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Emma C. Johnson, Arpana Agrawal, and Ryan Bogdan

ABSTRACT

BACKGROUND: Vulnerability to COVID-19 hospitalization has been linked to behavioral risk factors, including
combustible psychoactive substance use (e.g., tobacco smoking). Paralleling the COVID-19 pandemic crisis have
been increasingly permissive laws for recreational cannabis use. Cannabis use disorder (CUD) is a psychiatric
disorder that is heritable and genetically correlated with respiratory disease, independent of tobacco smoking. We
examined the genetic relationship between CUD and COVID-19 hospitalization.

METHODS: We estimated the genetic correlation between CUD (case: n = 14,080; control: n = 343,726) and COVID-
19 hospitalization (case: n = 9373; control: n = 1,197,256) using summary statistics from genome-wide association
studies. Using independent genome-wide association studies conducted before the pandemic, we controlled for
several covariates (i.e., tobacco use phenotypes, problematic alcohol use, body mass index, fasting glucose,
forced expiratory volume, education attainment, risk taking, attention-deficit/hyperactivity disorder, Townsend
deprivation index, chronic obstructive pulmonary disease, hypertension, and type 2 diabetes) using genomic
structural equation modeling. Genetic causality between CUD and COVID-19 hospitalization was estimated using
latent causal variable models.

RESULTS: Genetic vulnerability to COVID-19 was correlated with genetic liability to CUD (rg = 0.423 [SE = 0.0965],
p = 1.33 X 10~%); this association remained when accounting for genetic liability to related risk factors and covariates
(b = 0.381-0.539, p = .012-.049). Latent causal variable analysis revealed causal effect estimates that were not
statistically significant.

CONCLUSIONS: Problematic cannabis use and vulnerability to serious COVID-19 complications share genetic
underpinnings that are unique from common correlates. While CUD may plausibly contribute to severe COVID-19
presentations, causal inference models yielded no evidence of putative causation. Curbing excessive cannabis
use may mitigate the impact of COVID-19.

https://doi.org/10.1016/j.bpsgos.2021.06.005

Paralleling the COVID-19 pandemic has been an increase in
substance use (1) and a continuation of increasingly permis-
sive laws surrounding cannabis. On February 5, 2021, the state
of Virginia voted to join 15 states (and the District of Columbia)
that have already legalized recreational cannabis use. Legali-
zation is associated with increased use, and 20% of individuals
who have tried cannabis develop cannabis use disorder (CUD)
(2), a moderately heritable (50%-60%) psychiatric syndrome
(3) that shares risk with respiratory disease (4). Because the
heterogeneous presentation of COVID-19 is partially attribut-
able to host genomic background and respiratory symptoms
are the primary reason for hospitalization and death (5), CUD
may contribute to severe COVID-19 presentations.

The COVID-19 Host Genetics Initiative represents a
collaboration of international investigators with data examining
various aspects of COVID-19 illness via genome-wide asso-
ciation studies (GWASs). This effort includes laboratory-
confirmed, physician-designated, and severe COVID-19
hospitalization, with comparisons to assessed and general

© 2021 Published by Elsevier Inc on behalf of Society of Biological Psychiatry. This is an

population controls (5). Consistent with evidence that CUD is
associated with heightened COVID-19 risk and lifetime sub-
stance use disorder is associated with COVID-19 hospitaliza-
tion and death (6), phenome-wide association studies have
begun to demonstrate genetic associations between these
COVID-19 disease definitions and a host of substance use
behaviors (7). Mendelian randomization (MR), an approach
aimed at estimating causality using genetic instruments [e.g.,
genome-wide significant variants (8)], has also elucidated pu-
tative causal effects of correlated conditions, such as body
mass index (BMI), on COVID-19 (9).

