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SUMMARY

Differential gene expression analysis is widely used to study changes in gene
expression profiles between two or more groups of samples (e.g., physiological
versus pathological conditions, pre-treatment versus post-treatment, and in-
fected versus non-infected tissues). This protocol aims to identify gene expres-
sion changes in a pre-selected set of genes associated with severe acute respira-
tory syndrome coronavirus 2 viral infection and host cell antiviral response, as
well as subsequent gene expression association with phenotypic features using
samples deposited in public repositories.
For complete details on the use and outcome of this informatics analysis, please
refer to Bizzotto et al. (2020).
BEFORE YOU BEGIN

Download R and RStudio

Timing: 1 h

1. R is a free software environment for statistical computing and graphics. It runs on UNIX, Windows

and MacOS.

a. To download and install R go to https://www.r-project.org/ (R Core Team, 2013). The current

pipeline was performed using R version 3.6.2.

2. RStudio is an integrated development environment (IDE) for R. It allows to easily execute the R

codes, plot graphics, and manage the workspace in a multipanel interphase.

a. To download and install RStudio go to https://rstudio.com/products/rstudio/ (RStudio Team,

2020).

Pause point: Since this protocol follows a bioinformatic pipeline exclusively, by saving the

executed steps the protocol can be paused at any time.
Download required packages in RStudio

Timing: 1 h
STAR Protocols 2, 100478, June 18, 2021 ª 2021 The Author(s).
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3. Users must first download the required packages (listed in the key resources table). They can

be downloaded through Bioconductor, which provides tools for the analysis and comprehension

of high-throughput genomic data. BiocManager::install() is the recommended command

to install packages (for detailed information on why BiocManager::install() is preferred to

the standard R packages installation please read https://www.bioconductor.org/install/#why-

biocmanagerinstall):

a. Install the packages needed for the analysis. See troubleshooting 1:
if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install(c("DESeq2", "GEOquery", "canvasXpress", "ggplot2", "clinfun",

"GGally", "factoextra"))

{

}

2

b. Once all packages are installed, they need to be loaded:
library(DESeq2)

library(GEOquery)

library(canvasXpress)

library(ggplot2)

library(clinfun)

library(GGally)

library(factoextra)
Dataset selection

Timing: 2 days

4. When using datasets from public repositories, the key step is to identify a dataset (or datasets)

that comply with the eligibility criteria and that contains the sample information required for

the analysis.

a. We suggest browsing Gene Expression Omnibus (GEO: https://www.ncbi.nlm.nih.gov/gds,

(Barrett et al., 2012)) and ArrayExpress (https://www.ebi.ac.uk/arrayexpress/, (Athar et al.,

2019)) repositories because they gather multiple high-throughput genomics datasets. Howev-

er, there are several public repositories that might be more suitable for other types of studies.

These repositories allow to download raw sequencing data (.fastq sequencing files) and/or

pre-processed files (tab-delimited.txt files containing matrices with sequence read counts af-

ter trimming and alignment to the reference genome). The pre-processed files may contain a

raw-counts matrix (non-normalized) or a normalized counts matrix (see below for more details).

Sample information is also available to download. Finally, the platform used, and pre-process-

ing algorithm (when data are pre-processed) are specified.

We strongly recommend researchers to thoroughly evaluate the type of data submitted, study

design, number of samples and any other relevant information that might help to analyze the

samples and draw statistically valid conclusions. Troubleshooting 2.

b. Our eligibility criteria for (Bizzotto et al., 2020) was: (i) publicly available transcriptome data; ii)

detailed sample/patient information; (iii) detailed protocol information; (iv)R 60 samples. We
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selected the GSE152075 dataset from GEO which contained RNA-seq data from 430 SARS-

CoV-2 positive and 54 negative patients (Lieberman et al., 2020). We downloaded the gene

expression aligned datamatrix (tab-delimited .txt file with reads pseudo-aligned to the human

reference transcriptome). Clinico-pathological information included age, gender, and viral

load (expressed as cycle threshold (Ct) by RT-qPCR for the N1 viral gene at time of diagnosis).

