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We study stationary black holes in the presence of an external strong magnetic field. In the case where
the gravitational backreaction of the magnetic field is taken into account, such an scenario is well described
by the Ernst-Wild solution to Einstein-Maxwell field equations, representing a charged, stationary black
hole immersed in a Melvin magnetic universe. This solution, however, describes a physical situation only in
the region close to the black hole. This is due to the following two reasons: First, Melvin spacetime is not
asymptotically locally flat; second, the nonstatic Ernst-Wild solution is not even asymptotically Melvin due
to the infinite extension of its ergoregion. All this might seem to be an obstruction to address an scenario
like this; for instance, it seems to be an obstruction to compute conserved charges as this usually requires a
clear notion of asymptotia. Here, we circumvent this obstruction by providing a method to compute the
conserved charges of such a black hole by restricting the analysis to the near horizon region. We compute
the Wald entropy, the mass, the electric charge, and the angular momentum of stationary black holes in
highly magnetized environments from the horizon perspective, finding results in complete agreement with
other formalisms.
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I. INTRODUCTION

Compact objects in strong magnetic fields are of great
importance in astrophysics. Scenarios such as supermassive
black holes in active galactic nuclei, or even at the center of
our galaxy [1] could be of that sort. One can also think of
other scenarios, such as binary systems involving a stellar
black hole and a magnetar [2,3]. In the latter case, for
example, the energy density of the magnetic field in close
proximity to the star would be enormous, exceeding in
many order of magnitudes the mass density of heavy
elements, and so yielding a non-negligible gravitational
backreaction. Here, we will study the case of black holes
placed in a region of very strong magnetic fields, including
the gravitational backreaction of the latter on the spacetime
geometry. Such a highly magnetized region of the space-
time may well be approximated by the Melvin solution to
Einstein equations [4], an axisymmetric geometry that
describes a universe filled with a stable bundle of magnetic
lines bounded by gravitational interaction [5,6]. In a Melvin
type spacetime one may consider to place a black hole
and to use such scenario to model how the magnetic field
affects the near horizon region. The solution describing a

stationary black hole in a Melvin universe is known
analytically; it has been given by Ernst and Wild in
[7,8]; see also [9,10]. The solution, however, describes a
physical situation as long as one focuses on the region close
to the black hole. This is due to the nonstandard asymp-
totics of the Melvin spacetime, which is not asymptotically
flat; in addition, as shown in [11], Ernst-Wild solution is
not strictly asymptotically Melvin due to the infinite
extension of its ergoregion. All this might seem to represent
an obstruction to address an scenario like this, as in
gravitational theories one frequently deals with computa-
tions that demand to have a clear notion of asymptotia, an
example being the standard methods to compute conserved
charges. This is precisely why the possibility of accom-
plishing a robust method to compute conserved charges
from the near horizon perspective becomes particularly
interesting [12]. Here, by extending the near horizon
symmetry methods developed in [12–14] to the case of
magnetized horizons,1 we will be able to explicitly derive
the relevant charges that describe the physics of charged,
stationary black holes in strong magnetic fields. The Wald
entropy, the angular momentum, and electric charges of the
Ernst-Wild black hole solution in Melvin universe will be
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1The near horizon limit of extremal and near-extremal black
holes in Melvin universe has been considered in the literature; see
for instance [15–17] and references therein and thereof. Here, in
contrast, we will not restrict the analysis to the set of extremal
configurations.
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obtained in a direct way. To do so, we will first show that
such a solution can be accommodated in the set of
asymptotic near horizon conditions introduced in [14]
for the Einstein-Maxwell theory, so yielding an infinite-
dimensional symmetry algebra in the vicinity of magnet-
ized horizons. Then, the black hole charges will be shown
to coincide with the Noether charges associated to such
symmetry.2

The paper is organized as follows: In Sec. II, we will
review the Ernst solution to Einstein equations [7], which
describe a black hole in a backreacting external magnetic
field. We will focus on the physical interpretation of the
spacetime geometry and comment the most important
aspects of the geometry. In Sec. III, as a first example,
we will show how such a solution can be studied with the
near horizon techniques developed in [12]. This will lead us
to generalize the results previously obtained in [13] and
[14] to the case where the conserved charges depend on the
backreacting external magnetic field. In Sec. IV, we will
extend the analysis to the case of electrically charged,
stationary black hole solutions immersed in a strong
external magnetic field. This shows that also this case
admits a near horizon description as the one in [12],
yielding supertranslations and superrotation charges. In
Sec. V, we will show that, while the zero-modes of the
supertranslation charges are shown to reproduce the Wald
entropy of the black holes, the superrotation charges at the
horizon will correctly reproduce the angular momentum
contribution of the electromagnetic field, manifestly exhib-
iting a Gauss phenomenon. Our computation of the Wald
entropy, the mass, the angular momentum, and electric
charge of the magnetized black hole is found to be in
complete agreement with the results obtained by other
methods and thus consistent with black hole thermody-
namics. In Sec. VI, we briefly discuss the case of
magnetically charged black holes in an external field.

