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ARTICLE

Phenome-wide analysis of Taiwan Biobank reveals
novel glycemia-related loci and genetic risks for
diabetes
Chia-Jung Lee1,13,14, Ting-Huei Chen2,3,14, Aylwin Ming Wee Lim 1,4, Chien-Ching Chang1, Jia-Jyun Sie5,

Pei-Lung Chen6,7,8, Su-Wei Chang9,10, Shang-Jung Wu1, Chia-Lin Hsu1, Ai-Ru Hsieh11✉,

Wei-Shiung Yang6,8,12✉ & Cathy S. J. Fann1✉

To explore the complex genetic architecture of common diseases and traits, we conducted

comprehensive PheWAS of ten diseases and 34 quantitative traits in the community-based

Taiwan Biobank (TWB). We identified 995 significantly associated loci with 135 novel loci

specific to Taiwanese population. Further analyses highlighted the genetic pleiotropy of loci

related to complex disease and associated quantitative traits. Extensive analysis on glycaemic

phenotypes (T2D, fasting glucose and HbA1c) was performed and identified 115 significant

loci with four novel genetic variants (HACL1, RAD21, ASH1L and GAK). Transcriptomics data

also strengthen the relevancy of the findings to metabolic disorders, thus contributing to

better understanding of pathogenesis. In addition, genetic risk scores are constructed and

validated for absolute risks prediction of T2D in Taiwanese population. In conclusion, our

data-driven approach without a priori hypothesis is useful for novel gene discovery and

validation on top of disease risk prediction for unique non-European population.
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Genetic epidemiological methodologies such as genome-
wide association studies (GWAS), phenome-wide asso-
ciation study (PheWAS), conditional GWAS, genetic

correlation1, and Mendelian randomization (MR)2 have allowed
elucidation into the convoluted interplay between genetics and
phenotypes of complex diseases in human. Conventionally,
genetic epidemiological studies focused on specific phenotypic or
disease trait, which, to date have reported more than 370,000
associations over 1800 traits3. However, complex diseases require
more in-depth parallel analysis due to the heterogeneity and
genetic pleiotropy of complex diseases. The abundance of both
genotype and phenotype data from biobanks such as the UK
Biobank (UKBB)4 and the Biobank Japan (BBJ)5 has allowed
extensive phenome-wide genome-wide association studies of
quantitative traits and diseases. However, most of the previous
discovery are based on subjects with European ancestry and
gradually, the establishment and maturation of biobanks with
non-European ancestry have revealed the importance of diversity
in genetic epidemiology6.

The population-based biobank of Taiwan (Taiwan Biobank,
TWB) was launched in 2012 and encompasses 0.61% of the total
population of Taiwan with more than 144,000 participants, which
is comparable to the population coverage of BBJ (0.16%) and
UKBB (0.74%). The majority of Taiwanese (over 99%) are of Han
Chinese ancestry who migrated from mainland China7,8. Ana-
lyses based on phenotypes in TWB may reveal significant genetic
effects of critical health-related traits in Taiwanese and in
extension, other populations with East Asian ancestry.

In this paper, we reported a comprehensive PheWAS of 10
diseases and 34 quantitative traits from TWB with com-
plementary conditional analysis, genetic correlation and MR. As
most of the available traits are cardio-metabolically related, we
focused our analysis on type 2 diabetes (T2D). T2D has been one
of the leading causes of mortality and morbidity in Taiwan with
high socioeconomic burden9. The T2D prevalence in Taiwanese
population was estimated to be 11.6% in 20169 with the average
age of onset around 59.5 years old10. In addition, the mean
annual cost for a patient with T2D-related major complications
was estimated to be USD $418911. T2D is a heritable trait com-
pounded by various degrees of gene–gene and gene–environment
interactions with heritability estimates ranging from 20 to 80%12.
The polygenic risk score (PRS), which aggregates the effects of
multiple disease-associated genetic variants, has previously been
used for T2D risk prediction in various populations. To further
improve the applicability of PRS on identifying high-risk indivi-
duals for early intervention specifically for Taiwanese, we con-
structed absolute risk models which incorporated various risk
factors for estimation on the probability that an individual free of
T2D at a given age will develop T2D in an upcoming time
interval.

Our findings of novel candidate genes (HACL1, RAD21,
ASH1L, and GAK) related to T2D in Asian population provided
insights into the pathophysiology of T2D, and could be potential
targets for clinical diagnosis and therapeutic interventions.

Results
Phenome-wide association analysis for 10 binary and 34
quantitative traits in TWB. Supplementary Data 1 summarizes
the PheWAS results for ten binary and 34 quantitative traits in
TWB. Detailed demographic data are presented in Supplementary
Data 2. About 6 million imputed autosomal SNPs passed our QC
criteria and were tested for associations with each of the 44 traits.
The 44 traits were grouped into nine categories (Supplementary
Data 1): anthropometric (n= 5), metabolic (n= 8), cardiovas-
cular (n= 6), hematological (n= 5), kidney-related (n= 6), liver-

related (n= 6), stress-related (n= 5), pulmonary-immunological
(n= 2), and articular-skeletal (n= 1).

