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The crystal structure and magnetic correlations in triangular antiferromagnet FeGa2S4 are studied by x-ray
diffraction, magnetic susceptibility, neutron diffraction, and neutron inelastic scattering. We report significant
mixing at the cation sites and disentangle magnetic properties dominated by major and minor magnetic sites.
The magnetic short-range correlations at 0.77 Å−1 correspond to the major sites and being static at base
temperature they evolve into dynamic correlations around 30–50 K. The minor sites contribute to the magnetic
peak at 0.6 Å−1, which vanishes at 5.5 K. Our analytical studies of triangular lattice models with bilinear
and biquadratic terms provide the ratios between exchanges for the proposed ordering vectors. The modeling
of the inelastic neutron spectrum within linear spin-wave theory results in the set of exchange couplings
J1 = 1.7, J2 = 0.9, J3 = 0.8 meV for the bilinear Heisenberg Hamiltonian. However, not all features of the
excitation spectrum are explained with this model.
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I. INTRODUCTION

The interest in the MT2X4 family of compounds (M =
Ni, Fe; T = Ga, Al; X = S, Se) arises due to the quasi-two-
dimensional (2D) triangular geometry of the magnetic M
sublattice. This family, especially NiGa2S4, are strong can-
didates as an experimental realization of the triangular lattice
antiferromagnet (TLAFM), the extensively studied theoretical
model in frustrated magnetism. For the spin S = 1/2 TLAFM
case a resonating valence bond spin liquid ground state was
proposed by Anderson [1], which was later shown instead to
have a classical-like 120◦ planar ground state [2] despite the
quantum fluctuations that only reduce the value of the order
parameter. For Ising spins, on the other hand, it has been
shown that the first nearest-neighbor (J1) Ising TLAFM model
stays disordered even down to zero temperature. Additional
exchange interactions spanning over the second (J2) and third
(J3) nearest neighbors could enhance frustration and for cer-
tain combinations of the exchange parameters exotic ground
states are predicted. For example, for J1/J3 = − 1

3 or J1/J2 =
− 1

4 a skyrmion crystal multi-k state should be realized [3].
Such swirling configurations with topological properties are
of interest for the fast emerging field of spintronics. MGa2S4

compounds with M = Ni, Fe crystallize in the trigonal space-
group P3̄m1 [4]. All atoms are located on triangular layers,
which generally could be stacked in the A, B, or C fashion
[Fig. 1(a)]. In MGa2S4 the sulfur layers stack in the BCBC
sequence providing octahedral and tetrahedral voids. The oc-
tahedral voids are occupied by the smaller M cations, and the
tetrahedral voids by Ga [Fig. 1(b)]. The unit cell of MGa2S4 is
terminated by an empty void layer. Our x-ray diffraction study
detected significant mixed occupancies (inversion) of the
cation sites which we associate with highly nontrivial mag-
netic behavior of the MGa2S4 series. This feature is one of the
important outcomes of our paper. The published bulk proper-
ties [5–7] suggest stronger exchange couplings for FeGa2S4

(Fe2+, S = 2) compared to NiGa2S4 (Ni2+, S = 1), but the
main observations remain very similar. The Curie-Weiss tem-
perature is θCW = 160 K for FeGa2S4 (θCW = 80 K for the
Ni analog) and there is a bifurcation between field-cooled
(FC) and zero-field-cooled (ZFC) dc magnetic susceptibili-
ties at Tf (Fe) = 16 K [Tf (Ni) = 8–9 K]. No long-range order
has been detected so far for both systems, but an inelas-
tic neutron scattering (INS) study [8] for NiGa2S4 reported
incommensurate (ICM) quasielastic short-range magnetic cor-
relations in the vicinity of Q = (0.155, 0.155, 0) and spin
waves propagating from this Q point up to 3.5 meV. The
dynamic muon relaxation rates [7,9] show an anomaly
at T ∗(Fe) = 33 K [T ∗(Ni) = 10 K] approaching correlation
times τc(Fe) = 10−6 s [τc(Ni) = 10−7 s]. These processes are
much slower than the timescale of exchange interaction
(10−12 s) and the corresponding states are interpreted as a
slowly fluctuating “spin gel.” Surprisingly, no anomaly at
Tf was observed by 57Fe Mössbauer, μSR, and magnetic
specific heat CM, whereas the T ∗ anomaly is not present in
magnetic bulk properties [5,6]. The magnetic component of
the specific-heat CM(T ) has a double-peak structure for both
compounds with a first maximum at 10 K for both and a
second maximum at 60 K (100 K) for FeGa2S4 [5] (NiGa2S4

[10]). CM(T ) has a T 2 dependence at low temperatures, which
indicates gapless and linearly dispersive modes in 2D, and it is
insensitive to magnetic fields up to 7 T. Our samples show the
same magnetic behavior, and we complement experimental
information on the FeGa2S4 system by neutron experiments
both diffraction and inelastic scattering.

From the theoretical side a number of extensions to the
TLAFM model were proposed to explain the observed mag-
netic behavior of the Ni and Fe analogs. A strong dominant
third-nearest-neighbor antiferromagnetic exchange interac-
tion is supported by density functional theory calculations
[11] and could explain the ICM magnetic propagation vec-
tor of NiGa2S4 [8]. Biquadratic interactions, which would
yield spin-nematic quadrupolar correlations, account for the
double-peak structure in specific heat [12–14]. The origin
of the spin nematic could be the coupling of magnetic cor-
relations to phonons observed by Raman scattering [15].
The Z2 vortex model with binding-unbinding transition [16]
could also explain the high-temperature anomalies in mag-
netic properties, whereas linearly dispersing Halperin-Saslow
modes in the absence of long-range magnetic order could
elucidate the anomalous low-temperature properties [17]. We
scrutinize the TLAFM model with J1, J2, and J3 bilinear
exchanges and show that it is not sufficient to model our INS
data. We associate the unconventional magnetic properties
with the nonideal structure of the MGa2S4 family.