II. BLACK HOLES IN A MAGNETIZED
ENVIRONMENT

Let us start by reviewing the Melvin solution to Einstein-
Maxwell equations, which describes an axisymmetric
universe filled with a magnetic field [4]. The metric of
such spacetime in polar coordinates is given by

ds2¼Λ2ðr;θÞð−dt2þdr2þr2dθ2ÞþΛ−2ðr;θÞr2 sin2θdϕ2

ð1Þ

with

Λðr; θÞ ¼ 1þ 1

4
B2
0r

2 sin2 θ; ð2Þ

where t ∈ R, r ∈ R≥0, ϕ ∈ ½0; 2π�, θ ¼ ½0; π�. It may be
useful to consider cylindrical coordinates ρ ¼ r sin θ,
z ¼ r cos θ. The magnetic field is given by

Hz ¼ Λ−2ðr; θÞB0; ð3Þ

with Hρ ¼ Hϕ ¼ Hθ ¼ 0. B0 is a constant that controls the
magnitude of the external magnetic field. This solution
can be thought of as a bundle of magnetic lines in the
z-direction that are bounded by gravitational interaction,
forming in such a way a stable configuration [5,6]. The
resulting spacetime exhibits isometry group ISOð1; 1Þ×
SOð2Þ, which correspond to the Poincaré group in the
(1þ 1)-dimensional constant-ϕ, constant-ρ slices, together
with rotations in ϕ. While the solution with B0 ¼ 0
corresponds to Minkowski spacetime, when B0 ≠ 0 the
geometry is not asymptotically flat; in fact, the squashing of
the constant-t, constant-r surfaces produced by the function
Λðr; θÞ increases at large distance, while it becomes
negligible when r ≪ B−1

0 .
By using a solution generating technique developed by

Harrison in [21], Ernst found in [7] a generalization to the
Melvin solution that come to describe a static black hole
immersed in an external magnetic field, cf. [9,10]. The
metric of the solution takes the form

ds2 ¼ Λ2ðr; θÞ
�
−fðrÞdt2 þ dr2

fðrÞ þ r2dθ2
�

þ Λ−2ðr; θÞr2 sin2 θdϕ2 ð4Þ

with

Λðr;θÞ¼1þ1

4
B2
0r

2 sin2θ; and fðrÞ¼1−
2M
r

; ð5Þ

while the nonvanishing components of the magnetic field
are given by

Hr ¼ Λ−2ðr; θÞB0 cos θ ð6Þ

Hθ ¼ −Λ−2ðr; θÞB0

�
1 −

2M
r

�
1=2

sin θ: ð7Þ

It is clear from these expressions that Ernst solution
becomes Melvin universe (1)–(3) when M ¼ 0, while it
reduces to the metric of a Schwarzschild black hole of mass
M when the external magnetic field vanishes, B0 ¼ 0 (here
we use natural units G ¼ c ¼ 1). The geometry with
B0 ≠ 0 ≠ M exhibits isometry group R × SOð2Þ generated
by the Killing vectors ∂t, ∂ϕ. The interpretation of the
metric is that of a Schwarzschild black hole in an
asymptotically Melvin universe. The location of the

2Conserved charges and thermodynamics of black holes in
Melvin universes have been studied with other methods; for
instance, in Refs. [11,18–20]. Our formalism, while qualitatively
different, leads to results that are consistent with those of previous
analysis.
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horizon of the black hole is rþ ¼ 2M, where the spacetime
is regular. The geometry is singular only at r ¼ 0, pro-
vided M ≠ 0.
Ernst solution (4)–(6) admits a stationary, charged

generalization [7,8], which is the one on which we will
focus in this work. It is worth mentioning already here that
the electrically charged solution, even when no intrinsic
rotation is present, happens to be nonstatic, but stationary.
This is due to the nonvanishing Poynting density of a
charged particle in an external magnetic field, which
produces an effective dragging in spacetime. This is related
to what happens when approaching a magnetic monopole
to a Reissner-Nordström black hole, cf. [22]. We will
discuss the electrically charged black hole case in Sec. IV.
Before that, in the next section, we will analyze the
symmetries emerging in the near horizon limit of magnet-
ized black holes (4)–(6).