Here, we leveraged GWAS summary statistics to estimate
whether genetic liability to CUD [case: n = 14,080; control: n =
343,726; (4)] may plausibly influence COVID-19 hospitalization
[case: n = 9373; control: n = 1,197,256; (5)]. First, we estimated
their genetic correlation using linkage disequilibrium score
regression (LDSC) (10). Then, we used genomic structural
equation modeling (QSEM) (11) to test whether the genetic
correlation between CUD and COVID-19 is independent of
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potential confounders (i.e., tobacco-smoking phenotypes,
problematic alcohol use, cannabis use, pulmonary function,
metabolic traits, socioeconomic status, and impulsivity, as well
as chronic conditions, such as chronic obstructive pulmonary
disease [COPD], hypertension, and type 2 diabetes in sup-
plemental analyses). Finally, we employed latent causal vari-
able (LCV) (12) analyses to test for putative causal relationships
between CUD and COVID-19 hospitalization. We hypothesized
that genetic liability to CUD would be correlated with COVID-
19 hospitalization and that we would find evidence of poten-
tial causal influence (i.e., association that is independent of
confounders and evidence of putative causation in genetic
causal modeling analyses).

METHODS AND MATERIALS

The following sections describe the GWAS summary statistics
that were used in analyses.

Cannabis Use Disorder Summary Statistics

CUD summary statistics came from a GWAS (4) that meta-
analyzed data from 20 datasets (18 datasets that were part
of the Psychiatric Genomics Consortium Substance Use Dis-
orders working group [European ancestry, 8277 cases and
23,497 controls], 1 dataset from The Lundbeck Foundation
Initiative for Integrative Psychiatric Research [iPSYCH] [Euro-
pean ancestry, 2758 cases and 53,326 controls]; and 1 dataset
from deCODE genetics [European ancestry, 6033 cases and
280,396 controls]). GWAS summary statistics were drawn from
unrelated individuals of European ancestry (case: n = 14,080;
control: n = 343,726). All cases were diagnosed with CUD;
controls did not meet criteria for CUD. Psychiatric Genomics
Consortium cases met criteria for a lifetime diagnosis of DSM-
IV (or DSM-III-R) cannabis abuse or dependence via clinician
ratings or semistructured interviews. Cases from the iPSYCH
sample had ICD-10 codes of F12.1 (cannabis abuse), F12.2
(cannabis dependence), or both in the Danish Psychiatric
Central Research Register. Cases in the deCODE sample met
criteria for lifetime DSM-III-R or DSM-IV cannabis abuse or
dependence or DSM-5 CUD according to diagnoses assigned
at the National Center of Addiction Medicine in Iceland, with
controls being derived from the general population of Iceland.
The Psychiatric Genomics Consortium and iPSYCH samples
used principal component analysis to account for additional
population control, while deCODE used genomic control. Only
summary data (i.e., single nucleotide polymorphism [SNP]
identifier, effect size and standard error, p value, effect allele)
were utilized (these files are available at https://www.med.unc.
edu/pgc/download-results/). CUD has a heritability of 0.0522
on the liability scale (SE = 0.005), assuming a prevalence of
1.4% of the population developing CUD.

COVID-19 Hospitalization Summary Statistics

Several GWASs of COVID-19-related phenotypes were con-
ducted by the COVID-19 Host Genetics Initiative (https:/www.
covid19hg.org) (5). Similar to CUD described above, only
summary data were required for these analyses and were
downloaded from https://www.covid19hg.org/results/. The
round 54 release (original release in January 2021) was used.
Cases were laboratory-confirmed COVID-19 hospitalized
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individuals (referred to as COVID “B2”), along with general
population controls (n = 9373, excluding 613 cases from
23andMe that require additional permissions; control, n =
1,197,256). Multiple sites conducted GWASs of their individual
data, and results were meta-analyzed. The COVID19 GWAS
controlled for population structure using principal components
and a genetic relatedness matrix for additional control. Under
the Fort Lauderdale principles, publications using summary
statistics may not present or discuss any genome-wide sig-
nificant signals for the COVID-19 disease definitions. The full
analytic plan (including control for ancestry) is available from
the consortium here: https://docs.google.com/document/d/
16ethjgi4MzIQeOOKAW_yDYyUHdB9kKbtfuGW4XYVKQg/edit.
Heritability of the trait, which is likely underestimated due to
unexposed controls, was estimated as 0.033 (0.009).

