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Abstract: In forestry, aerial photogrammetry by means of Unmanned Aerial Systems (UAS) could1

bridge the gap between detailed fieldwork and broad-range satellite imagery-based analysis.2

However, optical sensors are only poorly capable of penetrating the tree canopy, causing raw3

image-based point clouds unable to reliably collect and classify ground points in woodlands which4

is essential for further data processing. In this work, we propose a novel method to overcome this5

issue and generate accurate Digital Terrain Model (DTM) in forested environments by processing6

the point cloud. We also developed a highly realistic custom simulator that allows controlled7

experimentation with repeatability guaranteed. With this tool, we performed an exhaustive8

evaluation of the survey and sensor settings and their impact on the 3D reconstruction. Overall,9

we found that a high frontal overlap (95%), a nadir camera angle (90◦) and low flight altitudes (less10

than 100m) results in the best configuration for forest environments. We validated the presented11

method for DTM generation in simulated and real-world survey missions with both fixed-wing12

and multicopter UAS, showing how the problem of structural forest parameters estimation can be13

better addressed. Finally, we applied our method for automatic detection of selective logging.14

Keywords: Aerial photogrammetry; digital terrain model; structural forest parameters; unmanned15

aerial systems16

1. Introduction17

The use of Unmanned Aerial Systems (UAS) as remote sensing for environmental18

monitoring and precision forestry has grown considerably during last years and become19

world widespread [1–3]. It has emerged as a promising alternative to satellite imagery20

and fieldwork. Satellite imagery and vegetation indices obtained from these are useful21

for land and forest monitoring at the regional level, but not at a predial scale. Fieldwork22

provides highly detailed information, but it does not scale in terms of cost-area ratio and23

carries potential risks for the personnel involved. Contrariwise, UAS present several24

advantages such as the possibility of performing precise full-coverage forest maps in a25

short time, arbitrary revisit lapse, high spatial resolution, cloudiness independence, low26

cost, and easy operation compare with its counterparts [4].27

Regarding the sensory system, it can be differentiated between two types of UAS de-28

pending on whether they use laser scanner or imaging camera as main sensor. At present,29

airborne laser scanning (ALS) is considered the most accurate method for estimating30

forest structure due to the detection of both the canopy and the ground. Despite that,31

ALS systems have considerable power requirements, and they are expensive compared32

to cameras-based systems and only cost-effective in large scale applications [5,6]. On33

the other hand, aerial photogrammetry using standard cameras has a better trade-off be-34

tween cost and performance with respect to forest structure analysis, and it is lightweight35
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and energy efficient [6]. Aerial photogrammetry is attractive for forestry due its ability to36

use uncalibrated cameras paired with unstable or handheld platforms, enabling the use37

of low-cost and off-the-shelf equipment, as mentioned in [7]. Aerial photogrammetry by38

means of UAS has been employed for tree health monitoring [8–10], 3D model recon-39

struction [11], species classification [12] and biodiversity assessments [13]. A review of40

recent advances in forest applications using UAS can be found in [14]. For comparison41

between laser scanners methods and aerial photogrammetry refer to [15–17].42

The photogrammetry workflow can be roughly divided in five main steps: 1)43

imagery acquisition; 2) keypoint identification between images; 3) camera parameters44

estimation and sparse point cloud generation using Structure from Motion (SfM); 4)45

creation of a dense 3D point cloud using multi view stereo (MVS) matching algorithms;46

and finally 5) post-processing of the 3D cloud.47

For step 1) a survey mission needs to be prepared, that involves the generation48

of a flight plan covering the area of interest where airborne images will be acquired.49

Depending on the chosen platform type and the expected reconstruction precision,50

mission settings are chosen. This is usually a manual process which ultimately falls into51

the hands of expert UAS pilots since there are no standardized protocols yet.52

Steps 2), 3) and 4) are generally solved using dedicated software, such as the open53

source system OpenDroneMap (ODM)1 or the commercial software Agisoft Metashape2.54

ODM used together with WebODM (a web-based interface to ODM) allows to perform55

automatic reconstructions on a server where is hosted. It can be used by non-experts56

users. In contrast, Agisoft Metashape processes images in a semi-automatic sequen-57

tial approach. This scheme has the advantage that it is easy to detect the source of58

reconstruction errors, but it requires technical knowledge to obtain the expected results.59

Subsequent post-processing steps of the 3D cloud typically involve the estimation60

of a Digital Surface Model (DSM) and an orthomosaic. In forestry, it is also required to61

generate a Canopy Height Model (CHM), normalizing the DSM, by means of translating62

from height above sea level to height above ground, based on a generated or preexisting63

Digital Terrain Model (DTM). When the DSM is correctly normalized, structural forest64

parameters such as tree height, coverage percentage, timber volume or biomass can be65

accurately estimated. Tree height is obtained directly from the CHM, whereas coverage66

percentage can be obtained by image classification of canopy versus ground areas and67

measuring relative area occupied by the former.68

When there is no preexisting DTM, it is necessary to realize a ground segmentation,69

by classifying reconstructed 3D points as belonging to ground or to the canopy. For this70

purpose, techniques typically employed for LiDAR point clouds can be used [18]. ODM71

performs this segmentation as part of its 3D cloud generation process using the Simple72

Morphological Filter (SMRF) [19]. On the other hand, Agisoft PhotoScan uses a progres-73

sive densification filter algorithm based on triangulation of lowest points. However,74

since both approaches assume that there are detectable ground points throughout the75

surveyed area (and this can not be granted when employing photogrammetry), canopy76

points are commonly misclassified as ground points. This drawback limits their use in77

forest environments.78

In [7], a review of the state of-the-art in aerial photogrammetry in forest applica-79

tions is presented. Authors conclude that it presents a highly accessible and versatile80

solution to the acquisition of very high-resolution 3D data and mention four of the81

main challenges for forest applications: i) Reproducibility, ii) Availability of accurate Digital82

Terrain Models (DTMs), iii) Lack of acquisition and processing protocols and finally iv) Image83

matching issues. Reproducibility is challenging due to variation in illumination, atmo-84

spheric, and seasonal conditions, so does not guarantee the same results on different85

survey missions. This is also related to lack of acquisition and processing protocols,86

1 https://www.opendronemap.org
2 https://www.agisoft.com
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since these variations make it hard to find the best sensor and flight settings, currently87

undertaken based on the surveyor’s experience. The generation of accurate DTM is88

crucial to obtain good results in structural forest parameters estimation. One challenge89

of low-cost UAS application is the need for a bare-earth surface. Photogrammetry has90

limitations related to cameras’ poor capability of penetrating the tree canopy and the91

minimum number of images observing the same ground points, which is not always92

possible in dense forest environments. Because of this, some works propose to use highly93

accurate DTMs generated by ALS-based systems to normalize the photogrammetry data94