II. CRYSTAL STRUCTURE OF FeGa2S4 and NiGa2S4

A. Study of structure imperfection by x-ray diffraction

First we check thoroughly the crystal structure of our
polycrystalline FeGa2S4 sample [18] analyzing synchrotron
x-ray-diffraction powder pattern collected at 300 K. These
data were well refined within the crystal structure published
by Simiri et al. [4]: The Ga and two S atoms located at the
2(d ) sites and Fe atoms at the 1(b) site of the P3̄m1 space-
group (RBragg = 3.64%, R f = 1.99%, χ2 = 47.3). The fits
became even better (RBragg = 2.98%, R f = 1.89%, χ2 =
46.2) when the inversion between the Fe and the Ga atoms
was introduced with the total occupancy constrained to the
stoichiometric composition FeGa2S4. According to this re-
finement the 1(b) site is occupied 20% by gallium and 80% by
iron, whereas the 2(d ) site is occupied by 10% iron and 90%
gallium, respectively. As the model with partial inversion is
only nominally better and a small amount of Ga2O3 impurity
phase was detected in the powder pattern, we verified this
result by x-ray diffraction on single crystals.

For several studied crystals (even very small ones)
the shape of reflections was not exceptionally good—they
had “tails” typical for small arbitrary rotations of macro-
scopic domains around the [001] axis as can be seen in
the reciprocal hk0-layer reconstruction presented in Fig. 2
(top). Nevertheless, the consequent data reduction lead
to good data with Rint = 3.69% for 520 unique reflec-
tions for the Laue group 3̄m1. A refinement assuming the
nondisordered FeGa2S4 structure with full occupancies
converged at acceptable R values: R1 = 2.83%, wR2 =
8.21%, GooF = 1.184 for 514 Fo > 4 σFo. The difference
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FIG. 1. (a) Projection of the A, B, C layers on the ab plane.
(b) View on the MGa2S4 unit cell with labeled (from left to right)
sequence of S, Ga, and M atoms, coordination of the voids between
the S layers and order of the A, B,C layers.

Fourier maps as in the case of the powder pattern contained
relatively strong residual electron density peaks: positive at
the 1(b) Fe site (corresponding to around 3 e/Å3) and nega-
tive (corresponding to around −1.7 e/Å3) in the vicinity of
the 2(d ) Ga sites. Along with this no significant electron
density occurred between the atomic positions of the ideal
structure. The residual electron density could be accounted
for by the partial inversion at the 1(b) and 2(d ) sites. Refine-
ment converged to 21.5(3)% Ga [and 78.4(3)% Fe] on the
1(b) Wyckoff position and 10.8(1)% Fe [and 89.2(1)% Ga]
on the Wyckoff position 2(d ) with improved figure of merit:
R1 = 2.04%, Rw2 = 6.08%, GooF = 1.367.

We took the indication of partial inversion from x-ray
diffraction with great caution. Bulk properties (magnetic
susceptibility and specific heat) measured by us and by
other groups are very similar suggesting that partial inver-

FIG. 2. Top: The hk0 (a) and h0l (b) reciprocal layers recon-
struction based on the x-ray single-crystal diffraction of FeGa2S4.
Bottom: (c) scanning electron microscopy image of a single crystal
of FeGa2S4 and (d) zoom into its left marked corner.

sion might improve the understanding of magnetic properties
of the whole MGa2S4 family. To clarify this, we synthe-
sized and characterized isostructural NiGa2S4. Refinement
of NiGa2S4 single-crystal x-ray-diffraction data revealed the
same degree of inversion as for FeGa2S4. This complies
with nuclear quadrupole resonance (NQR) studies of poly-
crystalline NiGa2S4 samples [19,20], which reported two Ga
signals. Our results imply that these NQR signals could arise
from gallium atoms located on two different crystallographic
sites. We also considered whether other imperfections dis-
cussed in the literature could explain our diffraction data.
For example, high-resolution electron microscopy detected
the presence of the stacking faults along the [001] direction
[20]. Any significant fraction of stacking faults generated by
a shift of the layers as realized, for example, in the case of
the rhombohedral structure of MgAl2S4 or by introducing
layers found in Fe2Ga2S5 or in GaS with the hexagonal β-
InSe structure, would lead to residual electron density off
the atomic positions of the ideal structure. The same holds
for the stacking faults along the slip planes (11-20), (10-
11), and (11-23), which sometimes occur in the hexagonal
close-packing structures. Diffuse scattering should also be
observed, but this is not the case in our diffraction patterns
presented in Fig. 2, top. We also checked for twinning, find-
ing no indication of twofold rotations around [110], [1-10],
and [001], the usual twin laws occurring in trigonal systems.
Our scanning electron microscopy images clearly show that
crystals consist of layers with a thickness on the micrometer
scale, which are rotated against each other by small angles
(Fig. 2, bottom). One more sample imperfection was reported
by Nambu et al. [20] based on energy-dispersive x-ray spec-
troscopy (EDXS)—nonstoichiometry in the sulfur content.
Our EDXS analysis shows no sulfur deficiency within the
detection limit.

