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Obligate avian brood parasites depend on hosts for parental care, which in turn suffer fitness losses as a result of 
parasitism. Mechanisms by which brood parasitic cowbirds (Molothrus spp.) reduce host breeding success include the 
puncture (M. rufoaxillaris and M. bonariensis) or removal (M. ater) of  the eggs of the host. Our working hypothesis 
is that the host eggs’ mechanical strength and their size and shape in species with higher frequency of parasitism 
covaries with the cowbird’s strategy to reduce host clutch size. Our results, obtained through phylogenetic analyses 
based on egg 2D geometric morphometry and eggshell mechanical and ultrastructural measurements, suggest that 
egg-puncturer behaviour has led to an increase in the strength of the host’s eggshell, which might make them more 
difficult to be pierced. We also characterized larger, more rounded and asymmetrical eggs in frequent hosts of M. ater, 
which might be more difficult to be removed. These interspecific host egg and shell traits were also positively affected 
by the frequency of parasitism, indicating that species-specific patterns of parasitic costs select for respective anti-
parasitic defences in hosts.

ADDITIONAL KEYWORDS:   brood parasitism – cowbirds – egg-puncturer – egg-removal – eggshell strength – 
eggshell thickness – eggshell ultrastructure – quasi-static punctures.

INTRODUCTION

Obligate avian brood parasites lay their eggs in nests 
of other avian species, the hosts; the latter provide 
all parental care to the parasitic eggs and chicks. 
Brood parasites depend entirely on the hosts for 
reproduction, which in turn suffer fitness losses as 
a result of parasitism (Ortega, 1998; Davies, 2000). 
Therefore, it is expected that natural selection has 
favoured the evolution of defence mechanisms in hosts 
that reduce the negative impact, and adaptations in 
the parasites that counteract these defences, through 

coevolutionary arms races (Payne, 1977; Dawkins & 
Krebs, 1979; Rothstein, 1990; Davies, 2000; Krüger, 
2007; Soler, 2017).

Cowbirds (Icteridae: Molothrus spp.) are obligate 
brood parasites with have different strategies in 
their use of hosts. Thus, the screaming cowbird 
(Molothrus rufoaxillaris Cassin, 1866) is a specialist 
which almost exclusively parasitizes the greyish 
baywing (Agelaioides badius Vieillot, 1819), whereas 
the shiny cowbird (Molothrus bonariensis Gmelin, 
1789) and the brown-headed cowbird (Molothrus 
ater Boddaert, 1783) are extreme generalists that 
each use over 200 hosts species covering a wide 
range of body sizes (Lowther, 2018). The initial 
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mechanism by which parasitic cowbirds reduce 
host reproductive fitness also varies, ranging from 
the pecking and destruction of host eggs (through 
puncturing) or their removal (through either grasp-
ejecting or puncture-ejecting). The screaming and 
shiny cowbird typically peck host and parasite eggs 
already in the nest until one or more are damaged.  
They then lay an egg of their own (Hudson, 1874; 
Fraga, 1998; Gloag et al., 2012, 2014). In contrast, 
the brown-headed cowbird typically removes one 
host egg when it lays its own, by either grasp- or 
puncture-ejection (Sealy, 1992, 1994). Overall, the 
frequency of egg puncture behaviour by the brown-
headed cowbird is much lower than that of the 
other two congeneric cowbirds in our analyses. This 
remains true, even taking into account that some 
localized brown-headed cowbird populations (Peer 
et al., 2013) also engage in host-egg and -chick 
destruction, through mafia (Hoover & Robinson, 
2007) or farming behaviours (Swan et al., 2015), 
when encountering host nests from which parasitic 
eggs had been removed or were not present. 
Typically, brown-headed cowbirds remove one host 
egg for each parasite egg they lay, while leaving the 
other host eggs unpecked (Hauber, 2003). However, 
for some host species, the brown-headed cowbird 
does not regularly remove a host egg or peck host 
eggs when laying (Antonson et al., 2020).

Several hypotheses have been proposed to explain 
the benefits of these parasitic behaviours. For example, 
the reduction of host’s clutch size could increase the 
incubation efficiency of the parasitic egg(s) (Peer & 
Bollinger, 2000), the feeding efficiency of parasitic 
nestlings (Fraga, 1979), reduce the number of host 
young with which the parasitic hatchling needs to 
compete (Sealy, 1992; Kilner et al., 2004), and/or induce 
the hosts to abandon their nests when the parasite 
finds the nest too late into the nesting cycle (Swan 
et al., 2015).

Although the adaptiveness of egg puncture and 
egg removal is not fully understood, it is clear that 
these behaviours may have significantly negative 
effects on host fitness (Peer & Sealy, 1999; Nakamura 
& Cruz, 2000; Tewksbury et al., 2002; Peer et al., 
2005). The mechanical strength of the host egg 
should affect the success of egg puncture attempts 
by screaming and shiny cowbirds, because eggs 
with stronger shells would reduce the likelihood of 
damage. Conversely, eggshell strength should have 
a relatively low influence on the success of the egg 
removal by the brown-headed cowbird. Instead, egg 
size and shell shape should affect the success of 
egg ejection. Our working hypothesis is therefore 
that the egg’s mechanical strength, and its size 
and shape in host species with higher frequency of 

parasitism, covaries with the parasite’s own strategy 
of reducing the host’s clutch size. If so, then we must 
ask which characteristics of the host egg and shell 
are associated with these behavioural differences in 
their brood parasites. Our predictions are (1) eggs 
of host species frequently parasitized by the mainly 
egg-puncturing screaming and shiny cowbirds are 
mechanically stronger and stiffer than eggs of host 
species (1a) with lower frequency of parasitism by 
these two cowbirds and (1b) that are parasitized by 
the egg-remover brown-headed cowbird; (2) eggs of 
host species frequently parasitized by the brown-
headed cowbird are larger and have a more rounded 
shape (making them more difficult to be grasped 
or punctured) than eggs of host species (2a) with a 
lower frequency of parasitism, and (2b) frequently 
or infrequently parasitized by the two egg-puncturer 
cowbird species.

We also complemented our research by studying 
the egg and eggshell traits of two populations of 
the house wren (Troglodytes aedon Vieillot, 1809), 
that despite being the same species, are parasitized 
by different species of cowbirds and suffer different 
egg destruction behaviours at intra-specific and 
inter-specific levels. House wrens in North America 
are rarely parasitized by brown-headed cowbirds 
(Pribil & Picman, 1997) but have a high frequency 
of conspecific egg punctures (Belles-Isles & Picman, 
1986), whereas house wrens in South America are 
frequently parasitized by shiny cowbirds (Kattan, 
1997; Tuero et al., 2007; de la Colina et al., 2016) 
but have a low frequency of egg punctures by both 
parasites and conspecifics (Kattan, 1997; Fiorini 
et al., 2009; Llambías & Fernández, 2009).

