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Abstract
3D object detection is a central task for applications

such as autonomous driving, in which the system needs to
localize and classify surrounding traffic agents, even in the
presence of adverse weather. In this paper, we address the
problem of LiDAR-based 3D object detection under snow-
fall. Due to the difficulty of collecting and annotating train-
ing data in this setting, we propose a physically based
method to simulate the effect of snowfall on real clear-
weather LiDAR point clouds. Our method samples snow
particles in 2D space for each LiDAR line and uses the in-
duced geometry to modify the measurement for each LiDAR
beam accordingly. Moreover, as snowfall often causes wet-
ness on the ground, we also simulate ground wetness on
LiDAR point clouds. We use our simulation to generate par-
tially synthetic snowy LiDAR data and leverage these data
for training 3D object detection models that are robust to
snowfall. We conduct an extensive evaluation using several
state-of-the-art 3D object detection methods and show that
our simulation consistently yields significant performance
gains on the real snowy STF dataset compared to clear-
weather baselines and competing simulation approaches,
while not sacrificing performance in clear weather. Our
code is available at github.com/SysCV/LiDAR snow sim.

1. Introduction
A light detection and ranging (LiDAR) sensor is an ac-

tive range sensor useful for several applications [10, 27, 39,
61]. Its high-quality 3D output renders LiDAR the modal-
ity of choice for several tasks that require 3D reasoning,
such as 3D object detection [25,59]. As LiDAR sensors are
becoming increasingly cheaper [53], their integration into
autonomous cars becomes increasingly feasible as well.

Nonetheless, previous sensor tests have revealed that
such active pulsed systems are vulnerable in scattering me-
dia, leading to decreases of perception distances in various
weather conditions such as rain [4, 14, 52], fog [2, 4, 18, 19,
52], and snow [19,24,28], as shown in Fig. 1. In these con-
ditions, the optical medium contains particles of water or
snow which interact with the laser beam and absorb, reflect

Figure 1. 3D object detection results in heavy snowfall with prior
training on the proposed data augmentation scheme (top right) in
comparison to no augmentation (top left). The bottom row shows
the RGB image as reference.

or refract its photons. This results in two effects: (i) atten-
uation of the received power that corresponds to the target
at the line of sight, and (ii) backscattering from particles
leading to spurious maxima in the received power and thus
to spurious returns at ranges different from the true range
of the target. Consequently, there is a severe degradation
of measurement quality due to intense noise, a large do-
main shift relative to point clouds captured in clear weather,
and hence a detrimental effect on performance of high-level
tasks such as 3D object detection [1, 16]. Yet, achieving
robust perception in adverse weather is a desirable goal as
fatality rates for human drivers are notably higher in adverse
weather, as reported by the US Department of Transporta-
tion [49] and the European Commission [8].

Since adverse-weather data are hard to collect [1], pre-
vious works have investigated simulation methods to close
the domain gap for camera data in fog [36] and rain [48].
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More recently, simulation methods for LiDAR sensors in
fog [1,16] and rain [14,22] have also been proposed. Moti-
vated by this line of work, we introduce a physically based
method to simulate snowfall on real clear-weather LiDAR
point clouds. In particular, we use the linear system intro-
duced in [33] to model the transmission of LiDAR pulses
and the associated received power at the sensor. We sim-
ulate snowfall by explicitly sampling snow particles and
modeling them as opaque spheres, the size of which is con-
trolled by the snowfall rate [15, 32]. In our sampling, we
obey the exclusion principle that no two particles intersect
with each other. Given the sample of snow particles, we
compute for each LiDAR beam the set of particles that in-
tersect with it and derive the angle of the beam cross-section
that is reflected by each particle, taking potential occlusions
into account. This derivation directly delivers the modi-
fied impulse response of the linear system in the presence
of snowfall, which allows the analytical calculation of the
received power at the sensor.

Another condition associated with snowfall is wetness
on the ground. This emerging thin water layer increases
the specular component of reflection by the ground sur-
face [44]. To model the ground reflection, we introduce an
optical model using the Fresnel equations and the reflection
on thin surfaces, which provides adapted reflectance values
for wet surfaces.