Thus, we conclude that polycrystalline and single-crystal
MGa2S4 samples have significant inversion on the cation sites.
In the following text we correlate this partial inversion with
magnetic bulk properties and neutron-scattering results, label-
ing the 1(b) site as the “major” site and the 2(d ) site as the
“minor” site since they are occupied by 80% and 10% with
the magnetic ion, respectively.

B. Temperature evolution of the crystal structure

To identify possible changes to the crystal structure of
FeGa2S4 we measured and refined synchrotron x-ray powder-
diffraction patterns of a polycrystalline sample in the 5–300 K
temperature range. The obtained temperature evolution of the
lattice constants, atomic positions, and thermal parameters is
presented in Fig. 3. No significant structural anomalies could
be detected in these x-ray patterns. The lattice constants show
a typical Debye thermal expansion, the slope of the ratio
c/a changes below 50 K and near 10 K. The interatomic
distances dFeS2, dGaS1 decrease, whereas dGaS2 increases with
lower temperature. The anisotropic thermal parameters of all
atoms decrease very much alike, only the thermal parame-
ters U11 and U33 of the 2(d ) site decrease faster and slower,
respectively.
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FIG. 3. Temperature evolution of the (a) lattice constants, (b) selected bond distances, and (c), (d) thermal parameters of FeGa2S4 from
synchrotron x-ray powder diffraction.

These parameters of FeGa2S4 do not point to anomalies
in vibrations of the sulfur atom S2 detected in the sister
compound NiGa2S4 by Raman scattering [15].

III. MAGNETIC PROPERTIES

A. Magnetic bulk properties

We briefly report magnetic bulk properties of our FeGa2S4

samples. Figure 4 (left) presents the magnetic susceptibility
of a FeGa2S4 single crystal measured at 0.1 T in the range of
1.8–350 K for the three principal orthogonal crystallographic
directions: [001], [100], and [−120]. At high-temperatures
(200–350 K) the curves almost overlap, and fits to the Curie-
Weiss law yield antiferromagnetic Curie-Weiss temperatures
�CW = −165(11) K for the [001] direction and −151(9) K
for the [100] and [−120] and effective magnetic moments
me f f = 5.53μB and 5.08μB, respectively. The susceptibility
on the ab plane and along the c axis deviate below 200 K,
and this anisotropy reaches 20% near 16 K. At Tf = 16 K the
susceptibility has a kink and a bifurcation between the FC and
the ZFC sample for all measured directions. The difference
between the FC and the ZFC curves is tiny, 0.004 μB/Fe.
Careful inspection of the derivative of χ (Fig. 4, right inset) re-
veals an additional change in the slope at 5.6 K. We associate
it with long-range ordering of the minor Fe spins by powder
neutron diffraction (PND) (see Sec. IV).

For our polycrystalline FeGa2S4 sample the Curie-Weiss
temperature is −158.0(9) K. This results in the effective ex-

change constant,

J/kB = − 3�cw

zS(S + 1)
∼ 13 K ∼ 1.1 meV,

FIG. 4. (a) Magnetic susceptibility χ measured at 0.1 T on a sin-
gle crystal of FeGa2S4 (mass m = 2.87 mg) along the three principal
directions [100], [−120], and [001]. ZFC and FC χ ’s are plotted
by empty and filled circles, respectively. The inset: zoom of the
low-temperature region, (b) derivative of ZFC magnetic susceptibil-
ity highlighting deflection points. (c) Inverse susceptibility 1/χ for
H ‖ [100] (blue) and H ‖ [001] (red) and fit to the Curie-Weiss law
in yellow. (d) The ratio of ZFC χab/χc.
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FIG. 5. Neutron-diffraction DMC patterns of FeGa2S4 at (a) 1.3 and 50 K. Temperature dependence of the magnetic peak at (b) Q1 =
0.6 Å−1.

here kB is the Boltzmann constant, z = 6 is the coordination
number, and S = 2 is the spin of the Fe2+ ions.

B. Magnetic static correlations from neutron diffraction

It is crucial to understand, if the magnetic properties
of FeGa2S4 samples could be disentangled into major- and
minor-site properties. First we address this question with
PND.

In PND patterns collected on the cold neutron powder
diffractometer (DMC) two different features of magnetic ori-
gin appear. Prominent in Fig. 5(a) is the peak at Q1 = 0.6 Å−1

below TN = 5.5 K. It could be indexed with the incom-
mensurate propagation vector k = [0.1737(1), 0.1737(1)0] in
analogy to k = (0.153, 0.1530) reported for NiGa2S4. How-
ever, no long-range magnetic arrangement akin to only the
major site reproduces the diffraction pattern. Models with
Fe only on the 1(b) site require the second peak at (0.1737,
0.1737 1) with Q = 0.79 Å−1 to have significant intensity.
The single (0.1737, 0.1737, 0) peak can be reproduced by a
model with the Fe moments on the 2(d ) site. The moments are
sinusoidally modulated along the z axis. The moment ampli-
tude 7.0(2)μB/Fe (maximal value of the moment) would be,
however, unreasonably large for the 10% occupied 2(d ) site.
So the Mz component on the minor 2(d ) site is most proba-
bly significant but not the only “participant” in the magnetic
ordering at TN = 5.5 K and Q1 = 0.6 Å−1.