MATERIAL AND METHODS

Study area and egg collections

Fieldwork was conducted in Buenos Aires Province, 
Argentina, during the southern breeding seasons 
(October to January of 2014/15 and 2015/16), and in 
New York State, United States, during the northern 
breeding season (May to July of 2015). We collected 
fresh (non-incubated) eggs (one egg per nest) of three 
cowbird species (the screaming cowbird, hereafter: 
ScCo, the shiny cowbird, hereafter: ShCo, and the 
brown-headed cowbird, hereafter: BrCo) and a total 
of forty of their respective host species that vary 
in their frequencies of parasitism and body size. 
We also included data from published studies on 
eggs belonging to eight host species of the brown-
headed cowbird. For more details see the Supporting 
Information.
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Geometrical characteristics of eggs

Egg dimensions [length and breadth (mm)] and 
mass (g) of the full egg were measured using a caliper 
(Mitutoyo, accuracy: ± 0.02 mm) and a digital scale 
(Precisa 200A, accuracy: ± 0.001 g). Eggshell mass 
was also measured after performing the mechanical 
puncture tests (see below). The egg volume and the 
eggshell ratio were estimated from the following 
equations:

Egg volume = 498×10–6×L×B2 (mL) (Spaw & Rohwer, 
1987)
Eggshell ratio = 100×Ms/Me

where L: egg length (mm), B: egg breadth (mm), Ms: 
shell mass (g) and Me: egg mass (g).

The egg shapes were estimated through variables 
generated from 2D geometric morphometric analyses 
using egg outline images. For each egg image, chain 
codes were registered on the contour to calculate 
the elliptical Fourier descriptors (EFDs) of the first 
eleven harmonics using the ‘Momocs’ package in 
R [v.1.3.0.9000 (Bonhomme et al., 2014)]. A matrix 
of harmonic coefficients was used for subsequent 
statistical analyses. For methodological details, see 
Supporting Information.

Mechanical properties of eggshells

The mechanical properties of eggshells were evaluated 
by puncture tests that were performed on the equatorial 
section of the eggs. We measured both the force needed 
to fracture the eggshell (breaking strength or puncture 
resistance) and egg deformation until failure. From 
the force vs. displacement diagrams (e.g. Supporting 
Information, Fig. S1), we estimated two mechanical 
properties necessary to compare eggs of different sizes 
and species: eggshell puncture stiffness (N/mm2) and 
eggshell puncture energy (J).

Eggshell puncture resistance (N) describes the 
response of the eggshell as a composite complex 
structure (Voisey & Hunt, 1974) and is used as an index 
of eggshell strength (Bain, 1990). Puncture stiffness 
provides a relative and standard measure of the overall 
eggshell stiffness characteristics, and puncture energy 
provides a measure of the amount of energy that 
eggshell material can absorb during a puncture test 
within the elastic range (Mohsenin & Mittal, 1977). For 
more details, see Supporting Information.

Ultrastructural characteristics of  
eggshells

The ultrastructure of shell cross-sections was 
analysed from images obtained by scanning electron 
microscopy (SEM; Zeiss Supra 40), using a technique 

based on the in-lens secondary electron detector 
(applying high voltage, 5kV). The total thickness 
(µm) of each specimen was measured as the distance 
from its outermost surface to the point where the 
basal mammillary cones inserted into the organic 
membranes. The thickness of the mammillary layer 
was measured as the distance from the basal cones 
to the point at which the palisade columns fuse. 
The outer palisade and inner palisade layers were 
identified according to the descriptions of Mikhailov 
(1987) and Dennis et al. (1996). They are predicted to 
be involved in the strength of the eggshell (Carnarius 
et al., 1996), whereas the mammillary layer probably 
does not contribute to the stiffness characteristics of 
the eggshell (Bain, 1990). We calculated the palisade 
layer ratio as 100×palisade layer thickness/total shell 
thickness.

Life history and host morphology data

For each host species, we collected data from published 
studies on parasitism frequency (parasitized nests/
total nests monitored), and body mass (g) and tarsus 
length (mm) of adult females.

The host species were grouped using two criteria: (1) 
according to host egg size in relation to the egg size of its 
respective parasite (four groups: large egg host of BrCo, 
small egg host of BrCo, large egg host of ScCo and ShCo, 
and small egg host of ScCo and ShCo); and (2) according 
to the parasitism frequency (four groups: frequent hosts 
of BrCo, infrequent hosts of BrCo, frequent hosts of 
ScCo and ShCo, infrequent hosts of ScCo and ShCo). 
We classified a host species as a “large host” when 
the mass of its egg was greater than the mass of the 
respective parasite’s egg. We considered a host species 
as a “frequent host” when the overall parasitism rate 
was greater than 20%. For explanatory details of these 
thresholds, see Supporting Information.

Statistical analyses

Phylogenetic hypothesis
A set of 1000 topologies was obtained from the Bayesian 
posterior distribution provided in http://www.birdtree.
org (Jetz et al., 2012). A single phylogenetic consensus 
tree with branch lengths expressing divergence 
time was then generated [via the ‘phytools’ package, 
v.0.7.47 (Revell, 2009)] and used as a framework for 
performing all the analyses.

Host egg shape
The main components of egg shape variability were 
calculated by principal component analysis (PCA) on 
the matrix of harmonic coefficients using the ‘Momocs’ 
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package [v.1.3.0 (Bonhomme et al., 2014)]. Egg shape 
variation along the PC axes were visualized using the 
PCcontrib function. Scores from the first PCs were used 
in the following analyses (see below, and Supporting 
Information). We also performed a phylogenetic principal 
component analysis (phylogenetic P-PCA) on the 
average values (one value per species) of the harmonic 
coefficients using the ‘phytools’ package [v.0.7.47 (Revell, 
2009)]. We tested for a difference between host species 
(grouped according to parasitism frequency) regarding 
the distribution of the first three phylogenetic P-PC 
scores performing a phylogenetic multivariate analysis 
of variance (P-MANOVA) with Pillai’s statistic, using 
the ‘geiger’ package [v.2.0.7 (Harmon et al., 2008; 
Pennell et al., 2014)]. Significance was evaluated on 
1000 simulations under a Brownian-motion model of 
evolution. Phylogenetic post hoc t-tests [with Holm 
sequential Bonferroni correction for multiple levels 
(Holm, 1979; Revell, 2012)] were used to identify which 
host egg groups were different for each P-PC while 
controlling for phylogenetic effects [‘phytools’ package 
(Revell, 2009)].

P-MANOVA and P-LDA on host egg and 
shell traits
We tested for multivariate differences in the egg and 
shell traits among the host species (grouped according 
to their egg size and the parasitism frequency), using 
P-MANOVA with Pillai’s statistic, via the ‘geiger’ 
package [v.2.0.7 (Harmon et al., 2008; Pennell et al., 
2014)]. Significance was evaluated on 1000 simulations 
under a Brownian-motion model of evolution. The egg 
and shell traits used were eggshell puncture stiffness, 
eggshell puncture toughness, egg ellipticity (PC1), egg 
asymmetry (PC2), eggshell ratio, and palisade layer 
ratio. Each variable was log-transformed and then 
tested for evidence of phylogenetic signal using Pagel’s 
λ (Pagel, 1999) implemented in the phylosig function 
[‘phytools’ package (Revell, 2012)]. Phylogenetic linear 
discriminant analysis (P-LDA) was performed using 
“phylo.fda.v0.2.R” script and the phylo.fda function 
(Schmitz & Motani, 2010). Standardized coefficients 
of discriminant functions were used to evaluate the 
relative contribution of the traits to discrimination.