The generated partially synthetic point clouds with our
snowfall and wet ground simulation are used as train-
ing data for optimizing state-of-the-art 3D object detection
methods, so that the learned models are more robust un-
der snowfall. The hope is that our physically based sim-
ulation is realistic enough to relieve us from the need for
real snowy training samples. We benchmark the models
trained in this regime on the challenging real snowy sub-
set of the STF dataset [1] and find that the models trained
on our simulated snow consistently achieve significant per-
formance gains over baseline models trained only on clear
weather and competing simulation methods.

2. Related Work

Adverse weather research can be subdivided in meteoro-
logical publications providing fundamental knowledge for
computer vision approaches [15, 32, 33, 38], phenomeno-
logical reasoning of introduced disturbance patterns of dif-
ferent weather conditions [2, 4, 24] and the application of
computer vision algorithms to such challenging conditions
[1, 29, 37, 48]. In [33] a general theoretical framework pre-
dicting the influence of various weather types on LiDAR
has been studied, including rain, fog and snow. The authors
study these weather effects following the statistical distri-
bution of the scattering particles, which are introduced e.g.
for snow in [15] and [38]. Further implications on visibility
in snowfall are presented in [32].

Those resulting disturbance patterns and their strength
are phenomenologically investigated for rain in [4, 14, 52],
fog in [2,4,18,19,52], snow in [19,24,28] and wet surfaces
in [5, 44, 56]. Algorithmically, authors have tried to tackle
those conditions by robust fusion algorithms [1], devel-
oped simulation techniques as data augmentation for cam-
era data in [36, 48] and LiDAR data in [1, 14, 16, 22]. Au-
thors also investigated enhancement technologies to remove
adverse weather effects in [6, 17, 43] or applied domain
adaptation methods adjusting clear-weather algorithms to
adverse weather in [37]. Underlying deep learning data
sets containing adverse weather samples were introduced
in [1, 3, 29, 37, 46]. Yet classical data loop approaches are
difficult to apply as adverse weather samples are rare and
well underrepresented [1].

Simulation of adverse weather allows to mitigate the rar-
ity of adverse weather effects and difficulties in data col-
lection campaigns as for example shown in [35, 36, 48]
through data synthesis. Additionally, it enables to gen-
erate reproducible conditions with clear ground truth nec-
essary to learn image enhancement techniques in [17, 43]
or to investigate adverse weather noise-dependent perfor-
mance decrease reproducible for different weather effects
in [48]. LiDAR simulation methods were explicitly stud-
ied in [1, 14, 16, 22]. Developments started in [1] with a
data driven approach in fog which was extended by [16],
introducing a physically based model and achieving higher
3D object detection performances. A simulation method for
rain is introduced in [14] and a general approach for snow,
rain and fog in [22]. Contrary to [22], our snowfall simula-
tion involves a continuous formulation in the power signal
domain, which allows us to superimpose reflections by dif-
ferent particles and to reason about occlusions between par-
ticles and the target, thereby adhering better to the physics
of the laser transmission. Additionally, we take into account
the effects of wet roads, allowing us to estimate laser hard-
ware parameters as noise floor and sent intensity from the
dry road intensities in a data-driven way.

3D object detection has seen tremendous progress in recent
years. Several methods have been presented for RGB cam-
era [45, 54, 60], LiDAR [25, 31, 39–42, 62], gated imagers
[20] or the fusion of multiple modalities in [7, 23, 30, 51].
Across many dataset leaderboards, however, the top perfor-
mance positions are typically all sorted out among LiDAR
based methods [3,13,46]. In our work, we utilize the meth-
ods PV-RCCN [39], VoxelRCNN-Car [9], CenterPoint [59],
Part-A² [42], PointRCNN [41], SECOND [57], and Point-
Pillars [25]. The methods differ in point cloud representa-
tions, the used feature extraction backbones and the number
of detection stages. As input modalities, point clouds are
treated e.g. in voxel space [39, 40, 42, 57, 62], inferring the
raw point clouds [31, 41] or using abstract representations
such as pillars in [25].
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Figure 2. Sketch of a LiDAR sensor where the transmitter Tx and
the receiver Rx do not have coaxial optics, but have parallel axes
(called a bistatic beam configuration).

The number of detection stages is most often classified
into single [25] and two-stage approaches [39–41, 57, 59,
62], where single-stage approaches directly discretize the
input space and predict objects for each individual cell fol-
lowing [26]. Two-stage approaches first predict proposals
and refine them in a subsequent pooled feature space fol-
lowing the general idea of [34].

