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Abstract

Prior work has extensively studied the latent space struc-
ture of GANs for unconditional image synthesis, enabling
global editing of generated images by the unsupervised dis-
covery of interpretable latent directions. However, the dis-
covery of latent directions for conditional GANs for seman-
tic image synthesis (SIS) has remained unexplored. In this
work, we specifically focus on addressing this gap. We
propose a novel optimization method for finding spatially
disentangled class-specific directions in the latent space of
pretrained SIS models. We show that the latent directions
found by our method can effectively control the local ap-
pearance of semantic classes, e.g., changing their internal
structure, texture or color independently from each other.
Visual inspection and quantitative evaluation of the discov-
ered GAN controls on various datasets demonstrate that our
method discovers a diverse set of unique and semantically
meaningful latent directions for class-specific edits.

1. Introduction
Semantic image synthesis (SIS) transforms user-

specified semantic layouts to realistic images. Its appli-
cations range widely from image editing and content cre-
ation to synthetic data augmentation, where training data
is generated to fulfill specific semantic requirements. For
SIS, GANs [9] have demonstrated their superiority in terms
of the visual quality of synthesised images and their align-
ment to input semantic label maps [17, 24, 26, 32, 38]. Al-
though some of GAN-based SIS models allow local appear-
ance editing of single classes or regions in an image – ei-
ther by style transfer from a reference image [16, 32, 48]
or by sampling noise independently for specific image re-
gions [26, 49], they are lacking the technique of enabling
interpretable semantic changes for the specific class with-
out reference image and user-in-the-loop supervision.

On the other hand, prior work has extensively studied the
latent space of unconditional GANs [8, 10, 25, 29, 35, 42],
finding interpretable latent directions which activate dis-
tinctive factors of variations in the generation process in
an unsupervised fashion, without exploiting reference im-
ages. Moving latent code(s) along a certain direction can
result in domain-agnostic transformations, e.g. rotation or
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Figure 1. Our Ctrl-SIS method learns class-specific directions in
the latent space of a SIS model, which can be applied jointly for
different semantic classes for local editing of the generated image.

zooming [13,25,36], or domain-specific alterations, e.g. age
or nose length of a person [6, 7, 18, 28, 40]. Despite their
progress, it remains a challenge to find interpretable latent
directions to control interactively the synthesis of specific
semantic classes in the image without changing other image
regions. Since the above methods were designed specifi-
cally for unconditional GANs, they are not well suited to
discover class-specific latent directions in the presence of
semantic label maps, inherently given for SIS.

In this work, we address this limitation and study the
latent space of conditional GANs designed for SIS, which
to the best of our knowledge has not been explored previ-
ously. In particular, making use of the label maps we devise
a method to discover meaningful latent directions that only
change a specific semantic class in the image. These di-
rections can, for example, encode different designs of the
facade for the building class or surfaces for the street class
(Fig. 1), enabling the user to perform local semantic ed-
its independently from the rest of the image. Note that in
recent state-of-the-art SIS GANs, the generator is already
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designed to be sensitive to spatial information [26, 49], al-
lowing region-based noise sampling of specific classes.

On this basis, we introduce a simple, efficient optimisa-
tion method to discover class-specific controls in pretrained
SIS GANs, which we call Ctrl-SIS (see Fig. 2). Our opti-
mization objective is designed to ensure that the learnt la-
tent directions are 1) diverse and different from each other
(diversity loss); 2) only affect the image area of the se-
lected class, preserving the appearance of other areas (dis-
entanglement loss); and 3) induce the same semantic edits
consistently across different initial latent codes and label
maps containing the class (consistency loss). See Sec. 3
for more details. We demonstrate that GAN controls dis-
covered automatically by Ctrl-SIS can effectively manipu-
late the appearance of the selected semantic class in spe-
cific ways, without affecting other classes in the image. For
example, we can change the house facade (see Fig. 1), re-
move leaves from trees or cover mountains in snow (see
Fig. 4). Moreover, we can edit different classes jointly, e.g.,
alter both the building and the road in the street scene (see
Fig. 1). Since we use only train-time optimization, instead
of exhaustive search as in [40] or test-time optimization as
in [18,22,45,46], our training time stays relatively fast com-
pared to the former, while also allowing interactive image
editing compared to the latter.

The evaluation of GAN control discovery methods is
commonly left to subjective visual inspection. To address
this, we introduce new metrics to quantitatively assess di-
versity, spatial disentanglement and consistency properties
of learnt latent directions (see Sec. 4.2). We compare
Ctrl-SIS with other GAN control methods on different SIS
GANs [24, 26, 38] on two datasets [4, 44]. Our experiments
show that latent directions found by prior methods adapted
to SIS [10, 29] lead to weaker class edits, comparable to
random directions (see Sec. 4.3). In contrast, Ctrl-SIS finds
directions that enable diverse and semantically meaningful
class edits while maintaining high image quality.

In summary, our contributions are as follows: 1) We pro-
pose Ctrl-SIS – a method to discover interpretable latent
controls for individual semantic classes in pretrained SIS
GANs. To the best of our knowledge, the discovery of class-
specific latent direction has not yet been addressed in the
SIS literature. 2) We define diversity, consistency, and spa-
tial disentanglement as desirable properties of class-specific
latent controls and propose new metrics to quantify them.

2. Related work

GAN models for SIS. SIS GANs attracted a lot of attention
for their application in controllable image synthesis [23]
and editing [21, 32]. To achieve photorealism, Pix2Pix [12]
used an encoder-decoder generator and a patch-based dis-
criminator, providing label maps as input to the first layers

of both networks. SPADE [24] demonstrated that using la-
bel maps as input only to the first layer tends to weaken
semantic conditioning and proposed to modulate intermedi-
ate generator layers via a spatially-adaptive normalization.
Follow-up works improved image quality through different
ways of using label maps in the generator, e.g., via other
conditional normalizations [21,33,38,48], conditional con-
volutions [19], a label map encoder [17], or by learning
class-specific sub-generators [34].