In total, 995 significantly associated loci (P ≤ 5 × 10−8) with
more than 100 loci were found to be specific to the TWB
population (Supplementary Data 1 and Supplementary Data 3).
TWB PheWAS results is summarized in the Fuji plot5 (Fig. 1)
with each layer corresponding to a phenotype, and only
significant loci were plotted. We identified several pleiotropic
regions associated with multiple phenotypic categories (Supple-
mentary Data 4). For instance, chromosome 2 contains a highly
pleiotropic region (positions 27,508,345 through 27,527,678),
associated with 13 traits in four categories (hematological,
kidney-related, liver-related, and metabolic). This genomic region
contains a T2D-associated glucokinase regulator (GCKR).
Another highly pleiotropic region on chromosome 12 (positions
111,792,215 through 112,136,812) was associated with eight traits
in five different categories (anthropometric, kidney-related, liver-
related, vascular-metabolic, metabolic, and FVC). This pleiotropic
region on chromosome 12 contains two genes (ALDH2,
TRAFD1); genetic variants of ALDH2 have been shown to be
associated with risk to T2D, micro-vascular and macro-vascular
complications13,14. Further details of the PheWAS results are
available in Supplementary Data 4.

To control for the confounding effect of LD, conditional
association analyses were carried out with adjustment for
corresponding lead SNPs. We found further 115 independent
significant signals (lead SNP r2 ≤ 0.1; P ≤ 5 × 10−8). Of these
signals, 38 were mapped to genes different from their corre-
sponding lead SNPs (Supplementary Data 5). Of the 15 TWB
unique signals (Supplementary Data 5), 6 were mapped to genes
different from their lead SNP in conditional analyses. This result
demonstrated the power of conditional analysis to resolve
confounding effects due to LD within an associated region, and
to discover putative candidate genes that might be missed by
marginal association analyses.

Shared genetic architectures between traits. To elucidate the
underlying mechanisms of identified associations, we estimated
genetic correlations between each pair of quantitative traits and
binary diseases using bivariate LD score regression1 as shown in
Fig. 2, Supplementary Fig. 1, Supplementary Data 6, and Sup-
plementary Data 7. Of the 101 genetic associations identified with
FDR ≤ 0.05, the strongest signal was found between hypertension
and mean arterial pressure (rg= 0.846, FDR= 4.93 × 10−102). For
the vascular-metabolic traits, T2D was found to be significantly
associated with 27 quantitative traits, such as HbA1c, BMI, WC
(Supplementary Data 6 and Supplementary Data 7). As expected,
HbA1c has the strongest correlation (rg= 0.756, FDR= 1.06 ×
10−22) with T2D. Moreover, we identified several association
signals previously reported by BBJ5 as well as other studies. For
example, we observed significant correlations between T2D and
several kidney-related traits, such as microalbumin15 (rg= 0.661,
FDR= 1.90 × 10−3), uric acid16 (rg= 0.260, FDR= 9.61 × 10−5),
and BUN17 (rg= 0.171, FDR= 1.85 × 10−2).

Mendelian randomization. MR analyses were carried out for
BMI, Waist circumference, Body fat percentage, Waist-hip ratio,
Hip circumference, triglyceride, HDL-C, and VLDL-C against
glycemia-related traits (T2D, HbA1c, and FG) (Supplementary
Data 9–11). We identified 180, 186, and 185 instrumental variables
(IVs) at a genome-wide significance level and clumping threshold
of r2= 0.01 associated with T2D, HbA1c, and FG, respectively. Of
these 551 IVs, none of them were found to have horizontal
pleiotropy effects on glycemia-related traits by MR-Egger. All of
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the 551 IVs have passed the SNP outlier test (unknown pleiotropic
SNPs) through MR-PRESSO.

In the two-sample MR analysis on T2D, the overall causal
estimate (IVW odds ratio (OR) estimate) for T2D per unit
increase in BMI was 1.2566 (P= 0.0011), for the effect of a 1-unit
increase in HDL-C on the risk of T2D was 0.9762 (P= 0.0087),
and for the effect of a 1-unit increase in VLDL-C on the risk of
T2D was 0.9832 (P= 0.01) (Supplementary Data 9). In the two-
sample MR analysis on HbA1c, the overall causal estimate for
HbA1c per unit increase in BMI was 1.0317 (P= 0.0071)
(Supplementary Data 10). As for the two-sample MR analysis
on FG, the overall causal estimate for FG per unit increase in
HDL-C was 0.9472 (P= 0.0229) (Supplementary Data 11). By
contrast, Waist circumference, Body fat percentage, Waist-hip
ratio, Hip circumference, and triglyceride were not found to be
significantly associated with T2D, HbA1c, and FG (Supplemen-
tary Data 9–11). After the Bonferroni correction (P= 0.0021
(0.05/24)), the causal relationship between BMI and T2D

remained from our MR analyses. In our study, lipid profiles
such as HDL-C and VLDL-C were found to be superior to
anthropometric measurements in predicting the risk of glycemia-
related traits.

