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Abstract: Monitoring water quality parameters and their ecological effects in transitional waters is 

usually performed through in situ sampling programs. These are expensive and time-consuming, 

and often do not represent the total area of interest. Remote sensing techniques offer enormous 

advantages by providing cost-effective systematic observations of a large water system. This study 

evaluates the potential of water quality monitoring using Sentinel-2 observations for the period 

2018-2020 for the Sado estuary (Portugal), through an algorithm intercomparison exercise and time-

series analysis of different water quality parameters (i.e., colored dissolved organic matter (CDOM), 

chlorophyll-a (Chl-a), suspended particulate matter (SPM), and turbidity). Results suggest that 

Sentinel-2 is useful for monitoring these parameters in a highly dynamic system, however, with 

challenges in retrieving accurate data for some of the variables, such as Chl-a. Spatio-temporal 

variability results were consistent with historical data, presenting the highest values of CDOM, Chl-

a, SPM and turbidity during Spring and Summer. This work is the first study providing annual and 

seasonal coverage with high spatial resolution (10 m) for the Sado estuary, being a key contribution 

for the definition of effective monitoring programs. Moreover, the potential of remote sensing 

methodologies for continuous water quality monitoring in transitional systems under the scope of 

the European Water Framework Directive is briefly discussed. 

Keywords: monitoring; remote sensing; WFD; transitional waters; water policy; suspended 

particulate matter; chlorophyll-a; CDOM; turbidity 

 

1. Introduction 

Estuaries, defined as water bodies partially saline due to their proximity to coastal 

waters, but substantially influenced by the freshwater flows [1], are extremely important 

ecosystems for different life forms. These complex systems are characterized by high 

levels of primary and secondary productivity, supporting high abundance of organisms 

and providing key nursery services. 

For centuries, estuaries have been considered as regions of extremely high relevance 

for society as many of the resources encountered on these ecosystems reach high 

economic and social values. Although human civilizations have historically benefited 

from estuaries (a majority of the world’s largest cities are located in proximity to estuaries 

[2]), only in the last decades we have become aware of the disturbing effects of human 
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activities in these habitats [3]. Given the increasing anthropogenic pressure on such 

important ecosystems, the assessment of water quality is now essential to ensure the best 

possible water conditions. Therefore, the development of cost-effective tools for these 

assessments is crucial to promote continuous evaluations and maintain sustainable 

exploitation of these aquatic systems, keeping their natural balance. As such, it is critical 

to standardize water quality analysis and turn these processes accessible and 

understandable, not only for researchers, but also for environmental managers and policy 

makers, which are the ones who can put the results of this type of analysis into practice 

[4]. In this context, the European Union created a legislation aiming to balance the 

requirements of human needs and ecosystems conservation by a sustainable planning of 

human activities: The Water Framework Directive (WFD) (2000/60/EC). The WFD obliges 

all Member States to implement water management mechanisms, as well as to assess the 

ecological status of their water bodies by monitoring and classifying them according to 

regulated parameters [5]. Routine monitoring of the water quality status is an important 

step in order to comply with WFD requirements and objectives. 

Water quality (WQ) can be measured in terms of biological, chemical, and physical 

indicators, such as turbidity, chlorophyll-a, harmful algae, temperature, metals, dissolved 

oxygen, nutrients (primarily phosphorus and nitrogen), and many other contaminants [2]. 

Here, we focus on core WQ indicators that can be derived directly from ocean colour 

satellite remote sensing: coloured dissolved organic matter absorption (aCDOM), 

chlorophyll-a (Chl-a), suspended particulate matter (SPM) and turbidity. These four 

indicators are traditionally monitored through field sampling programs, which can be 

labour intensive, time consuming and expensive. Hence, it is not feasible for some of the 

member states to carry out continuous monitoring, an issue that needs to be overcome. 

Moreover, it is often necessary to assume that field samples, which are often limited both 

spatially and temporally, are representative of the total area of interest. In this context, 

remote sensing (RS) is a valuable tool for monitoring WQ parameters. The incrementing 

interest in understanding the potential of this technique is driven by the reduced costs 

and the high spatial and temporal resolution that allows obtaining information for large 

areas. Furthermore, the possibility to access historical data allows us to track changes and 

patterns of the different WQ parameters through time [6]. 

Nevertheless, RS has been far less successful in transitional waters than in other areas 

given the high optical complexity of the waters and the proximity to the land (adjacency 

effect). Retrieving reliable information from RS in transitional systems can be considered 

a complex task, with a relevant number of challenges involved. The first challenge is 

performing a good atmospheric correction (AC), a crucial step when using space-born 

imagery, as it removes the signal coming from the atmosphere from the total signal 

received by the satellite-sensor system, allowing to isolate the signal coming from just 

below the water surface. The AC in such mutable and complex environments requires 

different approaches from the ones used for land and open ocean applications. Moses et 

al. [7] indicated three main issues that make the AC challenging in optically complex 

waters: (i) the proximity to terrestrial sources of atmospheric pollution, that may result in 

optically heterogeneous atmosphere which is difficult to model; (ii) the adjacency effect, 

which is the contamination of the signal received at the sensor by the contribution of the 

adjacent land pixels; and (iii) the non-negligible reflectance of water in the near-infrared 

(NIR) region of the spectra, due to high sediment concentrations preventing the use of the 

AC schemes adopted for open oceans. 

Once the water-leaving signal is retrieved, the complexity of the waters poses another 

challenge: to retrieve the different parameters contributing to the optical signal. A high 

range of optical variability can be found among estuaries. These waters can be a mixture 

of optically shallow and optically deep waters, with different optically active compounds 

(i.e., phytoplankton, CDOM, SPM) that do not co-vary and/or interact between them. Such 

aquatic systems can present short spatial and temporal gradients of clear to turbid waters, 

as well as oligotrophic to hypertrophic productive waters, often driven by tidal 



Remote Sens. 2021, 13, 1043 3 of 30 
 

 

conditions. This optical variability challenges the application of standard algorithms for 

WQ monitoring. Therefore, the validation of such products by performing comparisons 

with in situ data is a crucial step for reliable analysis. Moreover, most of the bio-optical 

algorithms for WQ parameters retrieval are often calibrated regionally for the optical 

characteristics of the different sites. Thus, the performance of such algorithms outside 

their calibration region is also a critical topic. 

In the past years, the number of WQ studies using space-born imagery over estuaries 

has been growing promisingly. Usually, this type of analysis in marine environments is 

made with ocean colour sensors, as they are specifically designed for marine purposes 

and have a good temporal (daily) and spatial resolution (300 m−1 Km). However, for 

smaller regions, such as estuaries, the spatial resolution of this type of sensor could be 

inadequate. As an alternative, it is possible to use land sensors, as the MultiSpectral 

Instrument (MSI) on board the Sentinel-2 (S2) satellites, which have a finer spatial 

resolution (10, 20, or 60 m), even though they have a lower revisiting time (5 days 

considering 2-satellite constellation) [8]. As this sensor was designed primarily for land 

applications with bands in different wavelengths, it is important to compare different AC 

processors to find the most suitable one for water applications [5]. 

The use of Sentinel-2 MSI for WQ analysis has been showing interesting results. For 

example, [9] retrieved better Chl-a estimations from S2-MSI for inland and coastal waters 

distributed worldwide using a machine learning algorithm in comparison with state of 

the art ocean colour algorithms. They identified the atmospheric correction as the main 

hurdle in generating high-quality Chl-a products. Ansper and Alikas [5] retrieved Chl-a 

from S2-MSI in Estonian lakes and concluded that the sensor has potential for deriving 

WQ parameters from small areas, fulfilling European Union WFD monitoring and 

reporting requirements. In [10], the authors made use of the Sentinel-2 derived turbidity 

product to monitor changes in the water transparency in the Venice lagoon before and 

after the first COVID-19 lockdown. In Portugal, using Sentinel-2 data for this type of 

systems is revealing to be a good option [11,12], including for the Sado estuary [13]. 

However, these approaches seem to have some gaps in terms of image processing or in 

their framing in a water quality analysis. It is hard to find published studies based on the 

use of satellite imagery to discuss water quality management in the Portuguese territory, 

in support of water policy and legislation as the WFD. Brito et al. [14] and Cristina et al. 

[15] are two of the few examples and are applied to coastal waters in Western Iberia. 

In the last decades, hundreds of RS publications have proposed solutions to 

overcome the challenges previously described and accurately quantify the 

biogeochemical parameters of WQ [8,16–18]. However, most of these analyses focus on 

the development of methods and do not use RS as a tool to better understand the 

dynamics of WQ in estuaries [8]. Additionally, the reviewed literature showed a lack of 

analysis that integrates several WQ parameters and not focusing only on one, such as 

chlorophyll-a or suspended solids as it is often observed. 