Many SIS models struggled to achieve diversity, as the
generator tended to ignore the input latent code [12, 37].
To address this issue, SPADE [24] and SC-GAN [38] uti-
lized an image encoder to extract a global style vector from
a reference image. By changing a reference image, these
models can generate different images from the same label
map. [16,48] further enabled class-wise style transfers from
the reference image. [49] allowed local editing by control-
ling the appearance of different classes via separate latent
codes using group convolutions. OASIS [26] improved im-
age diversity by feeding a 3D latent code tensor jointly with
the label map into the conditional batch normalization lay-
ers, thus, enabling both global image editing as well as local
region-based editing. For this reason, in this work we dis-
cover class-specific directions in the 3D latent spaces of al-
ready pre-trained generators of the state-of-the-art SIS mod-
els [24, 26, 38]. Since latent direction discovery is not ap-
plicable to the exemplar-based approaches, such as [16,48],
we focus on non-exemplar-based models, that rely only on
the input latent code to generate diverse images.

GAN control discovery. It has been shown that the la-
tent space of GANs frequently exhibits semantically rel-
evant vector space arithmetic [2, 8, 13, 27, 36]. However,
finding steerable directions in the latent space is challeng-
ing due to its high dimensionality and the large variety of
image semantics. Consequently, some works use human su-
pervision [27], attribute predictors [28,40] or predetermined
visual transformations such as zooming and rotation [13,25]
to identify interpretable latent directions. As the depen-
dence on supervision limits the practical use of these meth-
ods, [10, 29, 30, 35, 36, 42] investigated unsupervised dis-
covery of GAN controls. GANSpace [10] performed PCA
on the intermediate generator features, discovering useful
directions in the latent space resulting from layerwise per-
turbations along the principal directions. SeFa [29] iden-
tified semantically meaningful directions in closed-form,
through eigendecomposition of the generator weights. In
contrast, [35, 42] relied on gradient-based optimization.
WarpedGanSpace [35] used an image classifier to discrimi-
nate among a fixed set of directions, while LatentCLR [42]
employed a contrastive loss optimizing directions to have
orthogonal effects on the generator features. A common
limitation of unsupervised methods is that the obtained la-
tent directions are left to subjective visual inspection and
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Figure 2. Ctrl-SIS provides a set of K class-specific latent directions which control the appearance of C semantic classes (shown left). To
alter the appearance of class c, a class-specific latent direction is added to the input 3D latent code z of the pretrained generator G in the
label map area corresponding to class c (Mc).

manual identification of significant controls.
While the above work focused on finding latent di-

rections for global image manipulation of unconditional
GANs, our method finds class-specific latent directions
for conditional SIS models. We pick state-of-the-art
GANSpace and SeFa for comparison due to their simplicity,
easy adaptation to SIS GAN models, and code availability.

Local editing with GANs. Recent work enabled local
image editing through optimization in the latent space on
specific image regions [18,22,31,40,45,46]. EditGAN [18]
modelled images and label maps jointly, requiring the user
to modify the label map in order to perform the edit via la-
tent space optimization. Image2StyleGAN++ [1] changed
images locally via a masked style transfer or by re-encoding
images edited with provided scribbles. LELSD [22] pro-
posed an area loss that, given a binary mask, optimizes
changes only within the specified area. Yet, the found di-
rections are still applied globally. ReSeFa [46] proposed
to optimize the change of pixel values with respect to the
latent code, identifying latent variations in a user-specified
image region. The main limitation of the above work is that
it requires test-time optimization, preventing the user from
interactive image editing. In contrast, Ctrl-SIS is optimized
end-to-end once to provide latent directions for interactive
editing in the spirit of GANSpace and SeFa. It enables
the user to perform image editing interactively, without the
need for further supervision or mask area definitions.

Ctrl-SIS differs from the aforementioned latent space op-
timization methods in two ways. First, Ctrl-SIS is specifi-
cally designed for SIS, making use of semantic label maps
inherent in this task. Second, the discovered latent direc-
tions are class-specific. Several SIS models allow class-
specific noise sampling [17, 26, 32, 49], but do not provide
a method to discover interpretable directions in their latent
space. Lastly, existing methods for class-specific editing
in SIS models manipulate classes using predetermined con-

cepts [16,48], requiring a source image to extract a style. In
contrast, our unsupervised approach allows users to browse
through a set of discovered semantic concepts that the pre-
trained SIS GAN has learned.

3. Ctrl-SIS method

The goal of this work is to discover steerable latent di-
rections for GAN-based SIS models. Enabled by the given
semantic label maps, we aim to find GAN controls specific
to semantic classes, e.g. a set of latent directions for con-
trolling the appearance of the street and another set of direc-
tions for the appearance of house facades, see Fig.1. How-
ever, this task presents two major challenges.

The first challenge is that SIS GANs commonly do not
provide the same image diversity as unconditional mod-
els [3, 14], nor have region-specific latent codes. We al-
leviate both problems by applying a 3D latent code injec-
tion [26], which we describe in Sec. 3.1. The second chal-
lenge is that prior GAN control discovery methods are not
designed to consider label maps, nor to find class-specific
directions, as they are devised for unconditional GANs. We
address both aspects in Sec. 3.2 with a simple, efficient op-
timisation method which we call Ctrl-SIS.