3. Snowfall Simulation on LiDAR Point Clouds

Pulse propagation in free space can be modeled with ge-
ometrical optics for cost-effective LiDAR systems. Such
systems apply an array of synchronized near-field infrared
pulse emitters Tx and avalanche photodiodes (APDs) as re-
ceivers Rx depicted in Fig. 2 and described in [55]. The
sent-out laser pulse P0 is reflected by a solid scene object,
often referred to as target, with reflectivity ρ0, and it is cap-
tured by the receiver, providing the time delay τ of the cap-
tured echo and its corresponding power PR. The object dis-
tance R is calculated by applying R = cτ , where c is the
speed of light. The 3D position [x, y, z] of the object is ob-
tained by using the direction in which the pulse was emitted.
For extended objects, geometric optics [11] can be applied
to model the received power PR following

PR(R) = CAP0ρ0
cos (αin)

R2
, (1)

which holds for objects with a diameter larger than the beam
diameter at distance R and requires additional information
about (i) the incident angle αin and (ii) the system constant
CA independent of range and time. However, the received
laser power is typically corrected [11], as CA differs for
each scanning layer due to different optics and beam di-
vergences. Four different levels of intensity calibration can
be reported according to [21]. For the Velodyne HDL-S3D
sensor used in our experiments, a beam divergence correc-
tion is applied following the sensor manual [50]. This cor-
rection is defined as

i = PR + fs

∣∣∣∣fo − (1− R

Rmax

)∣∣∣∣2 , (2)

where fs is the focal slope and fo is the focal offset. The
parameters for each laser are retrieved from the factory side

calibration. Before applying the proposed simulation meth-
ods, we first retrieve the raw intensities by inverting this
intensity calibration. In snowfall, the optical medium con-
tains particles which are smaller than the beam diameter, so
Mie scattering and the exact spatial distribution of the par-
ticles must be taken into account [33].
Pulse propagation in the presence of scattering particles
is described by a linear model introduced in [33], which is
valid for non-elastic scattering. This model expresses the
range-dependent received power PR as a time-wise convo-
lution between the time-dependent transmitted signal power
PT and the impulse response H of the optical system:

PR(R) = CA

∫ 2R/c

0

PT (t)H

(
R− ct

2

)
dt, (3)

with the time signature of the transmitted pulse given by

PT (t) =

{
P0 sin

2
(

π
2 τH

t
)
, 0 ≤ t ≤ 2 τH ,

0 otherwise.
(4)

τH is the half-power pulse width, set to 10 ns for the Velo-
dyne HDL-S3D sensor. The impulse response H can be
factored into the impulse responses of the optical channel,
HC , and the target, HT :

H(R) =HC(R)HT (R). (5)

HC depends on the beam divergence, the overlap of trans-
mitter and receiver described by ξ(R) as well as the trans-
mittance T (R) of the medium through

HC(R) =
T 2(R)

R2
ξ(R). (6)

The transmittance T (R) is equal to 1 in the part of the
medium that is not occupied by snow particles, assuming
absence of other scatterers. The overlap ξ(R) can be geo-
metrically derived from Fig. 2 as

ξ(R) =


0, R ≤ R1

R−R1
R2−R1

, R1 < R < R2

1, R2 ≤ R.

(7)

The impulse response of the target, HT , allows us to
model snow particles as we detail in the following.
Scene reflection defines the particle interaction with the
laser pulse through HT . For an extended solid target ob-
ject we can write

HT (R) = ρ0δ (R−R0) , (8)

with ρ0 being the reflectivity of the object and δ the Dirac
delta function. However, in snowfall, apart from the solid
target object, the laser beam is also partially reflected by
snow particles.
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Figure 3. Simulated snowfall corresponding to a snowfall rate of rs = 2.5mm/h. The left block shows the clear undisturbed input. The
right block shows our snowfall simulation (top) and the snowfall simulation in LISA [22] (bottom). Note that we simulate the scattering
realistically and only attenuate points which are affected by individual snowflakes instead of attenuating all points based on their distance.

Figure 4. Snow particles interfering a single LiDAR beam (top).
Schematic plot of corresponding received power echoes (bottom).
Note how the received power of individual targets can overlap with
each other (cτH ≈ 3m with τH = 10ns).