In this study, we show the potential of WQ monitoring using Sentinel-2 MSI 

observations in the Sado estuary (Portugal), through an algorithm intercomparison 

exercise and time-series analysis of different WQ parameters (CDOM, Chlorophyll-a, 

SPM, and turbidity). This analysis was developed with the purpose of demonstrating that 

satellite RS can be useful for ecological assessment of estuarine systems through a water 

quality evaluation, studying the feasibility of using Sentinel-2 for studies in transitional 

waters, even if it was originally designed for land applications. Moreover, we also briefly 

discuss the potential and benefits of using RS methodologies to implement continuous 

WQ monitoring plans in transitional systems under the scope of the WFD to overcome 

the issue of the lack of continuous monitoring due to the high cost of in situ samplings. 
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2. Materials and Methods 

2.1. Study Area 

The Sado estuary is a transitional system located near Setúbal, Portugal. It has a total 

area of 212.4 km2 [19], being, therefore, one of the biggest estuaries in Europe and the 

second largest national estuary (Figure 1). Given its high productivity, biodiversity and 

aesthetic value, it has been part of a natural reserve since 1980 [20]. Besides all the 

characteristics that make the Sado estuary a unique estuarine system, it is also a privileged 

place for aquaculture. The Sado oyster (Magallana angulata) is the main example of this 

activity in the region and is currently one of the main icons of the Setúbal region. In the 

context of WFD, nationally it is classified as a transitional water of typology A2- mesotidal 

well-mixed estuary [21]. 

The Sado estuary is characterized by a complex morphology and can be divided into 

two regions: (i) the outermost area (A in Figure 1), the Setubal bay, with 5 km wide, 20 km 

long and an average depth of 10m; and (ii) the innermost region (B in Figure 1), that 

presents a mixture of navigation channels and a vast intertidal zone of reduced depth 

(average depth of 10 m), relevantly influenced by the tide [22]. The connection to the ocean 

is made through a deep and narrow channel of approximately 1.5 km long and maximum 

depth of 50 m [23]. 

The Sado river flow can be considered low, varying on average from 0.7 m3/s in the 

summer to 60.0 m3/s in the winter [19,20]. Therefore, there is a strong influence of the tidal 

effect on the water circulation within the estuary [21,22]. The inflow and outflow of water 

is generally made along the two navigation channels (North and South channels, where 

stations 6 and 8 are located, respectively), according to the tide, with more intense currents 

in the South channel [24,25]. 

The estuary presents relatively low sun elevation during winter and higher wind 

intensities during spring-summer (hourly average with a maximum of ~8 m/s in 2018 and 

~6m/s in 2019, Source: https://snirh.apambiente.pt (accessed on 26 November 2020)). 

These factors along with the tidal variation, the low water column depth and, 

consequently, the observed bottom resuspension, makes accurate ocean colour remote 

sensing challenging in this system. 

 

Figure 1. Location of the Sado estuary in the Portuguese territory and of the 8 sampling stations 

within the estuary. (A) (blue box) and (B) (red box) are the outermost and innermost areas of the 

estuary, respectively. 
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2.2. In Situ Data 

For the present analysis, 8 sampling stations distributed along the estuary, shown in 

Figure 1, were considered. The estuary was divided into two areas according to its 

morphologic characteristics and the variation of its physicochemical properties, as 

described earlier, thus stations #6, #7, and #8 were located in the outermost area (A) and 

stations #1 to #5 in the innermost region of the estuary (area B) (Figure 1). All sampling 

stations were located in optically deep waters (verified by the in situ measurements of 

Secchi depth). Monthly campaigns were performed between March 2018 and November 

2019 within the framework of the AQUASado project. All campaigns were planned to 

start the water samples collection at similar tidal conditions (high water), to avoid the 

influence of the tide on the temporal variability of the WQ parameters, and to coincide 

with the S2-MSI satellite passage over the Sado estuary, when possible. 

Surface water samples were collected and taken to the laboratory for quantification 

of aCDOM, Chl-a, SPM, and turbidity. It is relevant to note that the total number of samples 

for the different parameters may vary according to the quality control results and data 

availability. 

Moreover, the absorption coefficients of phytoplankton (aphy) and non-algal particles 

(anap) were also obtained following the method described in [26]. These data were only 

used for the characterization of the study area and will be further analysed in a different 

work. Water temperature and salinity were also measured for site characterization 

purposes. The temperature was measured using an EXO2 Multiparameter Sonde (YSI) 

and the salinity through a high precision salinometer (Guildline Autosal 8400B) [27]. 

2.2.1. CDOM Absorption Coefficient 

The methodology described in [26] was used to obtain the CDOM absorption 

coefficient (aCDOM (λ), m−1). Water samples were filtered in triplicate through a 0.2 µm pore 

size polycarbonate filter (Whatman). The absorbance readings of the filtrate were obtained 

at the range of 300–800 nm through a dual-beam spectrophotometer (Shimadzu 2600). 

From the average of the absorbance readings and the subtraction of the reference sample, 

the values obtained at each λ were multiplied by the light extinction coefficient (2.303) 

and divided by the cuvette length (0.01 m) [26]. 

2.2.2. Chlorophyll-a 

Water samples were filtered using GF/F filters with 25 mm diameter and a pore of 

0.7 µm (Whatman). The filters were then wrapped in aluminium and stored at −80 °C to 

be later analysed through high performance liquid chromatography (HPLC) (C18 column) 

to quantify the different phytoplankton pigments following the method described in [28] 

and adapted by [29]. For the extraction, 3 mL of a solution composed of 95% cold 

methanol, buffered with 2% of ammonium acetate and containing 0.35 mgL−1 of trans-β-

Apo-8′-carotenal (as internal standard) were used. After placing the extraction solution in 

the sample test tube, the filter was grinded with a glass rod. Then, the tube was placed in 

the freezer (−20 °C) for 30 min after which it was placed in the ultrasound for 5 min. The 

test tube was then put back in the freezer (−20 °C) for another 30 min and, just after, 

centrifuged for 10–15 min at 4000 RPM (4 °C). Lastly, the sample was filtered and run in 

the HPLC machine. 

2.2.3. Suspended Particulate Matter 

SPM, defined as the dry mass of particles per unit volume of water sample (mg L−1), 

was determined following the standard gravimetric method described in [30]. A known 

volume of water sample was filtered through pre-ashed and pre-weighted Whatman GF/F 

filters (nominal pore size 0.7 µm and 47 mm diameter), with volume depending on the 

amount of material present in the water. At the end of filtration, the filters, including the 

outer edge of the filters, and filtration apparatus were rinsed with MilliQ water to remove 
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any salt. The dry mass of particles collected on the filters was then measured with a 

precision balance. 

2.2.4. Turbidity 

The turbidity was determined with a portable infrared turbidimeter (Lovibond TB 

210 IR) which quantifies the turbidity in nephelometric turbidity units (NTU) by 

measuring the light (λ = 860 nm) scattered at 90°, with an accuracy of ±2.5% of reading. 

The instrument calibration was checked before each sampling campaign using the 

calibration standards provided with the instrument (<0.1, 20, 200, and 800 NTU) and track 

the instrument stability. The turbidity was always recorded in triplicate for the same water 

sample and averaged. 

2.3. Sentinel-2 MSI Data 

Sentinel-2 (A/B) MSI Level 1C images were used in the present study. The S2-MSI 

granules acquired between March 2018 and March 2020 were downloaded from Sentinel 

Scientific Data Hub (https://scihub.copernicus.eu/ (accessed on 26 November 2020)). 

Cloud free L1C images with coincident field campaign dates were used to compare 

satellite-derived data with in situ measurements or match-ups (processing chain shown 

in Figure 2). The images were re-sampled to 10 m as part of the pre-processing and the 

average of 3 × 3 pixels window centred on the sampling station was used for the in situ 

comparison and to perform the time-series. 

 

Figure 2. Processing chain applied to Sentinel-2 imagery for water quality parameters retrieval. ρw 

refers to the water-leaving reflectance obtained from the different AC processors: Acolite, 

Polymer, and AC-C2RCC. 

To perform the matchups, the available images were filtered considering the time 

difference between the satellite passage and the in situ measurements. The time window 

chosen was ±2 h. The number of total match-ups depended on the AC processor used. To 

ensure high quality of satellite data, different quality flags were considered (Table 1). 

These quality flags are part of the L2 processing and, when raised, they indicate that 

something might have gone wrong during the data processing and that the retrieved 

product should be carefully analysed. Moreover, the IdePix (v2.2) was used on L1C 

images for pixel type identification. 