[20], but this makes the survey process longer and tedious. Recent lightweight LiDAR95

products have been available for UAS payloads. However, these products often have96

costs in the range of USD 50-100k, and are therefore too expensive for most operational97

UAS deployments [21]98

Finally, the matching process results particularly challenging in forested areas due to99

the uniform texture of the canopy, self-repeating patterns and potential trees movements.100

This may cause incomplete or noisy 3D point clouds as a result. To overcome these101

issues, it has been suggested to increase the overlap between images and to use a102

higher flight altitude, since this increases the number of features per image and reduces103

distortions [22,23]. However, this approach either imposes the use of faster camera or104

slower flight speed (if the overlap is increased) or reduced effective resolution (due to105

higher flight altitude).106

There are some works that study the impact of flight and camera settings on107

the 3D reconstruction quality. The relationship between overlap and the ground area108

represented by an image pixel, which is meant as Ground Sample Distance (GSD) is109

studied in [22]. Nevertheless, the generated point cloud density is used as a metric of110

quality without evaluating the cloud precision. Similarly, [24] analyze the influence111

of flight altitude, image overlap, and sensor resolution on forest reconstructions. The112

number of detectable features in several images or tie points is used as a metric for this113

analysis, resulting in an incomplete evaluation method since this is not really a guarantee114

for a high reconstruction quality. Moreover, in both works, the error in the reconstructed115

3D point cloud is not measured and ground control points are not included.116

Another key parameter affecting reconstruction is the camera angle. This factor is117

of particular importance when observing irregular 3D surfaces such as trees. In this line,118

[25] study reconstruction quality when the camera angle is at 45◦, using a terrestrial laser119

to generate point clouds to compare results obtained from images. Authors also tested120

different flight patterns in order to improve reconstruction precision and successfully121

estimate some of the tree’s radius. Nevertheless, authors mention that further work122

is needed to complete the study of relevant mission settings and their impact on the123

reconstruction.124

A deeper study on the use of oblique images for 3D canopy reconstruction is125

presented in [26]. Authors also demonstrate an improvement in accuracy on crown126

cover estimation percentage and maximum canopy height. To analyze their results,127

authors built ground truth data from a terrestrial laser scanner. Similar work with128

oblique images in high-relief landscapes is addressed in [27]. There does not seem to129

be a consensus in the state-of-the-art regarding which camera angle produces the best130

result. In fact, from the various related articles, angles in the range from 10◦ to 60◦ are131

recommended [27].132

In order to face the aforementioned challenges and perform controlled experimen-133

tation of flight and camera settings, an alternative is to use forest simulators. There are134

some examples of simulator based analysis of photogrametry in the literature. One such135

example is the SyB3R benchmark where a 3D synthetic scenario is generated [28]. This136

tool post-processes the captured images to make them more realistic, adding distortion137

and simulated camera noise. However, this simulator is not flexible and permits only138

predefined scenarios not including forestry. Another simulator that is widely used in139
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robotics is Gazebo [29], but this tool is designed to simulate the physics of a robot motion140

and is not really focused on realistic world scenarios, even less on forests.141

The main contributions of this paper are:142

1. The development of a highly realistic simulator based on Unity [30] video engine,143

which allows to generate synthetic forest images during a simulated UAS flight144

and perform controlled experimentation with repeatability guaranteed. Using this145

tool, a detailed and extensive evaluation of the impact of the flight and camera146

settings on forest 3D reconstruction is presented.147

2. A novel method to generate accurate DTM in forest environments using only the148

UAS point cloud obtained from SfM reducing highly the cost compared with the149

LiDAR oriented approaches. In contrast to them, it considers the gaps typically150

found in image-based point clouds during points classification. Based on this151

method, the estimation of structural forest parameters and the automatic detection152

of selective logging are proposed.153

.154

2. Materials and Methods155

2.1. Forest Simulator156

We develop a high realistic forest simulator to enable controlled experimentation of157

realistic survey missions. It is based on the Unity graphics engine [30], which is a multi-158

platform framework and includes a terrain generation module based on a user-supplied159

height map, including ground textures and objects such as trees (either manually or160

randomly placed). Figure 1 shows the three different tree models included in Unity. Each161

tree can be customized by changing its size, color and orientation. Including custom162

tree models, modifying the scene lighting as well as setting camera parameters are also163

possible.164

Figure 1. Three different types of tree used in the simulation, from left to right: palm trees,
planifolia and conifers.

A series of image acquisition poses are generated to simulate a survey mission,165

following a predefined flight path, which involves setting the camera altitude and angle.166

The poses are generated using the desired frontal and lateral overlap parameters, just as167

during a real survey planning. For each position, a simulated camera is placed in the168

appropriate location and an image is acquired.169

For the simulation of a GPS sensor, the center of the environment is geo-referenced170

by a given coordinate system (typically UTM). In this way, the pose of all acquired171

images will be in reference to the scene coordinate system. Finally, these poses are172

perturbed using random white noise. The simulator also supports ground control points,173

by manually placing markers on the ground as done in real-world survey missions.174
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After acquisition is complete, the simulator generates an image sequence where the175

GPS poses are recorded in the EXIF label. This allows the same reconstruction process to176

be followed that would be done for images acquired with a real camera on a real survey177

mission.178

As ground-truth information the simulator also generates the terrain mesh (as a179

point cloud), the CHM and a segmentation of ground and non-ground points in this map180

(see Figure 2). The simulator can also be used to report the crown size and highest point181

of individual trees.182

Figure 2. Exported information from the simulator. In the left is shown the height maps and in the
right a segmentation of trees and floor for the 9Tree Scenario.

Two different scenarios were considered: Simple Trees (Figure 3 left) and Yosemite183

(Figure 3 right). The first scenario contains just nine trees of three different types spread184

over a square shaped region with flat terrain (see Figure 2). The second scenario aims185

to be a realistic representation of Yosemite National Park [31] by means of a real DTM186

obtained from LiDAR. Different tree types were randomly placed, followed by manual187

filling in some areas. Thus, the scenario results in a mix of both dense and sparsely188

forested areas.189

Figure 3. Both synthetic scenarios used in this work: Simple Trees in the left and Yosemite in the
right.