The interpretation for viral load was as follows: the lower the Ct, the higher the viral load. This

phenotypic data can be downloaded directly in RStudio as explained in the ‘‘RNA-seq data

organization and counts normalization’’ section.
KEY RESOURCES TABLE
AGENT or RESOURCE SOURCE IDENTIFIER

posited data

ivo antiviral host response to SARS-CoV-2
viral load, sex, and age [dataset I]

NCBI Gene Expression Omnibus GSE152075

_code_Sanchis_et_al.R GitHub repository https://github.com/lab-inflamacionycancer/STAR-protocol-Sanchis.
et.al/blob/main/raw_code_Sanchis_et_al.R

tware and algorithms

oftware (R Core Team, 2013) https://www.r-project.org/

udio (RStudio Team, 2020) https://rstudio.com/

seq2 v1.28.1 package (Love et al., 2014) https://bioconductor.org/packages/release/bioc/html/DESeq2.html

plot2 package (Wickham, 2016) https://ggplot2.tidyverse.org/

ally package (Schloerke et al., 2020) https://github.com/ggobi/ggally/

vasXpress package (Neuhaus and Brett, 2020) http://www.canvasxpress.org/

toextra package (Kassambara and
Mundt, 2020)

https://rpkgs.datanovia.com/factoextra/
index.html

fun package (Seshan, 2018) https://github.com/veseshan/clinfun

Oquery package (Davis and Meltzer, 2007) https://www.bioconductor.org/packages/release/bioc/html/
GEOquery.html
Note: detailed information on the usage of the different packages may be found in the links

provided in the identifier column.
MATERIALS AND EQUIPMENT

For this bioinformatics analysis we used a laptop with an Intel Core i5 8th generation processor, 8 GB

RAMmemory andWindows 10. No high-performance computing clusters were needed for the anal-

ysis of the data. Internet connection is required for downloading R packages and data matrixes.
STEP-BY-STEP METHOD DETAILS

The flow chart for data processing is included in Figure 1.
Download and prepare the data matrix for analysis

Timing: 2 h

You can download the experiment information and clinical data directly from GEO using the GEO-

query package:

1. The series matrix file is a text file that includes a tab-delimited value-matrix for each sample con-

taining the phenotypic/clinical and experimental data of a given dataset. In the GEO webtool,

there is a hyperlink to the series matrix, called ‘‘Series Matrix File(s)’’. To download the series ma-

trix file directly to the R environment use the getGEO command:
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data <- getGEO(GEO = ["GSE152075"])

#replace the text between [] with the GSE of your choice and remove the [].

#print de first five rows of the matrix to see matrix information

head(data)

#output (do not run this piece of script)

> head(data)

$GSE152075_series_matrix.txt.gz

ExpressionSet (storageMode: lockedEnvironment)

assayData: 0 features, 484 samples

element names: exprs

protocolData: none

phenoData

sampleNames: GSM4602241 GSM4602242 ... GSM4602725 (484 total)

varLabels: title geo_accession ... sequencing_batch:ch1 (43 total)

varMetadata: labelDescription

featureData: none

experimentData: use ’experimentData(object)’

pubMedIds: 32898168

Annotation: GPL18573

Figure 1. Flow chart for data processing
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2. You may now extract the phenotypic/clinical data matrix from the series matrix:
clindata <- data[["GSE152075_series_matrix.txt.gz"]]@phenoData@data

#replace the GSE with the one of your choice. Do not remove the [] in this line.

#print de first five rows of the matrix to see the information included in columns of interest

head(clindata[,c(1,2,8,40,39,42)])

#output (do no run this piece of script)

> head(clindata[,c(1,2,8,40,39,42)])

title geo_accession source_name_ch1 gender:ch1 age:ch1 sars-cov-2 positivity:ch1

GSM4602241 POS_001 GSM4602241 Nasopharyngeal Swab M 64 pos

GSM4602242 POS_002 GSM4602242 Nasopharyngeal Swab F 30 pos

GSM4602243 POS_003 GSM4602243 Nasopharyngeal Swab M 47 pos

GSM4602244 POS_004 GSM4602244 Nasopharyngeal Swab F 67 pos

GSM4602245 POS_005 GSM4602245 Nasopharyngeal Swab M 62 pos

GSM4602246 POS_006 GSM4602246 Nasopharyngeal Swab F 52 pos
3. Download and save on your computer the raw-counts matrix from GEO website. This matrix is a

tab-delimited txt. file containing the counts for every gene aligned from a RNA-seq experiment.