We model snow particle j as a spherical object with re-
flectivity ρs, diameter Dj following the distribution intro-
duced in [15] and distance Rj from the sensor, placed uni-
formly at random around the sensor so that it does not in-
tersect with any other particle. The number of particles is
chosen according to the snowfall rate, typically ranging in
0-2.5 mm/h (see supplementary materials for more details).
Particles can occlude each other and the target object, as il-
lustrated in Fig. 4 (top). Thus, each particle j reflects only a
fraction θj/Θ of the opening angle Θ of the beam, also let-
ting a fraction θ0/Θ of the beam reach the target. Details on
calculating the ratios θj/Θ are given in the supplementary
materials as well.

Assuming Dj ≪ cτH for all j, we can write

HT (R) =
1

Θ

(
ρ0 θ0δ(R−R0) + ρs

n∑
j=1

θjδ(R−Rj)

)
, (9)

with Θ = θ0 +
∑n

j=1 θj . Plugging (4), (5), (6) and (9) into
(3), the received power in snowfall is

PR,snow(R) = P 0
R,snow(R) +

n∑
j=1

P j
R,snow(R), (10)

where

P
j
R,snow(R)

=
CAP0ρsθjξ(Rj)

ΘRj
2

∫ 2τH

0

sin
2

(
π

2τH
t

)
δ(R −

ct

2
− R0)dt

=

{
CAP0ρsθjξ(Rj)

ΘRj
2 sin2

(
π(R−Rj)

cτH

)
, Rj ≤ R ≤ Rj + cτH

0 otherwise.
(11)

P 0
R,snow(R) can be derived by substituting (θj , Rj , ρs) with

(θ0, R0, ρ0) on the right-hand side of (11).
The received power is thus a superposition of multiple

echoes, each associated with an object (snow particle or tar-
get object), as depicted in Fig. 4 (bottom). Crucially, the
magnitude of each echo depends on the angle θj and the in-
verse square of the distance Rj of the respective object from
the sensor. In this work, we retrieve the maximum peak of
the received power as the LiDAR return. Thus, if a peak
owing to snow particles is higher than the peak associated
to the target object, the true echo is missed and a cluttered
point is added to the simulated point cloud at the range of
the former peak.
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Figure 5. A real-world capture on a dry highway (top), a real-
world capture with a water height of dw = 0.53mm (middle) and
the synthesized road wetness from the clear reference (bottom).

Algorithm 1 LiDAR snowfall simulation
1: procedure SNOWFALL(pc, nl, τH , Rmax,Θ, rs, ρs, ρ0)
2: for l in nl do ▷ for each layer l

3: pcl ← pc.SELECT(layer = l)
4: fd, fs, imax ← LOAD CALIB(l)
5: fo ← ( 1−fd

13100
)2 ▷ focal offset [50]

6: s← SAMPLE SNOWFLAKES(Rmax, rs) ▷ in 2D [15]

7: for p in pcl do ▷ for each point in layer l

8: x, y, z, i← p
9: R0 ← ∥p∥2

10: ttt← GET PARTICLES IN BEAM(s, x, y, R0,Θ) ▷ in 2D

11: if len(ttt) > 1 then ▷ otherwise no interference

12: PR,snow ← 0 ▷ initialize with zeros

13: for i, R, θ in ttt do ▷ for each target

14: if R = R0 then ▷ original target

15: PR ← i− fs

∣∣∣fo − (1− R
Rmax

)∣∣∣2
16: CAP0 ← PR

ρ0
R0

2
▷ follows from Eq. (1)

17: else ▷ snowflake

18: PR ← ρs imax

19: CAP0 ← PR
ρ0

20: end if
21: PR,snow += Eq.(11)(CAP0, R, ρ, τH , θ,Θ)
22: end for
23: PR ← max(PR,snow)
24: R∗ ← argmax(PR,snow)− c τH

2

25: i← PR + imaxfs

∣∣∣fo − (1− R∗

Rmax

)∣∣∣2
26: (x, y, z)← R∗

R0
× (x, y, z)

27: p← x, y, z, i
28: end if
29: end for
30: end for
31: return pc
32: end procedure

Otherwise the target object intensity is attenuated ac-
cording to its occlusion percentage. Our complete snowfall
simulation is presented in Algorithm 1. In Fig. 3 we show a
winterly example scene, once augmented with our snowfall
simulation and once with the one proposed in LISA [22].