Lambda values of some individual traits did not 
take extreme values close to 0 or 1, and the optimal 
lambda obtained by both discriminant function 
analyses were close to 0. Therefore, we also conducted 
standard multivariate analyses of variance and linear 
discriminant analyses, including data from parasite 
species and data from each of the egg samples (several 
individuals per species), with the function lda in the R 
package ‘MASS’ [v.7.3.52 (Venables & Ripley, 2002)]. 
For details, see Supporting Information.

Covariate-adjusted residuals
Typically, egg size variables (i.e. volume, mass) are 
positively correlated with adult body size and eggshell 
strength (Rahn et al., 1975; Ar et al., 1979; Thompson 
et al., 1981; Spaw & Rohwer, 1987), although these 
relationships can also be affected by phylogeny (Rahn 
et  al., 1975; Deeming, 2007). These confounding 
variables that must be controlled for. An alternative 
method to remove the effect of a covariate on the 
response variable is by the use of residuals (Garcia-
Berthou, 2001; Ceyhan & Goad, 2009). For assessing 
the differences in eggshell strength and egg size, we 
performed evolutionary associations through the 
phylogenetic generalized linear mixed-effects models 
(P-GLMMs) via the ‘MCMCglmm’ package in R 
[v.2.29 (Hadfield, 2010)]. We fitted the models using 
as response and fixed effect continuous variables: (a) 
eggshell strength vs. egg volume, (b) egg volume vs. 
female body mass, and (c) egg volume vs. female tarsus 
length. Phylogeny (given by the phylogenetic variance-
covariance matrix) and species (as species-specific 
effect) were the random effect variables. We estimated 
R2, an indicator of goodness of fit within a Bayesian 
framework, as the amount of variance explained by 
each model through alternative formulation of R2 
within a frequentist framework (following Gelman 
et al. 2017). We calculated the posterior probability 
of the phylogenetic signal of models, across the 
entire posterior distribution of model variances, 
using Lynch’s phylogenetic heritability (h2) equation, 
equivalent to Pagel’s λ in generalized least-squares 
(GLS) models of phylogenetic signal inference (Lynch, 
1991; Pagel, 1999; Hadfield & Nakagawa, 2010, but 
see Garamszegi, 2014). The phylogenetic signal is 
defined as the tendency for related species to resemble 
each other more than they resemble species drawn at 
random from the tree, and it can range from 0 (no 
phylogenetic signal, equivalent to a ‘star’ phylogeny) 
to 1 (consistent with Brownian Motion) (Blomberg & 
Garland, 2002).  Then host species, grouped according 
their parasitism frequencies, were compared using 
Bayesian analysis of variance [via the ‘MCMCglmm’ 
package, v.2.29 (Hadfield, 2010)] on these residuals. 
All Bayesian models were run for 5 000 000 iterations 
with a burn-in of 10 000 and a thinning interval of 
500. This generated 10 000 samples from each chain 
from which parameters were estimated. Finally, the 
Bayesian contrasts were tested using the tidyMCMC 
function from the ‘broom.mixed’ package in R [v.0.2.6 
(Bolker & Robinson, 2020)]. Fitted models and 
contrasts were considered statistically significant 
when the 95% credible interval (CrI 95%) did not span 0 
or PMCMC < 0.05 (Hadfield, 2010). The phylogenetic 
signal in our models had values of ~0.5 (range: 0–1). 
Therefore we also conducted standard Bayesian 
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linear models (BMLs), including data from parasite 
species and data from each of the egg samples (several 
individuals per species). For details, see Supporting 
Information.

Evolutionary associations using parasitism rate 
as a predictor variable
To assess patterns of evolutionary associations 
between egg and shell traits on the frequency of 
parasitism, we fitted P-GLMMs (for model details, 
see above). The log-transformed response variables 
were eggshell puncture stiffness, eggshell puncture 
energy, egg ellipticity (PC1), egg asymmetry 
(PC2), eggshell ratio and palisade layer ratio. The 
fixed effect continuous variables were parasitism 
frequency by the egg-remover cowbird (BrCo) and 
parasitism frequency by the egg-puncturer cowbirds 
(ScCo and ShCo). Phylogeny and species were the 
random effect variables. We estimated R2 and h2 
(see above).

All statistical computations were conducted with 
R software [v.3.6.3 (R Core Team, 2017)]. The plots 
were generated using the R package ‘ggplot2’ [v. 3.3.2 
(Wickham, 2016)].

Data availability
The life history and host morphology data are available 
in Supporting Information, Table S5, and the data set 
of egg and shell mechanical and structural traits is 
given in Supporting Information, Table S5. These and 
additional data may be downloaded from figshare.com 
(López et al., 2021).

RESULTS

Host egg shapes

The variation in egg shapes was well distributed among 
the phylomorpho-space axes. The first dimension 
(P-PC1) accounted for 94.26% of the variation among 
samples, and primarily described the egg ellipticity. The 
second dimension (P-PC2) accounted for 2.83% of the 
variation and described primarily the egg asymmetry 
(Fig. 1; Supporting Information, Table S6). The egg 
shape determined by 2D geometric morphometry varied 
among the host eggs grouped by parasitism frequencies 
(P-MANOVA: Pillai’s trace = 0.759, F5,42  = 2.847, P < 0.001, 
Pphylo < 0.003, where P-PC axes 1 to 3 were retained). 
However, the model was significant only when P-PC1 
was the dependent variable (P-ANOVA: F5,42 = 4.321, 
P = 0.003, Pphylo = 0.018). Phylogenetic post hoc t-tests 
showed pairwise differences between the frequent hosts 
of BrCo and the remaining three groups of host eggs: the 

infrequent hosts of BrCo (P = 0.048), the frequent hosts 
of ScCo and ShCo (P = 0.006), and the infrequent hosts 
of ScCo and ShCo (P = 0.013). Overall, the phylomorpho-
space projection of the first two main components 
indicated that the host species frequently parasitized by 
the egg-remover cowbird (BrCo) were located towards 
the negative values of P-PC1, indicating a rounded shape 
(Fig. 1).

Phylogeny had a low impact on the egg ellipticity 
(P-PC1; λ = 0.38, P = 0.547). We complemented these 
results by performing standard principal component 
analysis (PCA) on the matrix of harmonic coefficients 
to include data from parasitic cowbirds and 
intraspecific variability (Supporting Information, Figs 
S2, S3). Overall, the morpho-space projections also 
indicated that the group of the host species frequently 
parasitized by BrCo showed the most rounded egg 
shapes (Supporting Information, Fig. S3).