3.1. GAN controls for SIS models

Current SIS models employ different ways to inject la-
tent code into the generator, which affects its ability to
perform class-specific edits. The default approach is to
feed a one-dimensional latent vector as input to the genera-
tor [19,24,38], resulting in no direct opportunity to perform
local region-based edits of the image. Thus, in order to en-
able local editing in SIS, we employ the 3D latent code in-
jection scheme from [26], adopting it to all SIS models con-
sidered in this work. The 3D latent codes z ∈ RH×W×D

are created by replicating the original noise vector along
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Figure 3. Examples of directions discovered by Ctrl-SIS for various classes, such as different views of a window, face appearances or tree
leafage for different seasons of the year. The directions give insight into the concepts that the pretrained SIS model is able to represent.

the height H and width W of the label map. The 3D la-
tent code allows to apply different latent vectors to different
image regions (see Fig. 2). In practice, altering the 3D la-
tent code only for a specific image region can still affect
other image areas, due to spatial correlations learnt by the
generator during training. Nevertheless, the 3D latent space
provides better spatial disentanglement and, thus, improves
image manipulation control for local edits compared to 1D
latent codes. In the remainder of this paper, we assume a
3D latent space for the discovery of SIS GAN controls.

Let G be a well-trained GAN generator of a SIS model.
The generator G(z, y) synthesises an image given a 3D la-
tent code z and label map y, i.e. x = G(z, y) = F (h(z, y)),
where h = {Gl(z, y)}l∈L is a chosen subset of features
from intermediate layers l ∈ L in the network G, and C is
the total number of semantic classes. The latent code z con-
trols the appearance of the synthetic image, while the label
map y specifies the scene layout. Then an image x can be
globally edited by moving z along a specific direction vk:

x(vk) = F (h(z, vk, y)) = G(z + αvk, y), (1)

where α controls the intensity of the change, and the latent
direction vk determines the semantics of the image transfor-
mation. Local editing of class c in x is done by moving z
along a class-specific direction vck only in the area of class
c in the label map y:

x(vck) = F (h(z, vck, y)) = G(z + αMc � vck, y), (2)

where Mc = 1[y=c] is a binary mask indicating pixels in
the image belonging to c (see Fig. 2). We next define the
task of class-specific GAN control discovery and introduce
an optimization objective to find vck directions for any pre-
trained SIS model with a spatially-aware generation process
induced by 3D latent codes.

3.2. Discovery of class-specific GAN controls

For the class of interest c ∈ C we aim to find a diverse
set of class-specific directions V c = {vc0, vc1, ..., vcK}, K >
1, that can meaningfully edit the appearance of class c in
the synthetic image x, such that image x(vck) has a visually
distinct appearance of class c compared to x, but all other
classes have the same appearance as in x. Based on this
logic, we form an optimization objective, which consists of
diversity, disentanglement and consistency loss terms:

min
V c
Ldiv + Ldis + Lconst . (3)

The diversity loss Ldiv encourages a set of class-specific
GAN controls V c to be diverse and introduce different se-
mantic changes to class c, the disentanglement loss Ldis

prevents changes outside the class area, and the consistency
loss Lconst ensures that the semantics of an edit are consis-
tent between different initial latent codes z. We next provide
the mathematical formulation of these loss terms.

Diversity loss. Given a label map y and a class of interest c,
the diversity loss aims to ensure that the set of found latent
directions V c applied to identical input latent code z yields
maximally different semantic visual effects, i.e. change an
appearance of class c in a different way. It is formulated as

Ldiv=−E(z,y)

[ K∑
k1,2=1
k1 6=k2

Mc · ||h(z, vck1
, y)− h(z, vck2

, y)||2
]
, (4)

where ‖ · ‖ is the L2 norm, and for the class-specific area
Mc the distance between the two resulting images x(vck1

)
and x(vck2

) is maximised in the generator feature space h,
ensuring semantically different directions for class c. De-
pending on the selected feature space in G, i.e. the subset
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Figure 4. Interpretable latent directions learnt by Ctrl-SIS for various classes. Each triplet is edited with an identical direction. Class-
specific edits, such as aging, snowy streets or bald trees, are highly consistent across different label maps and initial latent codes.

of intermediate layers L in h = {Gl(z, y)}l∈L, we can find
various GAN control directions which correspond to differ-
ent semantics encoded in the selected feature space of G.

Disentanglement loss. The discovered latent direction vck
for class c should only affect the image area belonging to c
in the label map y and leave the rest of the image unaffected.
Thus, we also minimize the change for images x(vck1

) and
x(vck2

) in the feature space h in the area outside of Mc:

Ldis=E(z,y)

[ K∑
k1,2=1
k1 6=k2

(1−Mc)·||h(z, vck1
, y)−h(z, vck2

, y)||2
]
. (5)

Consistency loss. Identical GAN control directions should
cause consistent semantic edits of class c for different input
latent codes and the same label map y given to the generator.
Therefore, for every found direction vck we minimize the
feature space distance between two images generated with

z1 and z2 in the class-specific area Mc :

Lconst=E(z,y)

[ K∑
k=1

Mc · ||h(z1, vck, y)− h(z2, v
c
k, y)||2

]
. (6)

Note that the directions in V c are the only parameters to
be optimized; the weights of the pre-trained image genera-
tor G(z, y) are kept frozen. The parameters are optimized
by iterating over batches of label maps in the training set
and minimizing the objective for selected classes at every
step. During optimization, the directions vck are normal-
ized along the channel dimension to unit length 1 and sub-
sequently scaled by α, sampled from the interval [−n;n],
where n = E[||z||2] is the average norm of the latent code
along the channel dimension. This ensures the latent edits
are neither too small nor too extreme.
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Method ADE20K COCO-Stuff
mCD ↑ mCC ↓ mOD ↓ FID↓ mIoU↑ mCD ↑ mCC ↓ mOD ↓ FID↓ mIoU↑

Baseline - - - 28.6 52.2 - - - 17.1 42.4
Random 0.11 0.30 0.01 31.3 49.4 0.16 0.07 0.00 17.6 42.3
GANSpace 0.09 0.29 0.01 28.1 53.3 0.15 0.06 0.00 17.2 42.1
SeFa 0.12 0.28 0.01 28.1 53.2 0.15 0.06 0.00 17.1 43.8
Ctrl-SIS 0.26 0.28 0.01 30.9 48.9 0.30 0.07 0.01 21.1 43.6

Table 1. Evaluation of OASIS GAN controls on ADE20K and COCO-Stuff. Red numbers indicate lower-than-random performance.
Ctrl-SIS discovers significantly more diverse directions (mCD) without sacrificing consistency (mCC) or spatial disentanglement (mOD).

