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Abstract Interplanetary coronal mass ejections (ICMEs) are the manifestation of solar transient eruptions,
which can significantly modify the plasma and magnetic conditions in the heliosphere. They are often
preceded by a shock, and a magnetic flux rope is detected in situ in a third to half of them. The main aim
of this study is to obtain the best quantitative shape for the flux rope axis and for the shock surface from in
situ data obtained during spacecraft crossings of these structures. We first compare the orientation of the
flux rope axes and shock normals obtained from independent data analyses of the same events, observed in
situ at 1 AU from the Sun. Then we carry out an original statistical analysis of axes/shock normals by deriving
the statistical distributions of their orientations. We fit the observed distributions using the distributions
derived from several synthetic models describing these shapes. We show that the distributions of axis/shock
orientations are very sensitive to their respective shape. One classical model, used to analyze interplanetary
imager data, is incompatible with the in situ data. Two other models are introduced, for which the results
for axis and shock normals lead to very similar shapes; the fact that the data for MCs and shocks are
independent strengthens this result. The model which best fits all the data sets has an ellipsoidal shape with
similar aspect ratio values for all the data sets. These derived shapes for the flux rope axis and shock surface
have several potential applications. First, these shapes can be used to construct a consistent ICME model.
Second, these generic shapes can be used to develop a quantitative model to analyze imager data, as well
as constraining the output of numerical simulations of ICMEs. Finally, they will have implications for space
weather forecasting, in particular, for forecasting the time arrival of ICMEs at the Earth.

1. Introduction
Interplanetary coronal mass ejections (ICMEs) are the interplanetary manifestations of coronal mass ejections
(CMEs) and are identified by a number of typical properties that differ from those of the ambient solar wind
[e.g., Gosling, 1990, 2000; Neugebauer and Goldstein, 1997; Wimmer-Schweingruber et al., 2006; Zurbuchen and
Richardson, 2006; Rouillard, 2011]. A region of compressed plasma and magnetic field, called the sheath, is
typically present at the front of ICMEs. When the leading front is faster than the ambient solar wind (above
the local fast MHD mode speed), an ICME is preceded by a shock.

An ICME can be distinguished from the ambient solar wind by analyzing both remote and in situ observa-
tions, with remote observations being the privileged method to give hints on their 3-D shape. Nonetheless,
coronagraphs and heliospheric imagers still only provide 2-D images of the denser parts of CMEs through
the Thomson scattering of white light by free electrons [Howard, 2011; Thernisien et al., 2011]. Furthermore,
since the location of the scattered light cannot unambiguously be determined along the line of sight, a shape
model is typically needed to analyze the observations.

Classical shape models are pointlike or are represented by a sphere surrounding or attached to the Sun [Lugaz
et al., 2010, and references therein]. These models allow the estimation of the propagation direction and the
speed of ICMEs, especially when triangulation with different spacecraft is possible [Liu et al., 2013]. More elab-
orated analytical models have been proposed such as a dense shell located around a flux-rope-like shape
[Thernisien et al., 2006], parametric models of sheath shapes [Tappin and Howard, 2009; Howard and Tappin,
2010], and another parametric shape applied to both sheaths and flux ropes was proposed by Wood and
Howard [2009]. All these models were fitted visually to CMEs observed with coronagraphs and/or heliospheric
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imagers. However, it remains difficult to quantify the quality of the fit for each of these models and to confirm
whether the derived shape is indeed representative of the CME 3-D shape (e.g., multiple solutions are possible
for a given set of CME observations). Finally, while other techniques have been tested, as reviewed by Mierla
et al. [2010], present multispacecraft remote observations cannot uniquely determine the 3-D shape of the
bright front, even when they can be tracked and be unambiguously connected to the CME source [Harrison
et al., 2008; Möstl et al., 2009; Lugaz and Roussev, 2011].

Magnetic Clouds (MCs) can be distinguished inside a fraction of ICMEs, when they are observed in situ. An
MC is identified as a structure presenting an enhanced magnetic field intensity, a large scale and coherent
magnetic field rotation (associated with the passage of a large-scale flux rope, FR), and low proton tempera-
tures [e.g., Burlaga et al., 1981; Dasso et al., 2005]. Theoretical models describing the global shape of MCs in the
heliosphere have been developed and compared with single spacecraft in situ observations [e.g., Marubashi
and Lepping, 2007; Hidalgo and Nieves-Chinchilla, 2012]. However, reconstructing the 3-D global FR shape
from in situ measurements is an ill-posed problem, as there is no unique solution. Moreover, the models fre-
quently contain many free parameters, so that minimizing the difference between observations and models
can sometimes provide several compatible solutions.

Simultaneous multispacecraft observations of a given event can provide a better understanding of the global
shape of MCs. Some studies have shown that the directions of the local axis of a given MC, at well-separated
locations from different spacecraft, are consistent with a smooth global axis of the cloud in the heliosphere
(see, e.g., Burlaga et al. [1981] and Figure 2 in Ruffenach et al. [2012]) but this is not always the case (e.g., Farrugia
et al. [2011]). However, this kind of simultaneous observations of the same event is not frequent.

Numerical simulations have also been used to better understand the propagation and evolution of MCs in the
solar wind [e.g., Riley et al., 2003; Manchester et al., 2004; Lugaz and Roussev, 2011]. There are, however, limita-
tions for emulating some physical processes, such as magnetic reconnection, the effects of the turbulence on
macroscopic structures such as the drag [e.g., Matthaeus and Velli, 2011], or the dynamical evolution of struc-
tures strongly dominated by the magnetic field (such as magnetic clouds). Some ICME propagation properties
can be found by combining observations with simulations [e.g., Lugaz et al., 2009; Lugaz and Roussev, 2011].

Recently, Janvier et al. [2013] analyzed the distribution of MC local orientation from a sample of more than
100 events observed at 1 AU by Wind and derived the mean shape of the MC axis with an original statistical
method. A comparable technique was also used for deriving the shock surface driven by ICMEs from observa-
tions of the shock normal in a sample of more than 250 events observed at 1 AU by the ACE spacecraft [Janvier
et al., 2014a].

In this paper, we apply, extend, and combine the techniques previously used [Janvier et al., 2013, 2014a],
with the aim of determining the generic shape of the MC axis and the shock surface, combining different
samples/databases for MCs and shocks. In section 2, we present the samples of MCs and shocks we use in
this statistical study and provide a comparison of the results given for the same events analyzed by different
authors. We also define the angles used to determine the orientation of the MC axis and normal to the shock
surface. In section 3, we first set the techniques to derive the axis and shock shapes with the same formalism.
Then, we apply them to various data sets and we compare these results to three analytical models. We find
that one of the models is the closest to all the observations analyzed, and we test the robustness of our results.
Then we summarize our main results in section 4 and outline the implications of our results in section 5.

2. Samples of Observed MCs and Shocks and Definition of the Shape Parameters
2.1. Sets of Observed MCs, Similarities, and Differences
In the present study, we use three lists of MCs where the FR parameters are already determined by a common
method, namely, the data were fitted with the static, linear force-free cylindrical model, also known as the
Lundquist’s model [see, e.g., Lundquist, 1950; Goldstein, 1983; Lepping et al., 1990]. A detailed description of
the model and its limitations can be found in Lepping et al. [1990, 2003] and more information on the fitting
methods used can be found in Lynch et al. [2003] and Feng et al. [2007].

Lynch et al. [2005] analyzed 132 MCs observed nearby Earth by Wind and ACE spacecraft during the period
1995–2003. Feng et al. [2010] analyzed 62 MCs preceded by a shock and observed by Wind during the
period 1995–2007. Finally, we use an extended list of events (Table 2 at http://wind.nasa.gov/mfi/mag_
cloud_S1.html) which is based on the results of Lepping and Wu [2010] and includes more recent MCs. This list
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contains the parameters obtained for 121 MCs observed by Wind spacecraft during the period 1995–2009. We
remove from Lepping and Wu [2010]’s list the MCs that were crossed too close from their boundaries, limiting
the list to 107 MCs (for coherence with previous study, see Janvier et al. [2013]).

The above fitting method has several limitations. For example, due to its simplicity, the model does not take
into account the expansion of MCs, although this could affect the fitted model parameters and the derived
quantities [e.g., see Nakwacki et al., 2008, Tables 3 and 4]. Another important limitation is the assumed circu-
lar cross section, and as such several noncircular models have been proposed [e.g., Hu and Sonnerup, 2002;
Vandas et al., 2005; Hidalgo, 2003]. From a statistical study of the closest approach of the spacecraft from the
MC axis, using the Lepping and Wu [2010]’s list, Démoulin et al. [2013] showed that the MC cross section is flat-
ter in the radial direction (from the Sun) by a third to a half on average. Indeed, some MCs have a relatively
flattened cross section [Vandas et al., 2005; Antoniadou et al., 2008; Farrugia et al., 2011], while others have a
more round cross section, especially at their cores [Hu and Dasgupta, 2005; Liu et al., 2008; Möstl et al., 2009;
Isavnin et al., 2011]. The effects of a noncircular cross section on the derived properties of MCs (e.g., their axis
direction) remain to be characterized for large sets of MCs. So far such lists are only available for the fit with
the Lundquist model, so with a circular cross section.