Additional GWAS Summary Statistics

To account for genetic confounders of the possible relation-
ship between CUD and COVID-19, summary statistics were
obtained from GWASSs of the following traits.

Tobacco-Smoking Phenotypes. Tobacco-smoking phe-
notypes (13) included the following:

1. Ever smoking tobacco (n = 632,802; h* = 0.68 [SE =
0.0021]) is a binary phenotype that was coded positively for
anyone who reported a lifetime history of smoking regularly,
daily smoking for a month or longer, or smoking 100 or
more cigarettes during their lifetime.

2. Cigarettes smoked per day (n = 263,954; h® = 0.072 [SE =
0.0068])) is a continuous phenotype representing how many
cigarettes were smoked per day.

3. Age at smoking initiation (n = 262,990; h? = 0.047 [SE =
0.003])).

4. Former versus current smoker, i.e., smoking cessation (n =
312,821; h? = 0.032 [SE = 0.002]), was a binary phenotype
in regular smokers reflecting whether they were smoking
cigarettes at the time of data collection.

Problematic Alcohol Use. Problematic alcohol use (14)
represented a meta-analysis of GWASSs of alcohol dependence
(binary), alcohol use disorder (binary), and the problems sub-
scale of the Alcohol Use Disorder Identification Test (contin-
uous) (n = 435,563; h? = 0.068 [SE = 0.0032)).

Cannabis Use. Cannabis use (15) represented a binary
measure reflecting whether an individual had ever used
cannabis, even once, during their lifetime (n = 162,082; h? =
0.068 [SE = 0.004]).

Metabolic Traits. Metabolic traits included the following:

1. BMI, as a continuous measure of BMI (n = 795,640; h? =
0.209 [SE = 0.006]) (16).

2. Fasting glucose, a continuous measure derived from whole
blood, plasma, or serum, using assays specific for each
cohort (n = 58,074; h® = 0.100 [SE = 0.016]) (16,17).
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3. Type 2 diabetes was a binary diagnosis from a meta-
analysis (supplemental analyses: n = 659,316; h® = 0.140
[SE = 0.008]) (18).

4. Hypertension from the UK Biobank (field code: 131287; n =
361,141; h? = 0.005 [SE = 0.001]) (19); reference group were
subjects in the UK Biobank who did not have a hyperten-
sion diagnosis.

Respiration.

1. One-second forced expiratory volume (FEV;) was a
continuous spirometry measure derived from the UK
Biobank (field code: 3036; n = 272,338; h® = 0.199
[SE = 0.007]) (19).

2. COPD from the UK Biobank (field code: 20002;
n = 361,141; h® = 0.117 [SE = 0.004]) (19); reference group
were subjects in the UK Biobank who did not have a COPD
diagnosis.

Sociodemographic.

1. Townsend deprivation index (TDI) is a continuously
distributed census-based measure of social deprivation.
This was taken in the UK Biobank (field code: 189; n =
336,798; h? = 0.038 [SE = 0.002]) (19).

2. Educational attainment is a continuous measure of number
of years of schooling completed (n = 766,345; h? = 0.107
[SE = 0.0026)) (20).

Indices of Impulsivity.

1. Risk taking, which included a meta-analysis of various
indices of an individual’s willingness or interest in taking
risks in general (n = 466,571; h*> = 0.047 [SE = 0.002]) (21).

2. Attention-deficit/hyperactivity disorder (ADHD), represent-
ing binary clinical diagnoses (n = 55,374; h® = 0.232 [SE =
0.014)) (22).