3.1. Wet Ground Model

LiDAR readings are affected by the wetness of surround-
ing surfaces. Emitted light pulses are reflected specularly

Figure 6. Visualization showing the geometrical optical model
which describes the reflection on a wet road surface.

from wet ground leading to significantly attenuated laser
echoes depending on the water height [5]. Analysing the
road wetness statistics of STF [1] (given in the supplemen-
tary materials), it becomes apparent that wet roads occur
together with adverse weather such as snowfall and are the
main cause for lost points on road surfaces (see Fig. 5).

To model the attenuation caused by road wetness, we
apply geometric optics modeling single rays and their re-
fraction on a thin layer of water illustrated in Fig. 6. A
qualitative example is shown in Fig. 5 (bottom). We use
the refractive indices (nin, nout) and angles (αin, αout) at the
transition point. The angle αout can be calculated based on
Snell’s law:

sin (αout) =
nin
nout

sin (αin) . (12)

The change in pulse amplitude is modeled by the Fresnel
equations described by the perpendicular and parallel trans-
missions t⊥, t= and reflections r⊥, r= with respect to the
ground, respectively (details in the supplementary materi-
als). Going from amplitude to transmitted power, we can
deduce the power reflection Rp

k and transmission T p
k :

Rp
k =(rpk)

2
, (13)

T p
k =

n2 cos (αin)

n1 cos (αout)
tpk, (14)

where p ∈ (⊥,=) refers to the polarization. We sum up all
individual light rays which traverse back to the sensor, as
shown in Fig. 6, leading to the geometric series

T p
total = T p

airρ0T
p
water

∞∑
k=0

(ρ0R
p
water)

k, (15)

which can be simplified for (ρ0Rwater) < 1 to

T p
total = T p

airρ0T
p
water/(1− ρ0R

p
water). (16)

As the actual polarization is proprietary, we assume that the
manufacturer optimized the polarization depending on the
distance for best possible performance, implying

Ttotal = max
(
T=

total, T
⊥
total

)
. (17)
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Algorithm 2 LiDAR wet ground simulation
1: procedure WET GROUND(p, i,w, h, ϵg, dw, dp, PT , in)
2: if |p ·w − h| < ϵg then
3: R0 ← ∥p∥2
4: αin ← arccos

(
p·w

R0∥w∥2

)
5: ρ0 ← i

cos(αin)P (R0)
▷ see Eq. (18)

6: γ = min (max (dw/dp, 0) , 1) ▷ see Eq. (19)

7: ρw ← (1− γ) · ρ0 + γ · Ttotal/ cos (αin) ▷ see Eq. (20)

8: i← ρw cos (αin)PT (R0)
9: if i > in (R0) then

10: return p, i
11: else
12: return None
13: end if
14: else
15: return p, i
16: end if
17: end procedure

Based on this formulation, we design Algorithm 2. A
pre-processing step involves estimation of the ground plane
normal w and intercept h with RANSAC [12] as detailed
in the supplementary materials. These parameters allow
to identify all points belonging to the ground as well as
the beam incident angle αin. Then the modified inten-
sity can be reconstructed from the measured “dry” inten-
sity, taking into account that the beam divergence Θ has
been corrected by a factory side calibration leading to
i ∝ ρ0PT (R)ρ0 cos (αin). Normalizing i with the inci-
dent angle i(R)/ cos (αin) returns a linear correspondence
between the measured intensities i and the range R, such
that we can approximate the power PT (R) and noise floor
in(R) linearly from the known given echoes. Then we can
obtain the reflectivity ρ0 for each point p:

ρ0 = i/ (cos (αin)P (R0)) . (18)

These corrected reflectivities are augmented by weighing
dry and wet reflections, assuming a road thread profile of
depth dp filled with water of depth dw, which yields

γ (dw, dp) = min (max (dw/dp, 0) , 1) , (19)
ρw(γ) = (1− γ) · ρ+ γ · Ttotal/ cos (αin) . (20)

Finally, the measured intensity i is updated based on the
modified reflectivity ρw and the resulting point p is only
kept if its intensity i is greater than the noise floor in.