P-MANOVA and P-LDA on the host egg and 
shell traits

P-MANOVAs showed centroids of host species were 
well separated with the egg and eggshell traits, when 
these were grouped by their relative egg sizes (Pillai’s 
trace = 1.137, F3,34 = 3.152, P < 0.001, Pphylo < 0.001), 
and their parasitism frequencies (Pillai’s trace = 0.842, 
F3,34 = 2.014, P < 0.016, Pphylo = 0.029).

When the host species were grouped according to 
their relative egg sizes, 68.25%, 27.18% and 4.57% of 
the variance of the group centroids were explained 
by the first axis (P-LD1), second axis (P-LD2) and 
third axis (P-LD3), respectively. The most important 
contributors that explain the differences between the 
groups were: eggshell puncture stiffness, palisade 
layer ratio (for P-LD1), eggshell puncture energy, egg 
ellipticity (for P-LD2), and eggshell ratio (for P-LD3) 
(Fig. 2; Supporting Information, Table S1). Overall, 
the scatter plots of P-LDA show a clear separation 
of the large hosts of the two more frequently egg-
puncturer cowbirds and the small hosts of the egg-
remover cowbirds groups, and the variables that best 
contributed to this separation were: eggshell puncture 
stiffness, eggshell puncture energy and egg ellipticity 
(Fig. 2).

When the host species were grouped according to 
their parasitism frequencies, 82.35%, 11.38% and 
6.27% of the variance of the group centroids were 
explained by the first axis (P-LD1), second axis 
(P-LD2) and third axis (P-LD3), respectively. The 
most important contributors were eggshell puncture 
stiffness, egg ellipticity (for P-LD1), eggshell puncture 
energy (for P-LD2), eggshell ratio and palisade layer 
ratio (for P-FD3) (Fig. 3; Supporting Information, 
Table S1).
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Overall, the scatter plots of P-LDA show a clear 
separation of the frequent hosts of the BrCo, and the 
egg ellipticity was the variable that best contributed 
to this separation (Fig. 3). Eggs from this group had 
a more rounded shape (PC1) than infrequent hosts 
of BrCo (post hoc t-tests: P = 0.042), frequent hosts 
of ScCo and ShCo (post hoc t-tests: P = 0.024), and 
infrequent hosts of ScCo and ShCo (post hoc t-tests: 
P = 0.025). On the other hand, eggs from frequent 
hosts of ScCo and ShCo required greater puncture 
energy than eggs from frequent and infrequent hosts 
of BrCo (post hoc t-tests: P = 0.051 and P = 0.024, 
respectively; Supporting Information, Table S2). In 
addition, the eggs from frequent hosts of BrCo had 
a lower eggshell ratio than the frequent (post hoc 
t-tests: P = 0.012) and infrequent (post hoc t-tests: 
P = 0.015) hosts of ScCo and ShCo (Supporting 
Information, Table S2).

Phylogeny had a moderate influence on the 
variables eggshell puncture stiffness, eggshell 

puncture energy, and egg ellipticity (Supporting 
Information, Table S2). We complemented our 
results by performing standard MANOVA and 
LDA to include data from parasite cowbirds and 
intraspecific variability (Supporting Information, 
Table S3; Figs S4, S5). Overall, eggs from large 
and small host species of the two more frequently 
egg-puncturer cowbirds (ScCo and ShCo) showed 
greater eggshell mechanical puncture stiffness and 
energy than host species of egg-ejecter cowbirds 
(BrCo) (Supporting Information, Tables S4 and S6). 
When the host species were grouped according to 
their parasitism frequencies, eggs from frequent 
hosts of the egg-puncturer cowbirds (ScCo and 
ShCo) required greater eggshell puncture energy; 
whereas eggs from frequent hosts of the egg-ejecter 
cowbirds (BrCo) had a more rounded shape (PC1) 
and showed a lower proportion of the eggshell 
amount (eggshell ratio) (Supporting Information, 
Table S4).

Figure 1.  Phylomorpho-space projection of the first two principal components performed on shape descriptors of egg 
outlines. Each dot represents one species (i.e. PC scores from the harmonic coefficients mean value for each species), coloured 
according to their frequencies of parasitism by the egg-remover cowbird (BrCo) and egg-puncturer cowbirds (ScCo and 
ShCo). The dots are connected by lines that indicating phylogeny. Illustrations of some egg species representing extreme 
points: (1) Melospiza melodia, (2) Haemorhous mexicanus, (3) Junco hyemalis, (4) Elaenia albiceps, (5) Turdus rufiventris, 
(6) Chrysomus ruficapillus, (7) Tachycineta bicolor, (8) Embernagra platensis, (9) Dumetella carolinensis, (10) Cardinalis 
cardinalis, (11) Agelaius phoeniceus and (12) Thryothorus ludovicianus.
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Figure 2.  Phylogenetic linear discriminant analysis of mechanical and structural characteristics of eggs and shells 
(traits) and egg host species grouped by relative egg size. Convex hulls, which connect the most distant points of each 
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Covariate-adjusted residuals

As expected, eggshell strength increased with egg 
volume (P-GLMM: slope = 0.640, PMCMC < 0.001, 
R2 = 0.540, h2 = 0.550); and egg volume increased with 
body mass (P-GLMM: slope = 0.710, PMCMC < 0.001, 
R2 = 0.882, h2 = 0.607) and with tarsal length of the 
adult female (P-GLMM: slope = 1.450, PMCMC < 0.001, 
R2 = 0.686, h2 = 0.867). Thus, the analyses of variance 
were performed on covariate-adjusted residuals (Fig. 4).  
Residual eggshell strength differed significantly between 
host species of ScCo and ShCo and host species of BrCo 
(Bayesian contrast: none of the CrI95% included zero in the 
four pairwise comparisons). Overall, residual eggshell 
strength values of both host groups of ScCo and ShCo 
were positives without showing differences (Bayesian 
contrast: CrI95% = -0.217 to 0.129), while these values of 
both host groups of BrCo were negatives without showing 
differences (Bayesian contrast: CrI95% = -0.269 to 0.101) 
(Fig. 4). Residual egg volume of the frequent hosts of 
BrCo was positive and differed from the remaining three 
host eggs’  groups when the covariate was female body 
mass (Bayesian contrast: CrI95% did not include zero in 
the three pairwise comparisons). However, residual egg 
volume did not differ significantly between host species 
groups when the covariate was tarsal length of female 
(Bayesian contrast: CrI95% included zero in the three 
pairwise comparisons) (Fig. 4).

We complemented these results through standard 
generalized linear mixed-effects models to include 
intraspecific variability data (see Supporting Information). 
In this case, residual eggshell strength of the frequent 
hosts of egg-puncturer cowbirds was positive and differed 
from the three host eggs groups (Bayesian contrast: CrI95% 
did not overlap with zero in any of the three pairwise 
comparisons) (Supporting Information, Fig. S6).