GWAS of T2D and glycemia-related phenotypes. GWAS of FG
(N= 75,627) (Supplementary Fig. 2) identified 29 significantly
associated loci (such as CTBP1-DT, STEAP2-AS1, NOM1/MNX1,
and GAD2) (Supplementary Data 1), while GWAS of HbA1c

(N= 76,171) (Supplementary Fig. 2) found 26 significantly
associated loci including HACL1 (Fig. 5), CTBP1-DT, and
C5orf67. GWAS of 63,177 non-diabetic controls (94.3%) and
3844 T2D subjects (5.7%) (Supplementary Fig. 2) revealed seven
SNPs significantly associated with T2D (Supplementary Data 1,
Supplementary Data 3): CDKAL1, MIR129-1, LEP, SLC30A8,
MED30, CDKN2B-AS1, DMRTA1, CDC123, CAMK1D, KIF11,
HHEX, and KCNQ1. Collectively, we identified 41 genes sig-
nificantly associated with T2D and glycemia-related phenotypes

Fig. 1 Overview of loci identified in this PheWAS and their pleiotropy. a Number of identified loci for each trait group by trait categories. Color saturation
indicates whether the locus has pleiotropic effects. White: trait-specific locus; medium saturation: shared locus within a single trait category; full saturation:
shared locus between trait categories. b Fuji plot of the 41 traits having association signals. Each association lead SNP is presented as a dot and arranged by
its physical position along the angle starting from the 12 o’clock position. Each line corresponds to a trait indicated in (a) and each lane is colored by the
color of trait category. The larger dots indicate pleiotropic association loci. c The number of associated traits for each inter-categorical pleiotropic locus.
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with some SNP to be shared among the glycemic traits and T2D
(for e.g.,: MED30/SLC30A8, CDC123) (Supplementary Data 8
and Fig. 3). Summary of SNPs and mapped gene by FUMA
SNP2GENE are shown in Supplementary Data 12–14, Supple-
mentary Table 1, and Supplementary Figs. 3–4. From the SNPs

identified, most of them are located in intronic and intergenic
region; only a minuscule number of SNPs are located in the
exonic region (T2D: 0.3%, HbA1C: 1.4%, Fasting glucose: 0.8%)
(Supplementary Table 1 and Supplementary Fig. 3). The mapped
genes were not statistical significantly expressed in any specific
tissue types (Supplementary Fig. 4). However, we noticed upre-
gulation of differentially expressed genes in glycaemic-related
tissue types such as kidney, pancreas, stomach and adipose tis-
sues. A summary of the functional annotation of the mapped
genes are available in Supplementary Data 12–14.

Conditional association analyses. Conditional association ana-
lysis using the lead SNPs as covariates was performed for all SNPs
in each locus. Ten SNPs were significantly associated with FG
independent of their lead SNPs. Of these, eight were associated
with the same genes as their lead SNPs despite low r2; while the
other two were located on different genes (Supplementary
Data 5). For instance, rs742763 and its lead SNP rs9380826 were
all mapped to GLP1R. In contrast, rs2632372 and its lead SNP
rs1402837 were respectively mapped to NOSTRIN and G6PC2.
Fourteen SNPs were associated with HbA1c independent of their
lead SNPs with eight SNPs mapped to the same genes as their
respective lead SNPs (Supplementary Data 5). For example, an
independent SNP rs75151020 and its lead SNP rs742761 were
both mapped to GLP1R. In contrast, rs1326821916 and its lead
SNP rs72501962 were separately mapped to GAK and CTBP1-DT.

For T2D, the associations of two SNPs (rs11994747 and
rs115894051) on different loci remained loci-wide significant
(P ≤ 1 × 10−5) after adjustment. (Supplementary Data 5). In
contrast, rs11994747 was associated with T2D independent of its
lead SNP rs35859536. The potential genes for lead SNP
rs35859536 are SLC30A8/MED30, whereas rs11994747 is located
in the intronic region of RAD21 (Supplementary Data 5). RAD21
has never been reported to be associated with T2D or any
glycemia-related phenotypes.

The conditional association analyses revealed another 26
additional independent loci (such as RAD21, CAMKMT/
LINC01833, NOSTRIN, ASH1L, GAK, POLD2/MYL7, SND1,
STARD13, and LUC7L). NOSTRIN, POLD2/MYL7, CAMKMT/
LINC01833, and SND1 were previously reported to associate with
glycemia-related phenotypes18–21. STARD13 and LUC7L were

Fig. 2 Genetic correlation between binary and quantitative traits. Pairwise genetic correlations (n= 946) were estimated by bivariate LD score
regression (full correlation results are shown in Supplementary Fig. 2). Only correlations between 10 binary traits and 34 quantitative traits (n= 340) are
presented in this figure. Positive and negative correlations are colored in blue and red, respectively. The intensity of correlation is indicated by the color
saturation. The FDR is calculated by the Benjamini–Hochberg method. Size of the color block represents the FDR of each correlation, and significant
correlations (FDR≤ 0.05) are indicated by asterisks.