Given the lack of in situ radiometric measurements for the direct test of AC, three AC 

processors were evaluated by testing a combination of AC + bio-optical algorithms (Figure 

2). The AC processors tested were Acolite v20190326 (RBINS) [31], C2RCC v2.0 [32] and 
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Polymer v4.12 [33]. The selection of the aforementioned AC algorithms was based on their 

free availability, and on the correcting effects that could be applied, such as sun glint and 

adjacency of land pixels, common sources of errors in transitional waters. 

Acolite is an AC processor developed for coastal and inland waters. By default, it 

performs atmospheric correction using the dark spectrum fitting approach, but it can be 

configured to use an exponential extrapolation approach [34]. 

The C2RCC processor relies on a database of radiative transfer simulations of water-

leaving reflectance and related top-Of-atmosphere radiances (satellite signal) [32]. The 

inversion of water signal and satellite signal is performed by neural networks and is fully 

described in [32]. 

Polymer AC is a coupled water-atmosphere model that uses a spectra-matching 

optimization approach to obtain a best-fitting combination of water and atmosphere 

unknowns, being one of its strengths to retrieve water reflectance in the presence of sun 

glint. This AC does not use exclusively the signal in the NIR, but it also uses all the 

available spectral bands in the visible [33]. 

It is important to note that these processors are all under active development but they 

are publicly available and are considered mature and useful to compare [35]. Each 

processor was used with its default settings, as this should be the best option for general 

use, without a priori knowledge of the water body or atmospheric conditions. 

Table 1. Flags used from AC-C2RCC and Polymer. 

AC Processor Flag Meaning 

C2RCC 

Rtosa_OOS 

The input spectrum to the atmospheric correction neural net 

was out of the scope of the training range and the inversion 

is likely to be wrong. 

Rtosa_OOR 
The input spectrum to the atmospheric correction neural net 

out of training range 

Rhow_OOS 

The Rhow input spectrum to the Inherent Optical Properties 

(IOP) neural net is probably not within the training range of 

the neural net and the inversion is likely to be wrong. 

Rhow_OOR 
One of the inputs to the IOP retrieval neural net is out of 

training range 

Cloud risk High downwelling transmission indicates cloudy conditions 

Polymer 
!bitmask & 

1023 = 0 
Invalid pixel 

Once the image processing was complete, the atmospherically corrected outputs, i.e., 

water reflectance ρw or remote sensing reflectance Rrs (Rrs = ρw/π), were used to test 

different algorithms for WQ parameters retrieval (Table 2), with the aim of selecting the 

best processing chain for the study area. Several algorithms have been developed to 

retrieve WQ parameters from S2-MSI data. However, the majority of them are often 

calibrated regionally for the optical characteristics of the different sites. Thus, the 

performance of such algorithms outside their calibration region is a key topic. To address 

this matter, an algorithm intercomparison exercise was performed for the different 

parameters under evaluation. The selection of the bio-optical algorithms to test was 

conducted considering: (i) the similarity between the original ranges of the in situ 

parameters used for their calibration and the range of in situ parameters observed in this 

study; (ii) their good performance outside their calibration region based on the literature 

review; and (iii) their applicability to S2-MSI data. 
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Table 2. Bio-optical algorithms tested for the different water quality parameters. 

Algorithm Equation Type of Algorithm 
MSI Bands 

Involved (nm) 
Reference

acdom(m−1) 

TS443 �����(443) = 0.00129 + 0.6543 × �
���670

���490
� Empirical 490, 665 [36] 

TS412 �����(412) = 0.00411 + 2 × �
���670

���490
� Empirical 490, 665 [36] 

MAs 
�����(443) = ln[(�

������

������
� − 

0.4247)/2.453]/(−13.586) 
Empirical 490, 560 [37] 

MAM 
����� (443) = ln[(�

������

������
� − 

0.4363)/2.221]/(−13.126) 
Empirical 490, 560 [37] 

CZ ����� (440) = 0.2987x–1.369, x = Rrs B1/Rrs B3 Empirical 490, 665 [38] 

CH 
����� (440) = 28.966e−2.015x, x = Rrs 560 nm/Rrs 

665 nm 
Empirical 560, 665 [39] 

KU �����(420) = 5.20 × �
���565

���660
�

��.��

 Empirical 560, 665 [40] 

Chlorophyll-a 

C2RCC - Neural network  [32] 

OC3 

��3 = �����[([���(442), ���(492)] )
× ���(560)��) 

� = 0.3308 − 2.684� + 1.5990�� +  0.5525��

− 1.4876�� 
�ℎ����� = 10�  

Empirical 443, 490, 560 [17] 

2-Band �ℎ������� = (35.75 ×
���(708)

���(665)
− 19.3)�.��� Semi-analytical 665, 705 [41] 

Gons et al. (2005) 

(GS) 

��(783) = 1.56 × ��(783)/[0.082
− 0.6 × ��(783)] 

����(665) = (0.70 + ��) × ��(705)/��(665)

− 0.4 − ��
�
 

�ℎ������ = ����(665)/����
∗ (665) 

Semi-analytical 665, 705, 783 [42] 

Suspended Particulate Matter 

C2RCC - Neural network  [32] 

Nechad ��� =
����(�)

1 − �
��(�)

��
�

+ ��  Semi-analytical, single 

band 

665, 705, 740, 

783, 865 
[43] 

Siswanto �����(���) = 0.649 + 25.623�� − 0.646�� Empirical 560, 665, 490 [44] 

Turbidity 

Dogliotti ���� =
����(�)

1 − �
��(�)

��
�
 Semi-analytical, single 

band 
665, 865 [45] 

Nechad ���� =
����(�)

1 − �
��(�)

��
�

+ �� Semi-analytical, single 

band 

665, 705, 740, 

783, 865 
[46] 

2.4. Statistical Indicators 

To assess the agreement between the in situ observations and the satellite data, a 

statistical evaluation was performed using: linear regression parameters including 

coefficient of determination (R2), slope and intercept and uncertainty estimates including: 

root mean square deviation (RMSE), bias error (BIAS, δ), unbiased root mean squared 

error (URMSE, ∆), absolute percentage difference (APD), and relative percentage 

difference (RPD). The RMSE, the bias, and the APD were used to evaluate the accuracy of 
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the match-ups and the RPD was used as an indicator of the systematic error (relative bias). 

These parameters can be defined as follows: 

���� = �
∑�

��� (���� − �� �����)�

�
 (1)

���� =
1

�
�(���� − �� �����)

�

���

 (2)

���� = �
1

�
�[(���� − µ���) − (�� ����� − µ�)]�

�

���

 (3)

���(%) =
1

�
�

|���� − �� �����|

�� �����

�

���

× 100 (4)

���(%) =
1

�
�

���� − �� �����

�� �����

�

���

× 100 (5)

where Sat is the satellite-derived data and in situ the observations collected in the estuary. 

N is the total number of samples, i is the sample index and µ��� = 1
�� ∑ ����

�
��� – 

analogous definition applies for µin situ. 

Statistical analyses of Chl-a are presented in logarithmic scale to account for the log-

normal distribution of the bio-optical parameter [47]. According to [48] the RPD and APD 

were calculated without log-transforming the Chl-a values. 

Additionally, summary diagrams such as Taylor and Target plots, referenced in [49] 

and [50], were used for a better visualization and inter-comparison of results. The Taylor 

diagram is based on the scoring of the normalized standard deviation (STDsat/STDin situ, 

[51]) and correlation coefficient (R). The Target diagram summarizes the scoring of the 

URMS and BIAS instead. 

2.5. Time-Series Analysis 

The statistical indicators described in Section 2.4 were used to select the best 

processing chain from the match-ups intercomparison exercise and perform a spatio-

temporal analysis of the different WQ parameters, with the main objective of evaluating 

the capabilities of S2-MSI imagery for continuous monitoring of WQ variability in 

estuarine systems. 

The best performing combination of AC + bio-optical algorithms was applied to all 

cloud-free L1C images sensed between March 2018 and March 2020. As done for the 

match-ups exercise, quality flags were considered to ensure the highest quality of satellite 

data. 

Given the strong variability of the in situ data and the high dynamic that 

characterizes the Sado estuary, the time-series analysis was performed separately for the 

region A (outermost area) and the region B (innermost area) (Figure 1). The time-series 

performed with RS products and in situ observations considered the average of the pixels 

corresponding to the sampling stations included in each of the areas. Moreover, the 

seasonal variability (astronomical seasons) of the WQ parameters in the whole estuary 

and its adjacent area, is provided through high resolution maps. 
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3. Results 

3.1. Study Area Characterization 

Based on the monthly surface data collected in situ between March 2018 and 

February 2019 analysed in the present study (see Section 2.2), the estuary presents clear 

seasonal patterns of the physical and chemical properties (Table 3) with a clear tendency 

to find higher values of aCDOM, Chl-a, SPM, and turbidity during spring and summer. 