Evolutionary associations using parasitism 
rate as a continuous predictor

We found evidence of a positive association between 
eggshell mechanical traits (puncture stiffness and 
puncture energy) and the frequency of parasitism by 
of egg-puncturer cowbirds (P-GLMM: slope = 0.007, 
PMCMC = 0.024; and slope = 0.007, PMCMC = 0.011, 
respectively; Fig. 5). There was no evidence of 
an association between the eggshell mechanical 

traits and the parasitism frequency of egg-remover 
cowbirds (P-GLMM: slope = -0.002, PMCMC = 0.491; 
and slope = -0.006, PMCMC = 0.134, respectively; 
Fig. 5). Regarding the two variables that describe 
the egg shape (ellipticity and asymmetry), we 
found evidence of a positive association between 
the egg ellipticity and the parasitism frequency 
of egg-remover cowbirds (P-GLMM: slope = 0.001, 
PMCMC < 0.001) (Fig. 6). Finally, regarding the 
variables that related to eggshell ultrastructure, 
there was a positive association between the 
palisade layer ratio and the parasitism frequency 
of egg-puncturer cowbirds (P-GLMM: slope = 0.007, 
PMCMC = 0.026) (Fig. 7).

DISCUSSION

Generalist brood parasitic cowbirds both in North and 
South America usually lay their eggs from elevated 
positions, thereby damaging some of the host eggs 
(Fraga, 2011; López et al., 2018). Cowbird species differ 
in the use of their beaks to reduce the clutch size of 
their hosts. Some of them damage host eggs through 
repeatedly puncturing host and parasite eggs already 
present in the nest, whereas others remove a host egg 
by either grasp- or puncture-ejection.

Observers who have described the method by which 
brown-headed cowbirds carry eggs have indicated that 
they can spike them on their opened mandibles (Hann, 
1941; Norris, 1944; Harrison, 1975; Sealy, 1994). 
Brown-headed cowbirds typically remove one egg from 
nests they parasitize (Sealy, 1992, 1994) and replace it 
with one of their own, so that total clutch size remains 
stable (Hauber, 2003). However, the presence of pecked 
host eggs is the exception and not the rule in host nests 
of the brown-headed cowbird (Antonson et al., 2020). 
Furthermore, Dubina & Peer (2013) and Llambías 
et al. (2006) examined the egg-pecking behaviour of 
captive brown-headed, shiny and screaming cowbirds 
by presenting them with nests containing artificial 
eggs. Overall, 49% of captive brown-headed cowbird 
individuals pecked eggs, with the number of pecks per 
individual as 11 ± 3 (mean ± SE; Dubina & Peer, 2013), 
while more than 70% and 60% of shiny and screaming 
cowbird individuals pecked eggs, with a number of 

level of both sets of groups, are shown; internal points were omitted from the plot. The length of arrows represents the 
contribution of the traits to discrimination. For canonical coefficients of the phylogenetic discriminant function analyses, 
see Supporting Information, Table S1. Arrow references: stiffness = eggshell puncture stiffness; energy = eggshell puncture 
energy, PC1 = egg ellipticity (increasing values of PC1 indicate greater roundness of the egg; Supporting Information, Fig. 
S2), PC2 = egg asymmetry (increasing values of PC2 indicate greater symmetry of the egg; Supporting Information, Fig. S2), 
eggshell = ratio of the eggshell mass relative to the egg mass (eggshell ratio), palisades = ratio of palisade layer thickness 
in relation to total thickness of eggshell (palisade layer ratio).
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Figure 3.  Phylogenetic linear discriminant analysis of mechanical and structural characteristics of eggs and shells (traits) 
and egg host species grouped by their frequency of parasitism. Convex hulls, which connect the most distant points of each 
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39 ± 19 and 49 ± 20 pecks per individual, respectively 
(Llambías et al., 2006). Thus, egg-puncturer cowbirds 
performed between 3.5 and 4.5 times more pecks than 
the brown-headed cowbirds. Furthermore, brown-
headed cowbirds peck host or fake eggs much more 
frequently in captivity than they do in the wild (White 
et al., 2009). Finally, although some populations of 
brown-headed cowbirds engage in host-egg destruction 
through mafia (Hoover & Robinson, 2007) or farming 
(Swan et al., 2015) behaviours, these patterns seem 
to be localized and may not be representative of the 
species as a whole (Peer et al., 2013).

In turn, the host’s eggs are frequently punctured by 
shiny and screaming cowbirds in parasitized and non-
parasitized nests in the wild, and the high frequency of 
this egg-puncturer behaviour is well documented (see 
supplementary videos in Gloag et al., 2012, 2014) and 
has been mentioned by several authors (e.g. Hudson, 
1874; Hoy & Ottow, 1964; Post & Wiley, 1977; Fraga, 
1978, 1985, 1998; Carter, 1986; Mermoz & Reboreda, 
1994; Lichtenstein, 1998; Massoni & Reboreda, 1999, 
2002; Nakamura & Cruz, 2000; Astié & Reboreda, 
2006, 2009; Gloag et al., 2014), who reported that it is 
one of the most important costs of brood parasitism, 
leading to reduced host clutch and brood sizes, and 
also reduced numbers of fledglings.

What defences have hosts evolved to counter the 
egg-puncturer and grasp-rejecting behaviours of adult 
brood parasites (Peer, 2006)? No hypothesis is likely 
to be all-encompassing, because these behaviours vary 
among parasitic species, and even within single species. 
Egg puncture and grasp-removal may be behaviourally 
plastic with multiple functions. Our results suggest 
that egg-removal behaviour by brown-headed cowbirds 
results in the evolution of anti-parasitic defences in the 
eggs of their frequent hosts, through imposing stronge 
selection pressures that affect the shape and size of 
host eggs. Larger, more rounded and asymmetrical 
eggshells of the more frequent hosts may be more 
difficult to be ejected. In parallel, the high frequencies 
of egg-puncturer behaviours of screaming and shiny 
cowbirds may have also influenced the egg evolution 
of their frequent hosts, by imposing selection pressure 
to increase the stiffness and strength of the eggshells. 
A greater eggshell mass in relation to the internal egg 
mass,  also them more difficult to be damaged by pecks 
from the parasites.

The eggshells of  the screaming and shiny 
cowbird’s are extremely strong, stiff and are able 
to absorb energy elastically, that is, without being 
damaged (Supporting Information, Table S4). These 
mechanical properties are the result of the underlying 
characteristics in the ultra- and microstructure of the 
calcite crystals that make up the parasitic eggshells 
(López et al., unpublished data). However, these egg 
and eggshell traits of the two egg-puncturer parasitic 
species are not shared with the egg-removing brown-
headed cowbird (Supporting Information, Table S4). 
Our results confirm, through direct and quantitative 
measurements, the hypothesis that eggs of screaming 
and shiny cowbirds have a reduced likelihood of being 
punctured by other parasitic females visiting the same 
nest (Hudson, 1874; Brooker & Brooker, 1991).

