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a b s t r a c t

We give tight bounds on the relation between the primal and dual of various combi-
natorial dimensions, such as the pseudo-dimension and fat-shattering dimension, for
multi-valued function classes. These dimensional notions play an important role in
the area of learning theory. We first review some classical results that bound the
dual dimension of a function class in terms of its primal, and after that give (almost)
matching lower bounds. In particular, we give an appropriate generalization to multi-
valued function classes of a well-known bound due to Assouad (1983), that relates the
primal and dual VC-dimension of a binary function class.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Vapnik–Chervonenkis (VC) dimension [12] is a fundamental combinatorial dimension in learning theory used to
haracterize the complexity of learning a class X consisting of functions f : Y → {0, 1} where X and Y are given (possibly
infinite) sets. Informally, the VC-dimension captures how rich or complex a class of functions is. Many extensions of the
VC-dimension to multi-valued functions f : Y → Z , for some given Z ⊆ R, have been proposed in the literature, such
as the Vapnik-dimension (also known as the uniform pseudo-dimension) [11], the Pollard-dimension (also known as
pseudo-dimension) [6,10], and the fat-shattering dimension [7]. All these combinatorial dimensions are formally defined
in Section 2.

Every (primal) class of functions can be identified with a dual class whose functions are of the form gy : X → Z for
y ∈ Y defined by gy(f ) = f (y) for f ∈ X . When interpreting a function class as a matrix A whose rows and columns
are indexed by X and Y , respectively, the dual class is simply given by the transpose matrix A⊤. The (VC, pseudo-, etc.)
dimension of the dual class is defined as the dimension of the matrix AT .

Assouad [3] showed the following relation between the primal VC-dimension VC(A) and the dual VC-dimension VC∗(A):

VC∗(A) ≤ 2VC(A)+1
− 1. (1)

This has turned out to be a very useful inequality, e.g., in the context of so-called sample compression schemes [9]. In
the case that VC∗(A) is a power of two, this immediately yields VC∗(A) ≤ 2VC(A). It is known that this bound is tight for all
values of VC∗(A), see, e.g., [8].
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The purpose of this work is to understand the relation between the primal and dual of combinatorial dimensions

or multi-valued function classes, in particular, for multi-valued functions where Z = {0, 1, . . . , k} for k ∈ N. For the
pseudo-dimension, as explained in Section 3, it can be shown that

Pdim∗(A) ≤ k ·
(
2Pdim(A)+1

− 1
)
,

which naturally generalizes Assouad’s bound in (1).1 Moreover, if Vdim∗(A) is a power of two, we even have

Pdim∗(A) ≤ k · 2Pdim(A) . (2)

Our first contribution is that the bound in (2) is in fact tight for every value of k provided that Pdim(A) ≥ 2 (Theorem 4.2).
In case of Pdim(A) = 1, we give an improved bound of k+2 (Theorem 4.1), and also show that this is tight (Theorem 4.2).
We obtain similar bounds for the fat-shattering dimension (Theorem 4.5).

Remark 1.1. It is sometimes believed that Assouad’s bound also holds for combinatorial dimensions other than the
VC-dimension, see, e.g., [5]. Our results show that this is, unfortunately, not correct.

Outline. We continue in Section 2 with all the necessary definitions and notations, in particular the formal definitions of
all combinatorial dimensions considered in this work. Then, in Section 3, we outline known results regarding the relations
between various combinatorial dimensions and their duals. After that, in Section 4, we summarize our results, followed
by their proofs in Section 5.

2. Preliminaries

For k ≥ 1, we set [k] := {1, . . . , k} and [k]0 := [k] ∪ {0}. Let X and Y be disjoint sets and let Z ⊆ R be a subset of the
reals. Consider a function A : X × Y → Z . For x ∈ X , we define Ax : Y → Z by Ax(y) = A(x, y) and refer to Ax as a row of A.
For y ∈ Y , we define Ay : X → Z by Ay(x) = A(x, y) and refer to Ay as a column of A. The transpose of A is defined as the
function A⊤

: Y × X → Z given by A⊤(y, x) = A(x, y). As suggested by this terminology, we view A as a (possibly infinite)
matrix with rows indexed by X , columns indexed by Y and with A⊤ as its transpose.