After downloading it, load the matrix into RStudio:
raw_counts <- read.delim("[C:/Users/File/Location/GSE152075_raw_counts_GEO.txt.gz]",

stringsAsFactors=FALSE, sep = " ")

#replace the text between [] with the directory path to the GSE_raw_counts_GEO.txt.gz file you

downloaded and remove the [].

#another way to download the raw count matrix directly from RStudio is running the following

command:

url="https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE152075&format=file&fi-

le=GSE152075%5Fraw%5Fcounts%5FGEO%2Etxt%2Egz"

download.file(url, "raw_reads.gz")

raw_counts <- read.delim("raw_reads.gz", stringsAsFactors=FALSE, sep = " ")

#print de first five rows of the raw counts matrix to see how information is organized

head(raw_counts[,c(1:10)])

#output (do no run this piece of script)

> head(raw_counts[,c(1:10)])

POS_001 POS_002 POS_003 POS_004 POS_005 POS_006 POS_007 POS_008 POS_009 POS_010

A1BG 0 1 0 0 18 8 0 1 0 1

A1CF 0 0 2 0 0 0 0 0 0 0

A2M 69 36 84 42 83 46 26 0 93 6

A2ML1 2 0 0 0 3 30 0 32 6 0

A2MP1 0 0 0 0 21 0 0 0 0 0

A3GALT2 0 0 0 0 0 0 0 0 0 0

STAR Protocols 2, 100478, June 18, 2021 5
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Note: The sequencing data for GSE152075 was submitted as raw-counts in a separate file

from the experimental and clinical data. (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE152075; GSE152075_raw_counts_GEO.txt.gz); therefore, it was downloaded sepa-

rately. For datasets with pre-processed/normalized data, the counts matrix might be included

in the series matrix file downloaded in step 1. Troubleshooting 3.

RNA-seq data organization and count normalization

Timing: 1 h

Before performing differential gene expression analysis, it is required to normalize the read counts if

the raw-counts matrix was downloaded. This normalization step allows to compare gene expression

(read counts) among samples (Evans et al., 2018). It is also recommended to correct for batch effect if

multiple batches of experiments were performed. If the user’s dataset is already normalized, then go

directly to step 6.

4. Gene expression normalization:

a. Before sample normalization, data should be converted and organized to the format required

for further analysis (data format and organization might vary for different packages).

Troubleshooting 4.
raw_counts <- as.matrix(raw_counts)

rownames(clindata) <- clindata$[title]

#replace the rownames of clindata (sampleID) with the same sample name [title] of [raw_-

counts]. This will help to match sample names in both matrixes. Remove the []

all(rownames(clindata) %in% colnames(raw_counts))

#the outcome should be TRUE

all(colnames(raw_counts) %in% rownames(clindata))

#the outcome should be TRUE

c

c

c

c

c

c

c

6

b. Make sure that the grouping variables are factors. We also changed the original names

of the columns containing the relevant variables to make them shorter and easier to work

with.
olnames(clindata)[colnames(clindata) == "sequencing_batch:ch1"] <- "batch"

lindata$batch <- as.factor(clindata$batch)

olnames(clindata)[colnames(clindata) == "n1_ct:ch1"] <- "ct"

olnames(clindata)[colnames(clindata) == "sars-cov-2 positivity:ch1"] <- "positivity"

lindata$positivity[clindata$positivity == "pos"] <- "COVID19"

lindata$positivity[clindata$positivity == "neg"] <- "HEALTHY"

lindata$positivity <- as.factor(clindata$positivity)
c. Merge the read counts and clinical data matrixes into a DESeqDataSet object using the DE-

Seq2 package:
STAR Protocols 2, 100478, June 18, 2021
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dds <- DESeqDataSetFromMatrix(countData = raw_counts,

colData = clindata,

design = � [positivity + batch])

#the design argument is a formula that expresses how the counts for each gene depend on the vari-

ables in colData. The ‘‘design’’ function set the important variables to take into consider-

ation when performing expression analyses but they are not taken into account for the normal-

ization step. Replace the variables between [] with the variables of your choice and remove

the [].