Furthermore, the estuary should not be considered spatially homogeneous. The innermost 

region of the estuary (B) shows higher values of the optically active components and a 

greater susceptibility to seasonal variations of the weather, given the greater thermal 

amplitude observed. 

Table 3. Annual and seasonal averages of the temperature (T), salinity, chlorophyll-a (Chl-a), suspended particulate matter 

(SPM), colored dissolved organic matter absorption (aCDOM), and turbidity in the Sado estuary (based on the monthly 

surface data collected in situ between March 2018 and February 2019). A and B are the outermost and innermost regions 

of the estuary, respectively. 

  
T 

(°C) 
Salinity 

Chl-a 

(mg/m3) 

SPM 

(mg/L) 

aCDOM 443 nm 

(m−1) 

Turbidity 

(NTU) 

  Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD 

Winter 

A 14.3 0.9 35.89 0.40 0.90 0.26 1.14 0.46 0.21 0.05 1.10 0.33 

B 12.9 2.4 32.45 1.95 1.45 0.92 2.61 1.13 0.38 0.07 2.14 0.81 

Estuary 13.4 2.1 33.76 2.29 1.25 0.78 2.19 1.19 0.36 0.10 1.84 0.85 

Spring 

A 15.5 1.2 35.02 0.89 2.09 1.33 1.71 0.75 0.16 0.09 - - 

B 17.4 2.0 29.13 5.13 3.54 5.85 8.40 7.74 0.37 0.12 - - 

Estuary 16.7 1.9 30.91 5.04 3.03 4.79 6.09 7.00 0.26 0.15 - - 

Summer 

A 18.7 1.0 36.02 0.27 1.66 0.35 2.06 1.06 0.15 0.12 1.30 0.86 

B 23.3 0.9 35.23 1.42 4.21 2.41 8.37 4.42 0.47 0.15 6.58 4.49 

Estuary 17.7 4.0 35.46 1.25 3.34 3.66 5.74 4.94 0.31 0.20 4.28 3.86 

Autumn 

A 17.7 2.2 35.91 0.15 1.47 1.29 1.80 0.46 0.14 0.09 1.31 0.49 

B 20.6 4.3 34.14 2.83 1.59 0.53 3.91 1.69 0.42 0.11 3.03 1.38 

Estuary 18.9 3.3 34.73 2.42 1.55 0.81 3.21 1.72 0.30 0.18 2.46 1.41 

Year 

A 16.1 2.3 35.57 0.78 1.70 1.29 1.55 0.73 0.16 0.10 1.11 0.44 

B 17.4 4.2 32.31 4.30 3.40 3.75 5.99 4.95 0.41 0.13 4.59 3.92 

Estuary 17.0 3.7 33.36 3.87 3.05 3.43 4.97 4.74 0.29 0.17 3.81 3.75 

The Sado estuary is optically dominated by CDOM, as observed in Figure 3, with 

higher values of aCDOM compared in respect to phytoplankton and non-algal particle 

absorption coefficients, aphy and anap respectively. Figure 2 shows the dominance of aCDOM 

mainly in stations located in area B, showing smaller contributions of anap and aphy. It 

should be reminded that anap and aphy are only here presented to characterise the study 

area and will not be further analyzed in the present study. In region A, the contribution 

of aphy was slightly higher. However, aCDOM remains dominant in most of the stations 

located in this area. The important contribution of the aCDOM (443 nm) even in stations 

located in area A, allows to classify the whole estuary as optically complex with Case 2 

waters [52], regardless of the studied period and the tidal conditions. 
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Figure 3. Ternary plot of absorption at 443 nm of CDOM (aCDOM, N = 33), non-algal particles (anap, 

N = 33) and phytoplankton (aphy, N = 33) produced using the in situ data considered for the 

algorithms intercomparison exercise. 

3.2. S2-MSI Match-Ups 

For this study, the combination of AC and bio-optical algorithms were evaluated 

against in situ values of the different WQ parameters. An algorithm intercomparison 

exercise was performed for the available match-ups with the objective of selecting the best 

processing chain for a spatio-temporal analysis of the different WQ parameters under 

investigation. Taylor and Target diagrams were used for the selection of the best 

performing processing chain. 

Even if no in situ radiometric measurements were available for a thorough 

comparison, the �� spectra derived from the matchups of the three AC processors were 

compared separating the two regions of the estuary (Figure 4). 

 

Figure 4. Sentinel-2 derived ��  spectra for the different processors under investigation (Polymer: 

solid, C2RCC: dotted and ACOLITE: dashed lines). Mean and standard deviation (bars) of the 

match-ups available for all the processors at stations in the outer (A) and inner basin (B) are shown 

with blue and red lines, respectively. 

Figure 4 shows that Acolite retrievals are significantly higher across the whole 

spectrum compared to the other ACs. In spite of this, similar shapes were obtained by the 

three processors. From a visual inspection, it can be noted a difference between the 

spectral shapes of areas A and B. In particular, for area B, ��  in the blue, is lower 

compared to the green region of the spectra, i.e., the green peak is more pronounced than 
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in area A. This could be partially due to higher importance of CDOM (aCDOM) and 

sediments (anap), which agrees with in situ measurements (Figure 3). Moreover, it can be 

observed that reflectance in the NIR region of the spectra is higher in area B compared to 

A, which matches the higher SPM found in the inner part of the estuary. 

Regarding aCDOM, AC-C2RCC and Polymer showed the best performance (mean APD 

= 79% and APD = 68%, respectively) when combined with the bio-optical algorithms, 

compared to the results obtained using Acolite (mean APD = 164%). In the Taylor diagram 

(Figure 5), the TS443 and KU algorithms combined with Polymer (pTS443 and pKU) were 

closer to the reference (represented by a star). Considering the AC-C2RCC processor, the 

KU, CZ, and TS443 were the best combination performing algorithms. In the Target plot, 

the TS443 algorithm showed the results closest to the reference (zero), both combined with 

Polymer and AC-C2RCC. All other processing chains (except AC-C2RCC) 

underestimated the aCDOM. Among the algorithms that showed the best performance, the 

TS443 was the one with the slope values closest to 1 (0.9 with AC-C2RCC and 0.8 with 

Polymer), and the lowest RMSE (0.151 and 0.106, respectively for AC-C2RCC and 

Polymer) compared to the other algorithms (Table 4). 

For Chl-a, combining the results obtained with the Taylor diagram and the target 

plot, the bio-optical algorithm/AC processor combination that compared best with the in 

situ data was GS with AC-C2RCC (cGS) reflectances. For this processing chain, the highest 

determination coefficient (R2 = 0.63) was obtained, while the remaining statistical 

parameters (RMSE, bias, APD and RPD) were the closest to zero (Figure 6). It should be 

noted that the application of 2-Band algorithm [41] to AC-C2RCC images also produced 

good results (the second best), superior to the ones of the standard Chla-C2RCC algorithm 

and even of OC3 (Taylor plot, Figure 5). On the other hand, the standard algorithm from 

Polymer (pPolymer) showed better results than the standard algorithm from C2RCC, but 

the first processor failed in the quantification of Chl-a using GS and 2-Band algorithms. In 

general, the satellite-derived data tended to overestimate the in situ data (except the 

combination with the GS algorithm). The retrieval of Chl-a remains relatively inconsistent, 

with large differences between satellite and in situ observations (high APD values). 

For the SPM and turbidity products, better results were obtained when NIR bands 

were used. Considering the rather low measured SPM and turbidity values, signal in the 

NIR was expected to be low and a better correlation with the red bands could be expected. 

From the S2 extracted spectra (Figure 4) this is clear for region A, but less evident in region 

B. However, a poor relationship was found using the red bands for region A (not shown), 

which could be partially due to the overlap of this band with the location of the Chl-a 

absorption peak which might be affecting the retrieval of SPM and turbidity at this 

wavelength. Considering this and given the low number of match-ups available for region 

A, the dataset was not separated by region and thus, the general performance of the 

algorithm was used to select the best performing AC+algorithm. It should be noted 

though that for the clearer waters in region A the correlation is low (blue signs in Figure 

6), thus results using the NIR bands should be considered with caution for this area. 

For the SPM product, the best results were obtained from Polymer in combination 

with Nechad algorithm [44] at 705 nm (pN705) (R2 = 0.57, APD = 26%). However, this 

algorithm decreased its performance when applied to images processed with the AC-

C2RCC. On the other hand, with AC-C2RCC, good results were also obtained, using 

Nechad algorithm for 740 nm (cN740) (R2 = 0.49, APD=31%) (Figure 6). Interestingly, the 

same algorithm (for the same wavelength) showed a worse performance when applied to 

images processed with Polymer (Table 4). For SPM, Acolite + bio-optical algorithms were 

the combinations that presented the worst performance (APD always > 150% except from 

aS, where APD = 31%) and the only ones in which there was a tendency to overestimate 

in situ values, suggesting that ��  is overestimated compared to other AC (Figure 4). 