III. NEAR HORIZON ASYMPTOTICS

To analyze the near horizon symmetries and the asso-
ciated conserved charges in Einstein-Maxwell theory, we
resort to the results of Ref. [14], which come to generalize
the near horizon analysis of [12,13] to the case of electri-
cally, magnetically charged solutions.3 In [14], the follow-
ing asymptotic conditions for the metric near the horizon
were considered

gvv ¼ −2κρþOðρ2Þ;
gvA ¼ θAðzBÞρþOðρ2Þ;
gAB ¼ ΩABðzCÞ þ λABðzCÞρþOðρ2Þ; ð8Þ

together with the gauge fixing condition

gρρ ¼ 0; gvρ ¼ 1; gAρ ¼ 0: ð9Þ

The horizon location is ρ ¼ 0, so that ρ ∈ R≥0 is the
coordinate that measures the distance from the horizon.
Power expansion in ρ thus controls the near horizon
asymptotic conditions, with OðρnÞ standing for orders that
damp off as fast as ∼ρn, or faster, as one approaches the
horizon. The spacetime metric is ds2 ¼ gμνdxμdxν (μ,
ν ¼ 0, 1, 2, 3), with x0 ¼ v, xA ¼ zA (A, B, C ¼ 1, 2),
and x3 ¼ ρ. Coordinate v ∈ R represents the null direction
at the horizonHþ ¼ Σ2 ×R, while zA (A ¼ 1, 2) represent
the angular variables on the constant-v surface Σ2.
In (8)–(9), functions κ, θA, ΩAB, λAB may in principle
depend on v and on zA. However, as κ represents the surface
gravity, it turns out to be constant for isolated horizons.
Integrability of the Noether charges, on the other hand,

demands θA and ΩAB not to depend on v; see [13]
for details.
The near horizon expansion of the electromagnetic field

A ¼ Aμdxμ, on the other hand, is given by

Av ¼ Að0Þ
v þ Að1Þ

v ðv; zAÞρþOðρ2Þ;
AB ¼ Að0Þ

B ðzAÞ þ Að1Þ
B ðv; zAÞρþOðρ2Þ; ð10Þ

together with the gauge fixing condition Aρ ¼ 0.
Now, let us consider the group of diffeomorphisms and

gauge transformations that preserve the above near horizon
form for the fields gμν and Aμ. These are generated by
the Killing vectors ξ ¼ ξμ∂μ and gauge functions ϵ such
that, after performing the changes gμν → gμν þ δgμν ¼
gμν þ Lξgμν, Aμ → Aμ þ δAμ ¼ Aμ þ LξAμ þ ∂μϵ, with
Lξ being the Lie derivative with respect to ξ, leave the
expansion in powers of ρ described above unchanged,
regardless whether or not the specific functions θA, ΩAB,

AðiÞ
v , AðiÞ

B have changed. The explicit form of ξμ and ϵ that
satisfy this can be found in [14], and it comprehends the
expansion

ξv¼TðzAÞþOðρÞ; ξρ¼OðρÞ; ξA¼YAðzBÞþOðρÞ;
ð11Þ

and

ϵ ¼ UðzAÞ − TðzAÞAð0Þ
v þOðρÞ; ð12Þ

where TðzAÞ, YAðzBÞ andUðzAÞ are four arbitrary functions
of the angular coordinates zA (say z1 ¼ z1ðθ;ϕÞ and
z2 ¼ z2ðθ;ϕÞ). These functions can be expanded in
Fourier modes as follows

Tðz; z̄Þ ¼
X
m;n

Tðm;nÞzmz̄n;

YzðzÞ ¼
X
n

Ynzn; Yz̄ðz̄Þ ¼
X
n

Ȳnz̄n;

Uðz; z̄Þ ¼
X
m;n

Uðm;nÞzmz̄n; ð13Þ

where z and z̄ are now complex variables, related to the
angular coordinates θ and φ in a way that depends on the
solution under consideration. In (13), m; n ∈ Z, and Tðm;nÞ,
Yn, Ȳn andUðm;nÞ can be regarded as Fourier modes. As the
diffeomorphisms and gauge transformations generated by
ξμ and ϵ involve arbitrary functions of the angles, they can
be shown to expand an infinite-dimensional algebra, which
consists of two copies of Witt algebra in semidirect sum
with two sets of Abelian currents. More precisely, Yn and
Ȳn generate Witt algebra and so they are called super-
rotations; while the two Abelian currents are generated by