Multiple parasitism is very common in hosts of 
the two species of egg-puncturer cowbird but is far 
less common in most brown-headed cowbird hosts 
(Hauber, 2001). For example, up to 90% of greyish 
baywing, 65% of brown-and-yellow marshbird 
(Pseudoleistes virescens), 80% of chalk-browed 
mockingbird (Mimus saturninus)  and 60% of 
rufous-bellied thrush (Turdus rufiventris) nests are 
parasitized by two or more screaming and/or shiny 
cowbird eggs, with an intensity of parasitism between 
2-5 eggs per parasitized nest (Fernández & Mermoz, 
2000; Sackmann & Reboreda, 2003; De Mársico 
et al., 2010; Gloag et al., 2012). Multiple parasitism 
may affect the success of large hosts less than that 
of smaller hosts because many large hosts can care 
for broods containing parasitic young and their own 
young (Peer & Bollinger, 1997; Mermoz & Reboreda, 
2003; Sackmann & Reboreda, 2003). In contrast, 
large hosts are also significantly affected by egg 
puncture (Astié & Reboreda, 2006), rather than by 
losses incurred when cowbird nestlings outcompete 
their own (Lorenzana & Sealy, 1999). In addition, egg 
puncture can be costly behaviour for the cowbirds 
themselves, because it may increase the probability 
of total nest abandonment by the hosts (Fraga, 1978; 
Massoni & Reboreda, 1998), Therefore, the benefits 
of egg puncturer by cowbirds in large hosts may 
outweigh the costs of the increasing probability of 
nest abandonment (Fiorini et al., 2009).

Accordingly, the scatter plots of P-LDA and LDA 
(Fig. 2; Supporting Information, Fig. S4) support 

level of both sets of groups, are shown; internal points were omitted from the plot. The length of arrows represents the 
contribution of the traits to discrimination. For canonical coefficients of the phylogenetic discriminant function analyses, 
see Supporting Information, Table S1. Arrow references: stiffness = eggshell puncture stiffness; energy = eggshell puncture 
energy, PC1 = egg ellipticity (increasing values of PC1 indicate greater roundness of the egg; Supporting Information, Fig. 
S3), PC2 = egg asymmetry (increasing values of PC2 indicate greater symmetry of the egg; Supporting Information, Fig. S3), 
eggshell = ratio of the eggshell mass relative to the egg mass (eggshell ratio), palisades = ratio of palisade layer’s thickness 
in relation to total thickness of eggshell (palisade layer ratio).
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a statistical separation of large hosts of the egg-
puncturer cowbirds from the remnant host groups, 
and the variables eggshell puncture stiffness and 
puncture energy contributed to this separation. Thus, 

despite our results from the phylogenetic univariate 
analysis not showing differences in eggshell puncture 
stiffness between groups of hosts, the magnitude of 
the phylogenetic signal influencing eggshell puncture 

Figure 4.  Phylogeny showing the species of the parasite cowbirds and hosts used in the comparative analyses. Residual 
eggshell breaking strength (using egg volume as a covariate) and residual egg volume (using body mass and tarsus length 
of female as covariates) for the host species are indicated to the right of the phylogeny. Plots of posterior mean and 95% 
credible interval associated with each host species groups are indicated below. Different letters indicate there is evidence 
that the response differs between the groups. (*) Troglodytes aedon and Cistothorus palustris (both in North America) 
exhibit intraspecific egg puncture behaviours and low frequency of BrCo parasitism (e.g. Belles-Isles & Picman, 1986; 
Picman et al., 1996). These two showed exceptionally high values of eggshell breaking strength and eggshell puncture 
stiffness (this study), possibly as a counter-defence to high frequencies of intraspecific egg punctures (Picman et al., 1996; 
this study).
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stiffness was moderate (λ = 0.58, P = 0.037). This 
indicates that the trait has not evolved independently 
of phylogeny and has not evolved according to 
Brownian motion (i.e. we found no strong evidence 
that closely related species are more similar in 
their eggshell traits than distantly related species). 
Therefore, we complemented our analyses by 
performing standard tests and assessing intraspecific 
variability. The eggshells of large and frequent hosts 
of the egg-puncturer cowbirds were stiffer, and the 
eggs of this frequent host group also had stronger 
shells (according to our covariate-adjusted residual 
analyses) than the remaining host groups. The 
high frequencies of the egg-puncturer behaviour of 
screaming and shiny cowbirds thus seem to induce the 

evolution of strong anti-parasitic defences in the eggs 
of their large and common hosts, making their eggs to 
be difficult to damage by pecking.

Contrary to what is commonly suggested by 
previous studies using indirect estimates of host and 
parasitic eggshell strengths (e.g. Spaw & Rohwer, 
1987; Rothstein, 1990), the brown-headed cowbird’s 
eggs did not prove to have hells stronger and  
stiffer in our tests than those of their large hosts 
(Supporting Information, Table S4), or of any of 
their frequent and infrequent hosts (see Supporting 
Information). The only mechanical property of the 
brown-headed cowbird eggs that stood out relative to 
the eggs of their hosts analysed in our research was 
the formers' greater ability to absorb a higher amount 

Figure 5.  Phylogenetic linear regressions between host egg mechanical traits (eggshell puncture stiffness, and eggshell 
puncture energy) and parasitism frequency of the egg-puncturer (ScCo and ShCo) and egg-remover (BrCo) species of 
cowbirds.
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of energy without breaking (eggshell puncture energy). 
This trait is still advantageous for the cowbirds due to 
their egg-laying behaviour from an elevated position 
(López et al., 2018) and to the attempts of some of their 
smaller hosts to pierce-eject parasitic eggs when grasp-
ejection is bill-gape size-wise impossible (Sealy, 1996). 
The cowbird’s eggshell puncture energy is positively 
associated with ultrastructural properties of the shell, 
such as the proportion of the eggshell mass in relation 
to the total mass (López et al., unpublished data). This 
is another trait of the brown-headed cowbird eggs that 
distinguishes them from those of its hosts (Supporting 
Information, Table S4).

On the other hand, the egg removal behaviour of host 
eggs by brown-headed cowbirds also seems to drive the 

evolution of anti-parasitic defences in their hosts, by 
affecting their shape and size characteristics of the eggs. 
Here we showed that small hosts and the frequently 
parasitized hosts had more rounded eggs, compared 
to the other host groups. Furthermore, the eggs of the 
frequent hosts of the brown-headed cowbirds had more 
rounded shapes. This result, added to the parasite egg’s 
similar mechanical characteristics to those of the hosts 
(see above), contradicts the hypothesis that brown-
headed cowbirds have more rounded (and thus stronger) 
than their hosts’ eggshells (Lack, 1968; Picman, 1989; 
Brooker & Brooker, 1991). Indeed, brown-headed cowbird 
eggs are characterized by having a more symmetrical 
shape than those of their hosts (ellipsoid shapes; Fig. 1; 
Supporting Information, Table S4).