While the three MC lists used in the present study [Lynch et al., 2005; Feng et al., 2010; Lepping and Wu, 2010]
are based on the same fitting method to determine the FR parameters, the fit has been applied in different
ways to the various MC samples. For example, Lynch et al. [2005] imposed that the spacecraft closest approach
to the FR axis is the temporal midpoint of the FR, so that the FR radius is not a parameter of the fit (in contrast
with other authors) but is instead determined from the FR properties: orientation, mean velocity, and impact
parameter (defined as the closest distance approach of the spacecraft to the FR axis divided by the FR radius).
Among the differences in the method implementation, the difference in the FR boundary selection is, in our
opinion, the most important, as it could have large implications on the derived FR orientation [e.g., Dasso et al.,
2006; Ruffenach et al., 2012]. The boundaries are typically set where abrupt changes of the magnetic field and
plasma parameters are detected [e.g., Dasso et al., 2007]. However, if such changes are not colocated, then
different criteria can provide different boundary locations. As such, it often occurs that one MC can be defined
with different boundary locations depending on the authors [e.g., Riley et al., 2004; Al-Haddad et al., 2013].

An important physical process during the evolution of MCs in the solar wind to be considered and which
strongly affects the determination of their boundaries is their erosion as they travel away from the Sun. As the
magnetic field of MCs can reconnect with that of the ambient solar wind, a part of the original FR disappears,
so that a case-dependent fraction of an MC can have a mixture of both MC and solar wind properties. This
leads to large uncertainties when an FR is actually identified. Thus, a detailed analysis of each MC is needed to
determine which remaining region of the FR is crossed by the spacecraft, and the fit should only be applied
to this specific part of the MC. As an example, minimum variance and Lundquist’s fit can result in significantly
different orientations, without coherence along the axis of an MC observed by four spacecraft (ACE, STEREO A
and B, and Wind) [Farrugia et al., 2011], while both methods give consistent results when refined time intervals
(e.g., considering an eroded FR) are used [Ruffenach et al., 2012].

2.2. Sets of Observed Shocks
In the present paper, we study the probability distributions of shock orientation parameters from different
samples. We use lists of shocks studied in Feng et al. [2010] and Wang et al. [2010]. The shocks of Feng et al.
[2010] were observed by Wind spacecraft during the period 1995–2007 and were all located at the front of
an MC sheath. The list contains 62 shocks. Shock and shock-like events from Wang et al. [2010] were observed
by ACE spacecraft during the period 1998–2008. They were investigated with the purpose of analyzing their
effects on the Earth magnetosphere and ionosphere. In the following, we only retain the well-defined shock
events, which represent a total of 216 cases (117 shocks in front of ICMEs and 99 shocks with no detected
ICMEs behind).

Both of these shock studies are based on a shock fitting procedure using the MHD Rankine-Hugoniot rela-
tions as developed by Lin et al. [2006]. The model used to determine the geometry of the shock is based on
the one-fluid anisotropic Rankine-Hugoniot relations. A Monte Carlo calculation and a minimization tech-
nique between the generated models and observations were also similarly used. However, while the basic
technique is the same in both studies, there are variations affecting the computed shock parameters. First,
the data are from two different spacecraft, involving different measurements with their own specificities.
Second, the results depend on the selected time intervals, both for the upstream and downstream regions
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Figure 1. Diagram of an MC and associated parameters: (a) perspective view, (b) side view. The MC axis is drawn in blue,
its borders in black and one representative magnetic field line is added. The inclination angle, i, is defined by the angle
made by the axis direction projected on the y-z plane with the y direction (in GSE coordinates). The maximum angular
extension of the MC axis, as viewed from the Sun, is 𝜑max, axis while the shock extends up to 𝜑max, shock. The location
angle 𝜆 is defined by the angle between the radial direction from the Sun and the normal to the MC axis or the shock.

of the shocks, which are used to select the magnetic field and plasma parameters used in the minimisation
technique. Finally, the results also depend on the terms included in the Rankine-Hugoniot relations (see the
two methods studied in Lin et al. [2006]). As a consequence, differences between the results of both studies
have to be expected when the same shock is analyzed. We analyze these differences in section 2.4.

2.3. Angles Defining the MC Axis and Shock Normal
The directions of the FR local axis and the shock normal are obtained from the fitting and minimization pro-
cedures for both MCs and shocks, respectively. For in situ observations at 1 AU, i.e., nearby Earth, unit vectors
used to express directions are classically defined in the GSE system of reference. Setting a spherical coor-
dinate system with a south-north polar axis, the orientation vector is classically defined by its latitude and
longitude. However, the polar axis direction is singular, as it corresponds to any values of longitude. There-
fore, as the absolute value of the latitude becomes larger, any small change in the vector orientation leads
to a large uncertainty in the longitude determination. This is a problem when characterizing the orientation
of the axis of an MC, which may be highly inclined to the ecliptic. However, MC axes are found to rarely lie
in the radial direction. Thus, Janvier et al. [2013] introduced a new spherical coordinate system, with a polar
axis along the Sun-Earth direction (along −x̂GSE). Projecting the unit vector on a plane perpendicular to x̂GSE,
they introduced the inclination angle i on the ecliptic. It is measured from the west-east direction (ŷGSE) in a
clockwise direction (when looking toward the Sun, see Figure 1a). A second angle was defined as the location
angle 𝜆, which measures the angle between the FR axis direction and the orthoradial. Equivalently, 𝜆 is also
the angle between the radial direction and the normal to the FR axis (n̂axis located within the plane i = con-
stant, Figure 1b). Then, for both cases (shock normal and MC axis), 𝜆 is defined in the same way, as the angle
between -x̂GSE and n̂ (n̂shock or n̂axis) and both 𝜆axis and 𝜆shock measure the location of the spacecraft crossing
if the MC/shock axis shape is known. For 𝜆axis and 𝜆shock values close to zero, the spacecraft crossing is close
to the apex of each structure, while both 𝜆axis and 𝜆shock increase as the crossing is more on the flank of the
encountered structure, therefore defining 𝜆 as a “location” angle (see section 3).

In summary, (𝜆, i) defines a new spherical coordinate system where −x̂GSE is the polar axis. Both angles 𝜆 and
i are related with the latitude 𝜃 and the longitude 𝜙 of n̂axis or n̂shock by

sin 𝜆 = − cos𝜙 cos 𝜃 (1)

tan i = tan 𝜃∕| sin𝜙| . (2)

Then, 𝜆 and i are both functions of 𝜙 and 𝜃. However, with MC data [Janvier et al., 2014b] as well as for shocks
(not shown), 𝜆 is mostly correlated with 𝜙, and i with 𝜃.
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2.4. Precision of the Axis and Shock Normal Directions
The typical level of precision that can be determined for n̂axis and n̂shock is investigated in more detail below,
by comparing the orientation parameters for events that are common to different data sets. To do so, we
associated events by comparing the times defining the boundaries of MCs or shocks.

The time window for the association of MCs from different lists was set to 10 h, for both front and rear bound-
aries. We chose a rather large window, as the definition of the MC boundaries is dependent on the plasma and
magnetic data used, as well as on the authors’ selection criteria. However, we also computed an association
with a smaller time window (e.g., 5 h), which provided comparable results but with less cases. Extending the
time window to more than 10 h, however, leads to a few MCs of one list associated to two MCs of another list
and, therefore, wrong results.

For shocks, the time window was set to 1 h, as shocks are better temporally localized than MC boundaries. We
also included in this time window the delay between ACE and Wind observations. Note that further extending
this time window (e.g., 2 h) only provides a few more associations.

The Lepping and Wu’s list has 45% and 49% of MCs in common with the Lynch’s and Feng’s list, respectively,
and the Wang’s list has only 14% of shocks in common with the Feng’s list (which is limited to shocks associated
to MCs). This indicates that we can compare the results obtained for the same events, while also having a
significant number of independent events.