#print de first five rows of the merged data to check how it is organized

head(dds)

#output (do no run this piece of script)

> head(dds)

class: DESeqDataSet

dim: 6 484

metadata(1): version

assays(1): counts

rownames(6): A1BG A1CF ... A2MP1 A3GALT2

rowData names(0):

colnames(484): POS_001 POS_002 ... NEG_063 NEG_065

colData names(44): title geo_accession ... batch sizeFactor

d

#

h

#

>

c

d

m

a

r

r

c

c

n

#

ll
OPEN ACCESSProtocol
d. Normalization by estimation of size factor:
ds <- estimateSizeFactors(dds)

print de first five rows of the normalized data

ead(dds)

output (do no run this piece of script)

head(dds)

lass: DESeqDataSet

im: 6 484

etadata(1): version

ssays(1): counts

ownames(6): A1BG A1CF ... A2MP1 A3GALT2

owData names(0):

olnames(484): POS_001 POS_002 ... NEG_063 NEG_065

olData names(45): title geo_accession ... viral_load sizeFactor
e. Create a new table with the normalized read counts (gene expression) for all genes:
orm_counts <- counts(dds, normalized=TRUE)

print de first five rows of the normalized data

STAR Protocols 2, 100478, June 18, 2021 7



head(norm_counts[,c(1:10)])

#output (do no run this piece of script)

> head(norm_counts[,c(1:10)])

POS_001 POS_002 POS_003 POS_004 POS_005 POS_006 POS_007 POS_008 POS_009 POS_010

A1BG 0.000000 0.5141284 0.000000 0.00000 4.9623195 1.772646 0.00000 1.525303 0.000000

1.919222

A1CF 0.000000 0.0000000 1.341403 0.00000 0.0000000 0.000000 0.00000 0.000000 0.000000

0.000000

A2M 83.991914 18.5086219 56.338945 29.22556 22.8818067 10.192713 59.25264 0.000000

66.738520 11.515331

A2ML1 2.434548 0.0000000 0.000000 0.00000 0.8270533 6.647421 0.00000 48.809682 4.305711

0.000000

A2MP1 0.000000 0.0000000 0.000000 0.00000 5.7893728 0.000000 0.00000 0.000000 0.000000

0.000000

A3GALT2 0.000000 0.0000000 0.000000 0.00000 0.0000000 0.000000 0.00000 0.000000 0.000000

0.000000
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Note: There are alternative methods to normalize and extract the counts such as rlog and vst

that would fit this analysis (Love et al., 2014). However, this STAR Protocol replicates the bio-

informatics analysis described in Bizzotto et al. (Bizzotto et al., 2020) where the command

‘‘normalized=TRUE’’ was used.

5. For our study, we converted the continuous variables (e.g., age, viral load) into factor/strata vari-

ables (e.g., 10-year age ranges, low/medium/high viral load). The code below shows an example

on how to stratify the viral load and age (after duplicating the original variable in order to not

overwrite the original data).
#stratify viral load

{

clindata$viral_load <- clindata$ct

clindata$viral_load[clindata$viral_load == "N/A"] <- "Negative"

clindata$viral_load[clindata$viral_load > 24 & clindata$viral_load !=

"Unknown" & clindata$viral_load != "Negative"] <-

"LOW"

clindata$viral_load[clindata$viral_load <= 24 & clindata$viral_load

>= 19] <- "MEDIUM"

clindata$viral_load[clindata$viral_load < 19] <- "HIGH"

clindata$viral_load <- as.factor(clindata$viral_load)

clindata$viral_load <- factor(clindata$viral_load, levels =

c("Negative", "LOW", "MEDIUM", "HIGH",

"Unknown"))

clindata$positivity <- factor(clindata$positivity, levels =

c("HEALTHY", "COVID19"))