4. Experiments
4.1. Experimental setup

Datasets. We use three challenging datasets: CelebAMask-
HQ [16], ADE20K [44], and COCO-Stuff [4].
CelebAMask-HQ consists of 30k face images. ADE20K
and COCO-Stuff contain 20k and 164k images of indoor
and outdoor scenes, and are used for the main experiments.

SIS models. We consider three pre-trained GANs for SIS:
SC-GAN [38], SPADE [24] and OASIS [26], using the code
provided by the authors 1. We additionally implement 3D
latent codes for SPADE and SC-GAN, which do not origi-
nally support it, enabling local image editing for them.

GAN control methods. Ctrl-SIS is compared against the
two related latent discovery methods GANSpace [10] and
SeFa [29], using the authors’ code 2. Following GANSpace-
StyleGAN2 [10] and SeFA-StyleGAN2 [29], we train all
latent direction methods on features extracted from the nor-
malization layers of each ResNet block in the generator.

Training details. Ctrl-SIS is trained with a batch size of 16
on a NVIDIAv100 GPU, using the AdamW optimizer [20]
and a learning rate of 1e-3. We train for 20 epochs on
ADE20K, and 5 epochs on COCO-Stuff and CelebAMask-
HQ, using K = 5. Finding class-specific directions with
Ctrl-SIS takes ∼1h. For evaluation we scale the directions
with α sampled in [−n;n] (see Sec. 3.2), to ensure that the
direction magnitude is in the same range as the average la-
tent code. By scaling the magnitudes of latent directions
from all methods in the same way, we ensure that the ef-
fect of the edit only depends on the learnt direction. For
GANSpace and SeFa, we pick the directions belonging to
the first K components, as they cause the largest variations.

4.2. Evaluation

Image quality evaluation. Following [12,24,26], we moni-
tor the visual quality of images generated with class-specific
edits using FID [11] and mIoU metrics. FID is known to
be well aligned with human judgement of image quality.
mIoU assesses the alignment of images with ground truth
label maps, calculated via a pre-trained semantic segmen-

1 Code for SIS models: SPADE, SC-GAN, OASIS
2 Code for GAN control methods: GANSpace, SeFa

tation network. We use UperNet101 [41] for ADE20K and
DeepLabV2 [5] for COCO-Stuff. In addition, we employ
the precision and recall metrics of [15], which correlate with
image quality and diversity, respectively.

Evaluation of class-specific GAN controls. Prior GAN
control methods were mostly evaluated by subjective visual
inspection [10, 29, 42]. Consequently, it was challenging to
assess the important properties of GAN control methods.
First, how many unique and visually distinct latent direc-
tions are found. Second, how general are the directions, i.e.
if they consistently invoke the same semantic change in all
images. Third, in the case of SIS, local class-specific ed-
its must not affect the rest of the image. To quantitatively
assess these properties, we introduce the following metrics.

To measure how unique and distinct the found directions
are, we introduce the mean control diversity (mCD). mCD
measures the mean pairwise LPIPS [43] distance between
edited images generated with the same label map. We gen-
erate 10 global edits of each synthetic test set image by ap-
plying a randomly selected class-specific direction to each
class area in the label map. The pairwise LPIPS distance
is then averaged over all images and 5 initial input latent
codes. We also measure a local version mCDl, where only a
single class is locally edited at a time. In this case, we com-
pute the average masked LPIPS distance inside the class-
specific area of a single class for all pairs of the K class-
specific directions. The final mCDl score is the average of
the mean per-class scores. A high mCDl score implies that
each discovered latent direction changes the class appear-
ance in a uniquely different way.

To evaluate how much class-specific edits affect the ar-
eas outside of the target class area, we introduce the mean
outside class diversity (mOD). mOD is computed similarly
to mCDl, except that we use the masked LPIPS distance in
the image area outside of the target class area. Ideally, mOD
is very low, as we want the latent direction to alter only the
class-specific region. Both mCD and mOD scores are in-
spired by the metrics proposed by [49], see Sec. B in the
supplementary for more details.

We introduce the mean control consistency (mCC) score
to measure to which extent latent directions invoke the same
interpretable edit in all images. The mCC is computed by
editing each class in an image with a randomly picked class-
specific direction. In this case, the score of an image is the
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mCDl ↑ Precision↑ Recall↑ Human eval.
SHE↑ HDR↓

Baseline - 0.84 0.63 - -
Random 0.04 0.82 0.62 32.9 2.62
GANSpace 0.03 0.87 0.61 29.1 3.43
SeFa 0.05 0.87 0.62 30.3 2.88
Ctrl-SIS 0.12 0.85 0.64 60.7 1.07

Table 2. Evaluation of local class-specific image edits on ADE20K
with OASIS. Ctrl-SIS shows higher diversity of latent directions
(mCDl, SHE, HDR, Recall) while retaining good image quality
(Precision).

mean pairwise LPIPS distance when different initial latent
codes are applied while the class-specific latent direction is
kept the same. The final mCC score is averaged over all
label maps in the test set. Same as for mCDl, for the lo-
cal mCCl score, the edits are only applied to one class and
the masked LPIPS distance is used. The lower mCCl the
more consistent are the class-specific edits for different ini-
tial latent codes. A detailed further description of the met-
rics is given in Sec. B in the supplementary. With the intro-
duced metrics, a more unbiased and systematic comparison
of GAN control discovery methods for SIS is possible.