The relations between 𝜆 and i for the same events in different pairs of event lists are analyzed in Figure 2. We
show there the values of |𝜆|, i.e., we have grouped together the values of 𝜆 obtained in the west and east legs
of the MCs, increasing the statistics (this is also justified by a weak asymmetry between the two MC legs, as
found in Janvier et al. [2013]). Moreover, this allows the direct comparison of the results obtained for the MCs
with those obtained for the shocks, as the sign of 𝜆 cannot be determined for the latter. For convenience, we
mark in the following and in all graphs 𝜆 instead of |𝜆|. The data are fitted by a linear function (in blue), which
provides an easy visual interpretation of how close two results are for one same event. We also report two
rank-order correlation coefficients, the Pearson (cp) and Spearman (cs) ones, as well as the standard deviation
(SD) between the two data sets. As a whole, the location angle 𝜆 (Figure 2, left) between two samples is not as
well correlated as the inclination angle i (Figure 2, right). The parameter𝜆 also has a larger global bias since the
linear fit (blue line) is located farther away from the identity line (in brown) than for the i angle, for which both
lines almost coincide. Finally, 𝜆 has a lower standard deviation than i by a factor 2 to 5, but this is not a striking
result considering that the range of variation for i (≈ [−150∘, 150∘]) is 5 times larger than the range of varia-
tion for 𝜆 (≈ [0∘, 60∘]) so that the standard deviation relative to the range of variation is broadly comparable
for 𝜆 and i.

For MCs, the quality of the fit is measured by 𝜒 , the square root of the chi square function between the mea-
surement of the magnetic field inside the FR and the fitted profile. The values of both 𝜒 and the impact
parameter, p, could a priori affect the precision of n̂axis. In fact, we found no significant improvement in the
rank-order correlation coefficients, nor in the standard deviation values, when we analyzed sets of data con-
taining only lower𝜒 values. Next, by taking the common cases in Lepping and Wu’s and Feng’s lists of MCs, we
found that both the correlation coefficients and the standard deviation value are not significantly affected by|p|. However, if Lynch’s MCs are associated with either Lepping and Wu’s or Feng’s MCs, the correlation coef-
ficients significantly increase as the maximum value of |p| decreases from 1 to 0.5. Thus, the results of Lynch
et al. [2005] depend more on the magnitude of the estimated |p| values than for the other two lists.

The large dispersion in the values of 𝜆 found by different authors, especially for its lower values, is not straight-
forward to interpret. Indeed, for low values of𝜆 (i.e., near the apex), one would expect that shocks, and similarly
MCs, have a better determined normal as the spacecraft crosses its structure orthogonally. These expectations
appear to be not true considering the results found in Figure 2. A possible candidate to account for such an
effect may be the determination of the flux rope boundaries. Thus, the location of the MC/shock crossing (as
quantified by 𝜆) is not an important parameter in determining the precision of the normal/axis direction.

In conclusion, the large dispersion of 𝜆 and i angles between different MC lists is consistent with the results of
Al-Haddad et al. [2013] who tested the results of a larger variety of methods but on a more limited sample of
MCs. This large dispersion, both for the MC axis and shock normal directions, does not allow the comparison
of these directions for individual MCs (as attempted by Feng et al. [2010]). However, we will show in section 3
that the distributions of 𝜆 provide robust information on the MC axis and the shock shapes.
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Figure 2. (left) Correlations between the absolute value of the location angle 𝜆 (defined in Figure 1b) values, and (right)
correlations between the inclination angle values, i obtained for the same cases in different samples of MCs and shocks.
We show the values of |𝜆| (noted 𝜆 for convenience) for the MCs for a better comparison with the shocks (for which the
sign of 𝜆 cannot be determined). The two first rows are the correlations for MCs, with the orientation parameters found
by Lepping and Wu [2010] reported on the horizontal axis. The values found by (top) Lynch et al. [2005] and (middle)
Feng et al. [2010] are reported on the vertical axis. The bottom row represents the correlation between the parameters
obtained by associating the shocks studied by Feng et al. [2010] with those by Wang et al. [2010]. The parameters cp and
cs are the Pearson and Spearman ranking correlation coefficients, and “SD” is the standard deviation, in degree, between
the two data sets (red points). The blue line is the least squares fit for the data, while the brown line represents the
identity function (i.e., equal values of 𝜆, or i, for each set of events). These results show a correlation both for 𝜆 and i
between different data sets but with a large dispersion as indicated by “SD.”

2.5. Probability Distributions of the Orientation Parameters
Analyses of the inclination angle i for the 107 MCs detected by Wind [Lepping and Wu, 2010] and for the 216
shocks detected by ACE [Wang et al., 2010] were performed by Janvier et al. [2013, 2014a], respectively. Taking
into account the statistical fluctuations of limited samples, no global tendency was found for i (its probability
distribution appeared to be uniform for both MC and shocks). We confirm this isotropy of inclination in the
present paper by analyzing the histograms of i for the MCs analyzed by Lynch et al. [2005] and Feng et al. [2010]
and for the shocks analyzed by Feng et al. [2010], as shown in Figure 3 where no global tendency is present
over the statistical fluctuations both for the full sets (blue histograms) as well as with restricted sets defined
with a restricted range of the impact parameter (pink and light brown histograms) as described at the end of
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Figure 3. Histograms of the inclination angle i (defined in Figure 1a) for different data sets as written in the top labels.
N is the total number of cases in the histogram. Naxis (Nshock) is the number of MCs (shocks) in each bin, plotted versus i
for the (top row) MC axis and the (bottom row) shock normal. The 20 bins are regularly spaced between i = −180 and
180∘ . Figures 3 (top left) and 3 (middle) show the total number of cases in blue, while the overplotted histograms show
cases constrained to an impact parameter |p| lower than a given threshold (|p| < 0.7 in magenta and |p| < 0.5 in
orange). This way, the bars in blue are always the longest ones in the histogram, as they correspond to the number of
cases without constraints on |p| and are covered with the magenta and light orange bars. Figures 3 (bottom left) and 3
(middle) show the distribution of i for the shocks reported in Wang et al. [2010], either taken all together (Figure 3, left)
or with the constraint that an MC was observed following the shock (Figure 3, middle). These histograms all show no
global tendency with i (within the statistical fluctuation limit).

this section. We selected 20 bins in the histograms as a compromise between statistical fluctuations in each
bin and a visualization of the variations with i.

We interpret this isotropy of inclination as follows. The MCs and the majority of the shocks observed at 1 AU are
generated by CMEs launched from the Sun. During a time period of several years, as covered by the data sets,
the Sun launched CMEs from a large number of unrelated source regions with diverse orientations. If there is
no preferential orientation in the sources, a spacecraft is expected to cross the MCs and shocks associated with
the CMEs with an approximative uniform probability of i. As such, the above results indicate that there is no
privileged direction of n̂axis and n̂shock around the Sun apex line (within the limits of the statistical fluctuations).

In contrast, the probability distributions of 𝜆 (Figure 4), for both MCs and shocks, are largely nonuniform,
even when considering statistical fluctuations (which are typically of the order of

√
nc where nc is the num-

ber of cases in a histogram bin). All the MC axis distributions are globally decreasing functions of 𝜆 (except
for the narrow peak at 𝜆 ≈ 30∘ for Lynch et al., however, this peak may not be statistically significant). Then
the axis distributions are different than the shock distributions, which all peak around 𝜆 ≈ 30∘ (Figure 4).
Even though subgroups of events lead to larger statistical fluctuations, the shape of the distributions remains
almost the same. For example, similar histograms are found when considering subgroups of MCs with dif-
ferent fitting qualities [see, e.g., Janvier et al., 2013, Figure 5] or when considering subgroups of shocks
corresponding to different categories of ICMEs ([see, e.g., Janvier et al., 2014a, Figure 5] and Figure 4 for shocks
associated to MCs).

The quality of the estimation of the FR axis direction decreases with the absolute value of the impact param-
eter |p| [e.g., Riley et al., 2004], which is related to the distance of the spacecraft trajectory to the FR axis. We
investigated the effect of |p| on the above distributions and found no significant effect for both parameters
i and 𝜆: the histograms with |p|< 0.7 (pink) and |p|< 0.5 (light brown) have a similar dependence with i
and 𝜆 than when all cases are considered (blue) as shown in Figures 3 and 4. This is because large |p| values
are present in all the values taken by i and 𝜆, so that the general tendencies remain the same. The sample
that has the largest relative number of cases with |p|> 0.5 is that of Lynch et al. [2005], with 45% of the cases
(Figure 4, top middle). We anticipate that the conclusion derived from the general properties of the orientation
parameter distributions will be weakly affected by the (non)inclusion of the cases with large |p| values.
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Figure 4. Histograms of the location angle 𝜆 (defined in Figure 1b) for different data sets as written in the top labels. N is
the total number of cases in the histogram. Naxis (Nshock) is the number of MCs (shocks) in each bin, plotted versus 𝜆 for
the (top row) MC axis and the (bottom row) shock normal. The 20 bins are regularly spaced between 𝜆 = 0 and 90∘ . The
color convention is the same as in Figure 3. These histograms are examples of distributions of 𝜆 used to constrain the
MC axis and shock shapes.