3Infinite-dimensional near horizon symmetries have also been
studied in Refs. [23–31].
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Tðm;nÞ and Uðm;nÞ, and they are called supertranslations;
see [12–14,31].
The infinite-dimensional symmetries generated by ξμ

and ϵ lead to Noether charges which take the form

Q½T; YA; U� ¼ 1

16π

Z
d2z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gð0ÞAB

q h
−Tgð1Þvv − YAgð1ÞvA

− 4ðU þ YBAð0Þ
B ÞAð1Þ

v

i
; ð14Þ

where gðiÞμν stand for the ith term in the ρ expansion;

namely, gð0ÞAB ¼ ΩAB, gð1ÞAv ¼ θAðz; z̄Þ, gð1Þvv ¼ −2κ. This
expression for the charges follows from the Barnich-
Brandt formalism [32].
Now, having written down the explicit form for the

conserved charges associated to the infinite-dimensional
gauge symmetries described above, we are in condition to
evaluate them for the case in which we are interested: the
black hole in a magnetic external field. However, first we
have to actually show that Ernst solution (4)–(6) can be
accommodated in the asymptotic form (8)–(10) near the
horizon. To do so, let us consider the following change of
coordinates

v ¼ tþ
Z

dr0

fðr0Þ ; ρ ¼
Z

r

2M
Λðr0; θÞ2dr0; ð15Þ

and then expand in powers of ρ. We get

gvv ¼−∂rfðrÞjr¼2MρþOðρ2Þ
gvθ ¼−2∂θðlog jΛðr;θÞjjr¼2MÞρþOðρ2Þ
gθθ ¼ jΛðr;θÞj2jr¼2Mð2MÞ2þ ∂ρðr2jΛðr;θÞj2Þjρ¼0ρþOðρ2Þ
gφφ ¼ jΛðr;θÞj−2jr¼2Mð2MÞ2 sin2 θ

þ ∂ρðr2jΛðr;θÞj−2Þjρ¼0 sin
2 θρþOðρ2Þ

gvρ ¼ 1;

where, in particular, we see that κ ¼ 1
2
∂rfðrÞjr¼rþ ; namely,

the surface gravity is independent of B0. From this, we can

actually evaluate the charges (14). As gð1Þvϕ vanishes and gð1Þvθ

happens to be an even function of θ in the range ½0; π�, both
the integrals Q½YA ¼ 1� and Q½U ¼ 1� vanish. The charge
Q½T ¼ 1�, in contrast, gives a nonvanishing result; namely
Q½T ¼ 1� ¼ M=2, which can be written as

Q½T ¼ 1� ¼ κ

2π

4πr2þ
4

: ð16Þ

We notice from this that the Noether charge associated to
the zero-mode (T ¼ const:) of the supertranslation ξ ¼
Tðθ;ϕÞ∂v corresponds to the Wald entropy; more precisely,
it gives Q½T ¼ 1� ¼ THSBH, where TH ¼ κ=ð2πÞ is the

Hawking temperature of the black hole, and SBH ¼ A=4 is
the Bekenstein-Hawking entropy that fulfills the area law
(here, ℏ ¼ kB ¼ 1). This result generalizes those obtained
in [12–14] where stationary black holes in asymptotically
flat and asymptotically Anti-de Sitter spacetimes were
considered using a similar method. Here we have shown
that an analogous calculation based on the near horizon
expansion works for black hole solutions in presence of
backreacting external magnetic fields.
The computation of Noether charges at the horizon,

being those charges associated to near-horizon asymptotic
conditions, raises the question as to whether it makes sense
to consider the horizon surface as an actual boundary. In
fact, while black hole event horizons can well be taken as a
boundary of certain spacetime region, it is also true that
they are not strictly a boundary to all dynamical observers.
Still, one knows that somehow horizon charges do make
sense; after all, Wald entropy is an example of them.
Understanding this issue requires to be aware of the fact
that the physical meaning of a horizon charge—say the
Wald entropy—has to be referred to special observers—
resp. external observers. Besides, it is usually the case that a
kind of Gauss phenomenon take place and one can also
compute other conserved charges from the horizon per-
spective that happen to agree with the charges computed at
infinity with, for instance, the ADM type methods. Such is
the case of the angular momentum of stationary black
holes, which, as shown in [12], is associated to the zero-
mode of horizon superrotations. Here, in particular, we are
interested in charged black hole solutions immersed in an
external magnetic field, which, as mentioned before,
acquire a nonvanishing dragging due to the interplay
between the electric charge and the external field, and so
they turn out to be stationary. We will see below that this
leads to a new phenomenon from the horizon perspective,
as the nonvanishing Poynting density provides a nonzero
(super)rotation charge even in absence of intrinsic spin of
the black hole. The superrotation charges computation for
these nonstatic solutions will yield consistent results.

IV. CHARGED, STATIONARY BLACK HOLES

Let us consider charged, stationary black holes in an
external magnetic field. By applying the Harrison method
with the Reissner-Nordström solution as a seed, Ernst was
also able to obtain an exact solution to Einstein-Maxwell
equations that describe such a black hole in Melvin
universe4 [7]. The spacetime metric reads

4While uncharged, stationary Ernst solution is asymptotically
Melvin, the stationary version of such black hole is not strictly
asymptotically Melvin as the ergoregion extends to infinity;
see [11].