}

8 STAR Protocols 2, 100478, June 18, 2021



#stratify age

{

clindata$age_cat <- clindata$‘age:ch1‘

clindata$age_cat[clindata$‘age:ch1‘ < 30] = "< 30"

clindata$age_cat[clindata$‘age:ch1‘ >= 30 & clindata$‘age:ch1‘ < 40] ="30s"

clindata$age_cat[clindata$‘age:ch1‘ >= 40 & clindata$‘age:ch1‘< 50] ="40s"

clindata$age_cat[clindata$‘age:ch1‘ >= 50 & clindata$‘age:ch1‘ < 60] ="50s"

clindata$age_cat[clindata$‘age:ch1‘ >= 60 & clindata$‘age:ch1‘ < 70] ="60s"

clindata$age_cat[clindata$‘age:ch1‘ >= 70] ="70+"

clindata$age_cat[clindata$‘age:ch1‘ == "Unknown"] = NA

}

{

ll
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Note: This is an optional step depending on your variables and analysis.
Differential gene expression analysis across different strata

Timing: 1 day

Note:Asmentioned onBizzotto et al. (Bizzotto et al., 2020), some sampleswere removed from the

analysis since they were considered to have low quality read sequencing (>70% genes with

0 counts). Because this might not apply to all protocols, we did not include the code for this

filtering in the main manuscript, but it was included in the troubleshooting 5. Therefore, the out-

comes for this protocolmight slightly differ from the outcomepublished onBizzotto et al. (Bizzotto

et al., 2020), but this omission does not change the results and interpretation of the study.

This step aims to compare geneexpressionacrossdifferent strata. Belowwe show, as anexample, the dif-

ferentialMX1 expression analysis for SARS-CoV-2 positive vs. negative patients.

6. As described in our publication, we selected specific genes that could potentially be linked to

SARS-CoV-2 infection. For this section, we selected MX1 as an example to show. Plot MX1

expression for SARS-CoV-2 positive and negative patients (Figure 2A.i) using the following code:
MX1 <- ggplot(NULL, aes(x=clindata$positivity,

y=log2(t(norm_counts["MX1",]+1)))) +

geom_jitter(aes(shape=clindata$positivity,

color=clindata$positivity), size=3)+

xlab(NULL) +

ylab("MX1 expression \n log2 (norm counts +1)") +

theme(legend.position = "bottom") +

theme_bw() +

theme(axis.text = element_text(size = 15),

axis.title = element_text(size = 15),

plot.title =element_text(size = 25),

legend.position = ’none’) +

STAR Protocols 2, 100478, June 18, 2021 9



stat_summary(fun=mean,

geom="point",

shape= ’_’,

size=14,

colour= c(’#b53d35’, ’#066e70’))

MX1

}

gg

ce

#r

Figure 2. Gene expression analysis based on SARS-CoV-2 positivity and age

Dot plot for MX1 expression (i) and statistical output from RStudio (ii) for: (A) SARS-CoV-2 positive vs. negative patients (P-values correspond to

Wilcoxon rank-sum test); (B) SARS-CoV-2 positive vs. negative patients categorized by age groups (P-values correspond to decreasing Jonckheere-

Terpstra trend test. Alternative hypothesis: Mediani > Medianj > . > Mediann, indicating that gene expression is significantly lower in SARS-CoV-2

patients when age is increased. Left panel: SARS-CoV-2 negative; right panel: SARS-CoV-2 positive). Figures 2 A.i and B.i were adapted with permission

from Bizzotto et al., 2020.
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CRITICAL: For the y argument you must specify a data frame containing the samples in the
rows and the variables (genes) in the columns; therefore, we used the t() argument to trans-

pose the data frame ‘‘norm_counts’’. Gene expression is expressed as the log2(counts);

therefore, and because some samples have 0 counts, it is necessary to add 1 count to all

genes for all samples to avoid errors due to log2(0).
7. Export the plot in high quality (complying with most publication standards):
save(filename="[Name of the file.png]", plot= [name of the plot in RStudio (i.e.: MX1)], devi-

="png", dpi=600, height=10, width=14, units="in")

eplace the text between [] with the filename to be saved. Remove the [].

STAR Protocols 2, 100478, June 18, 2021



Figure 3. Correlation analysis

(A) Pairwise Spearman correlation matrix analysis between all genes of interest (MX1, MX2, ACE2 and TMPRSS2), considering

different infection status (all patients together (Corr.), SARS-CoV-2 negative (HEALTHY), or SARS-CoV-2 positive patients

(COVID19)). Alternative hypothesis: rho (r) s 0, which indicates that there is a lineal correlation between the variables under

study. Statistical significance: *p < 0.05; **p < 0.01; ***p < 0.001.