3. Best Synthetic Models to Fit In Situ Data

In this section, we explore the properties of the shapes given by different synthetic models, for both the axis of
MCs and the shock fronts. These properties are directly compared with those given by in situ data, allowing us
to select the best models to reproduce the mean shape of both MC axis and shocks. To do so, the probability
distributions of the parameters describing these synthetic models are least squares fitted to the distribution
of the observed MC axis and shock normal.

3.1. Generic Equations for Axisymmetric Models
We first start with the description of the basic and general equations that we use to describe the models.
These equations were previously introduced for the MC axis and shock front [Janvier et al., 2013, 2014a] using
spherical coordinates (𝜌,Φ, 𝜑) centered on the Sun (S). For a given point on the shock surface, Φ is the angle
defining the position around the Sun apex line, while for the MC axis, Φ is constant since the axis is supposed
to be contained in a plane for a given event.

For the shock front, we suppose in the present work a symmetry of rotation, so that the shock surfaces are all
independent of Φ. This simplifies the expression for 𝜌, the distance between the Sun (S) and the spacecraft
crossing point (M). Then, the vector from the Sun to the point M can be written as a function of𝜑 as (Figure 1b):

⃗SM = 𝜌(𝜑)û𝜌. (3)

The location angle 𝜆 is defined as the angle between the radial direction from the Sun (along û𝜌) and the local
normal (n̂) to the axis/shock shape. 𝜆 is related to 𝜌(𝜑) as follows:

tan 𝜆 =
n̂ ⋅ û𝜑

n̂ ⋅ û𝜌

= −d ln 𝜌

d𝜑
. (4)

The above two expressions remain the same for both the shock and the MC axis.

The shock surface extends from 𝜑 = 0 at the apex to ±𝜑max, shock on the flank, with a symmetry of rotation
around the Sun apex line (Figure 1b). For consistency, the axis shape is also symmetric around the apex and
it extends up to 𝜑 = ±𝜑max, axis. In both cases, 𝜆 is included in the interval [0, 90∘], with 𝜆 = 0 at the apex and
𝜆 approaching 90∘ in the legs of the MC axis/flank of the shock front.

Supposing that 𝜌(𝜑) is a decreasing function of 𝜑 (so that the shape 𝜌(𝜑) is concave toward the Sun, in agree-
ment with observations and simulations [e.g., Cane, 1985; Lugaz et al., 2014], equation (4) implies that 𝜆 is a
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monotonously increasing function of 𝜑. It implies that spacecraft crossings in the range 𝜑 ± d𝜑 correspond
to the unique range 𝜆 ± d𝜆. The conservation of the number of cases implies

𝜑(𝜑)d𝜑 = (𝜆)d𝜆 , (5)

where𝜑(𝜑)d𝜑 is the probability of spacecraft crossings in the interval𝜑±d𝜑∕2 and(𝜆)d𝜆 is the probability
in the interval 𝜆 ± d𝜆∕2.

A spacecraft located at 1 AU, over several years, will cross a large number of ICMEs launched from the Sun
from a broad range of latitudes and longitudes with no privileged direction of propagation. It implies that
one can suppose a nearly uniform distribution of crossings. Then, the MC axis is expected to be detected with
a uniform distribution of 𝜑. The normalization of the total probability to unity implies that 𝜑(𝜑) = 1∕𝜑max.
This probability is different for shocks, however, since they extend as a surface: the probability of detection
in the range 𝜑 ± d𝜑 is proportional to the corresponding fraction of the cross section of the sphere of radius
D = 1 AU centered on the Sun, so 𝜑d𝜑 ∝ 2𝜋D2 sin𝜑d𝜑. The coefficient of proportionality is again found by
normalizing the total probability to unity. Summarizing, the probability of crossing axis/shock is as follows:

𝜑(𝜑) = 1∕𝜑max for MC axis, (6)

= sin𝜑

1 − cos𝜑max
for shocks. (7)

With the above result for𝜑(𝜑), equation (5) defines(𝜆)when d𝜑∕d𝜆 is known, i.e., when the shape is known
since the derivation of equation (4) with respect to 𝜆 defines d𝜑∕d𝜆. All in all, (𝜆) writes

(𝜆) = 𝜑(𝜑)
1

cos2 𝜆(−d2 ln 𝜌∕d𝜑2)
. (8)

This expression is common for both the MC axis and the shock, as 𝜑(𝜑) can then be replaced by its proper
expression from equation (6) or equation (7). Since 𝜑 can be expressed as a function of 𝜆 with equation (4)
when 𝜌(𝜑) is specified, (𝜆) in equation (8) can be written as a function of 𝜆.

A quantitative comparison between two probability distribution functions, with one corresponding to the
real shape real (i.e., estimated from observations) and the other corresponding to a given synthetic model
model, can be done by computing the distance between the two probability curves, as follows:

dist(real,mod.) =

√
1

90 ∫
90

0

(real(𝜆) − model(𝜆)
)2

d𝜆 . (9)

With a given analytical model of 𝜌(𝜑) for the MC/shock shape, equation (8) provides a continuous function of
𝜆. However, since the observed probabilities are binned, the comparison requires to also bin the probability
obtained from the synthetic model (the probability function of this binned model is then noted bmod(𝜆)).
Then, equation (9) is transformed into

diff(obs.,mod.) =

√√√√ 1
nb

nb∑
i=1

(obs(𝜆i) − bmod(𝜆i)
)2
, (10)

where nb is the number of bins of the observed probability obs.

3.2. Wood’s Model
We first start our investigation of the most appropriate synthetic model with the Wood’s model. In a series of
papers, Wood and coauthors used images from both STEREO spacecraft to visually fit the ICME front and/or
the leading and trailing edges of flux ropes with the following model:

𝜌w(𝜑) = 𝜌max exp(−|𝜑∕𝜎|𝛼∕2). (11)
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The parameter 𝜎 defines the azimuthal extension and 𝛼 characterizes how flat the apex is [see Wood et al.,
2009a; Wood and Howard, 2009; Wood et al., 2010, 2011, 2012].

With a cylindrical rotation, equation (11) defines a surface, and Wood et al. [2009a] set a thin shell of density
around it to model the bright front of ICMEs. Then, Wood et al. computed synthetic images by simulating
the Thomson scattering. The comparison with the observed COR and HI images of ICMEs observed by both
STEREO spacecraft leads to the determination by visual inspection of the best values for 𝜎 and 𝛼. The results
are ICME case dependent with 𝜎 in the interval [25∘, 43∘] and 𝛼 in [2, 3.3].

Wood et al. [2009a] also used equation (11) to define a density shell model around a flux rope, as follows.
They first defined the flux rope leading and trailing edges with equation (11) and with two sets of 𝜎 and
𝛼 values. Then, they defined a flux-rope-like boundary with an elliptical (or circular) cross section passing
through these two edges. Finally, they included a density layer around the cross-section boundary. The visual
fit of the simulated brightness images with both STEREO data determines the best parameter values. The
resulting 𝜎 values are in the interval [21∘, 40∘] and the 𝛼 values in [2, 8]. Wood et al. [2009a] did not explicitly
model the axis of the flux rope, but since its shape is between the leading and trailing edge shapes, we show
below the same range of 𝜎 and 𝛼 parameters for the axis as quoted above.

In order to derive the statistical properties for the in situ data implied with the Wood’s model, defined by
equation (11), we apply below the equations derived in section 3.1. Then, tan 𝜆 is obtained from equation (4):

tan 𝜆 = 𝛼 𝜎−𝛼𝜑𝛼−1∕2 . (12)

For the shape to not be sharp at the apex, i.e., 𝜆 = 0 for 𝜑 = 0, the condition 𝛼 > 1 should be satisfied. Next,
since tan 𝜆 is a monotonously growing function of 𝜑, the inversion of equation (12) provides

𝜑w(𝜆) =
(2𝜎𝛼 tan 𝜆

𝛼

)1∕(𝛼−1)
. (13)

The profile of equation (11) has no physical meaning for large |𝜑| values, i.e., for very small 𝜌 values (as the
shape would spiral around its origin). We then set a minimum value 𝜌> 𝜌min, which implies |𝜑| < 𝜑max and
𝜆 < 𝜆max with

𝜑max = 𝜎

(
2 ln

𝜌max

𝜌min

)1∕𝛼

, (14)

𝜆max = tan−1
(
𝛼 𝜎−𝛼𝜑𝛼−1

max∕2
)
. (15)

In Figure 5 we selected 𝜌min = 0.2 AU and 𝜌max = 1 AU, which implied 𝜆max ranging from 74∘ to 87∘ for 𝛼
ranging from 2 to 8. The shape defined by this model, equation (11), is shown in Figure 5 (left) with different
colors for four values of 𝛼 (= 2, 4, 6, 8). With the same colors, the corresponding probabilities of 𝜆 for the
axis and the shocks, equation (16) below, are shown in Figures 5 (middle) and 5 (right), respectively. These
theoretical results are compared with the observed probability drawn with histograms for MCs analyzed by
Lepping and Wu and for shocks analyzed by Wang et al., respectively.