Human evaluation. We also conduct a human evaluation of
the learnt latent directions. To this end, we employ the SHE
score from [49] and introduce a Human Diversity Rank
(HDR) metric. For SHE, participants are shown two images
edited only in the corresponding class area by applying the
learnt class-specific latent direction. The final SHE score is
the percentage of image pairs that the participants judge to
be semantically different in the area of only one class. For
HDR, participants are shown rows of locally edited images
from four different methods (Random, SeFa, GANSpace,
Ctrl-SIS) , as in Fig. C in the supplementary material but in
a randomized order. The task is to rank the methods by their
diversity. The final HDR score is an average rank (range 1
to 4) assigned to a GAN control discovery method. Each
participant is provided with 50 questions and unlimited an-
swering time for both scores.

4.3. Main results

We compare Ctrl-SIS, GANSpace and SeFa on global
and local image editing. While local edits target a single
class per image, global edits combine all class-specific ed-
its within an image. The local edits show that the found
directions encode semantic meaning, such aging faces, cov-
ering mountains in snow or turning on lamps (see Fig. 3 and
4). Global edits, change the whole image globally and are
the result of combining all class edits in one image. In ad-
dition, we compare all methods to the performance of ran-
domly sampled directions (”Random”) as well as to the per-
formance on unedited images (”Baseline”).

As seen from Table 1, Ctrl-SIS achieves improved diver-

Model Random GANSpace SeFa Ctrl-SIS
OASIS 0.04 0.03 0.05 0.12
SC-GAN 0.05 0.06 0.06 0.18
SPADE 0.05 0.08 0.06 0.09

Table 3. Comparison of mCDl for GAN control methods across
SIS models on ADE20K. Ctrl-SIS yields more diverse latent direc-
tions independent of the pretrained SIS model, while other meth-
ods find directions comparable to random sampling.

sity by at least a factor of two, e.g., mCD of 0.26 vs. 0.12
of SeFa on ADE20K. The diversity of GANSpace and SeFa
is lower (see numbers in red in Table 1) or close to ran-
dom directions. Neither of these methods are designed to
find class-specific directions. Yet, they still capture class-
agnostic variations in the data, leading to directions that
are closer to the mean of the image distribution and thus
slightly better FID and mIoU. All methods exhibit similar
consistency (mCC), with Ctrl-SIS and SeFa performing best
on ADE20K, and SeFa and GANSpace on COCO-Stuff.
The consistency of Ctrl-SIS is demonstrated in Fig. 4, e.g,
where the learnt latent direction consistently defoliates trees
or covers streets in snow. Similar to the consistency, the dis-
entanglement (mOD) is strong for all methods, due to the
spatially disentangled 3D latent space of the OASIS model.

Due to the higher diversity of edited images, FID in-
creases slightly for Ctrl-SIS compared to the baseline of
unedited images (see Table 1). Since FID measures the
overlap between the real and synthetic image distributions,
images with weaker edits are closer to the original data.
This can be visually confirmed in Fig. C in the supple-
mentary material, where edits are shown side-by-side for
all methods. Since SeFa and GANSpace only minimally
change the class, their FID is close to the FID of unedited
images (see Baseline in Table 1). Likewise, mIoU of im-
ages edited with Ctrl-SIS decreases, as the edited images
move away from the mean mode of the synthetic image dis-
tribution. In contrast, for SeFa and GANSpace FID and
mIoU are slightly better with respect to the baseline, while
their diversity (mCC) is comparable to random directions.
This observation suggests that SeFa and GANSpace images
are closer to typical samples of the test set, while Ctrl-SIS
learns more distinct directions.

We perform alternative evaluations of local class-specific
edits in Table 2. Ctrl-SIS shows the highest recall and di-
versity (mCDl), and is the only method to improve both
precision and recall over the OASIS baseline. Due to the
precision-recall trade-off, SeFa and GANSpace have higher
precision at the loss of recall, which is also reflected in their
low mCDl score and better FID over Baseline in Table 1.
Moreover, both human diversity evaluation scores (SHE and
HDR) are well aligned with the diversity metric mCDl and
recall, confirming the highest diversity of Ctrl-SIS.

Next, we compare Ctrl-SIS on different SIS models. Ta-

7



Label map Original k1 k2 k3 k1 + k2 k2 + k3 k1 + k3

Figure 5. Combinations of directions k1, k2 and k3 found for the face class (skin, neck, nose, ears) in the CelebAMask-HQ dataset.
Different directions can be added in the latent space to combine their semantics, e.g., k1 (beard) and k2 (age) yield an old bearded person.

Label map Original Res 1 Res 2 Norm 3 Norm 4 Res 1 + Norm 4

Figure 6. Optimizing Ctrl-SIS on the output features of ResNet blocks leads to an emphasis on structure (Res 1 and 2), while late
normalization layers focus more on color (Norm 3 and 4). Directions from different layers can be combined (see last column).

ble 3 shows that Ctrl-SIS improves diversity strongly for
local edits across all tested SIS models. SPADE naturally
suffers from lower sensitivity to input latent code due to the
strong regularization effect of its perceptual loss, as shown
in [26]. While OASIS is trained without a perceptual loss,
and SC-GAN uses a more powerful layer-wise condition-
ing strategy, leading to more diversity. Similar to Table 1,
the diversity of GANSpace and SeFa is comparable to ran-
dom directions. In other words, the directions that SeFa and
GANSpace find differ just as much from each other as a set
of randomly chosen directions. In contrast, the directions
of Ctrl-SIS embody distinct appearances that are unlikely
to appear in a set of random directions. An extended ver-
sion of Table 3 with global metrics, FID and mIoU can be
found in Table C in the supplementary material.