In this way, we are able to simulate survey missions with different settings over190

synthetic scenarios in which the position of each tree (and each leaf) is perfectly known.191
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2.2. Survey Mission Settings192

We characterize two different types of survey mission settings regarding to: sensor193

and flight; and consider four metrics to evaluate the resulting reconstruction: flight time,194

image processing time, point cloud precision and ground-sample distance (GSD).195

Since these variables are related in non-trivial ways, we present an analysis of these196

relations. Figure 4 outlines the relations between camera parameters and the rest of the197

survey settings and reconstruction metrics: arrows represent one parameter impacting198

in the value of another one, round nodes represent the four mentioned metrics.199

Figure 4. Square nodes denote user settable parameters (simple rectangles represent flight-related
parameters while double border rectangles correspond to sensor related parameter), round nodes
denote evaluation metrics, rhombuses denote inferred parameters and slanted rectangles denote
non-controllable parameters. The continues line denotes that the node affects the final value, while
the dash line represent a minor limit. These simplified scheme shows the most relevant relations
between the settable (rectangles) and the control (rounded nodes) parameter that are relevant for
these work.

We can further distinguish between user settings (those that must be explicitly200

chosen before the mission, represented with rectangles in the figure) and inferred settings201

(those indirectly affected by user settings, represented with rhombuses). Flight-related202

user settings are image overlap (%), flight altitude (m), flight speed (m/s), flight pattern (single203

or double grid) and camera angle (◦). Sensor related settings are: image resolution (Mpx),204

focal length (mm), sensor sensitivity (ISO speed), shutter speed (ms) and aperture (f number).205

The inferred parameters in our model are: image acquisition rate (Hz), image density (1/m2)206

and trajectory length (m). From these two groups is possible to estimate the value of the207

control parameters group (rounded green nodes): precision (m), image processing time208

(h), ground sample distance (cm/px) and flight time (s). These last group will be used to209

evaluate the reconstruction process. Finally, we can also identify some variables that are210

not under user control whatsover: scene luminance and maximum acquisition rate.211

In general, there is no single configuration that guarantees a good reconstruction.212

To find the optimal parameter configuration, it is necessary to understand and quantify213

their effects. In the following sections we describe these variables and metrics in greater214

detail, discuss how they are related between each other and give some hints towards215

good starting points for configuring values.216

To evaluate the impact of the survey mission settings described below we used217

the simulated scenario Simple Trees and processed the resulting images using ODM.218

For each configuration we repeated three times the cloud generation process and then219

we estimated the mean of three relevant parameters: 1) distance between centers of220

bounding box (BB) of the original and generated cloud; 2) points number and 3) BB size.221

We also used this parameters to detect wrong reconstruction when some thresholds are222

reach. In particular, if the BB was bigger than 100m in any direction, or the BB was 150%223

bigger or 50% smaller than expected, the reconstruction was rejected.224
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2.2.1. Overlap225

One of the most important mission settings is the image overlap: the percentage226

of the image that intersects with other images taken nearby. The importance of this227

parameter lays in the fact that in order to create 3D geometry from images, at least two228

views of a portion of the surface are needed. Thus, the higher the image overlap, the229

greater chance of establishing correspondences. Furthermore, correspondences are used230

to set restrictions to the underlying SfM optimization and thus a large number of these231

usually results in increased reconstruction accuracy.232

Image overlap is directly proportional to the number of images per area: to achieve233

high overlap, more images are needed over the same distance, resulting in a denser dis-234

tribution. This also implies that the image processing time will be higher. In other words,235

this parameter is a direct trade-off between reconstruction precision and efficiency. We236

can further distinguish frontal (o f ) and lateral overlap (ol):237

o f = (1−
d f f
H w

) 100 (1) ol = (1− dl f
H w

) 100 (2)238

where d f is the (longitudinal) distance between consecutive pictures (m), dl is the (lateral)239

distance between flight lines (m) (see Figure 5), f is the focal length (mm), H is the240

distance from the camera sensor to the ground (m) and w is the sensor width (mm).241

Figure 5. Two flight mission plans, in the left a simple grid and in the right a double grid plan.
Blue dots represent the places were pictures are planned to be captured. Also frontal and lateral
overlap are shown.

Frontal overlap depends on the image acquisition rate, since higher o f implies that a242

greater number of images are acquired during the same time interval (assuming the flight243

speed remains constant). Thus, the combination of sensor capabilities and minimum244

flight speed will usually impose a higher bound on o f . Increasing lateral overlap will245

reduce dl . This means that a larger number of passes will be needed to achieve a tighter246

grid. The longer flight trajectory will result in higher flight time required (again, assuming247

constant flight speed). In conclusion, increasing ol will bear the same benefits of larger248

o f value but at the expense of longer survey missions, which will usually be limited by249

the flight autonomy of the UAS.250

An alternative approach to increase o f which does not impose a higher acquisition251

rate is to modify the flight pattern from a simple to a double grid (see Figure 5). This, of252

course, also negatively impacts flight time. For very irregular surfaces, such as the case of253

forest canopy, a high image overlap of at least 80% is usually recommended. As a rule of254

thumb, each point should be visible in at lease 4 to 5 images [7]. In this work, we tested255

values between 75% and 95% of both lateral and frontal overlap.256
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2.2.2. Flight Altitude257

Flight altitude is also a trade-off between flight time and the reconstruction precision.258

If the image overlap is fixed, flying at a higher altitude will allow higher d f and dl . In259

other words, images will be taken further apart in time and space. Furthermore, as dl is260

increased, the flight trajectory will be shorter (less passes are needed) and flight time261

will be reduced. However, this all comes at the expense of reduced GSD (each pixel will262

represent a larger ground area) and point-cloud precision (image correspondences will263

be less accurately established).264

Again, for the case of forestry applications, a relatively low altitude (relative to265

canopy) is recommended to maintain sufficient reconstruction detail. If this is not266

possible for the complete area, surveys performed at different flight altitudes may be267

combined in a single reconstruction. In this work, we evaluated different flight altitudes268

between 50m and 200m.269

2.2.3. Flight Pattern270

The flight pattern determines the path the UAV will follow. For forestry applications271

the most used ones are simple or double grid in a squared or rectangular area (see272