The probability (𝜆) is computed from equation (8), where 𝜑 is replaced with equation (13), so that the final
expression is expressed as a function of 𝜆:

w(𝜆) =
𝜑(𝜑w)
𝛼 − 1

(2𝜎𝛼

𝛼
sin2−𝛼 𝜆 cos−𝛼 𝜆

)1∕(𝛼−1)
, (16)

with 𝜑(𝜑w) defined by equation (6) or equation (7). Since 𝛼 > 1, 𝛼∕(𝛼 − 1)> 0 and w(𝜆) are always growing
to infinity as 𝜆 approaches 90∘ (infinite branch). If one restricts 𝜑 to the interval [0, 𝜑max], 𝜆 < 𝜆max < 90∘ so
that the singularity disappears in w(𝜆). However, w(𝜆) remains a sharply growing function of 𝜆 for large 𝜆

values, and this behavior starts at lower values of 𝜆 for low values of 𝛼 (see the curves in Figures 5 (middle) and
5 (right)). w(𝜆) is also singular at 𝜆 = 0, again with an infinite branch, for 𝛼 > 2 for the MC axis case (Figure 5,
middle) and for 𝛼 > 3 for the shock case (Figure 5, right). This behavior is due to the relationship between𝜆 and
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Figure 5. Shapes and probabilities per unit 𝜆, in degree, for the Wood’s model (section 3.2). (left) The MC axis or the
cross section of the shock in a plane including the Sun (located at the origin) and the axis/shock apex, as defined by
equation (11) and limited to 𝜌> 𝜌min = 0.2. The colored lines are for four different values of the 𝛼 parameter. The
corresponding probabilities of 𝜆 are shown together with, in the background, the observed probability drawn with
histograms (middle) for MCs analyzed by Lepping and Wu and (right) for shocks analyzed by Wang et al. The large
differences between the colored lines representing Wood’s model and the histograms from the observed distribution
show that the model is not consistent with the observations.

𝜑 as shown in Figure 6 for two 𝜎 values (panels) and four 𝛼 values (color curves). For low and large values of
𝜆, the curves are flat. With a uniform distribution of 𝜑, this implies a larger accumulation of cases with similar
𝜆 where the curve is more horizontal, so a larger probability (𝜆) for MC axis and shocks.

The above properties of w(𝜆) imply strong differences with the observed probabilities of the location angle
for both the MC axis and the shock normal (Figure 4). This is shown in Figures 5 (middle) and 5 (right), where
the observed𝜆probabilities for both MC axis and shocks, deduced from lists of MC/shock events, are put in the
background for comparison (light blue histograms). The probability curves for the synthetic model of Wood
et al. [2009a] are computed with the parameter 𝛼 in the range deduced from STEREO observations. A similar
behavior is found for all 𝜎 values, as illustrated with the evolution of 𝜆(𝜑) with two values of 𝜎 in Figure 6. As
𝜎 increases, 𝜑 extends on a broader interval, while 𝜆(𝜑) keeps a similar shape implying similar w(𝜆).

As such, Wood’s model, as described by equation (11), is too blunt around the apex, then too tightly curved on
the flanks and again too flat in the legs/flanks to provide a satisfying evolution ofw(𝜆) comparable with in situ
observations. Even scanning the most appropriate range of 𝛼 (within [2, 4]), for which w(𝜆) is less singular,
does not provide a probability distribution comparable to any of the observed distributions (Figure 4). Indeed,
the differences between the model and the observations always remain of the order of the mean probability
value (diff ≈ 13 to 33 × 10−3 with diff defined by equation (10)).

We conclude that the description of the axis and the shock shapes by equation (11) does not provide any
probability distribution compatible with the statistical in situ results. At first sight, the shapes shown in
Figure 5 (left) are not too far from the typically expected shape (e.g., as shown in Figure 1b and as observed

Figure 6. Variation of the location angle 𝜆 as a function of 𝜑 for the Wood’s model (section 3.2) for four values of 𝛼 and
two values of 𝜎. (left) The same parameter values as in Figure 5. These results are used in section 3.2 to analyze the
incompatibility of Wood’s model with the observed distributions of 𝜆 (Figure 5).
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Figure 7. Shapes and probabilities per unit 𝜆, in degree, for the cosine model (section 3.3). (left) The MC axis or the cross
section of the shock, as defined by equation (17), for different values of the n f parameter. The corresponding
probabilities of 𝜆 are shown together with, in the background, the observed probability drawn with histograms (middle)
for MCs analyzed by Lepping and Wu and (right) for shocks analyzed by Wang et al. The colored lines show that the
cosine model is the most consistent with the observed probability distributions for the case with n f ≈ 0.3.

by STEREO). However, (𝜆) is a very sensitive function as it contains a second derivative of the shape
(equation (8)). It implies that, even with limited statistics, the observed probabilities (𝜆) provide strong
constraints on the axis and shock shapes.

3.3. Cosine Model
Other analytical models can be used to study the properties of the statistical distributions of parameters for
both shocks and MC axis. For example, a simple analytical model was introduced by Janvier et al. [2014a] to
describe the mean shape of shocks:

𝜌c(𝜑) = 𝜌max cosn(f𝜑) , (17)

with f = 90∘∕𝜑max so that 𝜌(𝜑max) = 0. This model can similarly describe the shape of the MC axis. In the
following, we refer to this model as the cosine model, and all relevant parameters are denoted with a subscript
“c.” The shape defined by the cosine model is shown in Figure 7 (left) for five values of the product n f , with
n f the product between n and f , the most sensitive degree of freedom in this model.

For an apex fixed at a given distance, e.g., 1 AU (where the Wind and ACE spacecraft are located), this model
has only two parameters (as the Wood’s model): {n, f } or equivalently {nf , 𝜑max}. Computing d ln 𝜌c∕d𝜑 and
inverting equation (4) allows to express 𝜑c explicitly as a function of 𝜆:

𝜑c(𝜆) =
1
f

tan−1
( tan 𝜆

n f

)
. (18)

The probability c(𝜆) of equation (8) is explicitly computed by including a second derivation of d ln 𝜌c∕d𝜑.
Eliminating 𝜑 with equation (18), the expression for c(𝜆) is rewritten as

c(𝜆) = 𝜑(𝜑c)
n(1 + tan2 𝜆)
(n f )2 + tan2 𝜆

. (19)

With 𝜑c expressed with equation (18), c(𝜆) becomes an explicit function of 𝜆.

The probability c(𝜆) is strongly dependent on the product n f as shown in Figure 7 for the axis and the
shocks in Figures 7 (middle) and 7 (right), respectively, with the same color convention than for the shapes
(Figure 7, left). Values of n f ≥ 0.5 give c(𝜆) functions that are too flat compared with the observed probabil-
ities (as reported in the background for both MC axis and shock normal). This is especially true for the shocks,
since the observed decrease of(𝜆) for large 𝜆 is not reproduced for n f ≥ 0.5 (e.g., the blue curve for n f = 0.7
is monotonously increasing). On the contrary, values n f ≤ 0.25 imply that the c(𝜆) functions are too peaked
near the origin compared with the observations (e.g., the black curve for n f = 0.2). Furthermore, we found
the same constraints on n f by comparing the cosine model to the other observed probabilities (e.g., those
shown in Figure 4). It implies that the n f values compatible with observations are located in a narrow interval
[0.25, 0.5]. This corresponds to a well-constrained shape as shown in Figure 7 (left), in between red and pink
shapes, because a large modification of c(𝜆) implies only a small deformation of the shape.

We quantify the above results by minimizing the least squares difference between the observation and model
distributions, so minimizing the function “diff” defined in equation (10) for each observed probability. This

JANVIER ET AL. COMPARING GENERIC MC AXIS & SHOCK SHAPES 3339



Journal of Geophysical Research: Space Physics 10.1002/2014JA020836

Table 1. Best Fitted Cosine and Ellipsoidal Models to Various Data Sets

Observations Cos. Mod. Ellip. Mod.