Compositionality. Individual class-specific latent direc-
tions can be combined. For example, Fig. 5 shows that
directions corresponding to ”age” and ”beard” can be com-
bined into ”old and bearded”. Further, the latent directions
found by Ctrl-SIS depend on the subset of feature layers
Gl(z, y) of the SIS generator G chosen for optimization
(see Sec. 3). Fig. 6 highlights latent directions that were
discovered by optimizing over layers from different blocks
of the generator. For example, the set Norm 4 in Fig. 6 min-
imizes the loss over the first convolution in all conditional
normalization layers [24] within the fourth ResNet block.
While for the set Res 1 we minimized the loss for the fi-
nal output features of the first ResNet block. We observe
that the directions for Res 1 and 2 differ strongly in the in-
ternal structure of semantic classes, while Norm 3 and 4
encode changes in color. Interestingly, latent directions can
be combined when synthesising images, by injecting differ-
ent directions in different layers. In the last column of Fig.
6, a direction of an early ResNet block is injected into the
first four blocks of the SIS model, while directions from the

Method mCD ↑ mCC ↓ mOD ↓ FID ↓ mIoU ↑
Ctrl-SIS 0.26 0.28 0.01 30.9 48.9
No Ldiv 0.24 0.28 0.01 30.5 49.4
No Lconst 0.26 0.29 0.01 30.9 48.7
No Ldis 0.27 0.28 0.02 31.6 48.3

Table 4. Loss ablation of Ctrl-SIS on ADE20K.

conditional normalization layers of a late ResNet blocks are
injected from block five onwards. As the former directions
encode structure, and the latter encodes colors, the resulting
image combines both aspects.

Ablation. Table 4 presents an ablation on the proposed
objective, using OASIS on the ADE20K dataset. Without
the diversity term in our objective, the diversity decreases.
Likewise, without the consistency or disentanglement term,
consistency and disentanglement numbers worsen, respec-
tively (see numbers in red). Further, the disentanglement
term helps to improve synthesis and segmentation quality
(see FID and mIoU in red), by helping to restrict the area
affected by the edit only to the selected class area.

5. Conclusion

We propose Ctrl-SIS, which to our knowledge, is the first
method for discovering class-specific interpretable GAN
controls of SIS models. This is achieved by optimizing a
set of class-specific latent directions via proposed diversity,
consistency and disentanglement loss terms, making use of
semantic label maps provided as part of the SIS task. The
learnt latent directions can locally change the appearance
of targeted semantic classes without affecting other classes
in the image, and can be combined to sequentially change
the image. Quantitative and qualitative analysis shows that
Ctrl-SIS results in image edits of high quality, that are sig-
nificantly more diverse than prior methods adapted to SIS.
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Appendix
This supplementary material is structured as follows:

A Additional qualitative results.

A.1 Visual examples of joint class-specific editing en-
abled by Ctrl-SIS.

A.2 Visual examples of latent directions discovered
by Ctrl-SIS.

A.3 Qualitative comparison to related work.

B Details on quantitative evaluation of class-specific GAN
controls.

C Extended quantitative evaluation.

D Limitations.

A. Qualitative results
A.1. Visual examples of joint class editing

In Fig. A we show examples of images in which two
classes are edited jointly with Ctrl-SIS. For example, Fig.
A shows how bed and curtain, as well as window and wall
can be edited separately or jointly. This property is enabled
by the use of 3D latent codes, which are spatially aware and
can vary image regions independently.

A.2. Visual examples of discovered directions

In this section we show latent directions learnt by Ctrl-
SIS for the semantic image synthesis model OASIS. We
pick OASIS, as it provides the best image quality and diver-
sity (see Table 3 in the main paper). Results on ADE20K
and COCO-Stuff are shown in Fig. B We observe that
the directions are consistent across different label maps and
change only the image area corresponding to the class of in-
terest. The directions carry different semantics, such as the
color of the bus, clouds in the sky, different kinds of house
facades, various bed covers, different types of snow, and the
lighting of the lamp.

A.3. Qualitative comparison to related work

Here, we visually compare the diversity between Ctrl-
SIS, SeFa and GANSpace. These comparisons are pre-
sented in Fig. C. For all methods, the directions are applied
to the 3D latent code within the image area corresponding
to the selected class. We observe stronger diversity for Ctrl-
SIS, which discovers meaningful class-specific directions.
For example, in Fig. C Ctrl-SIS provides unique views from
a window, tree leafage and street surfaces. The stronger di-
versity is explained by the fact that in contrast to SeFa and
GANSpace, Ctrl-SIS is capable of leveraging the label maps
that are already available for the task of semantic image syn-
thesis during optimization to learn class-specific directions.

B. Quantitative evaluation of class-specific
GAN controls

In this section we provide details on our proposed met-
rics for evaluating GAN controls discovery methods and re-
late them to prior work [49]. A method for discovering se-
mantically meaningful class-specific directions in the latent
space of SIS GANs should exhibit the following three prop-
erties: First, the found directions should be as unique and
different as possible. We assess this property via the mean
control diversity - mCD. Second, a latent direction should
invoke the same semantic edit independent of the initial la-
tent code, which we assess via the mean control consistency
- mCC. Third, class-specific edits should not affect image
areas outside of the target class area. We verify this require-
ment via the mean outside class diversity - mOD. The scores
are based on computing the LPIPS distance between pairs of
images with different edits and the same initial latent code
(mCD and mOD), or the same edits but different initial la-
tent codes (mCC). For the global mCD and mCC scores the
edits are applied to all classes simultaneously with latent di-
rections that are randomly picked from the set of discovered
class-specific directions. On the other hand, the local scores
mCDl, mCCl and mOD rely on pairwise distances between
images where only one class is edited at a time. To compute
the pairwise distance between images where only one class
is edited, we use the masked LPIPS distance. In the follow-
ing, we explain the masked LPIPS distance and provide the
formulations of the local scores mCDl, mCCl and mOD, as
well as the global scores mCD and mCC.