The second less evident feature in PND is diffuse magnetic
scattering centered at Q2 = 0.77 Å−1 [Fig. 5(a)]. The XYZ-
polarization analysis of powder neutron-diffraction patterns
collected on D7 verifies that this is purely magnetic scattering
(Fig. 6). In NiGa2S4 a similar diffuse bump was reported be-
neath the k = (0.153, 0.153, 0) magnetic peak (Fig. 4 in Ref.
[10]), and it was interpreted in terms of two-dimensional (2D)
correlations extending within 25(3) Å. In the case of FeGa2S4

the diffuse feature is broader. To estimate the 2D correlation
length we first used the Warren function [21] initially devel-
oped to describe scattered intensity from parallel equidistant
layers randomly rotated along the normal direction. Modeling
of the magnetic PND pattern presented in Fig. 6(a) suggests
an in-plane correlation length of 10 Å, which does not exceed
the fourth nearest-neighbor Fe-Fe distance. As an alternative
route, we used the RMC algorithm implemented in the SPIN-
VERT program [22]. We fit the magnetic PND pattern to a

large array (30 × 30 × 10 unit cells) of spin vectors located
on the major 1(b) sites [Fig. 6(b)]. The spin-pair correlation
function in real space 〈S(0) · S(r)〉 is calculated from the
fitted spin configurations by the program SPINCORREL [22].
The negative sign of correlations for the in-plane distances
d1b

1 = 3.66, d1b
2 = 6.35, d1b

3 = 7.33 Å [three first points in
the Fig. 6(b) inset] suggests antiparallel alignment of spins
within a triangular layer. RMC runs with additional spins on
the minor 2(d ) sites did not improve the fit, so the minor spins
are not decisive for the Q2 feature.

We summarize our PND results as follows: long-range
correlations resulting in the Q1 = 0.6 Å−1 peak arise mostly
from the minor Fe spins, whereas the short-range correlations
at Q2 = 0.77 Å−1 are magnetic in-plane correlations of the
major Fe spins. To distinguish whether these are static or
dynamic we turned to inelastic neutron scattering, presented
below.

C. Magnetic dynamic correlations from inelastic
neutron scattering

The excitation spectrum of polycrystalline FeGa2S4 was
measured on the LET spectrometer [23]. Figure 7 displays the
wide-ranging S(Q, ω) accessed with the Ei = 24.3 meV rep
mode at 2 and 180 K. Two prominent INS features are evident.
The first one is peaked at Q2 = 0.77 Å−1 and E = 5 meV. It
decreases towards the elastic line, suggesting that these might
be gapped spin waves, but it is hard to identify the value of the
anticipated gap and temperature of its softening even from the
lower-energy Ei = 7.7 meV rep-mode spectrum [Fig. 7(d)].
The second, high-energy feature at 13 meV spans over the
whole measured interval of 1 < Q < 6 Å−1. The low Q-part
(Q < 4.5 Å−1) reduces with temperature, thus, it has mag-
netic origin. The high-Q part (Q > Q = 4.5 Å−1) persists,
so it has significant phonon contribution. These two features
reside on a very broad background which remains even at
180 K, the highest temperature reached in the experiment.

The anticipated gap region for the first feature is magnified
in the top panel of Fig. 8 where S(Q, ω) maps measured with
the Ei = 3.8 meV rep mode at three representative tempera-
tures 2, 38, and 60 K are presented. At 2 K the correlations are
predominantly static. In Fig. 8(d) the counts summed within
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FIG. 6. Magnetic diffuse scattering measured at 1.5 K (red) and 60 K (cyan) on D7 (Ei = 3.8 meV) and fit to the Warren function (a) and
calculated by the reverse Monte Carlo (RMC) method (b) with resulting radial spin-correlation function 〈S(0) · S(r)〉 shown in the inset.

0 < E1 < 0.2 meV are divided by a factor of 50 to match
the scale of the intensity within the gap 0.2 < E2 < 0.5 meV
and of the excitations above the gap 0.5 < E2 < 3 meV.
Interestingly, at 2 K a weak dispersive feature starting from
Q1 could also be identified. At higher temperatures it is com-
pletely obscured by a continuum centered at Q2 = 0.77 Å−1.
The continuum gains intensity in the 30–40 K region and is
reduced with further increasing temperature.

It would be of interest to compare the temperature evo-
lution of various static and dynamic correlations observed

on LET and in bulk magnetic measurements. Unfortunately
the insufficient resolution does not allow to separate the Q1

feature from the nearby nuclear peak Fig. 8(d). Therefore, we
present the temperature dependence of the elastic intensity
of the predominantly Q2 feature summed within 0.6 < Q <

1 Å−1 in Fig. 8(e). It decreases sharply around 50 K. The two
prominent INS signals centered at 5 and 13 meV, in contrast
are maximal at 50 K. The 5 meV feature is integrated within
the Ei = 3.8 meV setup, and this allows the documentation of
the deflection point at 10 K (close to Tf ).

FIG. 7. Top: Excitation spectrum of FeGa2S4 measured on LET with Ei = 24.3 meV at the lowest (a) T = 2 K and the (b) highest
180 K temperatures. Bottom: Temperature evolution of the low-Q feature with the signal integrated over Q = [0.3 · · · 1.5] Å−1 with the
(c) Ei = 24.3 meV rep-mode (δE0 meV = 1.15 meV) and (d) over Q = [0.4 · · · 0.8] Å−1, Ei = 7.7 meV(δE0 meV = 0.22 meV). The Al can
was subtracted, and data were corrected for the Bose factor.
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FIG. 8. Top: Part of the excitation spectrum of FeGa2S4 measured on LET with Ei = 3.8 meV (δE0 meV = 0.1 meV) at (a) T = 2 K,
(b) 38 K, and (c) 60 K. Bottom: (d) 2 K elastic signal summed over E0 = [0 · · · 0.2] meV (green symbols, signal divided by 50) and inelastic
signals E1 = [0.2 · · · 0.5] meV (blue symbols), E2 = [0.5 · · · 3] meV (red symbols). (e) Temperature evolution of the elastic (blue squares) and
inelastic (red and black circles) features. The elastic signal is integrated over Q = [0.6 · · · 1] Å−1 and E0 = [−0.1 · · · 0.1] meV, the inelastic
signals are corrected for the Bose factor and integrated over Q = [0.44 · · · 2] Å−1, E1 = [0.5 · · · 2] meV and Q = [0.3 · · · 1.5] Å−1, E2 =
[11 · · · 13] meV. The last curve is extracted from the Ei = 24.3 meV rep mode.