Along with the CUD GWAS, all GWASs of confounding traits
accounted for population stratification using principal
component analysis, were conducted with data collected
before the COVID-19 pandemic, and are free of confounding
by COVID diagnosis. Data accession URLs or doGAP Study
Accession identifiers are provided below.

1. Smoking  phenotypes:
handle/11299/201564

2. Problematic alcohol use: phs001672.v3.p1

3. Cannabis use: https://www.ru.nl/bsi/research/group-
pages/substance-use-addiction-food-saf/vm-saf/genetics/
international-cannabis-consortium-icc/

4. BMI: https://portals.broadinstitute.org/collaboration/giant/
index.php/GIANT_consortium_data_files

5. Fasting glucose: https://www.magicinvestigators.org/
downloads/

6. Type 2 diabetes: https://cnsgenomics.com/content/data

7. FEV4, COPD, TDI, hypertension: http://www.nealelab.is/
uk-biobank

8. Educational attainment: https://www.thessgac.org/data

https://conservancy.umn.edu/
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9. Risk taking: https://www.thessgac.org/data
10. ADHD: https://www.med.unc.edu/pgc/download-results/
adhd/?choice=Attention+Deficit+Hyperactivity + Disorder
+%28ADHD %29

Statistical Analyses

LD Score. LDSC (10) was used to estimate genetic correla-
tions between traits using SNPs with minor allele frequencies
> 0.01 and INFO > 0.90. LDSC estimates the genetic corre-
lation between two traits based on GWAS summary statistics
(i.e., effect sizes). Both traits do not need to be assessed in the
same individuals or even the same GWAS. LDSC also sepa-
rates any potential sample overlap or other sources of con-
founding (e.g., population stratification) from SNP heritability
(i.e., when examining one trait) and SNP-genetic correlation
(SNP-rg; i.e., when examining a pair of traits) estimates.

We first applied standard filters to the summary statistics of
each trait (only SNPs with minor allele frequencies > 0.01 and
INFO scores > 0.9). Palindromic and multiallelic SNPs and
insertion/deletion polymorphisms were excluded before esti-
mating genetic correlations. SNPs with <1000 individuals were
removed (this was partially done to remove SNPs specific to
any minority ancestral populations). All summary statistics
were aligned with reference genome data from the Haplotype
Reference Consortium (23) and normalized to a standard z
statistic, which placed all summary statistics on the same
scale for analyses. LDSC beta weights and LD scores were
pregenerated from 1000 Genomes phase 3 European GWAS
data included in the LDSC software download. LDSC esti-
mates were subsequently also used for gSEM analyses, and
the LDSC fourth-order moments were used as inputs for LCV
analyses.

One advantage of LDSC is the ability to account for
spurious sample overlap in GWASSs contributing to the genetic
correlation. Sample overlap can induce population stratifica-
tion (e.g., overlapping controls may be more related to each
other) and, when unaccounted for, can upwardly bias the ge-
netic correlation estimate. However, LDSC parses overlap from
genetic correlation into the model intercept (i.e., intercept not
at origin), while the slope, which is used to calculate the
bivariate SNP-rg, remains unbiased. Assuming the intercept is
not constrained at 0, this allows the model to remain robust to
sample overlap when estimating the rg (10). This remains true
even when the heritability estimates themselves are poorly
estimated (24). Therefore, the LDSC intercept was freed from
0 to account for population stratification caused by either
sample overlap or latent population structure.

Modeling Genetic Covariances Using gSEM. gSEM
(11) is a form of classical structural equation modeling where,
in place of manifest phenotypes, genomic liability to those
phenotypes are used to test specific hypotheses. gSEM is
performed using GWAS summary statistics and a genetic
correlation matrix (created using LDSC) as input for the
multivariable models. Genetic effects of CUD predicting
COVID-19 hospitalization vulnerability above and beyond other
variables of interest (i.e., other substance use, car-
diometabolic, respiratory, and sociodemographic measures)
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were modeled as a multiple regression in gSEM. Substance
use phenotypes were tested in separate models to avoid
multicollinearity among them. Within a multiple regression
framework, the standardized beta coefficient approximates the
partial rg when accounting for covariates.