The masked LPIPS distance. The default LPIPS distance
between two images is based on extracting deep features
from both images using a VGG network pretrained on Ima-
geNet classification [43]. The features of all layers are nor-
malized and re-scaled along the channel dimension. The
final LPIPS distance is the L2 distance between these fea-
tures. To compute the masked LPIPS distance, we multi-
ply the deep features with a binary mask before comput-
ing the L2 distance. We distinguish between LPIPSMc and
LPIPS1−Mc . The former uses the binary mask Mc, which
is 1 where the label map contains class c and 0 everywhere
else. The latter applies the inverted mask 1−Mc.

Mean control diversity. The mean control diversity is
computed for global edits (mCD) and local edits (mCDl).
The mCDl is computed via:

mCDl =
1

C

C∑
c=1

Ec

[
PCD

]
, (7)

where C is the total number of classes and PCD denotes the
control diversity measured for a label map containing class
c. To compute PCD, a fixed initial latent code is sampled
for each label map containing class c. Given a label map
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Figure A. Joint editing of semantic classes using latent directions learnt by Ctrl-SIS.

and its initial latent code, one locally edited image is cre-
ated for each of the K latent directions specific to class c.
Next, the average locally masked LPIPS distance is com-
puted between all pairs of the K edited images. This score
is averaged over Z initial latent codes, which can be formu-
lated as follows:

PCD =
1

ZK

Z∑
z

K∑
k1,2=1
k1 6=k2

LPIPSMc

z,k1,k2
. (8)

Here, LPIPSMc

z,k1,k2
denotes the LPIPS distance masked

with Mc between two images created with the same initial

latent code z, where class c is edited with latent direction k1
and k2, respectively.

The mCD for global edits is computed as the average
distance between globally edited images on the same la-
bel map. For each label map, we create pairs of images
with different global edits, changing all classes at once. The
class-specific latent directions are randomly chosen for each
class. We compute the mean of the default LPIPS distance
over all pairs and different initial latent codes. The score is
averaged over all label maps in the test set. Higher mCD
and mCDl scores indicate better diversity.
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Method ADE20K COCO-Stuff
mCDl ↑ mCCl ↓ mOD ↓ FID↓ mIoU↑ mCDl ↑ mCCl ↓ mOD ↓ FID↓ mIoU↑

Baseline - - - 28.6 52.2 - - - 17.1 42.4
Random 0.04 0.17 0.01 30.6 50.1 0.02 0.07 0.00 17.2 44.0
GANSpace 0.03 0.15 0.01 28.3 53.9 0.02 0.06 0.00 16.7 43.6
SeFa 0.05 0.15 0.01 28.3 53.7 0.02 0.06 0.00 16.9 44.2
Ctrl-SIS 0.12 0.16 0.01 28.8 51.6 0.04 0.07 0.01 17.5 44.4

Table A. Evaluation of OASIS GAN controls on ADE20K and COCO-Stuff on local class-specific edits.

Mean outside class diversity. The spatial disentanglement
metric mOD is computed for local edits via

mOD =
1

C

C∑
c=1

Ec

[
POD

]
, (9)

where POD is the outside class diversity measured for a la-
bel map containing class c. In contrast to mCDl, the masked
LPIPS is computed for the area outside the target class:

POD =
1

ZK

Z∑
z

K∑
k1,2=1
k1 6=k2

LPIPS1−Mc

z,k1,k2
. (10)

LPIPS1−Mc

z,k1,k2
denotes the LPIPS distance masked with 1−

Mc between two images created with the same initial latent
code z, where class c is edited locally with the latent direc-
tion k1 and k2, respectively. A lower mOD indicates better
spatial disentanglement.

Mean control consistency. Lastly, to measure the consis-
tency of an edit under different initial latent codes, we com-
pute the mean control consistency for global edits (mCC)
and local edits (mCCl). The mCCl is

mCCl =
1

C

C∑
c=1

Ec

[
PCC

]
, (11)

where PCC is the control consistency of a label map con-
taining class c. We compute the pairwise distances between
images with different initial latent codes and the same local
edit:

PCC =
1

ZK

K∑
k

Z∑
z1,2=1
z1 6=z2

LPIPSMc

k,z1,z2
. (12)

Here, LPIPSMc

k,z1,z2
denotes the LPIPS distance masked

with Mc between two images created with different initial
latent codes z1 and z2, where class c is edited locally with
latent direction k for both images.

The global mCC score is computed as the average dis-
tance between images with the same global edit but differ-
ent initial latent codes. For each label map, we create pairs
of images with different initial latent codes, but a shared

LPIPS MS-SSIM
mCD ↑ mCC ↓ mOD ↓ mCD ↓ mCC ↑ mOD ↑

Random 0.11 0.30 0.01 0.98 0.76 1.0
GANSpace 0.09 0.29 0.01 0.94 0.78 1.0
SeFa 0.12 0.28 0.01 0.92 0.78 1.0
Ctrl-SIS 0.26 0.28 0.01 0.74 0.77 1.0

Table B. Evaluation of GAN controls with LPIPS and MS-SSIM
using OASIS on ADE20K.

global edit. We compute the mean of the default LPIPS dis-
tance over all pairs and across different shared global edits.
The score is averaged over all label maps in the test set.
Ideally, the mCC and mCCl are low, indicating high consis-
tency under different initial latent codes.

Relation to prior diversity and disentanglement scores.
The mCDl and mCCl are related to the mean class diversity
(mCSD) and mean other class (mOCD) proposed by [49].
These two metrics evaluate diversity and spatial disentan-
glement for SIS models that allow class-specific manipu-
lations [26, 49]. Note that mCSD and mOCD measure the
class-specific diversity and disentanglement of a SIS model,
while our metrics evaluate the class-specific diversity and
disentanglement of a set of discovered latent directions, al-
lowing us to compare different control discovery methods
on the same SIS model. The mCSD measures intra-class
diversity as a property of the SIS model itself. In contrast,
mCDl measures the diversity of a set of latent directions,
which is a property of the GAN control discovery method.
The same relationship holds between mOCD and mOD. We
next present an extended evaluation using our proposed lo-
cal metrics mCDl, mCCl and mOD.