From the set of results, it was the application of Nechad for the 665 and 705 nm 

wavelengths that showed a greater consistency in the results between the different 
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processors, although they did not have the overall best performance when compared with 

the in situ dataset. 

The highest agreement between the satellite and the in situ turbidity data was 

achieved by applying Nechad at the wavelength of 783 nm to the images processed with 

AC-C2RCC (cN783, R2 = 0.84, APD = 33%) (Figure 6). Overall, this AC processor presented 

good results for the set of algorithms and bands tested. Additionally, AC-C2RCC showed 

a tendency to underestimate satellite-derived turbidity data in comparison to the in situ 

measurements (negative RPD for all the algorithms). The application of the Dogliotti 

algorithm [46] generated results similar to those of Nechad for AC-C2RCC images, as 

expected. With Acolite, the application of Nechad to bands 740, 783 and 865 nm showed 

a relevant decrease in the quality of the match-ups results, when compared with the lower 

wavelengths. 

Overall, two out of the three tested AC processors algorithms, AC-C2RCC and 

Polymer plus bio-optical, seemed to provide results more comparable with in situ data for 

the selected study area (Table 4). The combinations (AC+bio-optical algorithms) tested 

with these two processors presented similar results for all the parameters and can be 

considered more suitable for the study area than the combinations using Acolite (mean 

APD = 254%), which showed a general overestimation of the in situ values (mean 

BiasACOLITE = 2.78; mean BiasC2RCC = 0.04; mean BiasPOLYMER = −0.07). Even though Polymer 

combinations have outperformed AC-C2RCC combinations in specific cases, such as in 

the quantification of CDOM or SPM, it did not present satisfactory results for Chl-a. 

Considering that AC-C2RCC combinations showed good capabilities for all these 

parameters, the best performing AC-C2RCC processor plus bio-optical algorithms were 

selected for the time-series analysis for being the best combination for the set of 

parameters analysed. In accordance, only the best match-ups results of the application of 

the algorithms to AC-C2RCC images will be presented in this section (Figure 6). The full 

dataset of statistical results is available in Table 4. 

Since the combinations using the AC-C2RCC were chosen as overall best performing, 

the algorithms selected to perform the time-series analysis were the following: cT443 

(aCDOM), cGS (Chl-a), cN740 (SPM), and cN783 (turbidity). The table contemplates the data 

of the average of 3 × 3 pixels centred in the pixel of the sampling stations. The best 

performing processing chain of eaxh parameter are highlighted in bold.  
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Table 4. Summary of the results obtained in the application of the different algorithms to images processed with C2RCC, Polymer and Acolite, for the quantification 

of CDOM, chlorophyll-a, SPM, and turbidity. The table contemplates the data of the average of 3x3 pixels centred in the pixel of the sampling stations. The best 

performing processing chain of each parameter are highlighted in bold. 

 AC Processor Algorithm Equation R2 RMSE URMS BIAS APD (%) RPD (%) N 

CDOM 

AC-C2RCC 

C2RCC (443 nm) Y = 0.4x + 0.22 0.201 0.170 0.167 0.032 99.019 70.360 21 

TS (443 nm) Y = 0.9x + 0.05 0.471 0.151 0.149 0.027 63.571 40.000 21 

TS (412 nm) Y = 1.6x + 0.18 0.563 0.701 0.447 0.540 143.856 134.141 21 

MAS (443 nm) Y = 0.1x + 0.01 0.427 0.319 0.142 −0.285 78.199 −78.199 20 

MAM (443 nm) Y = 0.3x + 0.1 0.325 0.182 0.124 −0.133 63.744 −8.546 20 

CZ (443 nm) Y = 0.4x − 0.004 0.462 0.226 0.117 −0.194 57.911 −51.400 21 

CH (443 nm) Y = 0.6x − 0.08 0.294 0.265 0.169 −0.204 74.368 −68.336 21 

KU (420 nm) Y = 0.7x − 0.05 0.446 0.283 0.199 −0.201 50.334 −40.553 21 

Polymer 

TS (443 nm) Y = 0.8x + 0.06 0.608 0.106 0.105 −0.013 46.612 19.630 21 

TS (412 nm) Y = 1.4x + 0.21 0.651 0.516 0.303 0.418 106.388 101.800 21 

MAS (443 nm) Y = 0.1x + 0.01 0.607 0.342 0.152 −0.306 85.400 −85.400 20 

MAM (443 nm) Y = 0.2x + 0.09 0.515 0.229 0.133 −0.187 68.307 −27.708 21 

CZ (443 nm) Y = 0.3x + 0.003 0.582 0.245 0.114 −0.217 62.152 −60.788 21 

CH (443 nm) Y = 0.7x − 0.07 0.376 0.220 0.159 −0.152 66.332 −55.218 21 

KU (420 nm) Y = 0.8x − 0.04 0.529 0.231 0.187 −0.135 41.981 −31.224 21 

Acolite 

TS (443 nm) Y = 0.4x + 0.3 0.561 0.142 0.106 0.095 117.027 114.796 19 

TS (412 nm) Y = 0.8x + 0.89 0.672 0.787 0.165 0.770 258.640 258.640 19 

MAS (443 nm) Y = 0.1x + 0.09 0.620 0.261 0.139 −0.222 74.266 −35.156 19 

MAM (443 nm) Y = 0.1x + 0.09 0.620 0.262 0.138 −0.222 73.605 −36.073 19 

CZ (443 nm) Y = 0.2x + 0.1 0.565 0.213 0.123 −0.174 70.461 −18.879 19 

CH (443 nm) Y = 0.6x + 0.31 0.153 0.578 0.291 0.499 306.715 304.302 19 

KU (420 nm) Y = 0.6x + 0.8 0.182 0.673 0.310 0.598 244.380 243.929 19 

Chlorophy

ll-a 

AC-C2RCC 

Chla-C2RCC Y = 4.9x − 1.33 0.223 0.714 0.672 0.242 281.060 243.552 13 

OC3 Y = 11.0x − 2.49 0.259 0.885 0.519 0.717 749.362 733.932 13 

GS Y = 0.4x − 0.07 0.625 0.565 0.205 −0.527 66.985 −66.985 13 

2-Band Y = 4.4x + 1.6 0.608 0.765 0.126 0.754 493.038 493.038 13 

Polymer Polymer Y = 2.5x + 0.67 0.365 0.503 0.228 0.448 221.230 216.124 13 
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OC3 Y = 2.8x + 1.27 0.294 0.603 0.260 0.543 309.703 304.136 13 