Fig. 3 Overlapping loci within glycemic traits. The upset plot59

summarizes shared loci of three glycemic traits. The dot-and-line chart in
the bottom combination matrix indicates intersections between three traits.
For example, the second column from the left indicates a set of loci only
associated with HbA1c, while the middle column indicates loci associated
with both HbA1c and FG. The upper bar chart shows the number of
associated loci in each set. The lower left horizontal bar chart represents
the number of loci associated with T2D (7), HbA1c (26), and FG (29).
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associated with hemoglobin22 and thus not considered to be
associated with glycemic traits.

Absolute risk of developing T2D in the Taiwanese population.
The absolute risk modeling for T2D was based on variables
including PRS quintile, family history of T2D, BMI, and sex. The
10-year absolute T2D risk demonstrated a significant risk
separation across different combinations of PRS, BMI and sex in
the Taiwanese population aged 30 to 50 with or without the
presence of family history of T2D (Fig. 4 and Supplementary
Data 15). For instance, a 40-year-old male without T2D family
history, with BMI > 28 and qPRS= 4 (the 4th PRS quintile), has
an estimated 10-year absolute T2D risk of 22.6% compared to
7.0% for a male of the same age and qPRS but with normal BMI,
and to 7.1% for a male of the same age and BMI but lowest qPRS.
Through our analysis, BMI was identified to have the highest risk,
which can increase the probability by 15.6% compared to normal
BMI, when given other risk values were the same. PRS also gave a
similar effect with 15.5%. Validation results based on prospective
cohort samples showed that the model had good calibration of
relative risk for all sub-groups except for the sub-group of males
aged older than 45 years as assessed by the chi-square goodness of
fit test shown in Supplementary Fig. 5. Absolute risk (AR) had
good calibration for the sub-group of male aged younger than 45
while the observed AR in TWB cohort sample were lower than
the model projected ones, assessed by Hosmer-Lemeshow good-
ness of fit test.

Discussion
Here we present a large-scale PheWAS of ten binary and 34
quantitative traits in 77,072 Taiwanese participants from TWB,
identifying 995 association signals. This information in combi-
nation with the data from other ancestries or geographic regions
will provide more insight into the genetic architecture of cardi-
ometabolic traits for people from different parts of the world. Wei
et al.23 showed that TWB cohort represented diverse ancestry of
the different province of mainland China and 99% of TWB
cohort were Han Chinese. Genetic architecture of Han Chinese is
relatively similar to other East Asian populations such as JPT and
KHV population from 1000 genome. For diabetes, comparisons
of the genetic data from different populations may help to

decipher the genetic mechanisms underlying the pathophysiology
of T2D for individuals of different ancestries.

As demonstrated in the Fuji plot, we identified several highly
pleiotropic loci and discovered putative shared genetic effects for
several diseases or traits. For example, GCKR shows interesting
pleiotropic effects. Previously, it has been shown to be associated
with T2D24, gestational diabetes25, triglyceride26, and fatty liver24.
GCKR encodes a regulatory protein for glucokinase (GCK), reg-
ulating the subcellular localization and allosteric switch of GCK,
the rate-limiting enzyme for cellular glucose uptake27,28. These
results clearly demonstrate the strength of PheWAS in identifying
genes with pleiotropism on T2D and its comorbid traits. The lead
SNP rs6547692 for GCKR gene has a similar prevalence across
TWB (MAF= 0.485), BBJ (MAF= 0.4387) and UKBB (MAF=
0.44). The regional association plot for rs6547692 (GCKR) is
shown in Fig. 5.

Our GWAS analysis revealed novel association of HACL1 with
HbA1C (rs1481559294, P= 4.42 × 10−8) in 77,072 individuals.
The recent largest trans-ancestral GWAS of glycemic traits
showed marginal significance (P < 1 × 10−3) of several single-
nucleotide variations within HACL1 (chromosome 3 from
genomic position of 15,560,699 to 15,601,569) in sub-population
of around 10,000 individuals29. Their meta-analysis results con-
sist of 281,416 individuals with 13% East Asian. From Genome
Aggregation Database (gnomAD)30, we noticed that
rs1481559294 for HACL1 was a relatively rare variant (African
n= 42,024 MAF= 0.00002, East Asian n= 3132 MAF= 0.0006)
as compared to the MAF in our population of 0.0013
(n= 77,702). The regional association plot for rs1481559294
(HACL1) is shown in Fig. 5. HACL1 encodes for the enzyme 2-
hydroxyl-CoA lyase 1 which is involved in catalyzing the con-
version of even-chain fatty acids into odd-chain fatty acids by
cleaving C1 in peroxisome fatty acid α-oxidation31. Jenkins et al.
showed that Hacl1 knockout mice had lower plasma and liver
C17:0 fatty acid, but did not observe significant difference in
adipose tissue32. Gene expression of HACL1 has low tissue spe-
cificity, however, transcriptomics data showed tissue expression
of HACL1 clustered in the intestine and liver, associated with
lipid metabolism (Supplementary Fig. 6). Kocarnik et al. pre-
viously reported that SNP rs73148185, which was mapped to
HACL1, was associated to C-reactive protein level in a multi-
ethnic population33. Chronic systemic inflammation signified by