4. Experiments

Dataset. Our experiments are carried out on the STF
dataset [1]. It provides 12997 annotated samples with accu-
rate 3D bounding boxes for object detection of cars, pedes-
trians, and cyclists in various weather conditions including

light fog, dense fog and snow. Without denying the impor-
tance of the pedestrian and cyclist classes, in the main paper,
we focus on the most dominant class, i.e. cars. In the sup-
plementary materials we provide additional results. In total,
3469 frames in clear conditions can be used for training and
3916 frames in snowy conditions are provided. We split the
3916 samples in the snow test set based on the intensity of
snowfall into two different subsets, termed light snowfall
and heavy snowfall, with 2512 and 1404 samples respec-
tively. Inspired by [29], we perform this split by leveraging
the DROR algorithm [6]. The light snowfall split contains
frames where DROR [6] would filter 10-79 points from a
10×2×2m box in front of the ego vehicle, while the heavy
snowfall contains at least 80 of such points within this box
(further details in the supplementary materials).
Evaluation setting. For evaluation, we use the 3D object
detection metrics defined in the KITTI evaluation frame-
work [13] and in [58]. Specifically, [58] introduces an ex-
tension to the KITTI metrics by reporting the results with
respect to the object distance. Since the weather effects de-
tailed in Sec. 3 are distance-dependent, we opt for following
their extension and report results in the intervals as in [20].
Additionally, we follow [45] and report average precision
(AP) at 40 recall positions to provide a fair comparison.
Other than that we use the typical overlap thresholds de-
fined in [13]. To mitigate potential statistical fluctuations,
we report for each experiment the average performance over
three independent training runs.
Baseline methods. In total, we investigate the effectiveness
of our snowfall simulation scheme for seven well-known 3D
object detection methods [9,25,39,41,42,57,59]. We com-
pare our approach to a clear-weather baseline and two com-
peting adverse weather simulation methods, one for fog [16]
and one for snowfall [22]. Additionally, we compare to de-
noising the point clouds using DROR [6]. To train the detec-
tion models, we use OpenPCDet [47] and follow the default
training configurations for each method. All methods are
trained from scratch.
Data augmentation. We choose to apply our simulation(s)
to every 10-th training sample, for which the snowfall rate
is sampled from [0, 0.5, ..., 2.5]mm/h, and set the sensor
constants τH = 10ns, Rmax = 120m, Θ = 0.003 rad,
ρs = 0.9 and ρ0 = 1×10−6

π . The exact same settings are
used for [22]. For the wet ground simulation we use an ex-
ponential distribution and sample dw from the interval 0.1-
1.2 mm, while fixing dp to 1.2 mm and setting ϵg to 0.5m.

4.1. Quantitative Results

We present the quantitative results in Table 1. In read-
ing Table 1, the reader should first focus on the columns
showing AP across the entire evaluation range of 0-80 m.
The main experimental finding from Table 1 is that our full
simulation including both the snowfall and the wet ground
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Detection Simulation heavy snowfall ↑ light snowfall ↑ clear weather ↑
method method 0-80m 0-30m 30-50m 50-80m 0-80m 0-30m 30-50m 50-80m 0-80m 0-30m 30-50m 50-80m

None 39.69 65.05 36.14 8.03 41.13 69.24 39.72 11.68 45.36 72.34 42.48 10.53
Fog [16] 38.19 64.72 33.38 7.49 39.82 68.41 38.68 9.65 43.37 71.05 40.03 9.90
DROR [6] 38.57 64.27 35.40 8.07 39.33 66.73 38.14 10.51 41.44 67.76 38.48 9.44

PV-RCNN [39] LISA [22] 39.21 64.21 35.34 8.64 41.60 69.15 41.08 11.15 45.30 71.06 42.86 11.45
Ours-wet 40.03 65.34 35.82 9.31 41.07 68.49 40.03 11.02 44.81 71.60 42.71 10.63
Ours-snow 41.61 67.44 37.47 8.84 41.20 68.79 40.20 11.13 45.61 72.14 43.40 11.21
Ours-snow+wet 41.79 68.39 37.14 8.85 41.79 70.30 41.01 11.28 45.71 71.88 43.31 11.69
None 39.47 65.14 36.29 6.83 41.25 69.12 39.86 11.81 45.19 72.33 43.20 10.69
Fog [16] 40.06 65.58 36.78 7.33 41.10 68.93 39.25 10.98 44.46 71.67 41.78 10.84
DROR [6] 38.16 64.97 33.23 6.83 38.48 66.93 35.68 9.97 40.65 67.94 36.85 8.45

VoxelRCNN-Car [9] LISA [22] 39.06 66.61 33.56 6.93 40.68 68.80 38.78 10.75 45.03 72.05 41.96 10.59
(single class method) Ours-wet 40.28 67.37 36.03 6.95 40.89 69.41 39.28 10.37 43.98 72.08 40.23 9.23