Figure 5). Simple grid is less time consuming but double grid is more accurate since it273

has more images and from different sides. Thus, depending on the application it will274

be adequate to use one or the other. When generation of 2D maps is the main interest,275

the surface is mostly flat or the area to be cover is extensive the simple grid is usually276

used. For 3D models or when the surface has height variations (buildings, rugged277

terrains like precipices) and the surface to be covered is small the double grid will give278

better results. In general in order to improve the 3D models generation the flight pattern279

include a combination of different camera angles (in general nadir and another value) and280

sometimes even different flight altitudes. In this work, we tested both single and double281

grid patterns combining with different altitudes and camera angles.282

2.2.4. Camera Angle283

Camera angle is the tilt angle of the camera with respect to the ground, for example a284

camera pointing down correspond to 90o, while a camera pointing foward to 0o. Camera285

angle is an important parameter in the mission setting as adding oblique images allows286

observing new parts of the environment, such as the side of trees, generating richer287

reconstructions. But if the angle is too low, it may be difficult to match the images, as288

the area shared between them could be reduced due to occlusion. Also, if the horizon is289

observed, it will give a wrong reconstruction or directly an error in the SfM process, as290

the system will try to include this faraway areas in the reconstruction. In this work, we291

tested four angle values between 60o and 90o, using both a simple and double grid flight292

pattern.293

2.3. Ground Sample Distance294

The ground sample distance (GSD) is related to the detail obtained during the recon-295

struction in terms of the area represented by each image pixel:296

GSD =
p
f

Hcos(θ)−1 (3)

where p is the sensor pixel size and θ is the angle between the nadir direction and the297

sensor line-of-sight. The factor cos(θ)−1 only has an effect when the camera direction is298

not nadir [32].299

2.4. Reconstruction Error300

To measure the reconstruction error we consider the point cloud detail when com-301

pared to a reference mesh. For simulated survey missions we use the ground-truth mesh302

as a reference and obtain different metrics to compare it with the one obtained from the303
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reconstruction. For real-world missions, this could also be performed if a ground laser304

scan were available, but this is not usually the case. For this reason, in real-world survey305

missions we manually placed ground-control points from which we can later obtain a306

similar reconstruction error by computing the corresponding root-mean squared error307

(RMSE) between their known and reconstructed locations:308

RMSE(P1, P2) =

√
1
P ∑

p1∈P1,p2∈P2

‖p1 − p2‖2 (4)

where P1, P2 are the two sets of corresponding real and estimated coordinates of GCPs,309

and P = |P1| = |P2|.310

2.4.1. Point Cloud Comparison311

To evaluate the precision of a given simulated reconstruction we compare it with312

the one exported from the simulator using METRO [33]. This method estimates the313

distance between two surfaces, using one as pivot, by computing the euclidean distance314

of each point (of the other) and the closest point of the pivot. Given a point p and a mesh315

M the distance point-mesh is defined as:316

e(p, M) = min
p̃∈M

d(p, p̃) (5)

where d is the euclidean distance between two points. We can now define the root mean317

squared (RMSE) error between two meshes M1 and M2 as:318

RMSE(M1, M2) =

√
1
|M1| ∑

p∈M1

e(p, M2)2 (6)

2.5. Digital Terrain Model Generation319

The DTM describing all ground points in the environment is a key input to estimate320

canopy height and other forest structural parameters. In this section we propose a novel321

method to generate accurate DTM using only the point cloud. First, we perform an322

initial classification based on the Simple Morphological Filter (implemented in the ODM323

tool) [19], which assigns each point to either ground or non-ground class. To improve324

on this initial result, we then compute the best-fitting plane for all ground points and325

then reclassify all points by considering their distance to the plane. Finally, to close326

gaps in the ground point cloud, we also estimate a plane for each gap and generate327

points uniformly over this surface. In Figure 6 we show the scheme corresponding to328

the workflow described above. The SMRF [19] algorithm used by ODM to classified the329

cloud points utilize four parameters: slope (slope rise over run), window (max windows330

size), elevation threshold and scalar (elevation constants used to classified the cloud points331

as ground or not ground). ODM by default uses parameter settings which are not ideally332

suitable for forest reconstructions. In [19], an optimized parameter set is proposed for an333

area with low altitude and dense vegetation. Thus, for these experiments we tried both334

the default and optimized parameters, as well as up to eighty random combinations.335

To evaluate the results, we compared the final ground map to that the ground truth,336

obtained from the simulator.337

The DTM is then constructed with the PDAL Library [34] using as input all ground338

points. After this, the CHM can finally be obtained by subtracting the height of the339

ground at each location to the z coordinate of every non-ground point in the DSM. The340

DSM is calculated similarly to the DTM, but using all the cloud points.341

In the following sections, we describe the point-cloud re-classification and gap342

closing in more detail because they are the key steps of the method to obtain accurate343

DTM.344
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Figure 6. Workflow scheme for the digital terrain model generation using the proposed method.

2.5.1. Points Reclassification345

From the already classified ground cloud, we first partition the points using only346

their X and Y coordinates (see below). Then, for each partition, we estimate the best-347

fitting plane using a RANSAC (Random sample consensus) scheme for robustness to348

outliers. Finally, we reclassify all points above the plane by some distance threshold as349

not ground and all points closer as ground. The pseudo-code for this step is presented in350

Algorithm 1.351

Algorithm 1 Reclassification of Ground Points

1: procedure GROUNDRECLASSIFICATION(GroundCloud)
2: partitions = PARTITION(GroundCloud)
3: for i=1:#partitions do
4: plane = RANSAC(partitions[i])
5: for j=1:(#point ∈ partitions[i]) do
6: if HEIGHT(point[j])>HEIGHT(plane)+threshold then
7: GroundCloud = GroundCloud - point[j]

To partition the cloud points, we considered four alternatives: i) Plane, which352

considers the entire cloud as a single partition and use only one plane to adjust it; ii)353

Uniform Division, an iterative method that divides the cloud in four uniform sections, and354

continues recursively until either the area covered by each subdivision or the number of355

points contained in it are below a given threshold; iii) Median Division, similar to the356

uniform division, but considering the median of the points number in each area instead.357

The main idea is to have partitions with the same points number and iv) Surrounded,358

which attempts to find good planes in the areas without points (generally corresponding359

to dense tree areas), using the border of them to estimate the best plane. The first step is360

to find all the areas without points, and create a partition for each one containing all the361

surrounded points. After this, all the remaining points of the cloud are assigned to the362

same partition.363

2.5.2. Gap Closing364

To fill all gaps remaining in the point cloud of ground points, we apply a gap closing365

algorithm. We follow a similar approach as for reclassification by closing each gap366

by means of a plane. From the ground points of the reclassified cloud, and using the367

surrounded method we separate the cloud in several partitions. Each gap has associated368

one partition, and using RANSAC we estimate the best plane for each one. After369

this, equidistant points are generated over the plane and added to the ground cloud.370

Algorithm 2 describes this step of the method.371

2.6. Structural Parameter Estimation from SfM372

In this work we focus on two main forest structural parameters than can be obtained373

using SfM techniques: tree coverage and height. While computing tree height can be374

generalized to obtaining the CHM, tree coverage can be estimated by the ratio of forested375

to total area:376
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Algorithm 2 Ground Extension