BRENNER, GIRIBET, and MONTECCHIO PHYS. REV. D 103, 124006 (2021)

124006-4



ds2 ¼ jΛðr; θÞj2
�
−fðrÞdt2 þ dr2

fðrÞ þ r2dθ2
�

þ jΛðr; θÞj−2r2 sin2 θðdϕ − ωðr; θÞdtÞ2 ð17Þ

where

Λðr;θÞ¼1þ1

4
B2
0ðr2sin2θþq2cos2θÞ−iB0qcosθ;

fðrÞ¼1−
2M
r

þq2

r2

ωðr;θÞ¼B0q

�
−
�
2

r
−

2

rþ

�
þB2

0

2
ðr−rþþrfðrÞcos2θÞ

�
þω0;

where ω0 is a constant that can be absorbed by a local
boost, and where rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

p
is the external

horizon of the charged black hole. This solution reduces to
the Reissner-Nordström solution with mass M and electric
charge q in the case B0 ¼ 0, while it agrees with the Ernst
solution (4) in the uncharged case q ¼ 0. Notice that the
function Λðr; θÞ now is nonreal, with its imaginary part
gathering the interplay between the electric and magnetic
components of the solution; Λðr; θÞ becomes real when the
product qB0 vanishes. The nonvanishing components of the
electromagnetic field are given by

Aϕðr; θÞ ¼
1

B0

�
1þ

�
ReðΛðr; θÞÞ
jΛðr; θÞj

��
ReðΛðr; θÞÞ − 2

jΛðr; θÞj
��

;

Atðr; θÞ ¼
2q
r
þ 3ωðr; θÞ

2B0

− Aϕðr; θÞωðr; θÞ;

where ReðΛÞ stands for the real part of Λ, so that the
associated electric and magnetic fields are

Hr þ iEr ¼ Λ−2ðr; θÞ
�
i
q
r2

ð2 − ReðΛðr; θÞÞÞ

þ B0

�
1 −

1

2
iB0q cos θ

��
1 −

q2

r2

�
cos θ

�
;

Hθ þ iEθ ¼ −B0Λ−2ðr; θÞ
�
1 −

1

2
iB0q cos θ

�
f1=2ðrÞ sin θ:

This way of writing the electric and magnetic components
of the field strength as the real and imaginary parts of
complex functions is standard in the solution generating
methods employed in [7], cf. [8].
We see in the spacetime metric above that an off-

diagonal term gϕt appears as a result of the interplay
between the electric and the magnetic fields. Such term
represents a differential rotation of the spacetime, which is
controlled by the function ωðr; θÞ. The latter obviously
vanishes when either B0 or q is zero. However, this is not
the only new effect relative to (4)–(6) that appears when

qB0 ≠ 0. Another interesting feature is a conical singularity
that would appear at the poles θ ¼ 0; π unless one demands
ϕ to take a specific periodicity condition that depends on q
and B0. To see this explicitly, let us consider the induced
metric on the constant-t, constant-r 2-dimensional space;
namely

ds22 ¼ jΛðr; θÞj2
�
r2dθ2 þ r2 sin2 θdϕ2

jΛðr; θÞj2
�
;

from what we see that the constant-θ circumferences
take the values 2πjΛðr; θÞj−2r sin θ. Since the function
jΛðr; θÞj does not depend on r at the poles, namely
∂rΛðr; θÞjθ¼π

2
�π

2
¼ 0, and jΛðr; θ ¼ 0Þj ¼ jΛðr; θ ¼ πÞj,

then we can define the constant jΛ0j≡ jΛðr; θ ¼ 0Þj and
demand ϕ to be periodic and to take values in the range
ϕ ∈ ½0; 2πjΛ0j2�; notice that jΛ0j ¼ 1 when qB0 ¼ 0. With
this, the solution becomes smooth at the poles. Notice that
it is important to take into account the q-dependent
periodicity of the angular coordinate ϕ when computing
the conserved charges, as such computation involves
integrating on constant-v, constant-r surfaces. This detail
will be important in the calculation below.
In order to compute the horizon charges, we may first

have to write the geometry (17) in its near horizon form
(8)–(10). To do so, we can consider a change of coordinates
of the form

dv ¼ dtþ dr
fðrÞ ;

dφ ¼ dϕþ ωðr; θÞ
fðrÞ drþ hðr; θÞdθ;

dρ ¼ jΛðr; θÞj2drþ gðr; θÞdθ;

with hðr; θÞ and gðr; θÞ being two specific functions that
vanish at the horizon rþ; namely

hðr; θÞ ¼
Z

r

rþ
f−1ðr0Þ∂θωðr0; θÞdr0;

gðr; θÞ ¼
Z

r

rþ
∂θjΛðr0; θÞj2dr0:

Integrating this conditions, we get

v ¼ tþ
Z

dr0

fðr0Þ ;

φ ¼ ϕþ
Z

r

rþ

ωðr0; θÞ
fðr0Þ dr0;

ρ ¼
Z

r

rþ
jΛðr0; θÞj2dr0:

With this, metric (17) takes the near horizon form
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gvv ¼ −∂rfðrÞjr¼rþρþOðρ2Þ;
gvθ ¼ −2∂θðlog jΛðr; θÞjÞjr¼rþρþOðρ2Þ;
gvφ ¼ −jΛþðθÞj−4r2þ sin2 θ∂θωðr; θÞjr¼rþρþOðρ2Þ;
gθθ ¼ jΛþðθÞj2r2þ þ ∂ρðjΛðr; θÞj2r2Þjρ¼0ρþOðρ2Þ;
gφφ ¼ jΛþðθÞj−2r2þ sin2 θ

þ ∂ρðjΛðr; θÞj−2r2Þjρ¼0 sin
2 θρþOðρ2Þ;

gθφ ¼ jΛþðθÞj−4rþqB3
0 sin

3 θ cos θρþOðρ2Þ;
gvρ ¼ 1;

where ΛþðθÞ≡ Λðr ¼ rþ; θÞ; the other components van-
ish, namely gρρ ¼ gρA ¼ 0. The transformed expression for
the electromagnetic field reads

A ¼ Atd̃v −
1

fðrÞ ðAt þ ωðr; θÞAϕÞd̃r

þ Aϕd̃φ − Aϕhðr; θÞd̃θ: ð18Þ

In addition, it is also necessary to ensure the gauge fixing
condition Aρ ¼ 0, which is achieved by performing a gauge
transformation

A → Ã ¼ Aþ d̃ζ; with

ζðθ; rÞ ¼
Z

r

rþ
f−1ðr0ÞðAt þ ωðr0; θÞAϕÞdr0: ð19Þ

This yields ∂θζ ¼ 3
8
B2
0qðr2 − r2þÞ sin 2θ, and finally the

electromagnetic field takes the form

Ã ¼ Atd̃vþ Aϕd̃φ − ½Aϕhðr; θÞ − ∂θζðθ; rÞ�d̃θ; ð20Þ

which in the near horizon yields the following components

Að0Þ
θ ¼ 0;

Að0Þ
φ ¼ Aϕðr ¼ rþÞ;

Að1Þ
v ¼ jΛþðθÞj−2

�
q
r2þ

þ 3B2
0q
4

ð1þ rþ∂rfðrÞjr¼rþcos
2θÞ

− ∂θωðr; θÞjr¼rþA
ð0Þ
φ

�
:

What we have shown here is that the stationary, charged
Ernst solution, describing a Reissner-Nordström in asymp-
totically Melvin magnetic universe, can be accommodated
in the near horizon form of Einstein-Maxwell solutions
studied in reference [14]. This implies that the Noether
charges (14) turn out to be finite and integrable for such a
spacetime, and they can be explicitly computed from the
horizon viewpoint. We do this in the following section.

V. HORIZON CHARGES FOR MAGNETIZED
BLACK HOLES

Taking into account the periodicity of φ and the

determinant det gð0ÞAB ¼ r4þ sin2 θ, we evaluate the charges
(14) and get the final result

Q½T ¼ 1� ¼ 1

2

�
1þ 3

2
B2
0q

2 þ 1

16
B4
0q

4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

q
; ð21Þ

Q½YA ¼ 1� ¼ B0q3

2

ð1 − q2B2
0 − 1

16
q4B4

0Þ
ð1þ 3

2
q2B2

0 þ 1
16
q4B4

0Þ
δAφ; ð22Þ

Q½U ¼ 1� ¼ q

�
1 −

B2
0q

2

4

�
: ð23Þ

We see from here that, unlike the solution (4), which
had only nonvanishing Wald charge Q½T ¼ 1�, solution
(17) exhibits nonvanishing zero-modes for both super-
translations and superrotations, all of them being
B0- and q-dependent. In particular, charge (21) gives

Q½T ¼ 1� ¼ jΛ0j2
rþ − r−

4
¼ κ

2π

A
4

ð24Þ

where one has to notice that the factor jΛ0j2 is precisely the
one needed to correctly reproduce the horizon areaA due to
the B0- and q-dependence in the periodicity of φ. In other
words, the dependence on the external magnetic field and
on the black hole charge combine in the precise form for the
supertranslation charge to reproduce

Q½T ¼ 1� ¼ THSBH; ð25Þ

now for stationary, charged black holes. This seems
consistent with the following result for the mass [19]