GS - - - - - - - - 

2-Band - - - - - - - - 

Acolite 

OC3 Y = 2.6x + 0.63 0.217 0.5151 0.229 0.461 224.311 224.311 11 

GS Y = −0.2x + 1.14 0.0004 0.327 0.306 −0.115 61.556 −1.586 11 

2-Band Y = −1.4x + 13.07 0.0003 1.044 0.233 1.018 1116.360 1116.360 11 

SPM 

AC-C2RCC 

SPM-C2RCC Y = 2.2x − 0.59 0.467 25.696 3.927 3.025 107.691 88.159 23 

N (665 nm) Y = 0.8x + 1.82 0.443 1.688 1.344 1.020 56.509 46.041 23 

N (705 nm) Y = 0.8x + 1.03 0.470 1.343 1.307 0.3111 35.319 17.718 23 

N (740 nm) Y = 0.8x + 0.91 0.493 1.259 1.248 0.170 31.814 12.884 23 

N (783 nm) Y = 0.8x + 1.21 0.498 1.443 1.292 0.642 43.561 30.144 23 

N (865 nm) Y = 0.5x + 2.11 0.503 1.237 1.079 0.606 47.695 37.523 23 

SI Y = 0.7x + 0.62 0.409 1.416 1.373 −0.343 32.926 −8.814 23 

Polymer 

N (665 nm) Y = 0.7x + 2.12 0.536 1.611 1.102 1.175 57.332 53.049 23 

N (705 nm) Y = 0.7x + 0.85 0.568 1.055 1.018 −0.274 26.082 −2.703 23 

N (740 nm) Y = 0.4x + 2.17 0.229 1.427 1.421 0.129 42.072 18.463 23 

N (783 nm) Y = 0.8x + 2.94 0.475 2.521 1.279 2.173 95.546 94.803 23 

N (865 nm) Y = 0.7x + 0.94 0.253 1.593 1.540 0.409 57.568 6.599 21 

SI Y = 0.5x + 1.05 0.589 1.198 1.002 −0.658 21.122 −14.695 23 

Acolite 

N (665 nm) Y = 1.1x + 3.57 0.489 1.256 1.198 3.849 153.309 153.309 20 

N (705 nm) Y = 1.2x + 3.28 0.516 1.391 1.230 3.838 152.629 152.629 20 

N (740 nm) Y = 2.0x + 10.27 0.196 2.409 1.513s 13.444 526.817 526.817 20 

N (783 nm) Y = 1.6x + 11.81 0.133 2.829 1.759 13.804 554.024 554.024 20 

N (865 nm) Y = 2.2x + 15.72 0.503 1.496 1.330 19.432 780.628 780.628 20 

SI Y = 0.7x + 1.75 0.548 0.928 0.928 0.644 35.952 31.502 20 

Turbidity AC-C2RCC 

N (665 nm) Y = 0.5x + 1.00 0.762 1.563 1.508 −0.412 28.999 −0.165 15 

N (705 nm) Y = 0.5x + 0.77 0.805 1.581 1.450 −0.630 29.688 −11.269 15 

N (740 nm) Y = 0.6x + 0.38 0.837 1.706 1.393 −0.985 37.970 −31.209 15 

N (783 nm) Y = 0.6x + 0.43 0.841 1.479 1.280 −0.742 33.400 −22.474 15 

N (865 nm) Y = 0.4x + 0.23 0.838 2.344 1.717 − 1.597 53.064 −53.064 15 

DO Y = 0.5x + 0.56 0.793 1.790 1.522 −0.943 37.657 −26.332 15 
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Polymer 

N (665 nm) Y = 0.5x + 1.43 0.692 1.714 1.699 −0.220 31.803 15.192 15 

N (705 nm) Y = 0.4x + 0.58 0.761 2.093 1.717 −1.198 44.136 −36.130 15 

N (740 nm) Y = 0.3x + 1.05 0.806 2.245 1.966 −1.085 38.869 −14.188 15 

N (783 nm) Y = 0.4x + 2.12 0.462 2.029 2.009 0.290 69.471 53.834 15 

N (865 nm) Y = 0.4x + 0.44 0.656 2.716 1.957 −1.883 51.924 −49.191 11 

DO Y = 0.4x + 0.95 0.715 1.893 1.725 −0.781 29.646 −13.270 15 

Acolite 

N (665 nm) Y = 0.2x + 1.48 0.747 2.577 2.370 −1.013 47.825 3.754 13 

N (705 nm) Y = 0.2 + 1.55 0.744 2.570 2.385 −0.957 50.436 9.282 13 

N (740 nm) Y = 0.2x + 4.14 0.282 2.983 2.464 1.680 182.207 173.672 13 

N (783 nm) Y = 0.2x + 4.38 0.258 3.137 2.485 1.915 199.765 193.217 13 

N (865 nm) Y = 0.2x + 5.86 0.186 4.319 2.567 3.474 296.190 292.246 13 

DO Y = 0.1x + 0.97 0.340 2.858 2.418 −1.742 53.563 −30.192 13 
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Figure 5. Taylor diagrams (top) and Target plots (bottom) showing the performances of the different combinations of AC processors and bio-optical algorithms 

respect to in situ observations. For CDOM, SPM, and turbidity, only algorithms that presented APD < 100% were considered. For the names reference, the first letter 

refers to the AC processor (a (Acolite), p (polymer), c (C2RCC)) followed by the bio-optical algorithm and band involved. 
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Figure 6. Match-ups of the best performing AC plus bio-optical algorithm of the four WQ 

parameters under investigation. Statistics shown correspond to regions A and B together, but they 

are identified with different colors. The full statistics of the match-ups results are presented in 

Table 4. (Please note the different scales). 

Overall, for the set of parameters tested, encouraging results were obtained in the 

satellite data intercomparisons process, which indicates the usefulness of MSI images to 

monitor water quality parameters in the Sado estuary. 

3.3. Spatio-Temporal Analysis: Sado Estuary Case Study 

To demonstrate and evaluate the usefulness of a consistent Sentinel-2-derived WQ 

data record, we present here a spatio-temporal analysis of the four WQ parameters under 

investigation for the Sado estuary. To do so, the best performing processing schemes 

chosen during the intercomparison part of the present study were selected and applied to 

S2-MSI time-series, i.e., AC-C2RCC-TS443 for aCDOM, AC-C2RCC-GS for Chl-a, AC-

C2RCC-N740 for SPM, and AC-C2RCC-N783 for turbidity (Figure 6). Moreover, the time-

series analysis was performed separately for the two different regions of the estuary, given 

the high optical variability that characterizes this transitional system. 

Figures 7 and 8 show the time-series of the different parameters considering the 

spatially averaged observations. From a visual inspection, it is hard to observe a clear 

seasonal variability of any of the selected parameters in area A. Moreover, region B 

presents a greater amplitude (over a short time, due to tidal variability) of values in 

respect to region A, which remains relatively constant. This might lead to bigger 

uncertainties associated with satellite-derived products over region B due to higher 

optical variability and greater interaction between the optically active compounds. 

Therefore, a worse performance of the bio-optical algorithms is expected. Moreover, the 

greater amplitude of values will lead to difficulties in detecting WQ anomalies without a 

consistent climatological record of the area of interest. On the other hand, S2-MSI time-

series may allow us to better understand the short-term variability which would be highly 

laborious through in situ observation. 
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For a better visualization of the seasonal patterns, high spatial resolution seasonal 

maps of the full estuarine system are provided in Figure 9. For all the set of parameters, 

the highest values were found in Spring and Summer, mainly in the inner region of the 

estuary, following the tendency shown by the field measurements. 

Regarding the aCDOM (443 nm), the seasonal maps show higher values during Spring 

within the whole estuary. However, the seasonal average of in situ aCDOM (Table 3) shows 

that the highest values were obtained in Summer in the innermost region of estuary, and 

in winter in region A. In this region, the outermost area, the greatest differences between 

the seasonal averages of satellite-data and in situ (Table 1) were found in summer (0.14 

m−1) and in autumn (0.11 m−1), while spring and winter presented the smallest variations 

(0.03 and 0.05 m−1 respectively). In region B, the greatest differences were in spring (0.28 

m−1) and in winter (0.20 m−1), while the smallest in summer (0.11 m−1) and during autumn 

(0.16 m−1). Even if the satellite seems to be able to follow the in situ trend in both areas, the 

satellite-derived values slightly overestimate the field observations most of the time. This 

can be clearly seen in the time-series plot, especially in region B between April and 

October 2019. 

For chlorophyll-a, it was possible to observe a significant difference (mean APD = 

391%) in terms of absolute values between the in situ data and the satellite-derived ones 

(Figure 7). This deviation between datasets seemed to be more evident during Spring and 

Summer, both in region A and region B. It is possible to observe that the satellite-derived 

data were not able to match the highest chlorophyll in situ values found during the 

sampling period, presenting a significant underestimation in comparison to the in situ 

observations. During Autumn and Winter, when field Chl-a measurements were lower, a 

greater similarity between the datasets was found. In general, region B presented slightly 

higher Chl-a values than region A, as would be expected, given the in situ variability 

observed. As such, the MSI sensor was sensitive to the spatial variability of the 

chlorophyll-a in the Sado estuary. This spatial variability of Chl-a becomes more evident 

when looking at the entire estuary and its surrounding region (Figure 9). It should be 

noted that in Summer, it was not possible to obtain valid values for the region in the 

coastal ocean (Figure 9) due to sun glint occurrences that led to an overcorrection in the 

atmospheric correction part of the processing, which, combined with low concentrations 

of chlorophyll, resulted in invalid Chl-a values. During winter, it was also possible to 

observe high chlorophyll values in the interior of the estuary and in the region of the 

coastal ocean (higher values than during spring). 

Regarding SPM, Figures 7 and 8 show that the derived product can clearly capture 

the temporal variability and potential anomalies in water conditions. As expected, higher 

values were observed in the inner region of the estuary at all seasons, being spring and 

summer the seasons with the highest levels of suspended solids within the estuary. As 

well as for aCDOM and turbidity, the SPM retrieved recurring to the S2-MSI presented a 

slight overestimation of the in situ observations. 