A matrix A : X × Y → Z with Z = {0, 1} is said to be Boolean. Let d ≥ 1 be a positive integer. We denote by
Bd : X × Y → {0, 1} the Boolean matrix which is defined as follows:

1. X = [2d
] and Y = [d].

2. For every function b : [d] → {0, 1}, there exists an x ∈ [2d
] such that, for every y ∈ [d], we have Bd(x, y) = b(y).

Note that Bd is unique modulo renaming rows and columns.

Definition 2.1 (Shattered Sets). Let A : X × Y → Z , with Z ⊆ R, be a matrix and let J ⊆ Y be a subset of its columns.

1. Let Z = {0, 1}. We say that J is VC-shattered by A if, for every function b : J → {0, 1}, there exists an x ∈ X such
that, for every y ∈ J , we have A(x, y) = b(y).

2. We say that J is P-shattered by A if there exists a function t : J → R such that the following holds: for every function
b : J → {0, 1}, there exists an x ∈ X such that, for every y ∈ J , we have A(x, y) ≥ t(y) iff b(y) = 1.

3. Let γ > 0. We say that J is Pγ -shattered by A if there exists a function t : J → R such that the following holds: for
every function b : J → {0, 1}, there exists an x ∈ X such that, for every y ∈ J , we have

A(x, y)
{
≥ t(y) + γ if b(y) = 1
< t(y) − γ if b(y) = 0 .

4. We say that J is V-shattered by A if there exists a number t ∈ R such that the following holds: for every function
b : J → {0, 1}, there exists an x ∈ X such that, for every y ∈ J , we have A(x, y) ≥ t iff b(y) = 1.

5. Let γ > 0. We say that J is Vγ -shattered by A if there exists a number t ∈ R such that the following holds: for every
function b : J → {0, 1}, there exists an x ∈ X such that, for every y ∈ J , we have

A(x, y)
{
≥ t + γ if b(y) = 1
< t − γ if b(y) = 0 .

We will refer to t : J → R occurring in the definition of P- and the Pγ -shattered sets as the thresholds used for shattering
J . Similarly, we will refer to t ∈ R occurring in the definition of V - and the Vγ -shattered sets as the uniform threshold
used for shattering J .

Definition 2.2 (Combinatorial Dimensions). Let A : X×Y → Z be a matrix. Let τ ∈ {VC, P, Pγ , V , Vγ } be one of the shattering
types mentioned in Definition 2.1. The (primal) τ -dimension of A is the size of a largest set J ⊆ Y that is τ -shattered by A
(resp. ∞ if there exist τ -shatterable sets of unbounded size). The dual τ -dimension of A is defined as the τ -dimension of
A⊤.

1 We refer to this as a classical result, rather than a contribution of this work.
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We use the notations VC(A), Pdim(A), Pγ (A), Vdim(A) and Vγ (A) for the (primal) dimensions of type τ = VC, P, Pγ , V , Vγ ,
respectively. Here, VC(A) is the VC-dimension [12], Pdim(A) the pseudo-dimension [6,10], Pγ (A) the fat-shattering
dimension [7], Vdim(A) the Vapnik-dimension [11] and Vγ (A) the fat-shattered version of the Vapnik-dimension, see,
e.g., [1]. The corresponding dual dimensions are denoted by VC∗(A), Pdim∗(A), P∗

γ (A), Vdim
∗(A) and V ∗

γ (A), respectively.
We remark that there also exist other dimensional notions, which are not discussed here, such as the pseudo-rank [2].