The contribution of spin waves from Q1 = 0.6 Å−1 is
minute in the collected INS signal and cannot be disentangled
from the broad major feature centered at Q2 = 0.77 Å−1. The
origin of the Q2 feature evolves from static into dynamic with
temperature increase and reaches maximum intensity at 50 K,
which coincides with the broad maximum in the magnetic
part of the specific heat [5]. We presume it originates from
the major spins. In brief: The low-energy part of INS data is
dominated by the (5 meV, 0.77 Å−1) feature, the high-energy
part has a feature at 13 meV which is magnetic for Q <

4.5 Å−1 and has a phonon contribution for Q > 4.5 Å−1. The
magnetic INS signal has maximum intensity at 50 K where the
elastic short-range correlations diminish. The broad scattering
background beneath these features persist even at 180 K.

IV. MODELING OF THE MAGNETIC HAMILTONIAN

We used several theoretical approaches to explain these
variegated experimental observations. We start with the ideal
triangular lattice and present analytical results for models with
an increasing number of bilinear exchanges and with the bi-
quadratic exchange (Sec. IV A). Then we test the model with
three bilinear exchanges against our INS data (Sec. IV B).

A. Analytical results for models with bilinear
and biquadratic exchanges

First, we try to establish the range of exchange parameters
which could give rise to magnetic correlations observed at
Q1 = 0.6 Å−1 for FeGa2S4 and 0.57 Å−1 for NiGa2S4 [10]
within the triangular lattice Heisenberg bilinear model. In this
section we use the theoretical notation (TN) for the reciprocal
space [see Appendix B for the definition of TN and its relation
to the experimental notation (EN)].

We inspect analytically with rising complexity, the single
Ji=1,3, the bilinear Ji=1,3–Jj=1,3 and the trilinear J1–J2–J3 mod-
els on the two-dimensional triangular lattice described by the
Hamiltonian,

H = J1

∑
〈i, j〉

(Si · S j ) + J2

∑
〈〈i, j〉〉

(Si · S j ) + J3

∑
〈〈〈i, j〉〉〉

(Si · S j ).

(1)
Since we are interested in the region of the J1–J2–J3 phase
diagram with the incommensurately modulated ground states,
we express the spin Si on site ri as [24]

Si = n1 cos(k · ri ) − n2 sin(k · ri ), (2)

where n1 and n2 are orthonormal vectors. For the Hamiltonian
in Eq. (1) we obtain the expression of the energy as a function
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FIG. 9. The relation between (a) J1/J3 and J2/J3 and (b) J1/J3 and KB/J3 to obtain the ordering wave vectors for NiGa2S4 (blue) and
FeGa2S4 (red and green) within the J1–J2–J3 and J1-J3-KB models. The critical points corresponding to a local maximum, a local minimum,
and a global minimum of the energy at the given values of the ordering wave vectors are distinguished by the dotted, dashed, and solid lines,
respectively.

of k,

E (k) = 2J1N

[
cos(kx ) + 2 cos

(
kx

2

)
cos

(√
3ky

2

)]

+2J2N

[
2 cos

(
3kx

2

)
cos

(√
3ky

2

)
+ cos(

√
3ky)

]

+2J3N[cos(2kx ) + 2 cos(kx ) cos(
√

3ky)]. (3)

It is important to note that there is no explicit dependence
of the energy on the vectors n1 and n2, reflecting the SO(3)
global symmetry of the model. In order to find the possible
ordering vectors we minimize E (k) with respect to k. Depend-
ing on the values of the parameters J1, J2 and J3 the minima
of this model lie along the following two sets of directions: (i)
±(1, 0), ±( 1

2 ,
√

3
2 ), ±(− 1

2 ,
√

3
2 ) and (ii) ±(

√
3

2 , 1
2 ), ±(0, 1),

and ±(
√

3
2 , 1

2 ). Since the ordering vector k ≈ ( 1
6 , 1

6 , 0) in EN
observed in MGa2S4 (M = Ni, Fe) corresponds to set (i), we
focus on this direction and search for a minimum along the
x̂ direction (or, equivalently, along any direction of this set).
With this condition the value of k should satisfy,

J1

J3
= −2[sin(k) + sin(2k)] + 3 J2

J3
sin

(
3k
2

)
sin

(
k
2

) + sin(k)
. (4)

From this equation we obtain linear relations among
J1, J2 and J3 presented in Fig. 9(a). This linear relation ex-
presses the values of the parameters for which the energy
develops a critical point. The critical points gain stability
when we move along each line, running from a local max-
imum (represented by dots) to a local minimum (dashed
segment) and finally to a global minimum (solid line). For
FeGa2S4 the Q2 vector (green line) becomes a global min-
imum for J1/J3 > 1.72. Further restrictions on J1/J3 should
be included for these critical points to belong in set (i): for
NiGa2S4 J1/J3 > −1 and to obtain either the Q1 or the Q2

vectors for FeGa2S4 requires J1/J3 < 0.6 and J1/J3 < 4.3,
respectively.

