12)

After using this, the easiest way to write down equations that only contain two of the
functions h0, h− h+ is to multiply the equation (B.11) by the matrix

c =
(

1 −i
1 i

)
, (B.13)

whose result is

0 =
(
a11 a12 0
a21 0 a23

)h0
h−
h+

 . (B.14)

Then, the second component of this equation involves h+ and h0 only, and it can be written as

2
(
−2βk̄−2βik+(1−z)−2k̄z(1−z) d

dz

)
h+ =

(
−2βk+2βik+(1−z)+2kz(1−z) d

dz

)
h0 ,

(B.15)
which is the same equation as in the vector case (B.2). Therefore, by (B.8) A0 and A+ satisfy

A0
2A+

= 2β − k
2β + k̄

= im− 1− (k− + ik+)
im− 1 + (k− − ik+) . (B.16)

The first component of the matrix equation (B.14) can also be put in the form of (B.2) and
then

2A−
A0

= 2(β + 1)− k
2(β + 1) + k̄

= im+ 1− (k− + ik+)
im+ 1 + (k− − ik+) . (B.17)

B.3 Asymptotic behaviour

We want to analyze the behavior of functions of the form

R(z) = zα(1− z)βF (a, b, c, z) , (B.18)
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near z ∼ 1, where the constants α, β, a, b and c satisfy the relations (3.20) and (3.22).
First, let us suppose that a+ b− c = 2β − 1 is not an integer or zero,9 then we can use the
connection formula

F (a, b, c, z) = Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)F (a, b, 1 + a+ b− c, 1− z)

+ Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) (1− z)c−a−bF (c− a, c− b, 1 + c− a− b, 1− z) .

(B.19)

Performing a change of variables z = tanh2(ζ) and using the connection formula we obtain
the following expression

R(ζ) = tanh2(ζ)
[

Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

1
cosh2β(ζ)

F (a,b,1+a+b−c,1/cosh2(ζ))

+Γ(c)Γ(a+b−c)
Γ(a)Γ(b)

1
cosh2(1−β)(ζ)

F (c−a,c−b,1+c−a−b,1/cosh2(ζ))
]
,

(B.20)

for which it is easier to evaluate its behavior when ζ ∼ ∞

R(ζ) ∼ Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)e

−2βζ
(
1 +O(e−2ζ)

)
+ Γ(c)Γ(a+ b− c)

Γ(a)Γ(b) e2(β−1)ζ
(
1 +O(e−2ζ)

)
.

(B.21)

It is clear that if β has a real part, one of the exponential is divergent and it may cause
problems in the norm of the tensors.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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