Ē ¼ M

�
1þ 3

2
B2
0q

2 þ 1

16
B4
0q

4

�
; ð26Þ

which follows from the Komar integral. In [19], the authors
discuss (26) in the context of black hole mechanics,
considering different thermodynamical ensembles, includ-
ing the one in which B0 is permitted to vary adiabatically.
However, the impossibility of deriving the energy expres-
sion (26) as an integrable conserved charge was observed in
[20], where the following result for the mass was obtained

E ¼ M
�
1þ 3

2
B2
0q

2 −
1

M2
B2
0q

4 þ 1

16
B4
0q

4

�
1=2

; ð27Þ

yielding Ē − E ¼ OðMB0q2; B0q4=MÞ. Expression (27)
turns out to be integrable, it reduces to the mass of vacuum
Einstein equations when B0 ¼ 0, and it fulfills the
Christodoulou-Ruffini relation between the black hole
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mass and the entropy. In fact, result (27) is totally
consistent with black hole thermodynamics, leading to
sensible chemical potentials. Following from an inte-
grable expression of a covariant method, expression (27)
seems to be the correct result of the Ernst-Wild black hole
mass. Since in our near-horizon approach we directly
have access to the value THSBH, rather than the mass, and
given that the values for TH and SBH are consistent with
those in the literature, our computation turns out to be
consistent with (27).
Probably the most remarkable result is the superrotation

charge (22), which is nonzero despite the black hole not
having intrinsic spin. As anticipated, this nonvanishing
result is due to the Poynting density that solution (17)
exhibits. This induces a dragging effect in the spacetime,
breaking staticity. The result (22) agrees with the one
computed in the literature [11], here having computed it
from the near horizon perspective, showing the Gauss
phenomenon to hold for this type of solution. The super-
rotation charge can also be written as follows

Q½Yθ ¼ 1� ¼ 0;

Q½Yφ ¼ 1� ¼ jΛ0j−2
B0q3

2

�
1 − q2B2

0 −
1

16
q4B4

0

�
; ð28Þ

Adding intrinsic spin to the solution [8] would make the
superrotation charge Q½Yφ� to acquire extra dependence on
the Kerr parameter a ¼ J=M. Kerr black holes were studied
from the near horizon perspective in [12]. Notice, however,
that the rotation chargeQ½Yφ ¼ 1� in (30) is associated to the
vector ξ ¼ Yφ∂φ ¼ ∂φ, with φ being the angular coordinate
with periodicity 2πjΛ0j2, related to the qB0-dependent
angular deficit at the poles. Therefore, the charge that
represents the angular momentum would rather be the
one defined with respect to the vector ξ ¼ ∂φ=jΛ0j2, namely
Q½Yφ ¼ jΛ0j2�, which amounts to multiply (22) by a factor
jΛ0j2. This yields the simpler expression Q½Yφ ¼ jΛ0j2� ¼
1
2
B0q3ð1 − B2

0q
2 − 1

16
B4
0q

4Þ. Next, we have to be aware of
the fact that the result for the angular momentum J is not
invariant under a residual gauge symmetry that the solution
exhibits. For example, there exists an ambiguity in the

definition of Að0Þ
φ ; this is explained in detail, for instance, in

Sec. Vof [19] and in references thereof. Therefore, in order
to compare the result of J with the one obtained in the
literature, we have to be sure we are considering the same
gauge. If, with the authors of [19], we choose a gauge
A → Ã ¼ Aþ cd̃φ with cðq; B0Þ a constant given by
cðp;B0Þ ¼ −Aϕðrþ; θ ¼ 0Þ ¼ −Aϕðrþ; θ ¼ πÞ, which
makes the angular components of Aμ to vanish at the poles,
the angular charge is

Q̃½Yφ ¼ jΛ0j2� ¼ −q3B0ReðΛ0Þ; ð29Þ

that is,

J ¼ −q3B0

�
1þ 1

4
q2B2

0

�
; ð30Þ

which agrees with the result obtained in the literature by
other methods, cf. [20]. Together with the other charges
computed above, it is consistent with the Smarr formula [20]
and with the first principle of black hole mechanics [19]. The
value of J ¼ Q̃½Yφ�, of course, flips its sign under
qB0 → −qB0. It is remarkable that the rotation charge
exhibits a nonvanishing angular momentum despite the
black hole has no intrinsic spin parameter (a ¼ 0). This
is due to the interplay between the external magnetic field
and the black hole electric charge, and it is consistent with
what we know about charged black holes in front of a
magnetic monopole probe. When adiabatically approaching
a monopole to a Reissner-Nordström black hole [33], the
latter starts to acquire angular momentum [22]. The result
above can be seen as a realization of such phenomenon in a
backreacting scenario.
Last, charge (23) corresponds to the effective electric