For both respiratory difficulties and metabolic syndromes,
we elected to focus our primary analyses on covariates rep-
resenting continuous variation in genetic susceptibility to these
syndromes (i.e., covarying for FEV; and fasting glucose
values). In supplemental sensitivity analyses, we examined
whether genetic risk for chronic conditions related to respira-
tion (i.e., COPD) and metabolic syndrome (i.e., type 2 diabetes
and hypertension) were included instead of FEV; and fasting
glucose. Similarly, we also examined whether the exclusion of
TDI as a covariate modified our findings. While TDI is a good
index of genetic liability to neighborhood deprivation exposure,
it is specific to the census characteristics of the UK Biobank
sample.

LCV Analysis. LCV (12) is related to MR (8), which is a type
of instrumental variable analysis where the instrument is ge-
netic liability to an exposure (here, CUD). Broadly, genetic
causality models are a form of instrumental variable analysis
that treat genomic risk for a given phenotype, in our case CUD,
as proxy measures for assignment to elevated exposure on
these phenotypes at the group level [for additional information,
see (25)]. As such, these models theoretically test whether one
phenotype may plausibly cause another. Here, our genomic
causal inference models stipulate that individuals are randomly
assigned to polygenic liability to CUD, which can be inter-
preted to reflect a group-level likelihood of CUD expression
(which would include noise from those with high genomic lia-
bility who do not have a CUD diagnosis). As such, if genomic
liability to CUD is associated with COVID-19 hospitalization,
then it is plausible that CUD may cause COVID-19 hospitali-
zation. Importantly, LCV analysis builds on more traditional MR
approaches by accounting for pleiotropy (i.e., genomic risk
that is shared between CUD and COVID-19 hospitalization)
using fourth-order moments from LDSC. Furthermore, LCV
includes genetic variants across the entire genome as “in-
struments,” unlike traditional MR methods that select the most
strongly associated variants (typically with p < 5 x 1079),
The LCV model is premised on estimating a latent variable L
that represents the consistency of effects of trait 1 on trait 2;
i.e., if there are causal effects of trait 1 (CUD) on trait 2 (COVID-
19 hospitalization), genetic associations with trait 1 (CUD)
would correlate with the latent causal variable (L). The extent to
which the latent causal variable L causes CUD (qcup) versus
COVID-19 (gcovip) is expressed as a ratio between 0 and 1
(i.e., 0.3 for 30%). This ratio is further distilled from the genetic
correlation between CUD and COVID-19 (pg) to obtain the
extent to which CUD and COVID-19 might be causally related.
As gqcup and gqcovip are simultaneously estimated, no addi-
tional multiple testing is required to account for reciprocal ef-
fects of outcome on exposure. The extent to which the latent
causal variable mediates the genetic correlation between the
two traits is quantified by the genetic causality proportion, an
estimate of the degree to which each trait is correlated with the
latent genetic variable (ranging from 0, reflecting no genetic
causality, to |1|, indicating full genetic causality). For example,
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a genetic causality proportion of 0.50 suggests that 50% of
SNP effect sizes are consistent with trait A (i.e., CUD) causing
trait B (i.e., COVID-19 hospitalization); however, potential re-
sidual mechanisms (pleiotropy and error) may remain.

RESULTS

Genetic Correlations

CUD and COVID-19 hospitalization were genetically corre-
lated, even after Bonferroni correction for all traits examined
(SNP-rg = 0.418 [SE = 0.097], p = 1.34 X 107%) (Figure 1).
COVID-19 hospitalization was also genetically correlated with
other variables, most notably BMI, smoking cessation, and
educational attainment (rg > 0.3). As has been previously
demonstrated (4), CUD was most highly correlated with
cannabis use (rg = 0.48 [SE = 0.042]) and other substance use
measures (rg > 0.31-0.48).