Fig. 4 10-year absolute risk of type 2 diabetes for subjects without and with a family history of type 2 diabetes by age and risk profiles. a Subjects
without a family history. b Subjects with family history.
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elevated C-reactive protein level is a key underlying pathophy-
siology in patients with T2D34. PheWAS of rs1481559294 showed
association with glycemic traits of HbA1C and FG while dis-
playing nominal significant association with known cardiometa-
bolic risk factors such as waist circumference and other
anthropometric traits (Supplementary Fig. 7). The tissue expres-
sion HACL1, association with known T2D risk factors and rele-
vancy in lipid metabolism could indicate an indirect, yet
important genetic variant associated with glycemic trait specifi-
cally in the Taiwanese population.

Another intriguing finding from our GWAS was the associa-
tion of GAD2 (Glutamate decarboxylase 2) (rs61839365,
P= 1.37 × 10−11) with fasting glucose. GAD2 (rs2839671,
P= 8.95 × 10−9) was recently reported in the same trans-
ancestral GWAS of glycaemic traits by Chen et al.29. Despite
having a smaller sample size, we managed to identify the asso-
ciation of GAD2 with fasting glucose, highlighting the importance
of genotype data from diverse ancestries such as Taiwan Han
Chinese. The lead SNP rs61839365 for GAD2 is more prevalent in
East Asian with MAF of 0.293 in TWB and 0.416 in BBJ as
compared to 0.18 in UKBB. The regional association plot for
rs61839365 (GAD2) is shown in Fig. 5. GAD2 is a major auto-
antigen in autoimmune-associated type 1 diabetes and in a subset
of T2D, latent autoimmune diabetes in adults35. Glutamate dec-
arboxylase 2 catalyzes the formation of gamma-aminobutyric acid
(GABA). GABA is an inhibitory neurotransmitter that is a critical
component of neurophysiologic function. Upon the stimulation
of glucose, GABA, co-secreted with insulin, has been shown to
inhibit glucagon secretion via the activation of GABAA-receptor
chloride channels of α cells36. It has also been documented that
beta cells secrete GABA in a pulsatile manner in synchrony with
insulin secretion37. The storage and secretion of GABA in beta
cells are defective in islets of type 1 and type 2 diabetic patients37.
Taken together, it is plausible that GAD2 may modulate the blood
glucose level by regulating glucagon secretion. GAD2 is highly
expressed in brain tissues (especially the hypothalamus) (Sup-
plementary Fig. 6), strengthening the understanding of key role of
the hypothalamic–pituitary–adrenal axis in neuroendocrine dys-
regulation of T2D38.

The conditional association analyses revealed three novel
genetic association with glycaemic traits (RAD21, ASH1L and
GAK). The regional association plots (before and after conditional
analysis) for rs11994747 (RAD21), rs371382391 (ASHIL) and
rs1326821916 (GAK) are shown in Supplementary Fig. 8. All
three genes have low tissue specificities, with almost equal gene
expression across different tissue types (Supplementary Fig. 9).
ASH1L and GAK were previously reported to be associated with
obesity traits such as BMI and waist-hip ratio in GWAS of UK
Biobank39. Obesity traits were shown to have significant genetic
correlation and are causally associated with glycaemic traits in
our pairwise genetic correlation analysis and MR. Furthermore,
Klarins et al. reported that GAK was associated with lipid traits
(HDL and TG) in their genome-wide meta-analysis. Lipid traits
were also shown to have significant genetic correlation and cau-
sally associated with glycaemic traits in our pairwise genetic
correlation analysis and MR40. All these implied that ASH1L and
GAK are crucial cardiometabolic genes in T2D. Inhibition of
RAD21 has been demonstrated to increase insulin secretion in a
MIN6 mouse beta cell line17 and RAD21 was associated with
reduced hematopoietic stem cell self-renewal in aging and
inflammation41. Rare mutation of RAD21 has been reported in
Cornelia de Lange syndrome with premature physiological aging
and gastrointestinal tract difficulties42. However, RAD21 has
never been reported to be linked to any cardiometabolic traits in
any GWAS. Further functional work in both cellular and animal
model will be required to confirm the role of RAD21 in T2D and
the link between insulin secretion, physiological aging and T2D.