Data Set Ncase n f diffa b∕a diffa

Results With MC Axis

Lepping and Wu, all 107 0.36 4.5 1.28 4.1

Lepping and Wu, quality 1,2b 74 0.36 6.9 1.25 6.4

Lynch et al. 132 0.50 5.0 1.10 4.4

Feng et al., axis 62 0.34 4.8 1.29 4.5

Results With Shock Normal

Feng et al., shock 62 0.40 7.8 1.21 6.9

Wang, all 216 0.29 4.5 1.39 3.7

Wang, ICME not detected c 99 0.32 6.0 1.32 5.1

Wang, all ICME 117 0.26 4.4 1.45 3.6

Wang, nonflux rope ICME 36 0.23 6.1 1.53 5.8

Wang, MC-like 36 0.23 6.5 1.57 5.8

Wang, MC 45 0.32 7.8 1.36 7.3
aThe difference computed with equation (10) and multiplied by 1000.
bThe quality is defined in Lepping et al. [1990] according to the 𝜒2 value of the fit of a flux rope model to data. Here

the two best groups are used.
cShocks not followed by an ICME. Most of them are thought to be shock flanks which extend beyond the ICME [see

Janvier et al., 2014a].

provides the best parameters n f and 𝜑max. In fact, 𝜑max has a very weak effect on c(𝜆) [Janvier et al., 2014a]
so that only the best n f value is determined. The results are summarized in Table 1. For MC axis, n f is almost
the same, ≈ 0.35, for the data of Lepping and Wu [2010] and Feng et al. [2010], while n f is slightly larger, ≈ 0.5,
for Lynch et al. [2005] because its (𝜆) has a larger tail for large 𝜆 values (Figure 4). For shocks, all the results
are clustered around n f = 0.3.

The above results imply that the deduced mean shape of MC axis is nearly independent of the data set
selected. This includes partly different MCs (see section 2.4), and more importantly different input in the ana-
lyzed procedure from different authors (e.g., the MC axis depends critically on the author’s choice of the MC
boundaries, [Dasso et al., 2006]). The deduced mean shape of shocks is also very close from the one deduced
from the data sets of Feng et al. [2010] and Wang et al. [2010], while the determined shock normals have
significant differences for the same analyzed shock (section 2.4).

3.4. Ellipsoidal Model
The ellipsoidal model was introduced by Janvier et al. [2013] to describe the mean shape of the MC axis. Its
derivation is less simple than for the above cosine model, although (𝜆) can still be derived analytically. The
MC axis is described by an ellipse of half size a and b in the radial and orthoradial directions, respectively
(Figure 8). The ellipse center is at a distance d from the Sun, and we define a point M on the axis where the
spacecraft crosses the structure, situated at a distance 𝜌e from the Sun:

𝜌e =
√
(d + a cos 𝛿)2 + (b sin 𝛿)2, (20)

where 𝛿 is the angle defining the position of M from the ellipse center. The azimuthal coordinate, 𝜑e, writes

tan𝜑e = b sin 𝛿∕(d + a cos 𝛿). (21)

These equations, although first defining the MC axis, can similarly describe the shock shape (considering
a surface symmetric around the Sun apex line) as a parametric curve

(
𝜌e(𝛿), 𝜑e(𝛿)

)
. The maximum angular

extension of the model, 𝜑max, is defined by

tan𝜑max = b∕
√

d2 − a2. (22)
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Figure 8. Diagram defining the elliptical model for the flux rope axis or shock shape. M is the point of interest (where
the spacecraft crosses the structure). 𝜑e is the angle of the cylindrical coordinates (𝜌e, 𝜑e). The location angle 𝜆 is
defined between the normal and the local radial from the Sun. The maximum angular extension 𝜑max is outlined by
radial segments tangent to the ellipse. The parameter 𝛿 is the angle used to parameterize the ellipse.

For an apex fixed at a given distance, this model has only two parameters similar to the two previous models:
a∕d and b∕d, or equivalently b∕a and 𝜑max.

The location angle 𝜆 is expressed with equation (4) as follows:

tan 𝜆 =
a sin 𝛿 cos𝜑e − b cos 𝛿 sin𝜑e

a sin 𝛿 sin𝜑e + b cos 𝛿 cos𝜑e
. (23)

Both 𝜑e(𝛿) and 𝜆(𝛿) are monotonously growing functions of 𝛿, then 𝜑e is an implicit function of 𝜆.

The derivation of the probability e(𝜆) requires several computation steps as outlined in Janvier et al. [2013].
The result is as follows:

e(𝜆) = 𝜑(𝜑e) ∕ |d𝜆∕d𝜑|, (24)

with
d𝜆
d𝜑

= −1 + 1 + tan2 𝛿

1 + (a∕b)2 tan2 𝛿

a
b cos𝜑e

d + a cos 𝛿
a sin 𝛿 sin𝜑e + b cos 𝛿 cos𝜑e

(25)

With equations (21) and (23) providing the monotonous functions 𝜑e(𝜆) and 𝛿(𝜆), e(𝜆) is an implicit
single-value function of 𝜆.

We show in Figure 9 (left) the different shapes obtained with such a model for different aspect ratios. We also
show the associated probability functions (colored curves) on top of histograms of the observed distributions
of 𝜆 for both MC axis (Figure 9, middle) and shock normal (Figure 9, right), with the same drawing convention
as in Figure 7. For both MC axis and shock normals, the probability function e(𝜆) matches the observed (𝜆)
the best for a value b∕a ≈ 1.3 (green curve). This corresponds to an ellipsoidal shape slightly elongated in
the orthoradial direction. Although the parameterized curve does not change much for nearby values, the
probability e(𝜆) is very sensitive to the parameter b∕a as there are large differences from the observed (𝜆)
for these nearby values, e.g., b∕a = 1.1 and 1.5 (red and pink curves, respectively, in Figure 9). Compared to the
cosine model, the ellipsoidal model provides an even closer match with the observations, especially for large
𝜆 values of the (𝜆) function for shock normals (e.g., one can compare the green curves in Figures 7 and 9).

We find the best ellipsoidal description of the MC axis and shock front by using the least squares difference
technique (as in section 3.3). In Figure 10, we show how to obtain the best fits for two different samples of
MCs and shocks with a pair of plots for each sample. We also show three values of𝜑max (color curves). For each
sample, we show in the left panel of each pair the evolution of the diff value, equation (10), as a function of the
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Figure 9. Shapes and probabilities per unit 𝜆, in degree, for the ellipsoidal model (section 3.4). We added a straight
sunward edge to the ellipsoidal shape (dashed line) to visualize the maximum extension ±𝜑max (defined in Figure 1b).
(left) The MC axis or the cross section of the shock, as defined by equation (20), for different values of the aspect ratio
b∕a parameter. The corresponding probabilities of 𝜆 are shown together with, in the background, the observed
probability drawn with histograms (middle) for MCs analyzed by Lepping and Wu and (right) for shocks analyzed by
Wang et al. The comparison between the colored lines and the histograms shows that the ellipsoidal model with
b∕a ≈ 1.3 best fits with the observed data.

ellipse aspect ratio b∕a. The lowest values of diff correspond to the best fits, and the associated probability
functions are then reported on top of the observed probability distribution in the right panel of each pair.

The minimum diff values are all similar for low 𝜑max values (e.g., 15∘ and 30∘) for both MCs and shocks
(Figure 10), while they increase for larger 𝜑max values (e.g., 60∘). Indeed, the probability of 𝜆 is weakly depen-
dent of 𝜑max for low 𝜑max values [Janvier et al., 2013, 2014a], then ICMEs with variable 𝜑max can be analyzed
together. However, the probability function evolution, for large 𝜑max values, e(𝜆) has a tail too large for
𝜆 ≥ 60∘ values compared with observations (as shown with the green arrows in Figure 10), especially for
shocks (Figure 10, bottom, right plot of each pair). As such, within the limits of small statistics for large
𝜆 values, large values of 𝜑max are not consistent with the observed probability functions, which indicates
that ICME shocks are not typically so spatially broad. This is in agreement with the predominance of solar
sources of near-Earth ICMEs close to central meridian (64% are within 20∘ of central meridian [Richardson
and Cane, 2010]) as well as with a mean half angular extension of CMEs of 30∘ estimated from coronagraphic
observations from CMEs launched close to the solar limb to minimize the projection effects [Wang et al., 2011].

Figure 10. Minimization of the difference between the observations and the ellipsoidal model (section 3.4). (top) Results for the MC axis using two different
samples of MCs and (bottom) shock normal results using two samples of shocks. The difference function is defined by equation (10) and it is plotted as a function
of the aspect ratio b∕a in the left-hand plot of each pair. The results are shown for three values of 𝜑max (equal to 𝜑max, axis for MCs and to 𝜑max, shock for shocks
as defined in Figure 1b). In the right-hand plot of each pair, the probabilities of the best models (i.e., minimizing diff of equation (10)) are shown together with, in
the background, the observed probability drawn with histograms. The green arrows show how the tail increases with 𝜑max = 60∘ . The main result is that the
deduced shape, characterized by b∕a minimizing the difference function, is almost independent of 𝜑max for low values (< 60∘), while for larger 𝜑max value the
ellipsoidal model is farther away from observations.
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Figure 11. (Half ) Shapes and probability distributions of (top) MC axis and (bottom) shock front deduced from
observations with various dispersions of the MC axis and shock normal. The observed probability (histogram, Feng et al.
[2010]) is deconvoluted with a Gaussian kernel, equation (A1), with a standard dispersion 𝜎d = 10∘ for MC and 𝜎d = 14∘
for shocks (derived from Figure A1, see section 1). The resulting curve is plotted as a blue curve, rather than a histogram,
for superposition. The other curves are the results of a further convolution by a Gaussian kernel with a standard
dispersion 𝜎c. The red curves have 𝜎c = 𝜎d resulting only in a smoothing of the original histogram. The green and pink
curves have 𝜎c >𝜎d resulting in a broadening of the original histogram. The main result is that the deduced MC axis and
shock shapes are weakly affected by the errors on 𝜆 even when these errors are enhanced by a factor 3 compared with
the estimations from observations (Figure A1).