Genetic Association Accounting for Other Factors

Despite genetic correlations between COVID-19 hospitaliza-
tion and other related phenotypes (e.g., tobacco use pheno-
types, BMI) (Figure 1), a series of gSEM models revealed an
independent association between CUD and COVID-19 hospi-
talization (Table 1) when accounting for genomic liability to the
following covariates: 1) tobacco phenotypes (i.e., cigarettes
per day, age of smoking initiation, ever smoking tobacco,
smoking cessation), 2) other substance use phenotypes (i.e.,
problematic alcohol use, lifetime cannabis use), 3) car-
diometabolic traits (i.e., BMI, fasting glucose), 4) respiration
(i.e., FEV4), 5) indices of impulsivity (i.e., risk taking, ADHD), and
6) socioeconomic status (i.e., educational attainment, TDI")
(Table S1). Interestingly, despite prior reports of genetic
associations between tobacco-smoking measures and
COVID-19 disease definitions, none of the tobacco-smoking
phenotypes remained significantly associated with COVID-19
hospitalization in the multivariable gSEM (Table 1). In addi-
tion to the significant association with CUD, only BMI and
educational attainment (except when adjusting for cannabis
use or smoking cessation) remained genetically correlated with
genetic vulnerability to COVID-19 hospitalization in the multi-
variable models (Table 1).

In secondary sensitivity analyses, we examined whether
including GWASs of chronic diagnosable health conditions,
including COPD (rather than FEV,) and type 2 diabetes (rather
than fasting glucose), as well as hypertension as putative ge-
netic covariates influenced our findings. While the GWAS of
these disorder states represents greater severity and potential
COVID-19 risk, they do not capture the range of variability in
the underlying predisposing symptoms (i.e., respiration and
metabolic dysregulation). Indeed, the genetic correlation be-
tween FEV,4 and COPD was 0.190 (SE = 0.020); fasting glucose
was genetically correlated with type 2 diabetes (rg = 0.564
[SE = 0.055]) and hypertension (rg = 0.256 [SE = 0.055]). CUD
was genetically correlated with type 2 diabetes (rg = 0.149

'As the Townsend deprivation index is a geographic index from
the UK Biobank that may reflect a multitude of factors (e.g.,
migration), we repeated analyses excluding this as a covari-
ate. As depicted in Table S1, conclusions are not altered by
doing so.
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Figure 1. Genetic associations between sub-
stance use phenotypes and COVID-19 hospitaliza-
tion. (A) Genetic correlations between COVID-19
hospitalization and substance use phenotypes.
Cannabis use disorder (CUD) is highlighted in green.
*Indicates nominally significant. **Indicates Bonfer-
roni significant after accounting for all genetic cor-
relations tested. Age of smoking initiation was
reverse coded, such that younger age was more
associated with other negative life outcomes and
would be easier to interpret. (B) Heat map of genetic
correlations between all phenotypes included
in the study. COVID-19 hospitalization [Variable
COVIDB2 from the COVID Host Genomics Initiative
(4)]. *"Indicates Bonferroni significant for all tests run
(number of tests = 120). ADHD, attention-deficit/
hyperactivity disorder; Age Smoke, age of smoking
initiation; BMI, body mass index; Cannabis Use, any

lifetime cannabis use; CPD, cigarettes/day; EA, education attainment; Ever Smoke, ever smoking tobacco; Fast Gluc, fasting glucose; FEV,, forced expiratory
volume for 1 second; PAU, problematic alcohol use; RT, risk taking; Smoking Cess, smoking cessation; TDI, Townsend deprivation index.