charge at the horizon; consistently, it reduces to Q½U ¼
1� ≃ q in the small B0 limits. Again, this result, obtained
here from the near horizon computation, agrees with the
results obtained by other methods, cf. [11]. It exhibits
very interesting features, the most salient one being the
critical value of the magnetic field, B0 ¼ �2q−1, such that
the charge vanishes despite q ≠ 0. Moreover, Q½U ¼ 1�
can even change its sign relative to q and acquire an
arbitrary large absolute value, provided B0 increases
sufficiently. The implications of this phenomenon are
interesting. For example, we can consider the so-called
black hole Meissner effect, namely the expulsion of the
external magnetic field by a black hole when extremality
is approached [17,34]. This is reminiscent of the effect
exhibited in superconductors, therefore the name. We can
verify that the results obtained above for the conserved
charges can be considered to study the black hole
Meissner effect in a working example5 discussed in
[19]. In relation to the Meissner effect, it is worth
mentioning reference [15], which to the best of our
knowledge is the first article in which the map between
the magnetized and the nonmagnetized black hole at zero
temperature is studied.

5The simplest way to see the Meissner effect would be
resorting to the working example discussed in Sec. VII B of
[19]: First, one asks the effective electric charge Q½U ¼ 1� to
vanish (that is, tuning B0 ¼ 2q−1) and, then, one demands the
extremality condition Q½T ¼ 1� ¼ 0 (namely M ¼ �q). After
doing this, one finds that the flux of the magnetic field,

R
Σ2
B ¼ 0,

through the horizon Hþ ¼ Σ2 ×Rv vanishes. This realizes the
black hole Meissner effect.
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VI. GRAVITATING MONOPOLES IN EXTERNAL
MAGNETIC FIELD

As a last example, let us consider a magnetically charged
black hole in the external magnetic field. This is described
by the metric

ds2 ¼ Λ2ðr; θÞ
�
−fðrÞdt2 þ dr2

fðrÞ þ r2dθ2
�

þ r2 sin2ðθÞ
Λ2ðr; θÞ dϕ2 ð31Þ

with

Λðr; θÞ ¼ 1þ B2
0

4
ðr2sin2θ þ p2cos2θÞ − B0p cos θ;

fðrÞ ¼ 1 −
2M
r

þ p2

r2
ð32Þ

where p is the magnetic charge of the black hole. The
angular coordinate ϕ is periodic and now takes values in the
range ½−Cπ; Cπ�withC a constant. In the limits B0 ¼ 0 and
p ¼ 0 this metric reduces to that of the Reissner-Nordström
and the uncharged Ernst black hole, respectively. The
horizons are located at r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

p
, and the

solution is singular at r ¼ 0. The electromagnetic potential
in this case is given by

A ¼ −p cos θ þ B0

2
ðr2 sin2 θ þ p2 cos2 θÞ
Λðr; θÞ dϕ ð33Þ

which tends to the Dirac monopole solution when B0 is
sufficiently small.
Parameter C, which defines the periodicity in ϕ, is

determined by requiring the solution to be smooth at

one of the poles, say at θ ¼ 0. This amounts to choose
C ¼ Λ2ðθ ¼ 0Þ ¼ 1þ B2

0pðp − B0Þ=4.—If one instead
decided to make the solution smooth at θ ¼ π then C
should have taken the value C ¼ Λ2ðθ ¼ πÞ ¼
1þ B2

0pðpþ B0Þ=4.—It is impossible to make both poles
θ ¼ 0 and θ ¼ π smooth at the same time, and this has a
clear physical interpretation: Representing a magnetic
charge in an external magnetic field, solution (31) needs
the presence of a cosmic string that provides the tension for
keeping the black hole at rest. Such cosmic string is
precisely the conical defect pinching the horizon at one
of the poles and extending to infinity. Notice that this is
consistent with the fact that Λ2ðθ ¼ 0Þ and Λ2ðθ ¼ πÞ get
interchanged under p;B0 → −p;B0 or p;B0 → p;−B0,
while both Λ2ðθ ¼ π=2� π=2Þ remain unchanged under
p;B0 → −p;−B0. This string is similar to the one appear-
ing in the C-metric, with the difference being that here the
string provides the black hole with the tension that
cancels the acceleration that otherwise it would take
due to the magnetic force imposed by the external field.
By performing the near horizon analysis on metric (31),
one finds that also in this magnetically charged case the
zero-mode of the supertranslation charge reproduces the
Wald entropy formulaQ½T ¼ 1� ¼ THSBH, once one takes
into account the correct ϕ-periodicity. The near horizon
analysis of the C-metric type solutions has recently been
performed in [35].
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