As discussed in ref. 43, it is more ideal to consider the ancestry-
trait-specific Bonferroni-corrected significance threshold. In our
study, we only consider the Taiwanese population, and the
maximum number of tested SNPs is 5,981,581 for all traits.
Therefore, the most stringent ancestry-trait-specific Bonferroni-
corrected significance threshold would be 8.36 × 10−9. Among the
three highlighted genes that were identified based on the tradi-
tional threshold 5 × 10−8 only the gene HACL1 (rs1481559294)-
HbA1c trait with P value= 4.24 × 10−8 larger than the most

Fig. 5 Regional association plots, identified by comparison of Taiwan
Biobank (TWB), Japan Biobank (BBJ) and UK Biobank (UKBB) genome-
wide association studies (GWASs). The X axis represents the position of
loci (hg19). The Y axis represents –log10(P). Red dots are P values of
variants from TWB. Green dots are p values from the BBJ. Blue dots are P
values from UKBB. The red horizontal line represents P= 5 × 10−8. The
black dashed line represents the location of the gene. a GCKR gene; b HACL1
gene; and c GAD2 gene.
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stringent Bonferroni-corrected significance threshold in our
study. However, as mentioned above that the study of Hacl1
knockout mice supports the potential involvement of HACL1 for
fatty acid, we believe that HACL1 is still a promising candidate
gene for metabolic traits.

Our absolute risk model for T2D using PRS and risk factors
should be applicable for any Asian population. The strengths of
absolute risk model for T2D are the combination polygenic risk of
SNPs and risk factor measurements for all subjects allowed joint
evaluation on the effects of PRS and family history of T2D. Our
findings could be useful in global efforts to generate trans-
ancestry PRS. The good model calibration of relative risk
demonstrated the validity of the model. The main limitation of
our PRS model is that self-report disease status often under-
estimates the true disease prevalence/incidence. As TWB is an on-
going project, we expect to have a sufficiently large follow-up
dataset on T2D in the near future, which will allow us to validate
our prediction model and evaluate its applicability for
population-wide screening on T2D to identify high-risk indivi-
duals for early intervention.

Methods
Study population. We used individual genotype and phenotype data of subjects
recruited from 2012 to 2019 of Taiwan Biobank (TWB) for subsequent data
analysis. (https://www.twbiobank.org.tw/) The population in Taiwan consists of
mostly East Asian ancestry, specifically Han Chinese, therefore, they are suitable to
serve as a representative study sample for Asian population. Detailed information
of TWB dataset is available in the previous publication23. This study has been
approved by the internal review board of the Academia Sinica (Num: AS-IRB02-
109063) and the research ethics committee of Taiwan University Hospital (No.
201507020RINB), and Taiwan Biobank. All participants gave informed consent
when joining TWB, which allows for sharing of all anonymized data with
authorized researchers. Participants can withdraw consent to sharing their data at
any stage of their participation in TWB.

GWAS. We conducted GWAS through logistic regression model (for binary traits)
and linear regression model (for continuous traits) under the assumption of
additive allelic effects of the SNP dosages via PLINK v2.0. The regression models
were adjusted for age, gender and the first ten genetic principal components.

Genotyping and imputation. Detailed genotyping and imputation procedures
have been described earlier23. For this study 95,252 subjects were genotyped with
either the customized TWB1 array (NTWB1= 27,737 DNA variants) or TWB2 array
(NTWB2= 68,978) or both (Nboth= 1496) and the last group was also typed by
whole genome sequencing (WGS).

Quality control
Binary traits. We first homogenized control individuals by removing comorbid
individuals for each trait. Comorbid diseases are defined by a data-driven method
using the Partitioning Around Medoids (PAM)44 algorithm in the cluster package
of R (version 3.6) and φ-correlation as our distance matrices. Best-fit group
numbers were selected by maximizing the silhouette score45. The final sample sizes
for each trait are shown in Supplementary Data 1.

Quantitative traits. For each trait, outliers beyond three standard deviations (two-
tailed) were excluded. Individuals with missing values in any trait were dropped
from the analysis. A total of 34 quantitative traits were used in this study (Sup-
plementary Data 1).

Genotype data. The genotype data from the TWB1 and TWB2 arrays were merged
using the GRCh38 assembly and annotation provided by TWB. After filtering out
samples with a call rate <0.99 and sex mismatch in either of the TWB1 and TWB2
datasets, 95,215 samples and 95,673 variants remained. For kinship estimation,
computation of principal components (PCs), and genomic relation matrix, SNPs
were extracted by the following criteria: (1) SNP IDs, chromosomes, physical
positions, minor alleles and major alleles had to be all identical in both datasets; (2)
call rate >0.95; (3) MAF > 0.01; (4) deviation from Hardy–Weinberg equilibrium
(HWE) P > 0.001; and (5) no INDELs. For sample filtering, arrays with generated
genotypes for <95% of the loci were excluded. PLINK v1.9 software was used to
identify samples with genetic relatedness indicating that they were from the same
individual or from first-, second- or third-degree relatives. These determinations
were based on evidence for cryptic relatedness from identity-by-descent status (pi-
hat cutoff of 0.125). After removing first-, second- and third- degree relatives,
77,072 independent samples and 59,521 SNPs remained.

Imputation data. For our analysis, we merged the imputed TWB1 and TWB2
genotype data and selected SNPs according to the merged imputation data released
by TWB. Low-quality variants were filtered out using PLINK if an SNP met any of
the following criteria: (1) MAF ≤ 0.001; (2) imputation INFO score ≤ 0.8; (3) call
rate ≤ 0.95; and (4) deviation from HWE (P ≤ 10−10). Supplementary Table 1
shows the number of SNPs included in the analyses for each trait.