(B) Scatter plot ofMX1 andMX2 gene expression levels, color-coded by viral load (i) and Spearman correlation output

in RStudio (ii). Figures 3A and 3B.i were adapted with permission from Bizzotto et al., 2020.
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8. Perform a Wilcoxon test to assess the statistical significance of MX1 expression differences

between SARS-CoV-2 positive and negative patients (Figure 2A.ii):
MX1stat <- wilcox.test(norm_counts["MX1",] � clindata$positivity,

paired = FALSE)

MX1stat
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Note: Please note that Limma and DESeq2would bemore appropriate statistical packages to run

when analyzing whole transcriptomes. In (Bizzotto et al., 2020), we analyzed a pre-selected set of

genes; therefore, the Wilcoxon test can be used to analyze mean differences between groups.

9. In addition, weperformed the Jonckheere-Terpstra (Arif et al., 2015) trend test toevaluategeneexpres-

sion trends across ordered strata (e.g., age stratified by 10-year ranges). As an example, here we show

the trend test forMX1 expression across age categories in SARS-CoV-2 negative and positive patients

(Figure 2B.ii, left and right panels, respectively). The continuous age variable was stratified in 10-year

ranges as described in‘‘RNA-seq data organization and counts normalization - step 5’’ section.
Fig

(A)

par

(B)

(C)

Co

wit

{

p_trend_age <- jonckheere.test(x= log2(t(norm_counts["MX1",]+1))[

clindata$positivity == "COVID19"],

g= factor(clindata$age_cat

[clindata$positivity == "COVID19"],

ordered = TRUE),

alternative = "decreasing",

nperm = 500)

p_trend_age

}

12
Note: In this code the column ‘‘clindata$age_cat’’ contains the age stratified by 10-years

ranges previously created.
ure 4. Patient segregation based on gene expression

Principal component analysis (PCA) output in RStudio, showing the first two principal components explaining most

t of the variance among samples.

PCA biplot of gene expression data showing a rough segregation of SARS-CoV-2 positive and negative samples.

3D scatter plot for the expression of three genes of interest (BSG, MX1 and ACE2). Samples are colored by SARS-

V-2 status (positive or negative). Ellipsoids represent the 95% confidence interval. Figures 4B and 4C were adapted

h permission from Bizzotto et al., 2020.
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Note: to perform this test in SARS-CoV-2 negative patients, then replace ‘‘COVID19’’ with

‘‘HEALTHY’’.

Note: The argument alternative could be ‘‘two.sided’’, ‘‘increasing’’ or ‘‘decreasing’’. Select

the best argument for your hypothesis testing.

Correlation analysis

Timing: 1 day

The aim of this step is to analyze gene expression correlation in the different categorical variables.

We also provide the code to perform a pairwise gene expression correlation including the viral load

as a third variable plotted in a color scale.

10. Spearman correlation analysis between gene expression levels:
{

pai

c

u

g

pai

t

t

y

x

p

}

a. Calculate the Spearman coefficients and plot all pairwise correlations. The example below

shows the correlation analysis for four genes (MX1, MX2, ACE2 and TMPRSS2) in SARS-

CoV-2 positive and negative patients (Figure 3A):
rwise_corr <- ggpairs(as.data.frame(log2(t(norm_counts+1))),

olumns = c("MX1", "MX2", "ACE2", "TMPRSS2"),

pper = list(continuous = wrap(’cor’,

method = "spearman", size = 3),

combo = "box_no_facet",

discrete = "count",

na ="na"),

gplot2::aes(colour=clindata$positivity,

shape=clindata$positivity, alpha = 0.01))

rwise_corr <- pairwise_corr + theme(strip.placement = "outside",

ext = element_text(size = 9 , face = "bold")) +

ggtitle("Gene correlation") +

heme(plot.title = element_text(size = 15,

hjust = 0.5)) +

lab("log2(counts +1)") +

lab("log2 (counts +1)")

airwise_corr
Note: Any continuous variable (e.g. viral load expressed as Ct) could be included in the anal-

ysis of correlation with gene expression (Bizzotto et al., 2020).