The matrix obtained by thresholding the columns of A : X × Y → Z at t : Y → R is defined as the Boolean matrix
B : X ×Y → {0, 1} such that, for all x ∈ X and y ∈ Y , we have B(x, y) = 1 iff A(x, y) ≥ t(y). For I ⊆ X and J ⊆ Y , we denote
the restriction of A to I × J by AI,J . In other words: AI,J is the submatrix of A whose rows are indexed by I and whose
columns are indexed by J . A witness for the inequality Pdim(A) ≥ d is defined as a triple (I, J, t) such that the following
holds:

1. I is a subset of X of size 2d, J is a subset of Y of size d and t : J → R.
2. Every pattern b : J → {0, 1} occurs in exactly one row of the Boolean matrix obtained by thresholding the columns

of AI,J at t, i.e., AI,J equals Bd up to a permutation of its rows.

Remark 2.3. Let k ≥ 1 be a positive integer. Consider a matrix A : X × Y → [k]0. If a set J ⊆ Y can be P-shattered by
A with thresholds t : J → R, then it can also be P-shattered with (suitably chosen) thresholds t : J → [k]. An analogous
remark applies to V -shattering with a uniform threshold t .

When analyzing the P- or the V -dimension of a matrix with entries in [k]0, we will assume that thresholds are taken
from [k] whenever we find that convenient.

3. Known relations

In this section we review some known relations between the combinatorial dimensions defined in Section 2.

3.1. Bounding P- in terms of V-dimension

It follows directly from the definitions that

Vdim(A) ≤ Pdim(A) and Vγ (A) ≤ Pγ (A) .

This raises the question whether we can bound the P- in terms of the V -dimension (resp. the Pγ in terms of the Vγ -
dimension). The gap between Pdim(A) and Vdim(A) cannot be bounded in general, as the following well-known example
shows.

Example 3.1. Let X be the set of all monotone2 functions from [0, 1] to [0, 1], Y = [0, 1] and A(x, y) = x(y) for x ∈ X .
Then, as the following arguments show, we have Vdim(A) = 1 and Pdim(A) = ∞:

• Let y1 < y2 be two arbitrary elements of [0, 1], let t be an arbitrary uniform threshold and observe that no monotone
function x can satisfy x(y1) ≥ t and x(y2) < t . Since this holds for any choice of y1, y2 and t , there can be no set of
size 2 which is V -shattered by A. Hence Vdim(A) = 1.

• Let J = {1/k : k ≥ 1}, let tk = 1/k and bk ∈ {0, 1} for all k ≥ 1. Consider the monotone function x such that, for
every k and every 1/k ≥ y > 1/(k + 1), we have

x(y) =
1

k + 1 − bk
.

Then x(1/k) ≥ 1/k = tk iff bk = 1. It follows that Pdim(A) = ∞.

In the sequel, we focus on matrices of the form A : X × Y → [k]0. According to the following results of Ben-David
t al. [4] (here expressed in our notation), the P- can exceed the V -dimension by factor k, but not by a larger factor3:

heorem 3.2 ([4]). For every matrix A : X × Y → [k]0, we have

Pdim(A) ≤ k · Vdim(A) .

heorem 3.3 ([4]). For every d ≥ 1 and every k ≥ 1, there exists a matrix A : X × Y → [k]0 such that

Vdim(A) = d and Pdim(A) = k · d.

lon et al. [1] have bounded Pγ - in terms of the Vγ /2-dimension.

2 A function f : [0, 1] → [0, 1] is monotone if f (x) ≤ f (y) for all x ≤ y.
3 See [4, Theorem 7-8] and the proof of [4, Theorem 7].
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heorem 3.4 ([1]). For every matrix A : X × Y → [0, 1] and every 0 < γ ≤ 1/2, we have4

Pγ (A) ≤

(⌈
1
γ

⌉
− 1

)
· Vγ /2(A) ≤

(⌈
1
γ

⌉
− 1

)
· Pdim(A) . (3)