Ours-snow 41.20 68.27 37.18 7.90 41.75 70.22 40.95 11.78 44.52 72.40 42.23 10.39
Ours-snow+wet 40.76 66.58 37.74 7.78 41.57 68.94 40.82 11.66 45.20 71.30 42.84 11.23
None 38.68 63.50 34.20 8.23 40.91 68.36 39.96 10.98 44.11 71.66 40.97 9.76
Fog [16] 38.82 64.43 33.70 8.69 40.82 68.71 40.05 10.48 43.79 70.34 41.22 10.77
DROR [6] 38.42 64.47 34.31 8.27 38.69 65.62 37.59 10.26 40.80 67.62 36.61 8.69

CenterPoint [59] LISA [22] 38.11 63.74 33.58 7.67 40.26 68.16 39.25 11.20 44.70 71.54 41.46 11.23
Ours-wet 39.03 63.17 36.08 7.69 40.65 68.59 39.58 10.87 43.85 70.20 41.66 10.82
Ours-snow 39.81 64.75 35.77 9.06 40.68 68.71 39.65 10.40 44.76 71.90 42.91 10.13
Ours-snow+wet 40.14 65.54 37.20 8.41 41.23 69.19 40.07 11.84 44.33 71.24 41.49 10.02
None 36.59 63.50 30.17 6.86 38.03 65.83 35.95 9.39 42.81 70.27 39.90 9.18
Fog [16] 35.98 62.23 30.94 6.39 38.17 66.07 37.12 8.63 41.82 67.44 39.73 9.39
DROR [6] 35.85 65.36 27.99 6.13 35.43 63.50 32.87 7.95 39.48 66.92 35.18 8.61

Part-A² [42] LISA [22] 37.12 65.57 30.05 5.96 38.04 66.62 36.72 8.25 41.92 70.02 38.84 7.79
Ours-wet 37.13 65.02 30.46 6.14 38.29 65.80 38.12 8.85 41.92 69.12 39.37 9.00
Ours-snow 37.73 66.44 29.54 6.46 38.23 67.72 36.02 7.41 43.41 71.00 40.63 9.74
Ours-snow+wet 37.52 64.97 31.65 6.48 38.66 67.00 38.18 8.43 42.45 70.27 39.19 8.83
None 36.68 61.74 33.25 6.14 39.04 66.90 39.72 9.28 41.79 68.58 40.34 7.96
Fog [16] 36.56 62.93 33.03 5.52 38.37 65.71 39.60 8.50 41.28 67.79 38.82 7.88
DROR [6] 36.14 62.64 31.64 5.28 36.31 63.52 36.62 7.77 39.08 64.96 36.54 7.70

PointRCNN [41] LISA [22] 36.68 62.85 31.80 5.78 38.08 65.20 38.96 8.96 41.80 68.17 39.79 8.35
Ours-wet 37.07 62.92 33.76 6.38 39.46 66.33 41.51 9.69 41.70 67.41 39.59 8.05
Ours-snow 37.59 63.99 33.63 6.15 38.60 65.18 39.20 9.47 41.43 67.61 39.89 8.15
Ours-snow+wet 37.51 63.77 33.01 5.90 39.15 67.10 39.89 9.43 41.34 67.76 39.58 7.87
None 36.08 61.53 30.92 6.60 37.77 65.68 36.06 9.80 42.10 67.82 39.52 10.81
Fog [16] 36.08 61.65 31.25 7.65 37.31 64.27 35.43 10.55 42.34 69.85 39.20 10.13
DROR [6] 35.04 60.72 28.79 7.88 35.09 62.24 32.09 8.85 38.96 64.74 35.50 9.76

SECOND [57] LISA [22] 35.90 59.31 32.81 7.44 38.07 64.38 38.47 10.32 41.75 67.01 38.24 11.47
Ours-wet 36.79 61.18 32.48 8.86 38.04 64.73 37.31 9.95 42.48 69.32 39.28 10.58
Ours-snow 36.83 61.94 31.40 8.50 37.99 65.40 36.70 9.59 42.72 69.16 40.13 10.86
Ours-snow+wet 37.03 64.00 31.06 7.05 37.11 65.42 35.75 8.69 42.31 69.80 38.25 10.18
None 30.85 52.45 27.31 5.59 34.09 59.88 32.80 8.52 38.24 64.02 35.76 8.01
Fog [16] 30.39 52.13 26.79 5.71 35.38 60.81 35.15 9.60 37.74 64.56 34.48 7.30
DROR [6] 29.32 54.52 21.88 4.82 30.99 57.17 28.43 6.95 34.72 60.59 30.34 6.72