The sign of the slope for a modulated state with k ≈
0.155 × 4π for NiGa2S4 (blue) and with k ≈ 0.1737 × 4π for

FeGa2S4 (red) is different. This change in the sign takes place
at the critical wave-vector k = ( 1

6 , 1
6 , 0).

It is important to note that the single Ji=1,3—exchange
models and the bilinear J1-J2 and J1-J3 exchange models are
not sufficient to explain the Q1 = 0.6 Å−1 feature observed for
FeGa2S4. For example, the ordering vector k ≈ 0.155 × 4π

for NiGa2S4 can be obtained from the J1-J3 model [25], and
this is not the case for k ≈ 0.1737 × 4π for FeGa2S4. In those
models the ordering vector implies either a uniform (ferro-
magnetic) state, a commensurate 120◦ structure or it does not
match the direction [the set indicated in (i)] signaled by the
experimental results. For the J1-J2–J3 exchange model such
solutions, however, are available.

Now we consider the ordering vector with the length k ≈
0.222 × 4π , which could correspond to the center of the dif-
fuse feature at Q2 = 0.77 Å−1 observed for FeGa2S4. The
parameters of the ideal triangular lattice model are related
through a linear equation depicted in Fig. 9 by the green line.
These solutions strongly differ from the Q1 lines and require
significant J1 coupling.

We proceed with the “model engineering” and raise the
complexity by adding the biquadratic interaction KB between
first nearest-neighbors KB

∑
〈i, j〉(Si · S j )2. We repeat the pre-

vious procedures for two models: J1-J3-KB and J1–J3-KB.
The energy of a modulated state for the J1-J3-KB model

reads

E (k) = 2J1N

[
cos(kx ) + 2 cos

(
kx

2

)
cos

(√
3ky

2

)]

+2J3N[cos(2kx ) + 2 cos(kx ) cos(
√

3ky)]

+2KBN[3 + cos(2kx ) + 2 cos(kx ) cos(
√

3ky)]. (5)

As we did before we look for the minimum of the energy
along the x̂ direction. With this condition the value of k should
satisfy

J1

J3
= −2

(KB
J3

+ 1
)
[sin(k) + sin(2k)]

sin
(

k
2

) + sin(k)
. (6)

From this equation we obtain the relations between the val-
ues of J1, J3, and KB (Fig. 9) right for which modulated
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states with k ≈ 0.155 × 4π for NiGa2S4, k ≈ 0.1737 × 4π ,
and k ≈ 0.222 × 4π for FeGa2S4 are the ground states. The
role of KB is significant, but in the real system we expect KB

to be a perturbative and not the leading parameter.
Finally, if we add the J2 exchange interaction to the previ-

ous model, the energy as a function of k is as follows:

E (k) = 2J1N

[
cos(kx ) + 2 cos

(
kx

2

)
cos

(√
3ky

2

)]

+2J2N

[
2 cos

(
3kx

2

)
cos

(√
3ky

2

)
+ cos(

√
3ky)

]

+2J3N[cos(2kx ) + 2 cos(kx ) cos(
√

3ky)]

+2KBN[3 + cos(2kx ) + 2 cos(kx ) cos(
√

3ky)]. (7)

Since we are interested in the states with k along the x̂ di-
rection, we look for the minimum of the energy along this
direction. With this condition the value of k should satisfy

J1

J3
= −2

(KB
J3

+ 1
)
[sin(k) + sin(2k)] + 3 J2

J3
sin

(
3k
2

)
sin

(
k
2

) + sin(k)
. (8)

From this linear equation the values of J1, J2, and KB for
which the ICM ground states with k ≈ 0.155 × 4π, k ≈
0.1737 × 4π , and k ≈ 0.222 × 4π are obtained.

Our analytical approach shows that the parameter space
of the ideal triangular model which fits the experimental or-
dering wave vectors is quite extended, however, constrained
by Eq. (8), and additional input is necessary to select the
unique set of exchange parameters. Despite the broad range of
parameters, we emphasize on the relevance of the constraints
imposed by Eqs. (4), (6), and (8) for searching the correct set
of couplings.

B. Extraction of exchange parameters from the INS spectrum
using linear spin-wave theory

We narrow the exchange parameter space calculating the
spin excitation spectrum and fitting it to the experimental
S(Q, ω). We consider the triangular lattice Heisenberg bi-
linear model of Eq. (1) and focus on the Q2 = 0.77 Å−1

feature observed in the INS spectra assuming that it emerges
from the spin waves. We take the 180 K data after the Bose
factor correction as an empirical background (even though
it contains a featureless magnetic contribution) and attribute
the rest of the 2 K data to spin-wave excitations. Using the
ground state of Eq. (3), we calculate spin-wave excitations
with the SPINW program [26] and compare the resulting spec-
tra with the INS data measured at 2 K. To avoid regions
in data that are saturated by elastic scattering, only energy
transfers above 2.4 and 0.75 meV are considered for the two
setups of Ei = 24.3 and Ei = 7.7 meV, respectively. In the
simulation, the experimental energy resolution of each setup
is approximated by a constant corresponding to its nominal
(energy-dependent) value at the peak of the magnetic exci-
tation. No intrinsic broadening is considered. The nominal
uncertainties on the measured intensity are obtained from the
data itself and are assumed to be underestimated for bins
with low neutron counts. Therefore, these uncertainties are
thresholded to a minimum value determined by the actual

variance across low-intensity bins in regions of data without
large-scale features. The model is evaluated on a discretized
grid of values ranging from −2 to 2 meV in increments of
0.1 meV for each of exchange parameters J1, J2, J3. Figure 10
shows the maximum logarithm likelihood at each point after
optimizing the magnitude of the spin-wave contributions. The
maximum logarithm likelihood suggests that J1, J2 and J3 are
antiferromagnetic. The best fit (see Fig. 11) is obtained for
J1 = 1.7, J2 = 0.9, J3 = 0.8 meV, which is consistent with
the relation imposed by Eq. (4).