Proof. The thresholds t1, . . . , td used for Pγ -shattering d := Pγ (A) many columns of A must belong to the interval
γ , 1−γ ]. Any threshold ti can be rounded to the closest multiple of γ . Denote the latter by t̂i. The inequality (3) becomes
ow evident from the following observations. First, by using the thresholds t̂i instead of ti, the width of shattering may

drop from γ to γ /2 (but not beyond). Second, t̂1, . . . , t̂d can take on at most

r :=

⌈
1 − 2γ
γ

⌉
+ 1 =

⌈
1
γ

⌉
− 1

different values. By the pigeonhole principle, there is some t ∈ {t̂1, . . . , t̂d} that can be used for Vγ /2-shattering d/r many
oints. □

.2. Bounding dual dimension in terms of its primal

A well-known result due to Assouad [3] already mentioned in Section 1, which we will refer to as Assouad’s bound,
tates that one can upper bound the dual VC-dimension in terms of the (primal) VC-dimension as follows:

heorem 3.5 ([3]). For every matrix A : X × Y → {0, 1}, we have

VC∗(A) ≤ 2VC(A)+1
− 1 . (4)

Note that, under the assumption that VC∗(A) is a power of two, this means

VC∗(A) ≤ 2VC(A) . (5)

he bound in (5) is known to be tight for every value of VC(A), see, e.g., [8].
Assouad’s bound has the following immediate implications:

log VC∗(A) < VC(A) + 1 and ⌊log VC∗(A)⌋ ≤ VC(A) . (6)

In Appendix we show that the Assouad’s bound also holds for Vdim(A) and Vγ (A), based on the notion of uniform
Ψ -dimension as defined in [1]. These observations are summarized in the following statements.

Corollary 3.6. For every matrix A : X × Y → [0, 1], we have

Vdim∗(A) ≤ 2Vdim(A)+1
− 1 and V ∗

γ (A) ≤ 2Vγ (A)+1
− 1 . (7)

If Vdim∗(A), respectively V ∗
γ (A), is a power of two, this means

Vdim∗(A) ≤ 2Vdim(A) and V ∗

γ (A) ≤ 2Vγ (A) . (8)

Combining Theorem 3.2 (applied to A⊤) with Corollary 3.6, one can directly obtain the following result:

Theorem 3.7. For every matrix A : X × Y → [k]0, the following holds:

1. Pdim∗(A) ≤ k ·
(
2Vdim(A)+1

− 1
)

≤ k ·
(
2Pdim(A)+1

− 1
)
.

2. If Vdim∗(A) is a power of two, then Pdim∗(A) ≤ k · 2Vdim(A)
≤ k · 2Pdim(A).

Similarly, combining Theorem 3.4 with Corollary 3.6, one can directly obtain the following result.

Corollary 3.8. For every matrix A : X × Y → [0, 1], the following holds:

P∗

γ (A) ≤

(⌈
1
γ

⌉
− 1

)
·
(
2Vγ /2(A)+1

− 1
)

≤

(⌈
1
γ

⌉
− 1

)
·
(
2Pdim(A)+1

− 1
)
.

4. Our results

In this section we describe our new contributions, that complement those mentioned in Section 3. We first discuss
results related to the pseudo-dimension. We start with a result showing that the upper bound on Pdim∗(A) in Theorem 3.7
can be improved by a factor 2 (roughly) for matrices A with Vdim(A) = 1.

4 In [1], one finds a factor 2⌈1/(2γ )⌉ at the place of factor ⌈1/γ ⌉. We find the latter (and slightly smaller) factor preferable because of its simpler
orm.
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heorem 4.1. Let A : X × Y → [k]0 with k ≥ 1 be a matrix with Vdim(A) = 1. Then Pdim∗(A) ≤ k + 2.

The next result implies that the upper bound on Pdim∗(A) in the second statement of Theorem 3.7 is tight for matrices
ith Vdim(A) ≥ 2, as well as the upper bound on Pdim∗(A) in Theorem 4.1 whenever Vdim(A) = 1.

heorem 4.2. The following two lower bounds hold:

1. For every d ≥ 2 and every k ≥ 1, there exists a matrix A : X × Y → [k]0 such that

Pdim(A) = d , Vdim∗(A) = 2d and Pdim∗(A) = k · 2d.