For building PRS model. Additional typical QC procedure for SNPs to build PRS
models were applied. Multiallelic SNPs and SNPs with ambiguous strands were
removed from the analysis. SNPs with MAF ≤ 0.01, low imputation quality (info
<0.3) or deviation from HWE (P < 10−6) were also excluded.

Statistics and reproducibility
PheWAS. Significant signals for all binary traits were first screened using a genome-
wide significance threshold of P ≤ 5.0 × 10−8 with PLINK2 (https://www.cog-
genomics.org/plink/2.0). Linear regression models were used to evaluate the
association of all SNPs with each of the 34 quantitative traits under the assumption
of additive allelic effects by PLINK. Unless described otherwise, both binary and
quantitative traits were adjusted for age and sex with the first ten principal com-
ponents (PCs) estimated by EIGENSOFT (version 6). Since the standard threshold
of 5 × 10−8 had been used in many PheWASs such as in homogeneous
population20 and also in trans-ancestral analysis29, therefore, we set the standard
threshold of 5 × 10−8 for our GWAS.

Conditional association analysis. Conditional analyses were performed for each
aforementioned defined locus using the PLINK2 “--condition” flag. Association
tests were conducted based on the generalized linear model with adjustment for all
covariates listed in the PheWAS section and an additional lead SNP genotype.
Linkage disequilibrium (LD) was estimated with the pairwise squared correlation
(r2) within each locus with a window size of 4000 SNPs using 1496 TWB WGS
data. SNP was considered to be independent of the lead SNP if r2 ≤ 0.1.

Gene mapping and functional annotation. Post-GWAS analysis of gene mapping,
functional annotation, and tissue-expression analysis of prioritized genes was
conducted using FUMA SNP2GENE and GENE2FUNC functions46. Independent
significant SNPS are defined as P < 5 × 10−8 and r2 < 0.6, lead SNPs if pairwise
SNPs had r2 < 0.1. The maximum distance between LD blocks to merge into a
genomic locus was set as 250 kb. The genetic data of East Asian populations in
1000 G phase 347 were viewed as reference data to conduct LD analyses. Gene
expression of different tissues was estimated with gene expression data of 54 tissue
types from GTEx v848. Consensus transcript expression levels for HACL1 and
GAD2 in 55 human tissues were also generated from Protein Atlas based on
transcriptomics data from the two sources HPA and GTEx49.

Phenotype–phenotype genetic correlation. We used bivariate LD score regression1 to
calculate genetic correlations between all phenotype pairs. TWB WGS data of
1496 samples were used to compute LD scores with a one cM window size.
Summary statistics of the SNPs passing QC criteria described in the above methods
section were utilized to perform this calculation. The false discovery rate (FDR)
calculated by the Benjamini–Hochberg method50 was used to adjust for multiple
testing of 946 combinations of pairs of traits using the Python module statsmodels
(www.statsmodels.org). A significant genetic correlation between phenotypes was
considered if FDR ≤ 0.05. Data visualization was performed through the ldsc-
corrplot-rg script (https://github.com/mkanai/ldsc-corrplot-rg) and R.

Mendelian randomization. Mendelian randomization (MR) methods utilize com-
mon genetic variants to estimate the causal relationship of risk factors with disease
outcomes2,51. In our MR analysis, we first filtered horizontal pleiotropic instru-
mental variables (IVs)52 using MR-Egger53 and identified outliers through MR-
PRESSO54. Finally, the valid IVs were applied through IVW55 to analyze causal
relationships between the following eleven clinical measurements as exposures (i.e.,
BMI, waist circumference, body fat percentage, waist-hip ratio, hip circumference,
triglyceride, HDL-C, VLDL-C), and outcomes (i.e., three glycemia-related traits:
T2D, FG, and HbA1c).

TWB samples was randomly split into two sub-groups: 3/4 (G group) for
GWAS and the remaining 1/4 (MR group) was tested using the IVW method for
MR analysis. For the IV selection, GWAS were carried out in the same manner
described above using the G group, and significant SNPs for the eight exposures
were selected. The causal associations of the eight exposures with T2D were
investigated using the MR group with logistic regression models. The resulting
associated SNPs (IVs), their regression coefficients and the effect estimates of the
exposures on the outcome were obtained by pooling all MR estimates using the
random-effects IVW method. To ensure independence of IVs, strict clumping was
performed with a r2 threshold of 0.01 and physical distance threshold of 10 Mb
through clump command of the TwoSampleMR package56 in R.

Data preprocessing for absolute risk modeling. To build absolute model for T2D risk
estimation based on PRS and risk factors in T2D-free individuals, we divided the
process into three stages: construction of PRS, absolute risk modeling, and
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validation analysis. For the data preprocessing, we first identified individuals who
were free of T2D at baseline and with more than one visit records, which was
15,664 individuals, to be utilized subsequently in the validation analysis (TWB-for-
val). For the PRS model construction, we randomly selected one third of the
remaining TWB samples, excluding the 15,664 individuals for validation analysis
(TWB-for-PRS). The remaining 2/3 samples (TWB-for-AR) was used to build the
absolute risk model.