1: procedure GROUNDEXTENSION(GroundCloud)
2: partitions = PARTITION(GroundCloud)
3: for i=1:#partitions do
4: plane = RANSAC(partition[i])
5: points = CREATENEWPOINTS(plane)
6: GroundCloud = GroundCloud + points

coverage =
(#TreePixels)

(#GroundPixels) + (#TreePixels)
∗ 100 (7)

where (#TreePixels) is obtained directly from regions of the CHM with non-zero height377

(considering a threshold). While the CHM could be used to obtain individual tree height,378

it is generally more useful to a height based segmentation of the CHM, considering that379

forested areas usually shows sectors with markedly distinct height (due to different380

successional stage, dominant species, soil condition or management).381

2.7. Selective Logging Detection382

Selective logging detection results from comparing reconstruction of the same383

surveyed area at different times. First, the CHM corresponding to each survey is384

computed as explained in previous sections. The ground-referenced point clouds are385

then aligned and the difference is computed, using the oldest as a reference. Algorithm386

3 describes the procedure.387

Algorithm 3 Changes Detection

1: procedure CHANGESDETECTION(Clouda, Cloudb)
2: (cgeClouda,cgeCloudb) = CORRECTGROUNDEST(Clouda, Cloudb)
3: (alCgeClouda) = ALIGNCLOUDS(cgeClouda,cgeCloudb)
4: (CHM1,CHM2) = CHM(alCgeClouda,cgeCloudb)
5: diffMap = DIFF(CHM1,CHM2)
6: binDiff = BINCLASCHANGE(diffMap)
7: binDiff = MORPHFILTER (binDiff)
8: binDiffContourns = CONTOURS(binDiff)
9: binDiffContourns = MINAREAFILTER(binDiffContourns)

The first step is to use the correction in the ground estimation described previously388

with the function CORRECTGROUNDEST for both clouds, to then align them using389

ALIGNCLOUDS. After this, both CHM maps are generated with the CHM function,390

to then calculate the difference between them. The function BINCLASCHANGE uses a391

threshold to classified every point as changed or not. This threshold is defined as a third392

of the altitude of the highest point since this value exceeds the noise and at the same393

time detects changes in the trees; however, the user can change it manually. The function394

MORPHFILTER applies two morphological filters (first erotion and then dilatation) in395

order to eliminate noise, and the same filters in the inverse order, to eliminate little holds396

in the big forested areas. Finally, the contours are calculated with CONTOURS and then a397

minimal area filter is used to eliminate small areas with MINAREAFILTER.398

2.8. Fieldwork399

Finally, we performed a series of real-world experiments both for the ground seg-400

mentation step and structural parameters estimation. These experiments where carried401

out in forested environments located in different protected areas in Argentina and using402

different UAVs. In Nahuel Huapi National Park (Neuquén Province) where surveyed403

an area of 200 x 200 meters using an DJI Mavic 2 Pro UAV. In Ciudad Universitaria-404
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Costanera Norte Ecological Reserve in Buenos Aires City, we used a DJI Phantom III405

Standard to made a 3D model in an area of around 20 hectares. In Ciervo de los Pantanos406

National Park (Buenos Aires Province) we used a custom built fixed-wing aerial platform407

based on the commercial Skywalker 1900 fuselage.408

3. Results and discussion409

The first set of experiments are focused on establishing certain aspects regarding410

the survey mission setup with simulator 3.1. The second set of experiments are aimed411

towards experimental validation of the DTM generation method 3.2. Third, forest412

structural parameters estimation is presented 3.3. Finally, selective logging detection413

process using the proposed DTM generation method is also validated 3.4.414

3.1. Survey Mission Settings Analysis415

In this section we evaluate the impact of some of the main survey mission settings416

over the SfM reconstruction process. For this experiment we use the simulated scenario417

Simple Trees and processed the resulting images using ODM.418

3.1.1. Overlap419

As previously mentioned, image overlap is strongly related to reconstruction quality420

since it mostly determines the number of correspondences that can be established421

between adjacent images (the higher the overlap, the higher the matches). We initially422

tested values between 75% and 95% of both lateral and frontal overlap to determine423

a usable range of values. We then focused on overlap values in the range between424

between 85% and 95%, considering also that values are usually recommended for SfM425

reconstruction of forests. Results of these experiments are presented in Table 1.426

Param N Img N Points FD(m) RMSE (m)

F 75% L 75% 12 0.6M 378.12 8.32
F 85% L 85% 24 1.2M 466.70 4.37
F 85% L 88% 30 1.5M 569.12 3.58
F 85% L 92% 48 2.4M 874.64 4.10
F 85% L 95% 72 3.7M 1261.83 2.62
F 88% L 85% 28 1.4M 451.15 2.19
F 88% L 88% 35 1.8M 549.67 2.30
F 88% L 92% 56 2.9M 843.52 2.59
F 88% L 95% 84 3.6M 1215.16 2.47
F 92% L 85% 40 1.5M 451.15 2.02
F 92% L 88% 50 1.9M 549.67 1.85
F 92% L 92% 80 2.9M 843.52 1.68
F 92% L 95% 120 4.1M 1215.16 1.61
F 95% L 85% 64 3.3M 466.70 1.29
F 95% L 88% 80 3.7M 569.12 1.95
F 95% L 92% 128 5.8M 874.64 1.77
F 95% L 95% 192 9.4M 1261.83 1.32

Table 1: Quality metrics for different overlaps: N Img (number of images), N Points
(number of points), FD (flight distance) and RMSE (Root Square Mean Error). In blue,
is shown the best five results for each metric, and in dark gray a good option for the
trade-off between precision and overlap is remark.

When analyzing the results of these experiments we can see a direct relation between427

image overlap and the number of images and, thus, the number of generated 3D points.428

Moreover, lateral overlap has greater impact over these variables since it results in a429

tighter flight path with more passes over the survey area. As expected, values lower430

than 85% do not give usable results.431
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We can also analyze the effect of varying either frontal or lateral overlap leaving the432

other parameter fixed (see Figure 7). We can see that when lateral overlap is increased433

and frontal overlap is left fixed, flight distance increases as previously mentioned.434

Conversely, when frontal overlap is increased and lateral overlap is left fixed, flight435

distance remains mostly constant. Finally, we can observe that precision mostly increases436

depending on frontal overlap, whereas increasing lateral overlap doesn’t have a big437

impact of precision.438

From all of these combinations we found that using 85% lateral overlap gives good439

results overall. In particular, combining this value with 95% overlap gives the best440

trade off in terms of accuracy and number of points/images and flight distance. These441

results are in line with previous analysis, in particular with those obtained in [24], where442

the authors also analyzed separately the effects of both forward and lateral overlap,443

although using a video footage.444

(a) Lateral overlap variation. (b) Frontal overlap variation.