11. Plot gene expression correlation between two genes and include viral load (expressed as Ct) in a

color scale (Figure 3B.i) and calculate the Spearman correlation coefficient (Figure 3B.ii)
STAR Protocols 2, 100478, June 18, 2021 13



MX1_MX2 <- ggplot(NULL, aes(x =

log2(t(norm_counts["MX1",]+1)[which(clindata$positivity=="COVID19" &

clindata$ct != "Unknown")]),

y = log2(t(norm_counts["MX2",]+1))[which(clindata$positivity=="

COVID19"&

clindata$ct != "Unknown")],

color = as.integer(clindata$ct[(which(clindata$positivity=="

COVID19" &

clindata$ct != "Unknown"))]))) +

geom_point(size = 4, na.rm = TRUE) +

scale_color_gradientn(colours=c("red","white","blue"), name = "Viral

load (ct)") +

ylab("MX2 expression RNA-seq \n log2 (norm counts +1)") +

xlab("MX1 expression RNA-seq \n log2 (norm counts +1)") +

theme(legend.position = "bottom") +

theme_bw() +

theme(axis.text = element_text(size = 15),

axis.title = element_text(size = 15),

plot.title =element_text(size = 25))

MX1_MX2

MX1_MX2stat <-cor.test(norm_counts["MX1",]

[which(clindata$positivity=="COVID19")],

norm_counts["MX2",]

[which(clindata$positivity=="COVID19")],

method = "spearman")

MX1_MX2stat
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Patient segregation based on gene expression

Timing: 1 day

Principal-component analysis (PCA) is a dimensionality reduction technique used to increase the

interpretability of a given dataset, minimizing information loss and maximizing variance.

12. Principal component analysis based on disease status:
14
a. Calculate the principal component on the log2 transformed gene expression data. The output

is a table as shown in Figure 4A, containing the weight of each gene in the variance of the

samples for Principal Component 1 (PC1; the largest component of variance in the data set)

and Principal Component 2 (PC2; the second most important component influencing the

variance):
STAR Protocols 2, 100478, June 18, 2021



res.pca <- prcomp(t(log2(norm_counts[c("gene1","gene2", "geneN"),]+1)),

scale = TRUE)

#replace gene1, gene2, geneN by the list of genes of your interest

res.pca

{

}

#r

da

va

ro

ax

ax

el

co

co

"H

gr

ti

xA

yA

zA

sh
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Note: For PCA we only considered expression of the candidate genes, but you might also

include any independent variable you consider to affect the variability among samples.

b. Plot PC1 vs. PC2 (Figure 4B):
p<- fviz_pca_biplot(res.pca, col.ind = clindata$[positivity],

geom = "point",

addEllipses = TRUE,

palette = c(’#F8766D’, ’#00BFC4’),

title=’Principal Component Analysis’)

p

eplace the variable between [] for any variable of your interest, and remove the []
13. 3D graphs showing expression for the selected genes can be plotted as follows. The output is

shown in Figure 4C:
ta=t(log2(norm_counts[c("MX1","ACE2","BSG"),]+1)),

rAnnot=as.data.frame(clindata$positivity,

w.names=rownames(clindata)),

isTickScaleFontFactor=0.6,

isTitleScaleFontFactor=0.6,

lipseBy="clindata$positivity",

lorBy="clindata$positivity",

lorKey=list("clindata$positivity"=list("COVID19"="#F8766D",

EALTHY"="#00BFC4")),

aphType="Scatter3D",

tle="3D scatter plot",

xis=list("ACE2"),

xis=list("BSG"),

xis=list("MX1"),

owLoessFit = FALSE)

STAR Protocols 2, 100478, June 18, 2021 15
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EXPECTED OUTCOMES

Plots in Figure 2 depict dot plots of gene expression separating patients according to different

phenotypic data, such as disease status (Figure 2A) and age (Figure 2B), and the output of the sta-

tistical tests. The color code for these analyses is: red = SARS-CoV-2 negative patients, and blue =

SARS-CoV-2 positive patients.