We note that the general locations of the observed ex-
citations can be approximately reproduced by this model,
however, the detailed structure of the simulated spin waves
is not evident in the data, and this set of parameters is out the
range indicated in Fig. 9(a). In particular, the Ei = 7.7 meV
setup reveals that the predicted drop in intensity at the low-
energy transfer is less rapid than what can be observed in
data. These discrepancies are not removed by inclusion of
the single-ion anisotropy Dn

∑
i(Si )2, which should be 20% of

exchange and planar according to the magnetic susceptibility
measurements.

We conclude that the best fit to our powder INS data
provides the set of exchange parameters within the J1–J2–J3

bilinear model but this model is not sufficient to explain the
whole observed excitation spectrum.

V. SUMMARY AND DISCUSSION

Our extensive experimental study of the triangular anti-
ferromagnet FeGa2S4 implies that this material, and most
probably also NiGa2S4, has significant mixing of the M (M =
Ni, Fe) and Ga cations between the octahedrally coordinated
1(b) and tetrahedrally coordinated 2(d ) positions. Nearly 20%
of the 1(b) sites forming magnetic triangular layers are occu-
pied by nonmagnetic ions and nearly 10% of the 2(d ) sites
forming nonmagnetic triangular layers host magnetic M ions.

This mixing is an important ingredient of highly nontriv-
ial magnetic properties. It introduces a long-range magnetic
order at TN = 5.5 K revealed by the Q1 = 0.6 Å−1 peak in
neutron powder diffraction, which we associated with the k =
[0.1737(1), 0.1737(1), 0] propagation vector. This magnetic
order is dominated by the amplitude modulated z compo-
nent of the minor Fe spins at the 2(d ) sites. The amount
of the minor Fe ions are well below the percolation limit
of the stacked triangular antiferromagnetic lattice (pside

c =
0.262 40(5) [27]), so the layers of the major Fe ions possibly
mediate this exchange.

The broad feature at Q2 = 0.77 Å−1 in neutron powder
diffraction corresponds to short-range magnetic correlations
within the triangular layers of the major Fe sites. These
in-plane correlations are static at low temperatures, evolve
into dynamic correlations at elevated temperatures 30–50 K,
and fade away at temperatures comparable to |�|cw = 160 K.
These dynamic correlations could be confined spin waves,
the so-called Halperin-Saslow modes [17,28] of the major
Fe moments, which freeze in due to numerous nonmag-
netic impurities. The nonmagnetic defects possibly trigger
formation-dissociation of the Z2 vortices. According to the
MC simulations [29] the characteristic temperature TKM re-
lated to the pairing dissociation of the Z2 vortices is correlated
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FIG. 10. Maximum logarithm likelihood after optimizing the magnitude of the spin-wave contributions.

with the effective exchange as TKM = 0.66JS2. For our case
J = 13 K (estimated from susceptibility) and S = 2, which
this results in TKM = 34 K. This temperature corresponds to
the anomalies found in muon spectroscopy (T ∗ = 33 K) [7,9]
and to the change between static and dynamic natures of mag-
netic short-range correlations in our neutron scattering. Thus,
even if the MGa2S4 family is not an ideal TLAFM system,
it might realize interesting phenomena predicted theoretically
for this model.

Our extensive theoretical study of the ideal triangular
lattice bilinear-biquadratic Heisenberg model has value by
itself. The analytical study provided in Sec. IV A could be
applied to a generic triangular system and as such serves
as guide to study other compounds. It rationalizes the
ratios J1/J3, J2/J3, and KB/J3 for a provided ground-state
propagation vector. For the specific case of FeGa2S4 it notifies
that the Q1 and Q2 features require possibly different sets
of exchange parameters as they reside on the lines with one
intercept point. We reduce the range of possible exchange
parameters for FeGa2S4 by modeling the distinct features of

the experimental low-temperature INS spectra as conventional
spin waves within the J1–J2–J3 bilinear Hamiltonian. The
best fit is obtained for the set of AF couplings J1 = 1.7, J2 =
0.9, J3 = 0.8 meV, which is close to the analytical solutions
for Q2. However, only the gross features of the INS spectra
are explained. The origin of the broad scattering background
remains elusive, and for its understanding it is important
to disentangle magnetic properties of inversion-free and
inversion-containing triangular antiferromagnetic materials.

Our results imply that the short-range correlations at Q2

and the anomalies around 30–50 K are the properties of
the major magnetic sites of the FeGa2S4 system. The main
exchange couplings are antiferromagnetic and J1 > J3 ≈ J2.
How strongly the behavior of major Fe triangular sublattice is
influenced by the minor Fe sites remains unclear. Theoretical
predictions are presently limited to only small amounts of
impurities and to the first nearest neighbors [30,31]. Exten-
sions to the experimentally found values can bring answers
to this question. Preliminary Monte Carlo simulations with
the experimentally observed amount of impurity seem to
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FIG. 11. Predicted Ei = 24.3 meV (left) and Ei = 7.7 meV (right) INS spectra at 2 K, constructed from an empirical background model
measured at 180 K and spin-wave simulations for the set of the exchange values J1 = 1.7, J2 = 0.9, J3 = 0.8 meV. The margin plots show
comparisons with data measured at 2 K.

reproduce the Q1 and Q2 features observed in inelastic neutron
scattering. However further exploration would be necessary.
Novel synthetic routes to obtain inversion free members of
the MGa2S4 family could in the future facilitate experimental
validation of the ideal TLAFM model.
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APPENDIX A: MATERIALS AND METHODS

Polycrystalline FeGa2S4 and NiGa2S4 samples were pre-
pared by solid-state synthesis from FeS (NiS) and GaS starting
materials. The mixture was annealed for 1 week at 900 ◦C
in an evacuated quartz ampule. Then the sample was ho-
mogenized by grinding, resealed, annealed again, and cooled
within 24 h. Single crystals were grown by the chemical-
vapor transport method using iodine as a transport agent and
a temperature gradient 1000/900 ◦C. The crystals were then
quenched.