Figure 7. Flight distance versus the RMSE error, for different values of frontal and lateral overlap

3.1.2. Camera Angle and Flight Pattern445

In this experiment we analyzed the effect of different camera angles on the recon-446

struction. We tested four angle values between 60o and 90o, using both a simple (see447

Table 2) and double grid (see Table 3), using a flight altitude of 100m with a frontal and448

lateral overlap of 95% and 85%, respectively. We did not consider angles lower than 60o
449

since in general too much sky would be visible in the pictures and this brings problems450

for the image processing pipeline.451

When comparing single grid flights with different camera angles, the first thing to452

note is the increment of points in the clouds for bigger angles. This can be attributed to453

the fact that although for small angles the observed surface is grater, the overlap between454

images is reduced. Nevertheless, regarding reconstruction precision, we do not find455

significant differences when the camera angle change.456

Angle N Img N Points RMSE (m)

α = 60o 64 2.1M 1.91
α = 70o 64 2.7M 1.90
α = 80o 64 3.1M 1.97
α = 90o 64 3.3M 1.51

Table 2: Quality metrics for different camera angles. Blue values represent the best result.

For the double grid case (see Table 3) we repeated the experiment, considering that457

now the angle may change between either orientation of flight lines (thus we will name458

each angle α1 and α2). In general we can see a similar behavior than for a simple grid:459

higher angles lead to higher precision and more 3D points. Regarding recontruction460
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presition, for both overlap cases, the configuration α1 = 90o and α2 = 60o show the461

best results, especially for the lower image overlap case, where the number of 3D point462

is smaller. This result reinforce that obtained by [26,27], showing the relevance of463

incorporate oblique images to make 3D reconstructions in forest landscapes.464

Angles N Img N Points RMSE (m)

DG F95% L85%
a1 = 60o ∧ a2 = 60o 128 4.4M 1.75
a1 = 70o ∧ a2 = 70o 128 5.6M 1.45
a1 = 80o ∧ a2 = 80o 128 6.3M 1.83
a1 = 90o ∧ a2 = 60o 128 5.6M 0.91
a1 = 90o ∧ a2 = 70o 128 6.2M 0.99
a1 = 90o ∧ a2 = 80o 128 6.6M 0.93
a1 = 90o ∧ a2 = 90o 128 6.7M 0.94

DG F90% L80%
a1 = 60o ∧ a2 = 60o 48 1.7M 2.1
a1 = 70o ∧ a2 = 70o 48 2.1M 2.67
a1 = 80o ∧ a2 = 80o 48 2.4M 2.57
a1 = 90o ∧ a2 = 60o 48 2.1M 1.27
a1 = 90o ∧ a2 = 70o 48 2.3M 2.32
a1 = 90o ∧ a2 = 80o 48 2.3M 2.58
a1 = 90o ∧ a2 = 90o 48 2.5M 2.63

Table 3: Quality metrics for different camera angles in a double grid setup. Blue values
represent the best result for each configuration.

3.1.3. Flight Altitude465

For the single grid case (Table 4), as expected higher altitudes result in a smaller466

number of images and 3D points. This in turn shorten flight distance but also reduces467

precision.468

For the double grid case, we tested combinations of different altitudes for flight469

lines in each orientation (Table 5). In this case, while there’s also a decrease in the number470

of images, 3D points and flight distance as altitude increases, we can see that precision471

not always decrease, in particular the configuration corresponding to the best precision472

for this experiment was h1 = 50m and h2 = 150m.473

3.2. DTM generation and ground segmentation474

We performed a series of experiments to evaluate our DTM generation method and475

the ground segmentation required to ultimately obtain a CHM. To establish a baseline,476

we first perform a segmentation using ODM over the ground-truth point-cloud obtained477

from the simulator. We then attempt to improve this result by considering the different478

segmentation strategies.479

Param N Img N Points FD(m) RMSE (m)

h1 = 50 96 3.3M 669.81 2.13
h1 = 100 24 1.2M 341.39 2.20
h1 = 150 12 0.3M 246.32 3.07

Table 4: Quality metrics for different altitudes for simple and double grid options (FD:
flight distance) with a frontal and lateral overlap of 90% and 80%, respectively.
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Param N Img N Points FD(m) RMSE (m)

h1 = 50 ∧ h2 = 50 192 18.5M 1440.53 1.79
h1 = 50 ∧ h2 = 100 121 5.8M 1123.82 1.98
h1 = 50 ∧ h2 = 150 109 5.4M 1058.19 1.42
h1 = 50 ∧ h2 = 200 105 5.3M 1075.30 2.02

h1 = 100 ∧ h2 = 100 49 2.2M 714.99 2.14
h1 = 100 ∧ h2 = 150 37 1.5M 647.18 2.20
h1 = 100 ∧ h2 = 200 33 1.3M 671.16 2.00
h1 = 150 ∧ h2 = 150 25 0.5M 603.62 2.73
h1 = 150 ∧ h2 = 200 21 0.4M 592.75 2.66

Table 5: Quality metrics for different altitudes for simple and double grid options (FD:
flight distance) with a frontal and lateral overlap of 90% and 80%, respectively.

Ranking Slope Win Th Scalar Mean RMSE

Best 0.18 17 0.5 1.5 1.257 2.653
Default 0.15 18 0.5 1.25 1.328 2.705

Optimized 0.05 11 0.15 2.3 1.648 2.965

Table 6: RMSE error for different settings of the ODM Ground Segmentation. The
Optimized corresponds to the values recommended in [19]. Win stand for Windows
and Th for Threshold.

3.2.1. ODM classification480

In first instance, we compared different parameters settings in the ODM algorithm.481

Table 6 shows the results of default, optimized [19] and the best option among the eighty482

random combinations evaluated.483

(a) Ground-truth DTM. (b) Estimated DTM. (c) Difference.

Figure 8. In the left and the middle are shown the DTM ground truth and the one obtained with
the best set of parameters of Table 6, respectively. In the right, the error (calculated as the difference
between the other two maps) in the DTM estimation.