[SE = 0.041]) and hypertension (rg = 0.223 [SE = 0.070]) and
weakly with COPD (rg = 0.098 [SE = 0.037]). Likewise, COVID-
19 hospitalization was genetically correlated with type 2 dia-
betes (rg = 0.363 [SE = 0.060]), hypertension (rg = 0.419
[SE = 0.140]), and COPD (rg = 0.231 [SE = 0.050]). When FEV,
and fasting glucose were replaced by COPD, type 2 diabetes,
and hypertension, results remained largely unchanged and
CUD remained genetically correlated with COVID-19 hospi-
talization, except when controlling for marijuana use, in which
CUD was reduced to marginally significant but effect sizes
were similar (Table S2; see Figure S1 for full genetic correlation
matrix).

Genetic Causality

LCV analyses did not provide significant evidence that liability
to CUD may be genetically causal for COVID-19 hospitaliza-
tion. Even though the effect size of the genetic causality pro-
portion was substantial, it was not statistically significant

(genetic causality proportion estimate = 0.38, SE = 0.36,
p = .58); that is, after accounting for pleiotropy between CUD
and COVID-19, there was no statistically significant evidence
of a potentially causal effect of genetic liability to CUD on
COVID-19 hospitalization risk.

DISCUSSION

Our findings suggest that genetic liability to CUD is correlated
with risk for COVID-19 hospitalization. The genetic correlation
between CUD and COVID-19 hospitalization was independent
of potential confounding variables (e.g., other substance
inhalation phenotypes, cardiometabolic traits, respiration, so-
cioeconomic status indicators). In contrast, genetic liability to
lifetime cannabis ever-use showed a nonsignificant, but
negative, genetic correlation with COVID-19 hospitalization
(Figure 1 and Table 1); divergent associations of cannabis use
and CUD in their genetic association have been observed for

Table 1. COVID-19 Genetic Correlations When Accounting for Potential Confounding Variables

Substance Use B Substance

Phenotype CuD Use Phenotype® EA TDI BMI FEV, Fast Gluc f Risk 8 ADHD
Cannabis Use 0.539° -0.300 0.015 0.057 0.312° 0.025 -0.024 -0.007 -0.058
CPD 0.381° 0.042 -0.193° -0.052 0.327° 0.011 0.006 —0.026 —-0.092
Age Smoke 0.398° 0.067 -0.215° -0.037 0.336° 0.009 0.010 -0.025 —0.064
Smoking Cessation 0.402° -0.205 -0.114 -0.122 0.329° 0.014 -0.0003 -0.054 -0.069
Ever Smoke 0.439° -0.123 -0.191° -0.021 0.344° 0.011 -0.003 -0.029 -0.052
PAU 0.315 0.162 -0.211° -0.082 0.345° 0.004 0.009 —0.036 —-0.088

Standardized beta estimates for CUD and substance use phenotypes were taken from a multiple regression parameterized in gSEM. When all of
the above covariates were included in the model simultaneously with PAU and CUD, the partial rg between CUD and COVID-19 was no longer
significant (rg = 0.315, p = .08). This was largely due to the number of covariates; when only PAU was included in the model, the partial r effect
size for CUD was similar in magnitude and significant (r = 0.364, p = .004).

ADHD, attention-deficit/hyperactivity disorder; Age Smoke, age of smoking initiation; BMI, body mass index; Cannabis Use, any lifetime cannabis
use; CPD, cigarettes/day; CUD, cannabis use disorder; EA, education attainment; Ever Smoke, ever smoking tobacco; Fast Gluc, fasting glucose;
FEV,, forced expiratory volume for 1 second; gSEM, genomic structural equation modeling; GWAS, genome-wide association study; PAU,
problematic alcohol use; Risk, risk taking; TDI, Townsend deprivation index.