Constructing polygenic risk score (PRS) model. A PRS was calculated as a weighted
sum of the number of alleles of SNPs. To estimate the weights for PRS models, we
used GWAS summary statistics from BBJ: estimates of regression coefficients (β̂j),
their standard errors (σ̂ j), and associated P values (pj) for each SNP j. The QC
procedure for SNPs is available in methods.

To calculate PRS, two methodologies were utilized. The first method was the
standard clumping and thresholding (C+ T) method. The hyperparameters for
this method were the thresholds for the correlation r2 and P value p. The parameter
spaces were the Cartesian product of r2 and p, where r2 2 {0.01,0.1} and p 2
{0.05,0.001,0.005,1e−4,5e−4,1e−5,5e−5,5e−6}. For each pair of (r2; p), we used
PLINK with a window size of 10Mb to select SNPs. For model selection, we used
the TWB-for-PRS sample to choose optimal tuning parameters. The second
method was the C+ T method with winner’s curse correction proposed by Shi
et al.57 and the same strategy to select an optimal PRS model.

Absolute risk modeling and validation analysis for T2D. To build the absolute risk
model, we utilized the R package iCARE58 to project the individual risk. We used
the best PRS model described above and transformed it into 4 quintile variables to
facilitate interpretation, where the first quintile represents the lowest 20% of the
PRS sample in our sample population and so forth for the other quintiles. Similarly,
the continuous BMI values were categorized into four classes (BMI < 18.5,
18.5 ≤ BMI < 24, 24 ≤ BMI < 28, 28 ≤ BMI). To apply iCARE for absolute risk
estimation, relative risk (RR) estimates is required for all variables in the model,
including PRS quintiles, categorical BMI, and family history of T2D. We used
TWB-for-AR samples to estimate odds ratio (OR) associated with the aforemen-
tioned variables by logistic regression. As the prevalence of T2D in the Taiwanese
population is about 10%, the OR gives a reasonable approximation to the RR.
Absolute risk estimation was also based on the age and sex-specific T2D incidence
rate and mortality rate from causes other than T2D in the Taiwanese population as
recommended in ref. 9 and data from the Taiwan Ministry of Health and Welfare
(https://www.mohw.gov.tw/mp-2.html). Note that the data on the incidence and
mortality rates from these references are based on diabetes mellitus cases; however,
they should provide a reasonably good approximation to T2D as T2D represents
the majority (>95%) of diabetes mellitus cases in our data.

Lastly, we used the R package iCARE to conduct validation analysis on TWB-
for-val sample. Model calibration was assessed by comparing the model projected
absolute and relative risk estimates to the observed values in the TWB-for-val
sample. The Hosmer-Lemeshow and Chi-square tests were used to judge goodness
of model fit, respectively. In addition, the model discrimination was assessed by
area under the curve (AUC).

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
GWAS summary statistics of T2D, HbA1c, and Fasting Glucose have been provided to
the NHGRI-EBI GWAS Catalog, and the study accession numbers are GCST90161239,
GCST90161237, GCST90161236. Summary statistics were downloaded from the UKB
Biobank (UKBB) and the Biobank Japan Project. The Biobank Japan Project: Summary
statistics of T2D, HbA1c, and Blood sugar were acquired from the Biobank Japan Project
website (http://jenger.riken.jp/en/result). The UK Biobank: Summary statistics of T2D,
HbA1c and Fasting Glucose were acquired from Neale’s lab website (GWAS round 2)
(http://www.nealelab.is/uk-biobank). Supplementary Data 4 contains source data
underlying Fig. 1a. Supplementary Data 15 contains source data underlying Fig. 4. Other
data used in this study were obtained from Taiwan Biobank, which is publicly available
on request, while we are not authorized to redistribute the data. Analysis results can be
shared on request by contacting the corresponding authors for reasonable use.

Code availability
No custom computer code was used in this study. We used publicly available software (URLs
listed below) in this research. Genetic association analyses were performed using PLINK2
(https://www.cog-genomics.org/plink/2.0). The Mendelian Randomization analyses were
done using the R package MendelianRandomization (https://cran.r-project.org/web/
packages/MendelianRandomization/index.html). Polygenic risk scores were calculated using
the software plink (https://www.cog-genomics.org/plink/) and R programming (https://www.
r-project.org), and absolute risk estimation was conducted by R package iCARE (https://
www.bioconductor.org/packages/release/bioc/html/iCARE.html). SNP heritability and

genetic correlations were estimated using LD score regression (https://github.com/bulik/ldsc)
and LD hub (http://ldsc.broadinstitute.org/). Functional annotations were done using FUMA
(https://fuma.ctglab.nl/). LocusZoom (https://github.com/Geeketics/LocusZoms). UpSet plot
(https://github.com/hms-dbmi/UpSetR). Liftover (https://genome.sph.umich.edu/wiki/
LiftOver).
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