In Figure 8 we also compare the ground-truth DTM to the one obtained by the484

aforementioned ground classification method (with the best set of parameters). When485

observing the difference (Figure 8(c)) between ground-truth (Figure 8(a)) and estimated486

(Figure 8(b)) we can identify three areas with large errors, which correspond to an open487

ditch on the left, a large group of trees in the middle and a small slope and a tree in the488

top right part.489

3.2.2. Point Reclassification490

In this section we evaluate the improvement of our point reclassification method491

over the initial result obtained directly from ODM. We tested the four cloud segmentation492

strategies, described in section 2.5.1. In Figure 9 we show the partitions generated as a493
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result of applying each strategy. The reclassification process is then performed in each494

partition and the final DTM is generated.495

The Median method present the best results since it eliminates the wrong classified496

area corresponding to the dense trees, without affecting the rest of the scenario. Nev-497

ertheless, none of the methods show improvement related with the other two areas of498

error (the open ditch on the left and the slope on the right). The method of one plane499

also removed these point, but since only one plane was used and the terrain was not500

flat, the corners were wrongly classified as not ground, because the difference with the501

plane was too big. Something similar happened with surrounded method, since also502

use one plane for all the terrain. Finally, the uniform method was not able to remove the503

point of the dense tree area, since this area was too large and different partitions were504

set, making it impossible to estimate a good plane.505

From each DTM we measure the error as in the previous section (figure 10). White506

areas corresponds to extend zones that were reclassified as not ground, and the interpo-507

lation of ODM can not fulfill those areas. It is desired to have them in wrong classified508

areas in the original DTM, but not in well classified zones. This areas will be fulfill again509

in the ground extension process.510

Figure 9. Partition used in ground points reclassification: top left One Plane, top right Uniform,
bottom left Median and bottom right Surrounding.

Method Mean Error RMSE Max Error Cov %

One Plane 1.289 3.292 20.755 87.51
Uniform 1.273 3.803 29.670 99.83
Median 0.746 1.701 17.454 98.79

Surrounded 0.986 2.629 23.345 97.67

Table 7: Comparison, using METRO, between the different partitioning methods and
the original mesh. Cov % is the coverage percentage of the original model. The Median
method shows the better performance in all the metrics.

Using Metro we compared these DTM estimation with the ground truth, and511

the results are shown in Table 7. Again, Median partitioning method has the best512

performance.513



Version August 31, 2021 submitted to Forests 17 of 25

Figure 10. DTMs errors after reclassified as not ground some points (white areas) using the
proposed methods: top left One Plane, top right Uniform, bottom left Median and bottom right
Surrounding..

3.2.3. Ground Extension514

For each of the reclassification results obtained in previous section, we then apply515

the ground extension method proposed in 2.5.2. As an example, in Figure 11 we show516

how points are added in gaps for one of these cases.517

Figure 11. Added points (red) in the cloud for a distance of 5m.

In Table 8 we show the new results after applying the ground extension step. Ob-518

serving these results, we realize that the Surrounded method shows the best performance.519

Finally, in Figure 12 we compare the final DTM obtained via ODM and the improved520

one after applying the reclassification and ground extension methods with the surrounded521

strategy. We can here see that our approach considerably improves the result, which522

corresponds to an RMSE improvement from 4.287 to 1.843.523

3.2.4. DTM in real-world cases524

For the study area in Nahuel Huapi National Park, the resulting orthomosaic is525

presented in Figure 13(a) and the DTM obtained via ODM with the default configuration526
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Method Mean Error RMSE Max Error Cov %

One Plane 0.921 2.074 26.885 100
Uniform 0.828 1.868 21.661 100
Median 0.812 1.865 23.694 100

Surrounded 0.789 1.843 29.159 100
ODM 1.458 4.287 30.012 99.84

Table 8: Comparison, using METRO, between the different partitioning methods and the
original mesh. The Surrounded method shows the better performance in all the metrics,
and shows a bigger improvement in comparison with the default method used by ODM.

Figure 12. Differences within the original method used for ODM (left), and out proposed method
(right) to estimate the ground.

is presented in Figure 13(b). We can observe that on the right of the image there are527

some trees (red areas) that were classified as ground and that there are also gaps (white528

areas) in the map. These issues occur since most of the surface is covered by trees and529

the default classification method is unable to correctly detect the ground. Both of these530

problems are solved when using the Algorithm 2 (see Figure 13(c)), were a mostly flat531

terrain is detected.

(a) Orthomosaic. (b) Default. (c) Proposed Method.

Figure 13. Original orthomosaic of the relevated area (left), DTM with the Default algorithm of
ODM (middle) and DTM corrected with our method.

532

Figure 14 shows the results obtained for Ciudad Universitaria-Costanera Norte533

Ecological Reserve. Orthomosaic is in the left side, where is possible to observe this area.534

The middle image correspond to the default DTM, where again some of the trees are535

wrongly classified as ground and also there are some gaps. When running Algorithm536

2 (right) with the same parameters as in the other reconstructions, the gaps are well537

estimated and disappear. Nevertheless, some areas are wrongly fulfill assuming a flat538

terrain, during the ground extension. This can be easily corrected by delimiting the539

border of the reconstruction.540
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Figure 14. Original orthomosaic of the relevated area (left), DTM estimated with the Default
algorithm of ODM (middle) and DTM corrected with our method.

3.3. Structural Parameters541

In this section we present our results when estimating the structural parameters of542

interest: tree coverage and canopy height.543

3.3.1. Coverage544

Once ground segmentation is performed, estimating tree coverage is trivial since it545

reduces to computing the percentage of pixels classified as ground with respect to the546

total area in question. We can use the Yosemite simulated scenario again to compare547

tree coverage results to ground-truth information. When using ODM, the resulting548

coverage is 36.56%. With our approach coverage is 40.86%. Compared to the ground-549

truth value of 46.80% we can indeed observe our method results in an improvement.550

This measurement shows the importance of precise ground segmentation as it directly551

impacts coverage computation. Figure 15 shows the tree segmentations obtained for552

each method and the difference to ground truth segmentation.553

Figure 15. Top left: Expected segmentation from the real mesh. Top middle: segmentation using
the ground estimation correction. Top right: segmentation with the default ground estimation.
Bottom: difference between the expected segmentation and, at left, the one with the ground
estimation correction and at right, with the default estimation.

On the other hand, we also compute tree coverage for real-world experiments.554

Since in this case we do not have ground-truth information only qualitative analysis is555
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performed. In Figure 16 we overlay the segmentation result over the orthomosaics of556

Villa La Angostura and RECN experiments. In general we can observe that most of the557

forested areas are correctly classified as not ground. The coverage percentage for Villa La558

Angostura is estimated as 45.53% and 17.60% for RECN.559

(a) VLA. (b) RECN.

Figure 16. Overlay between orthomosaci and the areas covered by trees (fluor green) for the Villa
La Angostura and RECN experiments.