The purity of the samples and the details of the crystal
structure for FeGa2S4 in the temperature range of 5–300 K
were determined for polycrystalline material on the x-ray
powder diffractometer of the X04SA Material Science beam-
line at the Swiss Light Source synchrotron (λ = 0.641 090 Å)
and for FeGa2S4 and NiGa2S4 single crystals on a Bruker
SMART diffractometer equipped with an Apex I detector

and an Apex II detector (Mo Kα = 0.710 73 Å) at ETH
Zürich at 300 and 100 K, respectively. Cambridge Crystal-
lographic Data Center (CSD) 2078453 and CSD 2078454
contain the Supplemental crystallographic data for FeGa2S4

and NiGa2S4, respectively. These data can be obtained free
of charge from FIZ Karlsruhe via Ref. [32]. Powder patterns
were refined using the FULLPROF suite [33] for single-crystal
refinements SHELX [34] was used. SEM images of the as-
obtained samples were recorded with a secondary electron
detector on a Gemini 1530 (Zeiss) microscope. EDXS was
performed with a solid-state drive system (Noran) attached to
this microscope.

Magnetic susceptibility was measured in the temperature
range of 1.8–350 K in an applied magnetic field of 0.1 T
using a magnetic properties measurement system supercon-
ducting quantum interference device magnetometer, Quantum
Design.

Neutron powder diffraction patterns for FeGa2S4 were
measured on the DMC diffractometer at SINQ (λ =
2.4575 Å). Data were collected at several temperatures be-
tween 1.3 and 180 K with the measuring time up to 12 h
per pattern. XYZ-polarized neutron powder diffuse scatter-
ing was measured on the D7 spectrometer at ILL (Ei =
3.8 meV) at 1.4 K (4 h) and 60 K (10 h). The magnetic
scattering was extracted from isotropic magnetic scatter-
ing the magnetic, ( dσ

d

)mag the incoherent ( dσ

d

)inc, and the

nuclear( dσ
d


)nuc cross sections were evaluated by the following
equations [35]:

(
dσ

d


)
mag

= 2

(
dσ

d


)x

s f

+ 2

(
dσ

d


)y

s f

− 4

(
dσ

d


)z

s f

, (A1)

where x, y, z refer to the direction of the incident polarization,
sf and nsf stand for spin flip and nonspin flip.

Time-of-flight inelastic neutron scattering (INS) was mea-
sured for FeGa2S4 on the LET spectrometer [23] at ISIS.
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FIG. 12. The red arrows represent the x̂ and ŷ unit vectors in all the cases. (a) Basis vectors {a1, a2} (in green) for the real space of the
triangular lattice. (b) The first Brillouin zone for the triangular lattice. The M point (green circles), K point (purple circle), and � point (black
circle). The blue arrows represent the basis vectors b1 and b2 in the reciprocal space. (c) Some examples of interest from the � point (0, 0, 0)
in light blue to the K point ( 1

3 , 1
3 , 0) in light green we have the points (expressed in EN): ( 1

6 , 1
6 , 0) in purple, (0.1737, 0.1737,0) in red, and

(0.222, 0.222,0) in brown.

We used the rep-rate multiplication mode with the Fermi
chopper rotating at 240 Hz in the high-flux setup, which
allowed in a single time frame to collect data from incident
neutron energies of 1.5, 2.24, 3.38, 7.7, and 24.3 meV. The
Al can was subtracted, and data were corrected for the Bose
factor.

APPENDIX B: CONVENTIONS AND NOTATIONS FOR
THE RECIPROCAL SPACE

Two different notations can be encountered in the literature
depending on the type of article (experimental or pure theoret-
ical). We distinguish them by the names EN and TN.

In the EN notation a vector k in the reciprocal space is
expressed in terms of the basis vectors b1 and b2 as follows
k = k1b1 + k2b2. In the TN notation a vector k is expressed
in terms of the basis vectors x̂ and ŷ as follows k = kxx̂ + kyŷ
(see Fig. 12). The connection between both notations is given
by a change in basis (from {b1, b2} to {x̂, ŷ}). The basis vec-
tors b1 and b2 (in blue) are expressed in terms of the vectors

x̂ and ŷ (in red) as follows:

b1 = 2π

a
x̂ + 2π√

3a
ŷ, (B1)

b2 = 2π

a
x̂ − 2π√

3a
ŷ. (B2)

So, for instance, in EN the state ( 1
3 , 1

3 , 0) (the K point)
corresponds to the triplet ( 4π

3a , 0, 0) in TN,

1

3
b1 + 1

3
b2 = 4π

3
x̂. (B3)

The M point in EN is identified with ( 1
2 , 0, 0) and in the

TN with the triplet ( π
a , π√

3a
, 0),

1

2
b1 = π

a
x̂ + π√

3a
ŷ. (B4)

Thus, when in the EN notation we refer to the (0.155,
0.155) wave vector, it corresponds to the wave-vector k ≈
0.155 × 4π in the TN notation (taking a = 1).
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