The best b∕a values are summarized in Table 1 for 𝜑max = 30∘. In all cases a lower minimum diff value is found
for the ellipsoidal model, confirming the conclusion drawn above from Figures 7 and 9 that the ellipsoidal
model is a better fit than the cosine model. For MC axis, b∕a is close to 1.3 except for the data of Lynch et al.
[2005] with b∕a ≈ 1.1, indicating a slightly more bent shape. For the shock normal, the value of b∕a that fits
the best with observations is around 1.4, except for the data of Feng et al. [2010] for which b∕a ≈ 1.2, indicating
also a slightly more bent shape. These variations of b∕a are comparable to the uncertainty of b∕a ≈ ±0.1 for
both MC axis and shock normals as indicated by the minimum region extension of the diff function (Figure 10).

More globally, a comparable shape is expected for the MC axis and the shock surface as the flux rope is only
separated from the shock by the sheath (Figure 1b). This is indeed what is found here with both cosine and
ellipsoidal models, when their (𝜆) is fitted to observations (Figures 7 and 9). This is quite a remarkable result,
considering that (1) the in situ data sets and (2) the techniques to find the MC axis and shock normal are all dif-
ferent. These comparable results from different types of data provide a strong case for the shape determined
by cross-validating the results.

3.5. Robustness of the Derived Axis and Shock Shapes
The 𝜆 values deduced for the different samples of MCs and shocks, and analyzed by different authors, show a
large dispersion (section 2.4, Figure 2). This seems a priori incompatible with the results above, where similar
axis and shock shapes are derived from these various data sets (sections 3.3 and 3.4, Table 1). To understand
these results, we investigate the effect of the𝜆 error level in Appendix A for both the axis and the shock normal
on the determined shapes.

We investigate the implications of errors on obs(𝜆), then on the deduced MC axis and shock shapes. We con-
clude that, while there are large fluctuations in the 𝜆 estimations by different authors for the same events
(Figure 2), the observed probability distributions obs(𝜆) are less affected by these errors because of the aver-
aging implied when building a histogram. Furthermore, the deduced axis and shock shapes are even much
less affected by these errors because they depend only on the global properties of the histograms. Indeed,
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increasing the estimated dispersion, 𝜎c, by up to a factor 3 only has a weak effect on the deduced shapes
(Figure 11, left, the same color being used for the same case on corresponding left and right plots of a panel
pair). Moreover, the deconvolution of obs(𝜆) by a Gaussian kernel sets an upper limit to the standard devia-
tion of the 𝜆 errors, up to ≈ 18∘ for MC axis and ≈ 8∘ for shock normals. Within such limits, the deduced MC
axis and shock shapes are not significantly influenced by the error level on 𝜆.

The above results contrast with the results of Feng et al. [2010] who compared the MC axis and shock normal
directions directly with each MC-shock pair. The large errors shown in Figure 2 do not allow to derive mean-
ingful results from this direct approach. However, with the same data set, we can perform a statistical analysis
and derive the generic MC axis and shock shape as shown above.

4. Summary of the Main Results

In the present paper, we propose an original statistical study based on different catalogs of flux ropes and
shocks observed in situ. We compare different analytical models to derive and quantify the most probable
generic flux rope axis and shock shape. While in situ data provide only local information along the space-
craft trajectory crossing an MC/shock, our method combines the information from large sets of events to
statistically derive global information on their generic shape.

Our study is based on a series of papers reporting fitted parameters associated with flux ropes inside mag-
netic clouds [Lynch et al., 2005; Feng et al., 2010; Lepping and Wu, 2010] as well as parameters associated with
properties of shocks driven by ICMEs [Feng et al., 2010; Wang et al., 2010]. While the FR fits are all made with the
Lundquist model, and the shocks with the MHD Rankine-Hugoniot relations, differences in their application
lead to a dispersion of the deduced parameters for the same events (section 2.4, Figure 2). This dispersion is
more important for the location angle 𝜆, which defines the location of the spacecraft crossing the interplane-
tary structure (see Figure 1b for the definition of 𝜆). However, the probability distributions of observed 𝜆 have
comparable behavior for all data sets (decreasing function for the MC axis and a Gaussian-like distribution
peaking around 𝜆 ∼ 30∘ for shock normals, see Figure 4).

We then compared the observed distributions with those obtained from three synthetic models for the MC
axis and shock fronts: the Wood’s [from Wood et al., 2009b]), cosine [Janvier et al., 2014a], and ellipsoidal
[Janvier et al., 2013] models. We investigated the different analytical distribution functions (𝜆) for each
model, by varying the shape of the MC axis/shock. We scanned the range of possible parameter values for each
model and we determine the best model parameters by computing the difference between the distribution
function (𝜆) with each observed distribution obs(𝜆).

The Wood’s model was developed to analyze imager data of CMEs obtained from three view points (the two
STEREO and SOHO spacecraft). While this model provides axis/shock shapes which at first look plausible, its
derived probability function of 𝜆, w(𝜆), is incompatible with all the observed distributions, obs(𝜆), of MC
axis and shock for all the range of parameters derived by fitting this model to imager data (Figure 5). Also, this
model has a too flat shape at the apex, which would indicate that most magnetic clouds and shocks would
have been crossed at a low 𝜆, which is not the case. Then, these differences are intrinsic to the model rather
than to the specific CME cases studied with the imaging instruments and cannot also be accounted as the
result of an evolution of the shape from the inner heliosphere to 1 AU.

By contrast to the Wood’s model, both the cosine and ellipsoidal models are able to reproduce the observa-
tions,obs(𝜆), within a narrow range of parameter values (Figures 7 and 9). Still, the ellipsoidal model provides
the best fit for both the 𝜆 distribution for MC axis and shock normals for all data sets (section 3.4). The best
ellipsoidal shape is obtained for an aspect ratio b∕a∼1.2 for the MC axis and b∕a∼1.3 for the shock normal.
This is quite a remarkable result, first, because it allows us to define the quantitative generic shape of the MC
axis and the shock front, and second, because it shows that both structures have a similar shape, while MC
and shock data are independent.

Moreover, although the observed probability distributions obs(𝜆) have some differences from one sample
of MC/shock to another (Figure 4), the results of the ellipsoidal and cosine models are close for different data
sets (Figure 10 and Table 1), confirming that the derived shapes of axis/shock is weakly dependent on the
details ofobs(𝜆). Indeed, for any model,(𝜆) is a very sensitive function of the axis/shock shape as it contains
a second derivative of the shape (equation (8)). This implies that the global behavior of (𝜆) defines precisely
the generic shape of MC axis/shock.
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We investigated the reason for such weak dependence on the MC axis/shock shapes, by analyzing the effect
of statistical errors introduced in obs(𝜆). We found, in particular, that different levels of errors introduced
moderate modifications of the probability distributions while the modifications of the axis/shock shape are
minor (Figure 11). Indeed, a significant change of the shapes would require a large modification of obs(𝜆), as
shown in Figures 5, 7, and 9. We conclude that the observed distributions obs(𝜆) set a strong constraint on
the generic axis/shock shapes.

5. Conclusions and Implications

We have derived the generic shape of MC axis and ICME shocks from different published catalogs of events
computing the MC axis or shock normal from in situ data. The MC fits are all made with the Lundquist model,
and the shocks are analyzed with the MHD Rankine-Hugoniot relations. Both methods have their own lim-
itations. However, these catalogs have presently the largest number of studied cases compared with other
techniques. Moreover, our statistical methods developed to deduce the shapes of these structures can be
applied to any other data samples that provide the MC axis and/or the shock normals. This is a further
motivation to extend other catalogs.