PointPillars [25] LISA [22] 28.70 49.78 24.98 5.63 33.87 60.93 31.38 8.70 37.92 63.98 34.61 7.94
Ours-wet 31.58 52.81 28.64 6.93 34.58 60.57 34.00 8.66 38.10 65.12 34.31 7.75
Ours-snow 32.94 54.21 29.79 7.81 35.96 61.50 35.67 10.13 39.25 64.37 36.65 8.80
Ours-snow+wet 31.38 54.09 27.67 6.14 34.18 60.27 33.12 8.08 38.17 64.40 34.73 7.95

Table 1. Comparison of simulation methods for 3D object detection in snowfall on STF [1]. We report 3D average precision (AP) of
moderate cars on three STF splits: the heavy snowfall test split with 1404 samples, the light snowfall test split with 2512 samples and
the clear-weather test split with 1816 samples. “Ours-wet”: our wet ground simulation, “Ours-snow”: our snowfall simulation, “Ours-
snow+wet”: cascaded application of our snowfall and wet ground simulation.

model (Ours-snow+wet) consistently improves the perfor-
mance on the most challenging test case, i.e. heavy snow-
fall, for all methods by a significant margin compared to
both the baseline approach as well as all competing simu-
lation [16, 22] and denoising [6] methods. This improve-
ment on heavy snowfall is particularly pronounced for the
best-performing detection method, i.e. PV-RCNN [39], for
which our full simulation beats the clear-weather baseline
by a notable 2.1% in AP.

For PV-RCNN [39], CenterPoint [59] and Part-A² [42],
our full simulation also delivers the best performance
among all methods on light snowfall, showing that the ben-
efit of our simulation extends to all snowfall intensities.
Moreover, on the clear-weather test split, our snowfall sim-
ulation without wet ground modeling demonstrates the best
performance among all competing approaches for six out of
the seven detection methods, consistently improving upon
the clear-weather baseline. This finding shows that using
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Figure 7. Qualitative comparison of PV-RCNN [39] on samples from STF [1] containing heavy snowfall. The leftmost column shows
the corresponding RGB images. The rest of the columns show the LiDAR point clouds with ground-truth boxes and predictions using the
clear-weather baseline (“no augmentation”), DROR [6], LISA [22], and our fully-fledged simulation (“our snow+wet augmentation”).

our snowfall simulation for training increases detection per-
formance on severe snowy conditions, while not sacrificing
but rather improving performance on clear weather as well.

Using simulation methods designed for different adverse
conditions, such as the fog simulation in [16], does not
transfer well to snowfall as the respective physical models
differ; performance of [16] is slightly lower than the clear-
weather baseline on both snowfall splits for most detection
methods. The application of DROR [6] as an enhancement
step removing clutter points achieves among the lowest re-
sults, because it also removes several valid points, which do
not belong to the snowfall clutter.

4.2. Qualitative Results

Qualitative results showing the proposed data augmenta-
tion scheme are presented in Fig. 7. Here, PV-RCNN [39]
is compared to the clear-weather baseline with no augmen-
tation, DROR [6] and LISA [22]. In the first row, we see
that the pedestrian inside the snowfall clutter can only be
detected when our proposed data augmentation is applied
during training. In the second row, additional false posi-
tives appear for all competing approaches. The bottom row
shows a difficult highway scene with whirled-up snow dust.
Our data augmentation approach generalizes well to this ex-
ample, being the only method that detects the lead vehicle.
Note also that in such a scenario with whirled-up snow dust,
DROR [6] cannot remove the clutter completely.

5. Conclusion

In this work, we have introduced a novel method for real-
istic synthesis of winter scenes from clear LiDAR captures
modeling snowfall and wet surfaces in a physically accurate
way. Further, we have proven the effectiveness of the pro-
posed algorithm, testing the augmentation with seven differ-
ent 3D object detection methods and achieving consistent
improvements of up to 2.1% in AP in heavy snowfall. As
future work, we envision the exploration of temporal cues
for robust LiDAR-based 3D object detection.
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