Figure 6.  Phylogenetic linear regressions between host egg shape traits (PC1, and PC2) and parasitism frequency of the 
egg-puncturer (ScCo and ShCo) and egg-remover (BrCo) cowbirds. PC1 and PC2 are related to the ellipticity and asymmetry 
of the eggs, respectively. In these cases, increasing values of PC1 and PC2 indicate a more rounded and more symmetrical 
shape of the eggs (Supporting Information, Fig. S3).
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Through the 2D geometric morphometry analyses, 
we were able to determine that there were differences 
in egg shape among the host and parasite egg groups. 
The aspect ratio [ratio between the length and width 
of the egg (Reichenow, 1870)] is the main index 
used to compare the egg shape between parasites 
and hosts (Picman, 1989; Brooker & Brooker, 1991; 
Spottiswoode & Colebrook-Robjent, 2007). However, 
this index cannot determine differences between 
asymmetric (conical) and symmetric (ellipsoid) 
shapes (this study, but see Hays et al., 2020). Egg 
shape is usually ranked second among the egg 
macrostructural properties affecting breaking 
strength (Anderson et al., 2004). It is predicted that the 
optimally strong avian egg shape should be spherical, 

because this would provide the highest resistance 
against external forces (Bain, 1991) and because it 
would also provide the most effective gas transfer 
between the embryo and the outside environment (Ar 
et al., 1979). However, these two approaches are not 
sufficient to explain the diversity of avian egg shapes 
found in nature (Stoddard et al., 2017). According to 
Panheleux et al. (1999) and Nedomova et al. (2009), 
egg shape does not appear to be decisive in terms of 
deviation from the spherical shape for resistance to 
breakage (Bain, 1991). The eggs of the domestic hen 
(Gallus gallus) are more rounded than those of the 
guinea fowl (Numida meleagris); however, the pierce-
strength was 2.5 times greater in guinea fowl than 
hen eggs (Petersen & Tyler, 1967). Our results on 

Figure 7.  Phylogenetic linear regressions between host eggshell traits (ratio of the eggshell mass relative to the egg mass, 
and ratio of palisade layer thickness in relation to total thickness of eggshell) and parasitism frequency of the egg-puncturer 
(ScCo and ShCo) and egg-remover (BrCo) cowbirds.
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the frequent hosts of brown-headed cowbirds showed 
them to possess more rounded egg shapes. Like the 
previous example, these eggs had no greater ability 
to absorb energy elastically, stiffness or strength 
than the remaining host groups. Two studies suggest 
that rupture force of eggs is independent of eggshell 
curvature (Nedomova et  al., 2016; Trnka et  al., 
2016), and an alternative hypothesis suggests that 
egg shape may be an adaptation to utilize the brood 
patch area of the parents through which the heat of 
incubation is transmitted and could also be related 
to clutch size and nest type (Thompson, 1942; Drent, 
1975; Andersson, 1978; Barta & Székely, 1997). Our 
study supports a new hypothesis, in that larger, more 
rounded (i.e. less elongated), and asymmetrical eggs 
of frequent hosts of the brown-headed cowbird may 
be an evolved defence against egg removal by these 
parasites.

We showed that the egg shape, via PC1 which 
describes the variation between more elongated 
to more rounded shapes, was significantly and 
positively correlated with the frequency of brown-
headed cowbird parasitism. Although this parasite 
removes eggs from nests of large hosts (Sealy, 1992), 
no difference in egg shape was found between the 
large hosts of this species and the hosts of South 
American egg-puncturer cowbirds. A reason for this 
may be that the strength of parasitism selection 
pressure by brown-headed cowbirds is lower on the 
populations of its large hosts, as the small hosts 
are parasitized more often within this species 
(Ortega, 1998). In addition, the brown-headed 
cowbirds parasitize hosts larger than themselves 
less frequently when compared to screaming, shiny 
and bronzed (Molothrus aeneus) cowbirds (Carter, 
1986; Mason, 1986; Peer & Sealy, 1999; Astié & 
Reboreda, 2006; Peer, 2006; De Mársico et  al., 
2010). The strength of the selection pressure by 
shiny and screaming cowbirds should be greater 
in the populations of their hosts, since these hosts 
are typically parasitized far more often than most 
hosts of the brown-headed cowbirds (Carter, 1986; 
Mason, 1986; Peer & Sealy, 1999; Astié & Reboreda, 
2006; Peer, 2006; De Mársico et al., 2010). Indeed, 
our results showed that the frequent hosts of 
the egg-puncturer cowbirds had eggs with a 
greater ability to absorb energy without breaking 
(eggshell puncture energy) and a higher ratio of the 
shell mass.

Our interpretation of how the behaviours of highly 
frequent egg-puncturers, and laying from high position, 
affect the eggshell puncture stiffness and puncture energy 
are also supported by the current study’s examination of 
the house wren’s eggs from two distant populations with 

different life and parasitism histories. We found that 
northern house wren eggs were stronger and stiffer, with 
thicker shells and greater mass of the shells; whereas 
the southern house wren eggs had a greater capacity 
to deform elastically, 2.6 times more so relative to the 
northern house wrens (0.21 ± 0.03 mm vs. 0.08 ± 0.01 mm; 
Supporting Information, Fig. S1), implying a greater 
capacity to absorb energy without breaking. House 
wren nests in South America are frequently parasitized 
by shiny cowbirds (Kattan, 1997; Tuero et al., 2007; de 
la Colina et al., 2016), although there is a low incidence 
of punctured eggs in house wren nests despite its high 
frequency of cowbird parasitism (Kattan, 1997; Fiorini 
et al., 2009; Tuero et al., 2012). Shiny cowbird females 
lay from above the rim of small nests [typically < 5 cm 
internal diameter (de la Peña, 2013)], dropping their eggs 
from a height of 7 to 9 cm (López et al., 2018; Ellison et al., 
2019). On the other hand, northern house wren nests 
are rarely parasitized by brown-headed cowbirds and 
according to Pribil & Picman (1997), this host may prevent 
parasitism by building nests in cavities with an entrance 
too small for the female cowbird to enter. Northern house 
wrens, however, frequently puncture conspecific eggs and 
those of other cavity-nesting heterospecifics as a result 
of competition for limited cavity nests (Johnson, 1998), 
and this behaviour is more common in North America 
than in South America. House wrens puncture eggs up to 
84% of the time in North America (Belles-Isles & Picman, 
1986), but only at 3% of nests in South America (Llambías 
& Fernández, 2009). This could account for the thicker 
eggshells and greater puncture resistance in the northern 
house wren compared to the southern house wren and 
thus may be independent of cowbird parasitism pressure. 
Secondarily, the greater eggshell puncture stiffness of the 
northern house wren eggs may be favoured if they suffer 
less damage during the cowbird laying events (López et al., 
2018). However, brown-headed cowbird eggs are lighter 
and smaller than those of shiny cowbirds, which could be 
important for future experimental studies. These must 
use model eggs correctly reflecting the size and weight of 
those in the local population.