As already mentioned in the match-ups section, the turbidity product was the best 

represented WQ parameter using S2-MSI data. This can be easily observed also from the 

time-series plots, where the satellite-derived turbidity followed the in situ observations 

with high similarity, showing the great potential of this satellite for routine monitoring of 

this important parameter. Again, the highest turbidity levels were reached in spring and 

summer, with higher concentrations in the inner region of the estuary. It is important to 

note that despite the match-ups stations being optically deep at the time of the sampling, 

for the time-series it was not possible to know it in advance. Moreover, in this study, it 

was not possible to assess if the shallower regions of the estuary were influenced by the 

bottom signal therefore Figure 9 should be interpreted with caution. 
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Figure 7. Time series of S2-MSI-derived and in situ water quality parameters in the two regions of the estuary, A (blue) 

and B (red). The time-series considered the average of the pixels corresponding to the sampling stations included in each 

of the areas. Please note the log-scale in the Chl-a plots. It should be noted that the in situ variability does not consider the 

tidal effect since the in situ samplings were always performed at high tide. 
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Figure 8. Inter-annual seasonal variability of S2-MSI-derived and in situ water quality parameters 

in the two regions of the estuary, A (blue) and B (red). The time-series considered the average of 

the pixels corresponding to the sampling stations included in each of the areas. Please note the 

log-scale in the Chl-a plots. It should be noted that satellite data include a mixture of tidal 

conditions while the in situ was always collected at high tide. 
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Figure 9. Seasonal averages of the four water quality parameters for the period between March 2018 and March 2020. 

Averages of aCDOM, Chl-a, SPM, and turbidity were performed via the best performing processing chain selected during 

the algorithms intercomparison exercise (Section 3.1). Please note that no bottom corrections were applied. 

4. Discussion 

4.1. Algorithms Intercomparison Exercise 

The principal objective of this study was to evaluate the potential use of high spatial 

resolution satellite data to estimate water quality (WQ) parameters in a highly dynamic 

system. For this purpose, different processing chains (AC plus WQ algorithms) have been 

selected and applied to S2-MSI imagery in order to evaluate the usefulness of this satellite 

for water quality monitoring in the Sado estuary. 

According to the results, the statistics indicate consistency between the satellite-

derived values and in situ observations of turbidity, indicating that this parameter is the 

best WQ parameter to be retrieved via S2-MSI data. However, the agreement is also 

relatively strong for SPM and aCDOM for the study area, while the Chl-a product showed 

some limitations and higher errors associated (Table 4). 

Even if no field radiometric measurements were available to directly assess the 

performance of the AC processors, AC-C2RCC and Polymer combined with bio-optical 

algorithms were the combinations that provided the most comparable results to the in situ 

data. Similar results have also been discussed by Warren et al. [35], where different AC 

processors have been tested on S2-MSI data showing that AC-C2RCC and Polymer 

outperformed Acolite for applications in coastal waters. Pereira-Sandoval et al. [53] also 

showed similar results, pointing out the good performance of these two ACs in Spanish 

inland waters and suggesting the application of a water type classification to improve the 

performance of the processors. 

Polymer and AC-C2RCC were the processor that presented the smallest reflectance 

values between the processors tested in this study. An underestimation from the Polymer 
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processor was observed in other studies. Steinmetz et al. in [33] and [54], the authors 

pointed towards a miss-estimation of the wind speed from the afore-mentioned processor 

that might lead to an over-correction of the model, resulting in a significant reduction of 

the total signal, which could explain the invalid Chl-a values obtained using this 

processor. Again, the lack of in situ radiometric measurements did not permit to deeply 

explore the performance of the ACs in this study area. Even if the Polymer processor, in 

combination with bio-optical algorithms, outperformed AC-C2RCC in some cases, the 

neural network methodology was selected as it provided the best overall combinations 

performance and was used to perform the time-series analysis. 

In complex waters, the CDOM generally increases absorption (reducing reflectance) 

in the blue bands while the SPM causes an increase in reflectance in the green and red 

bands due to scattering [55,53]. In the present study, region B of the estuary presented 

greater contribution of SPM and turbidity and, in fact, the water-leaving reflectance of all 

AC processors was relatively higher in the green-red bands compared to region A (Figure 

4). However, very similar values were observed between the two areas of the estuary in 

the blue region of the spectra, where also higher values were expected. In conditions of 

high SPM concentration, the aCDOM algorithms that use the blue/green-red band ratios tend 

to underestimate the measured aCDOM. These factors may have affected the performance of 

regionally calibrated algorithms (i.e., MAS, MAM, CZ, CH, and KU) that, in general, 

underestimate the aCDOM retrieval in conditions of higher SPM concentrations. In cases 

where the aCDOM does not co-vary with Chl-a, as in the present study, this can significantly 

affect the bands in the blue to green part of the spectrum due the overlap on the reflected 

signal [56–59]. Thus, it is necessary to know the variation of the optically active 

components present in the water to find alternatives that provide greater accuracy to the 

retrieval of WQ parameters by satellite remote sensing. 

Regarding chlorophyll-a, in the study conducted by Pahlevan et al. [9], the 2-band 

algorithm originated negative retrievals for low concentrations of Chl-a. The authors 

considered that this was somehow expected as 2-band algorithms are usually designed to 

be applied in highly eutrophic waters, a category in which the Sado estuary does not fit. 

Pereira-Sandoval et al. [53] tested several AC processors to S2-MSI data and observed that, 

for inland waters with low concentrations of chlorophyll-a, Polymer showed slightly 

worse results in the NIR bands than C2RCC. Possibly, the existence of low Chl-a values in 

the Sado estuary, combined with a possible overcorrection performed by Polymer 

processor, could be the cause of the absence of valid Chl-a values when the GS and 2-band 

were applied to the data derived from this processor. Interestingly, Chl-a processed by 

Plymouth Marine Laboratory (PML) using the Calimnos processing chain [60] also did not 

produce Chl-a matchups with our in situ data for the Gons algorithm [42] coupled with 

Polymer AC, demonstrating consistency with our results (data not shown). Thus, deriving 

reliable Chl-a data from S2 is still challenging and further developments are needed. In 

this context, the on-going H2020 CERTO project (www.certo-project.org (accessed on 26 

November 2020)) is likely to provide relevant outputs. This project aims to produce 

improved satellite data that should be harmonized across different types of complex 

waters, i.e., from lakes to the sea, with a particular emphasis in transitional waters. 

Considering its great potential, future work will include testing CERTO’s products, which 

will be delivered during the project. 

Regarding SPM and turbidity retrieval, given the strong relationship between the 

two parameters (R2 = 0.92 in our study area) their relation is worth to be mentioned. Clear 

differences can be noticed between the turbidity and SPM S2-MSI retrieval, with turbidity 

presenting overall better correlations with in situ data. This might be caused by different 

factors. Firstly, turbidity parameter is less subject to in situ measurements errors than 

SPM. Röttgers et al. [61] demonstrated that significant uncertainties can be associated with 

most of the SPM measurements. Their results showed that these errors were mainly 

associated with salt retention and loss of filter material during washing and drying 

procedures. Moreover, turbidity is an optical parameter highly related to backscattering 



Remote Sens. 2021, 13, 1043 24 of 30 
 

 

[45] and thus to reflectance. To explain the poorer retrieval of SPM using a global 

algorithm with respect to turbidity, the differences between the SPM and turbidity 

retrieval algorithms should be considered as suggested by [45]. In fact, since turbidity (a 

measure of side-scattering) is an inherent optical property (IOP), it is not necessary to 

consider the potential variability of mass specific optical properties, while SPM algorithms 

do. On the other hand, SPM retrieval algorithms will also be sensitive to particle size, 

density, and refractive index, which can be important sources of regional variability for 

retrieval of SPM concentration. 

Furthermore, in Figure 6 it is possible to see that the selected algorithms for SPM and 

turbidity (which use NIR bands) perform better in region B (more turbid waters) 

compared to region A (clearer waters). Considering the strong spatial gradients, the non-

linearity of SPM optics properties in estuarine environment [62] and the interaction with 

different optically active constituents such as phytoplankton cells, it is key to develop 

algorithms that are calibrated regionally to accurately quantify SPM from satellite data. 

Future work will include further investigation on the performance of single-band 

algorithms considering the different optical properties that characterize the different 

regions of the estuary. The work will focus on the development of a switching band 

algorithm that takes into account the different optical properties of region A and region 

B. 

In general, the results of the present study suggest that for satellite-derived aCDOM, 

Chl-a and SPM, regional approaches should be adopted for Portuguese transitional 

waters. Regarding turbidity, the statistical results are encouraging, with reasonably 

accurate turbidity retrieval using a global algorithm, at least for Region B. As a whole, for 

the Sado estuary, there is still the need for a more robust database accompanied by in situ 

and orbital radiometric measurements from remote sensors. 

4.2. Spatio-Temporal Analysis 

All the analysed parameters showed strong spatial variability within the estuary, as 

expected. This indicates that to analyze these parameters using in situ measurements, 

multiple sampling points are needed to fully represent the study area, which is not always 

feasible. In turn, the seasonal variability of the WQ parameters seemed to be well captured 

from the S2-MSI satellite products, evidenced in the time series by overlapping the in situ 

with the satellite-derived data. 