Deriving generic shapes for the MC axis and shocks has several implications. First, they could be used in anal-
ysis of imager data with single viewpoint or stereoscopic observations, as follows. Presently the imager data
of ICME require a model in order to derive physical properties such as the velocity and the direction of prop-
agation. Past studies were derived with simple models (the CME front is either supposed to have a negligible
extension, or to be spherical around the Sun or attached to it, or to be described by Wood’s model). How-
ever, the results are sensitive to the model selected [e.g., Möstl et al., 2014]. We propose the ellipsoidal model,
derived from our statistical results, as an alternative model to analyze imager data. Nonetheless, with this
elliptical model, it is possible to generalize the equations derived by Davies et al. [2013] for a detached spher-
ical model to an ellipsoidal model of the ICME front. Introducing a more elaborated model implies more free
parameters which are not necessarily constrained by imager data. However, the in situ data constrain well the
aspect ratio b∕a of the model to a narrow range of values, then they provide a reference case for application
to imager data.

A second implication of our results is for forecasting ICME arrival times at Earth. The arrival time depends on
the solar launch time, the velocity history of the ICME front during the transit and also on the shape of the front
for ICMEs impacting Earth away from their apex. This last effect can provide delays up to 2 days as shown by
Möstl and Davies [2013] with a circular front. Introducing an ellipsoidal shape could be important away from
the apex to better define the front position, but also to better determine the ICME trajectory from imager data
(previous paragraph), so finally where the front is crossed. Then, the ellipsoidal model is expected to improve
our forecast abilities as it provides a step forward in modeling the ICME front shape with constraints derived
from in situ data. A first application of this was performed on a very fast ICME observed by seven spacecraft
[Möstl et al., 2015]. The deduced aspect ratio, 1.4 ± 0.4, is comparable to the one deduced above from in situ
measurements.

Finally, the present analysis of in situ data can be extended to other solar distances. This requires a consistent
set of in situ measurements at different distances away from the Sun. How would the shapes of the MC axis
and associated interplanetary shock change with heliodistance? Would the expansion be self-similar for both
structures? In that sense, the future missions Solar Probe Plus and Solar Orbiter will be of great interest to
advance our knowledge of the evolution of ICMEs in the inner heliosphere.

Appendix A: Effects of Errors on the Derivation of Axis and Shock Shapes
A1. Estimation of the 𝝀 Error Distribution
The differences between the 𝜆 values obtained by different authors for the same event were analyzed in
section 2.4. We quantified the large dispersion of the 𝜆 values obtained by different authors (Figure 2) and
reported the distribution of the values of the 𝜆 differences in Figure A1 with histograms. The mean of this dis-
tribution is negligible for MCs (≈ 1∘) and small for shocks (≈ 7∘). The standard deviation is smaller for MCs
(𝜎obs ≈ 11∘) than for shocks (𝜎obs ≈ 19∘). It is remarkable that even with a limited number of common cases
(45 MCs and 36 shocks), implying large statistical fluctuations within each histogram bin, both distributions
are comparable to a normal (Gaussian) distribution (red curve) with the same mean and standard deviation.
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Figure A1. Probability distributions of the difference of 𝜆, in degree, obtained by two author groups studying the same
events (left: MCs and right: shocks). The correlation of the 𝜆 values are presented in Figures 2 (middle) and 2 (bottom
left). A Gaussian function with the same mean and standard deviation is superposed in red. These results are used to
estimate the error distribution of 𝜆 for MCs and shocks.

We analyze below the implications of 𝜆 errors on obs(𝜆), then on the deduced MC axis and shock shapes. To
do so, we propose to first estimate the error distributions for MCs and shocks and to provide a simple model of
the error distribution. Then, we attempt to remove these errors onobs(𝜆), and finally, we reintroduce variable
level of errors in the newly obtained cleaned distribution to study their implications on the deduced MC and
shock shapes.

The errors in the determination of 𝜆 are spread in the observed probability distributions of 𝜆 (Figure 4). In
order to estimate the 𝜆 error distribution, we decompose 𝜆 as 𝜆 = 𝜆true + 𝜆error where 𝜆true is the true 𝜆 value
and 𝜆error the error due to the limitations of both observations (data only along the spacecraft trajectory)
and modeling (boundary selection and fit of the data to a model, see sections 2.1 and 2.2). Considering two
samples A and B of common events, we can only access the distribution of 𝜆error,A − 𝜆error,B (Figure A1) and
not the individual distributions of 𝜆error,A and 𝜆error,B (as we do not know 𝜆true). Since the mean values of the
𝜆error,A − 𝜆error,B distributions are small (Figure A1), in both for MCs and shocks, there are only weak systematic
biases. This small bias can also be observed in Figure 2 (left), with a similar number of cases above or below
the identity straight line (brown line) and also by comparing blue (fitted) and brown lines. Next, we assume
that 𝜆error,A and 𝜆error,B are independent statistical variables with the same standard deviation 𝜎A = 𝜎B. Since
the variance of the difference of two independent variables is the sum of their two variances (𝜎2 = 𝜎2

A + 𝜎2
B),

then 𝜎A = 𝜎B is a factor 1∕
√

2 lower than the standard deviation found in Figure A1. For MCs, this implies
𝜎A = 𝜎B ≈ 8∘, and for shocks 𝜎A = 𝜎B ≈ 14∘. Next, since the distributions of 𝜆error,A −𝜆error,B for MCs and shocks
are comparable with a normal distribution (Figure A1), we suppose below that the error distribution of each
set of observations is a normal distribution with 𝜎 = 𝜎obs∕

√
2:

err(𝜆) =
1

𝜎
√

2𝜋
e−(𝜆∕𝜎)

2∕2. (A1)

In this framework, the observed distribution, obs(𝜆), is the result of the true distribution, true(𝜆), convoluted
with err(𝜆) (called the kernel of the convolution).

A2. Deconvolution of the Observed Probabilities
The deconvolution of a signal is a delicate problem, in particular, since we only have a crude approxima-
tion of the kernel with equation (A1) [Press et al., 1992, chapter 13]. Moreover, there are boundary effects at
𝜆 = 0∘ and 90∘. In order to limit them we take into account the properties of obs(𝜆). At 𝜆 = 0∘, obs(𝜆) is
maximum for MCs and close to zero for shocks. We keep these properties by imposing a symmetric (antisym-
metric) distribution for MCs (shocks), respectively. In the vicinity of 𝜆 = 90∘, the distributions are small so we
fix 𝜆> 90∘ with zero values on an interval larger than the kernel used. We compare different techniques of
deconvolution present in the Mathematica software (damped least squares, Wiener filter, and total variation).
The first one provides the best results since the estimated true(𝜆) distribution has less oscillations and the
back convolution of the results by the same kernel is closer to the original distribution.

The results of the deconvolution witherr(𝜆)with a standard deviation 𝜎d, for both MCs and shocks studied by
Feng et al. [2010], are shown in Figure 11 with the blue curves on the right panels. For MCs, we round 𝜎d ≈ 8∘
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to 10∘, closer to the shock value of 𝜎d = 14∘. The convolution of these results by the same kernel (𝜎c = 𝜎d)
are shown with the red curves. They are a smoothed version of the original distributions. Next, the green and
pink curves are the result by a convolution larger by 10∘ and 20∘, respectively (𝜎c − 𝜎d = 10∘ and 20∘). The
distributions (𝜆) broaden as 𝜎c is increased, as expected.

A3. Implications for the Derived MC and Shock Shapes
We find the best ellipsoidal model for each distribution, similar to the procedure of section 3.4. While the value
of 𝜎c changes significantly the 𝜆 distributions, its effect is small on the derived shapes (Figure 11, left). Indeed,
there is almost no difference between the shapes derived fromobs(𝜆) (histograms) and its deconvoluted ver-
sion (blue curves). This result could be anticipated from Figure 9 which shows that a large change of (𝜆) is
needed to have a meaningful change of the derived shape. Indeed, even further convoluting obs(𝜆) with a
kernel broader by 10∘ or 20∘, so increasing the error on 𝜆, only results in a slightly more bent axis. Quantita-
tively, for 𝜎c − 𝜎d = 0∘, 10∘ and 20∘ (red, green, and pink curves), we obtain b∕a = 1.3, 1.2, and 1.1 for MCs,
and b∕a = 1.2, 1.1, and 1.0 for shocks, respectively. Comparable results are also found with the cosine model
with a weak effect of the 𝜆 error magnitude on the parameter n f , then on the deduced shape.

We also explore the effect of a broader kernel for the deconvolution. Increasing 𝜎d implies a deconvoluted
(𝜆)with more oscillations. This is a classical result of the deconvolution, with even negative values appearing
in a deconvoluted function when the deconvolution kernel is broader than the original function. This is already
present for 𝜎d = 14∘ for shocks in Figure 11 and the probability(𝜆) has been represented with the constraint
(𝜆) ≥ 0 and a renormalization of the probability to get an integral equal unity. This unphysical negative
probability indicates that 𝜎d = 14∘ is an overestimation of the errors (said differently, with such dispersion on
the estimations of 𝜆, obs(𝜆) should be broader). With the above results from Figure 11, this further implies
that the computed shock shape is weakly affected by errors on 𝜆.
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