In order to evaluate the association between different parameters, such as gene expression and viral

load, we performed pairwise correlation analysis explained in the ‘‘Correlation Analysis’’ section. The

outcome is a scatter plot and the Spearman coefficient (rho) with the associated P-value for each

comparison. Figure 3A shows the pairwise correlation plots and statistics. Figure 3B shows the scat-

ter plot for the correlation between two genes and viral load as color-coded dots.

Finally, it is possible to visualize patient segregation by PCA using the selected genes (Bizzotto et al.,

2020) as independent variables (Figures 4A and 4B). 3D scatter plots can be done. These plots de-

pict gene expression and 95% confidence ellipsoids (Figure 4C).
QUANTIFICATION AND STATISTICAL ANALYSIS

Eligibility criteria, statistical tests and software used for this protocol are properly described in the

‘‘before you begin’’ and ‘‘step-by-step methods details’’ sections.
LIMITATIONS

This protocol relies on the accuracy of the clinical records submitted to the public repository by the

original authors. For some datasets, RNA-sequencing raw counts data may not be available, and

data could have been pre-processed by the original authors, thus limiting the decision making of

which sequence quality will comply with the own standards, usage of different alignment software

and algorithms, reference genome, etc. However, there are still some quality controls that might

be done. As we mentioned in (Bizzotto et al., 2020), we detected that some samples had 0 counts

for most genes (>70% genes), suggesting a very low quality RNA isolation and/or sequencing.

Therefore, we were able to remove them from the analysis. We strongly suggest performing all

possible quality controls before analyzing the data.
TROUBLESHOOTING

It is important that when working in R, and following this protocol, take into consideration the critical

statements and notes for each step provided in the method details.
Problem 1

When running a piece of code, the output is not the expected (i.e., error message in the console or

an unexpected feature in the plot).
Potential solution

For the proper execution of the piece of code, the syntax must be accurate, so it is important to

check whether there are no syntax mistakes, such as:

Forgotten comma.

Unclosed bracket, parenthesis, or quotes.

Misspelled function or filenames.
Problem 2

There is no count matrix available. The only accessible information are the FASTQ files thus requiring

additional processing (e.g., alignment to reference transcriptome) which is not described in the cur-

rent protocol.
16 STAR Protocols 2, 100478, June 18, 2021
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Potential solution

Since there are already publications explaining this matter further, we suggest visiting the manuals

which describe how to process and align sequencing data before performing expression analyses

using HISAT2 (Kim et al., 2019), TopHat2 (Kim et al., 2013), STAR (Dobin et al., 2013) and Salmon

(Patro et al., 2017).

Problem 3

The raw counts for a specific dataset are available as a separate file, but it is not clear for the user

whether they are raw counts or pre-processed data.

Potential solution

It is important to verify that the data represent raw counts. This can be checked by reading the GEO

submission description and the Methods section within the corresponding citation.

Problem 4

The phenotypic and count matrices do not contain the same list of samples.

Potential solution

It is important to verify that the phenotypic and counts matrices contain the same list of samples in

order to merge phenotypic and gene expression data. If not, discard incomplete samples. This can

be achieved using the following command, which creates a table only with the samples included in

both matrices:
common_names= intersect(rownames(clindata), colnames(raw_counts))

clindata = clindata[rownames(clindata) %in% common_names,]

raw_counts = raw_counts[,colnames(raw_counts) %in% common_names]
Problem 5

There is a great number of genes with 0 counts.
Potential solution

Samples considered to have low quality read sequencing should be removed from the analysis since

they may introduce noise to the results. The following code is an example of how this can be

achieved in RStudio when samples in the dataset have >70% genes with 0 counts:
#see how many genes per sample have 0 reads

zero <- colSums(norm_counts == 0)/nrow(norm_counts)

hist(zero, breaks = 50)

abline(v = 0.7, col="red")

summary(zero)

#select only those samples with less than 70% of genes with zero

good_samples <- zero <0.7

norm_counts <- norm_counts[,good_samples]
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Geraldine Gueron, ggueron@iquibicen.fcen.uba.ar.
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Materials availability

This study did not generate new unique reagents.

Data and code availability

The code generated during this study is available at GitHub repository accessible using the

following link: https://github.com/lab-inflamacionycancer/STAR-protocol-Sanchis.et.al.
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