C. Extended quantitative evaluation
C.1. Evaluation on local class-specific edits

In this section we present an additional comparison be-
tween Ctrl-SIS and the related work using OASIS on the
ADE20K and COCO-Stuff datasets. For evaluation we em-
ploy image quality metrics (FID and mIoU) as well as our
proposed diversity (mCD), consistency (mCC) and disen-
tanglement (mOD) scores. In contrast to Table 1 in the
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main paper, Table A presents this comparison for local ed-
its. While the related work SeFa and GANSpace are de-
signed for global edits, local edits are achieved by adding
the learnt global directions to the 3D latent code only in a
class-specific image area, as demonstrated in Fig. C. As Ta-
ble A shows, Ctrl-SIS achieves at least twice the diversity
score with respect to SeFa and GANSpace, while the con-
sistency and disentanglement scores stay similar between
all methods. The red numbers mark scores which are equal
or worse than the ones originating from random directions.
For SeFa and GANSpace, the FID and mIoU are slightly
improved compared to unedited images (see Baseline in Ta-
ble A), due to generating more ”typical” images (see Sec.
4.3 in the main paper). In summary, the results from Table
A are in alignment with Table 1 (main paper), suggesting
that the editing properties of Ctrl-SIS and related works are
similar between local and global edits.

C.2. Evaluation with alternative distance measure

Our proposed scores are based on computing the mean
LPIPS distance between pairs of images. Here, we also
present our metrics computed with the multi-scale struc-
tural similarity distance (MS-SSIM) [39] as an alternative to
LPIPS. The main differences between LPIPS and MS-SSIM
are as follows. LPIPS computes the L2 distance between
image features extracted with a network pre-trained on Ima-
geNet classification. MS-SSIM is not neural network-based
and instead computes the similarity between images based
on the mean, variance and covariance of two images. A high
similarity between two images results in high MS-SSIM but
low LPIPS, since LPIPS measures dissimilarity. This means
MS-SSIM-based mCD, mCC and mOD scores rise when
the LPIPS-based scores fall, and vice versa. In Table B, we
compare GAN control discovery methods with our metrics
based on LPIPS and MS-SSIM. We note the same trends
between the MS-SSIM-based metrics and the LPIPS-based
metrics. In particular, Ctrl-SIS also sees a strong increase
in diversity under the MS-SSSIM-based mCD metric. The
results show that the evaluation metrics are not strictly de-
pendent on the distance measure, and that other ways of
estimating image (dis-) similarity may be used.

C.3. Comparison of GAN control methods across
SIS models

In this section, we compare Ctrl-SIS on different SIS
models. Table C shows that Ctrl-SIS exhibits stronger di-
versity for local and global edits across all tested SIS mod-
els. The diversity of GANSpace and SeFa is comparable to
the diversity measured for random directions (see red num-
bers in Table C). In other words, the directions that SeFa
and GANSpace find differ just as much from each other, as
a set of randomly chosen directions.

A visual comparison of the diversity of Ctrl-SIS, SeFa

Model Method Global edits Local edits
mCD ↑ FID ↓ mIoU ↑mCDl ↑ FID ↓ mIoU ↑

OASIS

Random 0.11 31.3 49.4 0.04 30.6 50.1
GANSpace 0.09 28.1 53.3 0.03 28.3 53.9
SeFa 0.12 28.1 53.2 0.05 28.3 53.7
Ctrl-SIS 0.26 30.9 48.9 0.12 28.8 51.6

SC-GAN

Random 0.08 34.3 38.1 0.05 34.2 38.6
GANSpace 0.11 34.2 38.3 0.06 34.3 38.8
SeFa 0.10 34.4 37.8 0.06 34.4 38.9
Ctrl-SIS 0.25 36.4 34.7 0.18 34.2 38.4

SPADE

Random 0.08 34.6 39.4 0.05 34.6 39.6
GANSpace 0.12 35.1 39.3 0.08 34.6 39.7
SeFa 0.09 34.7 39.4 0.06 34.8 39.7
Ctrl-SIS 0.14 35.4 38.6 0.09 34.6 39.4

Table C. Comparison of GAN control methods across SIS models
on ADE20K.

and GANSpace is shown in figure B: In contrast to SeFa
and GANSpace, Ctrl-SIS yields latent directions with dis-
tinct appearances. The directions of GANSpace and SeFa
all look very similar. Note that this is comparable to a set
of random directions. In contrast to regular unconditional
or class-conditional GANs, random directions in SIS yield
images with low diversity. The low diversity of random di-
rections is a well-known issue for SIS models [12, 26, 47].
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Figure B. Latent directions learnt by Ctrl-SIS on ADE20K and COCO-Stuff.
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Figure C. Qualitative comparison of Ctrl-SIS against SeFa and GANSpace.
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D. Limitations
There are two main limitations to what a method for

class-specific latent direction discovery can do. First, class-
specific directions do not encode shape-based semantics.
For example, there cannot be a class-specific direction en-
coding a ”smile” in a face dataset if the shape of the mouth
is already hard-coded by the label map. Second, the diver-
sity of Ctrl-SIS is limited by the diversity of the SIS model
to which it is applied. Notably, the diversity of SIS mod-
els is far lower than the diversity of regular unconditional
or class-conditional GANs. While a standard unconditional
GAN produces seemingly infinitely many different images,
the diversity of SIS models like OASIS [26] was limited
to a manageable number of distinct appearances, based on
our experience. The problem of diversity in SIS models is
a well-known problem [12, 26, 47]. Consequently, more
diverse SIS models will lead to more diverse sets of discov-
ered latent directions.
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