aSubstance use phenotypes were entered and tested separately to avoid multicollinearity among them. Each row represents genetic correlations
with COVID-19 hospitalization from one model. The multiple rows indicate the separate models run substituting each substance use phenotype
(listed in the first column). The model was COVID-19 hospitalization = CUD + substance use phenotype + BMI + TDI + EA + FEV; + Fasting
Glubc + ADHD + Risk taking + error. The original GWASs accounted for standard GWAS covariates (age, sex, genetic principal components, etc.).

p < .05.
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other phenotypes (e.g., BMI, which is also positively geneti-
cally correlated with CUD and negatively with cannabis use)
(4). Furthermore, when genomic liability to lifetime cannabis
use was included in models, the association between CUD and
COVID-19 hospitalization became stronger (Figure 1 and
Table 1). Collectively, these data suggest that genetic liability
to CUD and COVID-19 hospitalization is shared and unique
from many potentially confounding variables. While such
findings suggest that it is plausible that CUD may have an
independent causal impact on severe COVID-19 outcomes,
genomic causal models (i.e., LCV analyses) did not support a
causal role of CUD on COVID-19 hospitalization.

Putative mechanisms underlying the genetic association
between CUD and COVID-19 hospitalization warrant attention
in future research. Our gSEM analyses indicated that BMI,
tobacco smoking (as well as other substance use), and so-
cioeconomic factors did not account for the association be-
tween CUD and COVID-19 hospitalization. Many immunologic
processes may be involved, because endogenous cannabi-
noid receptors, especially CB, receptors, are ubiquitously
expressed in immune tissues and likely participate in immune
signaling (26). In addition, studies have also begun to explore
the relationship between ACE2 expression and cannabinoid
compounds (27). Studies examining potential biological
mechanisms underpinning the genetic correlation between
CUD and COVID-19 hospitalization are needed (e.g., potential
shared effects on ACE2, inflammation).

LCV analyses estimated that 38% of the genetic effects
were consistent with CUD causing COVID-19. This result
should be re-examined when larger GWASs of CUD and
COVID-19 become available. Prior analyses, conducted with
an earlier data release (release September 4, 2020), found that
60% of the genetic effects were consistent with causal effects
of CUD on COVID-19, a statistically significant finding (genetic
causality proportion estimate = 0.63, SE = 0.21, p = 4.0 X
107%) (28). This reduction in causal effects might reflect greater
precision in the genetic causality proportion estimate or an
increase in heterogeneity across the samples in the latest
COVID-19 GWASs (e.g., of cases with varying degrees of
illness severity). Nonetheless, the current nonsignificant causal
results are consistent with another preprint that utilized tradi-
tional MR methods (29).

Some limitations are noteworthy. First, the use of population
controls (i.e., individuals who may or may not have had COVID-
19) in the COVID-19 hospitalization GWAS and the resulting
case-control imbalance may have affected heritability estimate
precision. Second, predominant composition of European
ancestry in constituent GWASs may limit generalizability to
other populations. Third, while there is convergent phenotypic
evidence consistent with our findings (6), our findings await
replication attempts; unfortunately, we are unaware of any
currently available datasets. Furthermore, much like any other
instrumental variable analysis, third variable confounding is
possible. We accounted for several plausible confounders of
this genetic causal pathway between CUD and COVID-19
using gSEM, but other unmeasured factors cannot be
excluded. Cannabis use could also reflect a mixture of lighter,
casual use and heavy use, including current frequent use.
Unfortunately, we still lack a large GWAS of cannabis fre-
quency that could be used to test casual use versus frequency
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versus problematic use hypotheses. Finally, as described
above, we assume that genomic liability to CUD is a good
instrument for manifest CUD (likewise, that genomic liability to
COVID-19 indices manifest COVID-19 hospitalization).

As the world continues to endure surges in COVID-19,
identifying putative risk factors associated with severe pre-
sentations may mitigate the worldwide impact of this disease.
In contrast to anecdotal evidence and media reports (30) that
cannabis may attenuate COVID-19, these data urge caution in
light of the continued wave of cannabis legalization during the
COVID-19 pandemic.
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