For all parameters, higher values were obtained in the interior area of the estuary and 

during Spring and Summer, in concordance with previous studies [18,63], mainly due to 

phytoplankton blooms and bottom resuspension caused by stronger wind regimes in the 

referred period of the year. In the period here studied, the highest SPM values were also 

found in spring and summer, even if precipitation is stronger in autumn and winter, when 

higher terrigenous inputs from the rivers are expected. The higher values of SPM (which 

are historically found in spring) are related to the phytoplankton spring blooms and 

bottom resuspension due to stronger wind regimes, and not to terrigenous inputs of the 

SPM [64].The aCDOM (443) parameter did not correlate or co-vary with the Chl-a, but it had 

an inverse relationship of R2 = −0.57 (p < 0.05) with salinity (not shown here). This suggests 

that most of the CDOM’s origin is not local (e.g., from the phytoplankton derived 

components), but rather from bottom resuspension processes due to stronger wind regime 

within the estuary during spring/summer and from increased rain and riverine input 

mainly during winter [64,65]. 

As already mentioned, Chl-a was the parameter that presented the greatest 

challenges in achieving accurate satellite-derived data. However, it was possible to obtain 

useful results on the patterns of temporal and spatial variability of the phytoplankton 

proxy using Sentinel−2 MSI in the Sado estuary. The highest concentrations were found 

in spring and summer, as expected, even if high values of Chl-a were also observed during 

winter in the inner region of the estuary. It is also interesting to note that the region of the 

coastal ocean presented unexpected variation patterns, showing higher values of Chl-a 
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during winter with respect to spring. Furthermore, during summer, the same region did 

not present any valid Chl-a data, suggesting that the selected algorithms may not be 

suitable for Chl-a retrieval for the clearer waters in the coastal ocean which present 

different optical properties, more similar to the open ocean. 

Overall, the time-series analysis of all the studied parameters was found to be in 

agreement with the historical climatological data available for the area and, therefore, the 

use of the S2-MSI sensor can be considered useful for water quality analysis over the Sado 

estuary using the selected best-performing processing chain. The high spatial resolution 

maps provided for the study area are a relevant achievement since no such information 

was available until the present work, although improvements regarding the bottom effect 

should be pursued in future work. 

4.3. Applicability of Satellite RS Products to WFD 

The EU WFD requires that all Member States achieve and/or maintain good 

ecological status of their water bodies, including estuaries. Under the directive, the 

assessment of WQ is based on the deviation from a predefined reference condition. 

However, as discussed by [66], this is one of the most complex, and still under discussion, 

points of its implementation. For the Sado estuary, in fact, the phytoplankton Chl-a is one 

of the few water parameters that have a well-defined classification system to assess the 

ecological status of the water body. According to the range of values observed during the 

period under analysis, the concentrations never exceeded the reference value for the 

highest salinity class (6.67 mg m−3 for salinities higher than 25 [67,68]) being the observed 

Chl-a concentration (both in situ and satellite-derived) always <5 mg m−3, and therefore 

indicating that the Sado estuary has currently no clear sign of eutrophication problems. 

However, it should be reminded that the in situ data considered was always collected at 

high tide conditions. Higher values might be encountered during low tides. 

The lack of historical data for the other physicochemical parameters in the Sado 

estuary increased the level of difficulty in applying RS WQ products in the context of 

ecological quality assessment, under the WFD. The definition of reference values is crucial 

to further explore the potential of RS in the context of the WFD, for which S2-MSI satellites 

have a great potential. The provided time-series of the WQ parameters obtained through 

remote sensing observations are crucial to define baseline levels and allowed to confirm 

the values used to assess the normal variation patterns (i.e., SPM < 20 mgL−1, data not 

shown). This will help decision-makers to detect potential anomalies and support further 

studies on ecological aspects. Moreover, these high-resolution maps provide key 

information to implement effective and meaningful monitoring programs for WQ 

assessments under the WFD. 

Considering the great importance of CDOM as a WQ indicator, we consider that 

more efforts should be put to retrieve more accurate CDOM absorption values from the 

S2-MSI data. As discussed previously, aCDOM is strongly related to salinity [69] and 

therefore could be used by policymakers as an indicator of fresh-water input within the 

estuary or to infer drought periods. 

One major benefit of using remote sensing data to support the monitoring of surface 

water status is the capability of providing systematic observations of the whole water-

system. The high revisit frequency (5 days) allows an easier detection of small-scale 

changes and a more synoptic view of the water body. However, a relevant drawback of 

optical remote sensing data is that cloud coverage and sun glint effects may seriously 

affect its usefulness [70]. In the present work, only an average of 55% of the total images 

available (over the 2 years period under investigation) were cloud-free and focused on 

periods with good atmospheric conditions. This means that image availability is non-

homogeneous around the year and can make routine monitoring challenging. 

As an example of the applicability of S2-MSI images for water quality assessment, 

Figure 10A shows the RGB image acquired on 19/02/2020 by the satellite S2A, that 

captured the dredging activities conducted in the Sado estuary. In the RGB image (top), 



Remote Sens. 2021, 13, 1043 26 of 30 
 

 

the sediment plume produced by the dredge is clearly visible (red box). Using the selected 

algorithm for SPM retrieval (Figure 10B), we observed that a value of 35 mgL−1 of 

suspended solids was reached in the pixels corresponding to the sediment plume, 

compared to an average of 2 mgL−1 of SPM in the surrounding pixels. Considering that 

concentration of SPM in the same area never exceeded 8 mgL−1 during the studied period, 

it can be concluded that, although locally, the dredging activities performed in the area 

had a severe impact on the water clarity of that specific area of the estuary. Unfortunately, 

it was not possible to follow the evolution of impacts during the dredging period due to 

cloud-coverage of Sentinel-2 images. 

 

Figure 10. (A) S2A RGB image and (B) SPM map of the Sado estuary acquired on 19/02/2020. 

Inside the red box, the sediment plume produced by the dredging activities is clearly visible. The 

SPM map (B) was produced through the best performing processing chain selected for SPM 

retrieval (AC-C2RCC in combination with Nechad algorithm at 740 nm). Please note that no 

bottom reflection correction was implemented. 

Finally, we consider that the approach followed in this research may be extended to 

other Portuguese transitional systems and European countries in support of the WFD 

considering the low costs of the data production with respect to continuous in situ 

monitoring programs. 

5. Conclusions 

Over the past few decades, satellite remote sensing techniques have increasingly 

been used to support environmental monitoring and to assess different types of water 

bodies, mainly because of their cost-effectiveness and spatio-temporal resolution [71]. The 

aim of the present study was to demonstrate the capabilities and knowledge gaps of S2-

MSI data for continuous monitoring of WQ parameters in a highly dynamic system and 

evaluate its usefulness under the WFD. 
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In fact, the Sentinel-2 satellites showed their encouraging potential for routine 

monitoring of WQ parameters in the Sado estuary. Their medium temporal resolution (5 

days at mid latitudes) and, therefore, the higher frequency of satellite data regarding in 

situ observations, lead to an easier detection of small-scale changes and allow a synoptic 

view and analysis of the system. 

In the context of the WFD, this study demonstrates the high potential of S2-MSI in 

water quality mapping and monitoring. However, a regional validation and calibration of 

the bio-optical algorithms is suggested. The turbidity product showed high consistency 

with in situ observations, proving the great capabilities of the MSI sensor to monitor this 

important water quality parameter. However, for the key parameter Chl-a further 

research is needed, with a more complete set of match-ups. Moreover, in the context of 

the WFD, the need to define reference values for variables such aCDOM, SPM, and turbidity 

for the Sado estuary (and other Portuguese estuaries) may be overcome through the 

provided remote sensing data (maps and time series) which are fundamental to be used 

as a baseline information for the characterization of the normal conditions of the Sado 

estuary. 

Improvements in the management of water resources can be achieved only through 

the delivery of continuous and sustained WQ data, to allow forecasts at local and regional 

scales and achieve an effective decision-making process. In this context, remote sensing is 

an extraordinary tool that allows a better understanding of how water bodies are changing 

due to environmental perturbations, anthropogenic pressure and climate change. 

Future work will focus on a more direct link between S2-MSI derived products and 

WFD for the determination of the ecological status of Portuguese transitional systems. In 

addition, to further evaluate the best processing chain for estuarine systems as the Sado 

estuary, the collection of in situ radiometric data is key, in order to carry out robust 

satellite data validation and calibration exercises. It would also be interesting to use 

remote satellite detection to monitor the water quality during the course of specific 

engineering operations, such as dredging activities, that, as observed, may cause relevant 

changes in the estuarine system. 

The present work was the first exercise to provide inter-annual and seasonal 

variability of several WQ parameters, with high spatial resolution (10 m) for the Sado 

estuary, being fundamental for the establishment of effective monitoring in the study area. 
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