Overall, our results suggest that the high frequency 
of egg-puncturer behaviour of some brood parasitic 
cowbirds has resulted in an increase in the host 
eggshells’ stiffness and strength of the eggshells of the 
host, making them more difficult to be pierced by shiny 
and screaming cowbirds. The larger more rounded, 
and more asymmetrical eggs in the common hosts of 
brown-headed cowbirds might make their host eggs 
more difficult to be ejected. All the host egg and shell 
traits were also positively affected by the frequency of 
parasitism, implying that specific parasitic costs may 
select for respective anti-parasitic defences in host 
eggshell phenotypes.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Methods S1. Eggshell specimens, egg shapes, eggshell mechanical properties, statistical analyses.
Results S1.
References S1.
Figure S1. Morpho-space projections of the first two principal components performed on shape descriptors of 
egg outlines. Convex hulls, which connect the most distant points of each level of both sets of groups, are shown. 
Representative force vs. displacement curves for eggs from two populations of the house wren (top) and barn 
swallow (bottom).
Figure S2. Morpho-space projections of the first two principal components performed on shape descriptors of egg 
outlines. Each dot represents an egg individual, coloured according to their largest or smallest size with respect 
to the egg size of its parasite species. The 95% confidence ellipses are also shown. BrCo = brown-headed cowbird 
egg scores, ScCo and ShCo = scores of the screaming cowbird and shiny cowbird eggs.
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Figure S3. Morpho-space projections of the first two principal components performed on shape descriptors of egg 
outlines. Each dot represents an egg individual, coloured according to the frequencies of parasitism. Ninety-five 
percent confidence ellipses are shown. BrCo = scores of the brown-headed cowbird eggs, ScCo and ShCo = scores 
of the screaming cowbird and shiny cowbird eggs, respectively.
Figure S4. Standard linear discriminant analysis of mechanical and structural characteristics of eggs and shells 
(traits) and egg host species grouped by relative egg size. Ninety-five percent confidence ellipses are shown. The 
length of arrows represents the contribution of these respective traits to discrimination. BrCo = scores of the 
brown-headed cowbird eggs, ScCo and ShCo = scores of the screaming cowbird and shiny cowbird eggs, respectively. 
Arrow references: PC1 = egg ellipticity (increasing values of PC1 indicate greater roundness of the egg), PC2 = egg 
asymmetry (increasing values of PC2 indicate greater symmetry of the egg), eggshell = ratio of the eggshell mass 
relative to the egg mass (eggshell ratio), palisades = ratio of palisade layer thickness in relation to total thickness 
of eggshell (palisade layer ratio), stiffness = eggshell puncture stiffness, energy = eggshell puncture energy.
Figure S5. Standard linear discriminant analysis of mechanical and structural characteristics of eggs and shells 
(traits) and egg host species grouped by frequency of parasitism. Ninety-five percent confidence ellipses are 
shown. The length of arrows represents the contribution of these respective traits to discrimination. BrCo = scores 
of the brown-headed cowbird eggs, ScCo and ShCo = scores of the screaming cowbird and shiny cowbird eggs, 
respectively. Arrow references: PC1 = egg ellipticity (increasing values of PC1 indicate greater roundness of the 
egg), PC2 = egg asymmetry (increasing values of PC2 indicate greater symmetry of the egg), eggshell = ratio of 
the eggshell mass relative to the egg mass (eggshell ratio), palisades = ratio of palisade layer thickness in relation 
to total thickness of eggshell (palisade layer ratio), stiffness = eggshell puncture stiffness, energy = eggshell 
puncture energy.
Figure S6. Linear regressions and plots of posterior mean and 95% credible interval associated of the residual 
eggshell strength (using egg volume as covariate) and residual eggshell volume (using body mass and tarsus 
length of female as covariates) for the host species grouped according their parasitism frequencies. Different 
letters indicate that there is evidence that the responses statistically differ between the groups.
Table S1. Standardized coefficients of the phylogenetic lineal discriminant (P-LD) analyses grouped according 
their (A) relative egg sizes and (B) parasitism frequencies. References: stiffness = eggshell puncture stiffness, 
energy = eggshell puncture energy, ellipticity = egg ellipticity (PC1), asymmetry = egg asymmetry (PC2), 
eggshell = 100×shell mass/egg mass (eggshell ratio), palisade layer = 100×palisade layer thickness/total shell 
thickness (palisade layer ratio).
Table S2. Summary of phylogenetic ANOVAs and post hoc t-tests, using the host species grouped according (A) 
their relative egg sizes and (B) their parasitism frequencies. References: stiffness = eggshell puncture stiffness (N/
mm2); energy = eggshell puncture energy (10-3J); ellipticity = egg ellipticity (PC1); asymmetry = egg asymmetry 
(PC2), eggshell = 100×shell mass/egg mass (eggshell ratio), palisade layer = 100×palisade layer thickness/total 
shell thickness (palisade layer ratio), LH–BrCo = large hosts of brown-headed cowbird, SH–BrCo = small hosts 
of brown-headed cowbird, LH–SCo = large hosts of screaming and shiny cowbirds, and SH–SCo = small hosts of 
screaming and shiny cowbirds. FH–BrCo = frequent hosts of brown-headed cowbirds, IH–BrCo = infrequent hosts 
of brown-headed cowbirds, FH–SCo = frequent hosts of screaming and shiny cowbirds, and IH–SCo = infrequent 
hosts of screaming and shiny cowbirds.
Table S3. Standardized and structure coefficients of the linear discriminant (LD) analyses on the host egg species 
grouped according their (A) relative egg sizes and (B) parasitism frequencies. References: stiffness = eggshell 
puncture stiffness, energy = eggshell puncture energy, ellipticity = egg ellipticity (PC1), asymmetry = egg 
asymmetry (PC2), eggshell = 100×shell mass/egg mass (eggshell ratio), palisade layer = 100×palisade layer 
thickness/total shell thickness (palisade layer ratio).
Table S4. ANOVAs’ summary, post hoc t–test and trait mean (±SE) values of host egg species grouped according 
their (A) relative egg sizes and (B) parasitism frequencies. References: see Table S2 for descriptions. Pairwise 
comparisons’ tests with different letters, in parentheses, indicate differences between means of the egg host 
species groups. Pairwise comparisons tests with different letters, in parentheses, indicate differences between 
means of the egg host species groups.
Table S5. Life history and host morphology data. For each host species, we collected data from published studies 
on body mass (g) and tarsus length (mm) of adult females, and on parasitism frequency (parasitized nests/total 
nests monitored).
Table S6. Data set of the egg and shell mechanical and structural traits. For each egg species, we calculated 
the following variables: egg volume (mL), relative egg size, eggshell puncture resistance (N), eggshell puncture 
stiffness (N/mm2), eggshell puncture energy (10-3J), egg ellipticity (Phylo-PC1), egg asymmetry (Phylo-PC2) and 
sample size (n).
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