3.3.2. Tree Height560

A second result we can obtain from the CHM is tree height. As previously men-561

tioned, as detecting individual trees is not really feasible for very densily forested areas,562

we can resort to obtain a height segmentation from the CHM for the purpose of isolating563

potentially different forest types.564

In Figure 17 we show the regions with similar tree height for a reconstruction565

of the Ciervo de los Pantanos national park in Buenos Aires, Argentina. To build this566

segmentation map we extended ODM software to allow specifying different height567

intervals to be mapped to a class (based on knowledge of available forest types in the568

area).569

Figure 17. National Park Ciervo de los Pantanos. Left: Orthomosaic generated, where yellow
marks represents the CGPs. Medium: corresponding height map. Right: segmentation stratified
by heights.

3.4. Selective Logging Detection570

In this section we evaluate the ability of our system to detect changes between two571

survey missions of the same area at different times. In the context of forestry, this feature572

has multiple applications such as selective logging detection. We performed two sets of573
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(a) CHM with trees. (b) CHM without trees.

(c) Binary Image. (d) Final result.

(e) Scenario with trees (f) Scenario without trees

Figure 18. Change detection process for Yosemite.

experiments: first in the Yosemite simulated environment and then on real-world scenario574

of a construction site inside a forested area.575

3.4.1. Simulation576

In this experiment we generated an initial tree population in the Yosemite simulated577

environment and then a second one with some of these trees removed from three different578

areas of the map. We performed two simulated survey missions and then attempted to579

detect the differences.580

Figure 18 shows the change detection process step by step: Figure 18(a) and 18(b)581

show the resulting CHM for each mission. This cover a variety of different situations582

common on forests. The difference between both CHMs is computed and a binary map is583

generated (see Figure 18(c))) based on a user-defined threshold. Finally, a morphological584
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filter and contours are computed (selecting only those of a given minimum size), which585

gives the final result of detected changes (see Figure 18(d)). In this case we can observe586

that the three groups of removed trees are correctly detected. This can be confirmed by587

overlapping these contours over the scenarios with and without trees (see Figure 18(e)588

and Figure 18(f)).589

3.4.2. Real Word Experiments590

To study the performance of our selective logging detection method in real-world591

conditions a second set of experiments were performed on an area where selective592

logging was authorized. Due to the size of the area and safety constraints within the593

construction site, these experiments were carried out with the DJI Mavic 2 Pro commercial594

multi-rotor.595

Three flights were performed at different times over two separate areas (of approxi-596

mately 150x200 meters each) in Nahuel Huapi National Park, near Villa La Angostura.597

Due to technical difficulties it was not possible to use GCPs for all the flights. This issue598

had the effect of higher drift in the absolute position of the clouds. Nevertheless, since599

we perform point cloud alignment this issue is easily overcome. Of course, for larger600

areas, GCPs would be necessary to avoid warping of the point cloud.601

For the first area (Figure 20(a) to 20(c)), after the initial flight, three trees of approxi-602

mately 30m in height were cut down and, for before the final flight a quite larger area of603

trees was removed. The changes detected in the canopy structure after the second and604

third flight were correctly identified (marked in blue), as seen in Figures 20(b) and 20(c).605

For the second experiment (Figures 20(d) to 20(f)), the section of trees removed is606

smaller and thus allows to see the performance on a more challenging case. In Figures607

20(e) and 20(f) we show the detection results which again reflects the areas where608

selective logging was performed. This example also demonstrates that recognizing609

these changes could be quite difficult for a human, but an automated approach can be610

successful.611

(a) Orthomosaic. (b) Original DTM. (c) Corrected DTM.

Figure 19. COMPLETE THIS

4. Conclusions612

In this work we approached the problem of forest structural parameters estimation613

using aerial photogrammetry. We analyzed two relevant issues: the selection of survey614

mission and sensor settings and the generation of DTM using camera sensor in forests.615

For the first one an exhaustive analysis is presented using a custom-built highly realistic616

simulator that allows experimental repeatability. For the second issue we propose a new617

method to generate the DTM in forested environments using only the point cloud from618

SfM. Finally, we tested our method in real-world cases using different UAVs in natural619

forest areas.620
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(a) First survey. (b) Second survey. (c) Third survey.

(d) First survey. (e) Second survey. (f) Third survey.

Figure 20. Orthomosaics obtained from two flights (first flight, top row, second flight, bottom
row). Leftmost image is the reference orthomosaic and middle and rightmost ones are from the
two following flights over the same areas, after different trees were cut down. Areas detected by
our detection system are highlighted in blue.

In first place we studied the impact of flight settings in the final 3D reconstruction621

quality. We tested different configurations of image overlap, camera angle, flight pattern622

and altitude. The use of a simulator allowed us to realized hundreds of experiments623

and to count with a ground-truth to compare the obtained results. For the overlap we624

found that it is beneficial to use the highest possible value of frontal overlap, taking into625

account hardware capabilities (image rate) and the required processing time. Moreover626

a lower value of lateral overlap is also preferred as it results in lower number of images627

but with similar precision in the reconstruction. Frontal and lateral overlap of 95% and628

85% respectively have shown to give the best results for forests. For the camera angle629

in single grid configuration a nadir angle shows better results than when using smaller630

angles, as the number of points is increased while RMSE is improved. In the double631

grid case, a combination of 90◦ and 60◦ angles for each flight allowed us to achieve632
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the best results for two different overlap configurations. In relation to altitude in the633

simple grid case, we found that higher altitudes results in a smaller number of points634

and images, but also reduced precision. In the double grid case we found that most635

precise reconstruction corresponds to the uses of two specific flight altitudes of h1 = 50m636

and h2 = 150m.637

We also tested the proposed ground segmentation method for forested areas and638

we were able to reduce the RMSE considerably. This improvement was also reflected in639

the coverage percentage estimation, where the error has halved. We also performed qual-640

itative analysis using real-world experiments with good results for both tree coverage641

and height.642

The capability to generate the DTM in forested environments using only the point643

cloud from SfM is the key for UAS-based photogrammetry in cases where there isn’t644

another source available, or is not possible to use LiDAR due to their high cost or opera-645

tional difficulty. Therefore, the presented method can make UAS-based photogrametry646

an available tool to a larger set of stakeholders, like local forest management agencies,647

citizen science and research projects with limited resources.648

To summarize we can conclude that UAS-based photogrammetry in forests envi-649

ronments is challenging but still possible and allows to obtain useful results if a proper650

settings for mission and sensor are considered and an accurate DTM is generated. As651

demonstrated in this work, it can be used for structural forest parameters estimation652

and selective logging detection, becoming in a powerful tool for forest inventory and653

management. In this way we save tedious fieldwork, low-resolution results from satellite654

imagery and expensive alternatives like airborne LiDAR systems.655
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