2. For every k ≥ 1, there exists a matrix A : X × Y → [k]0 such that Vdim(A) = Pdim(A) = 1 and Pdim∗(A) = k + 2.

In combination with a technical tool defined in Section 5.2, we also obtain the following corollary. It stands in stark
contrast to Assouad’s bound for the VC-dimension.

Corollary 4.3. There exists a matrix A : X × Y → [0, 1], such that Pdim(A) = 1 and Pdim∗(A) = ∞.

We next move to our results for the fat-shattering dimensions. The first result here implies that the upper bound on
Pγ (A) from Theorem 3.4 is tight up to a small constant factor:

Theorem 4.4. For every d ≥ 1, there exists a matrix A : X × Y → [0, 1] such that Vdim(A) = d and, for all k ≥ 1,

P1/(2k)(A) ≥ k · d .

Finally, our last result implies that the bound on P∗
γ (A) from Corollary 3.8 is tight up to a small constant factor.

Theorem 4.5. The following two lower bounds hold:

1. For every d ≥ 2, there exists a matrix A : X × Y → [0, 1] such that Pdim(A) = d and, for all k ≥ 1,

P∗

1/(2k)(A) ≥ k · 2d .

2. There exists a matrix A : X × Y → [0, 1] such that Pdim(A) = 1 and, for all k ≥ 2,

P∗

1/(2k)(A) ≥ k + 2 .

5. Proofs

Section 5.1 is devoted to the proof of Theorem 4.1. In Section 5.2, we make some considerations which will allow for
an easier presentation of our lower bound constructions, that are given in Sections 5.3 and 5.4.

5.1. Proof of Theorem 4.1

For the case of binary functions (k = 1), the assertion of the theorem collapses to the claim that VC∗(A) ≤ 3 for every
Boolean matrix A with Vdim(A) = 1. This is an immediate consequence of (4). Suppose now that k ≥ 2. It suffices to
show that Pdim∗(A) ≥ k + 3 implies that Vdim(A) ≥ 2 (i.e., we give a proof by contradiction). Pick a witness (I, J, t) for
Pdim∗(A) ≥ k + 3. More concretely (using Remark 2.3):

• I = {x1, . . . , xk+3}, J ⊆ Y with |J| = 2k+3 and t : I → [k], say t(xi) = ti.
• The matrix obtained by thresholding the rows of AI,J at t equals B⊤

k+3.

We may assume that, after renumbering the rows appropriately, one has t1 ≤ · · · ≤ tk+3. We decompose I (and hence the
rows of AI,J ) into maximal blocks such that t assigns the same threshold to every row index of the same block. While I is
P-shattered by A, every block in I has a uniform threshold and is therefore even V -shattered by A. Since any threshold ti
is taken from [k], the total number k′ of blocks is bounded by k. A block that is different from the first and from the last
block is said to be an inner block. We proceed by case analysis (we argue afterwards why at least one of the cases occurs).

Case 1: One of the blocks of I is of size at least 4.

Since, as mentioned above already, every block has a uniform threshold, it follows that Vdim∗(A) ≥ 4. An application
of (6) yields Vdim(A) ≥ log Vdim∗(A) ≥ 2.

Case 2: The first or the last block of I is of size at least 3.
189
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For reasons of symmetry, we may assume that the first block contains 3 rows. Consider the following (4 ×

2)-submatrix of B⊤

k+3:

0 0
0 1
1 0
1 1

The first three rows are taken from the first block and the last row is taken from the last block. The separation
line between the third and the last row is only intended to illustrate the transition from one block to another.
Remember that the rows of the first block are thresholded at t1 while the rows of the last block are thresholded at
tk′ > t1. Hence, if we threshold all rows (or all columns) of AI,J at t1, then the above submatrix of B⊤

k+3 will remain
unchanged. Since this submatrix equals B2, we may conclude that Vdim(A) ≥ 2.

Case 3: One of the inner blocks of I is of size at least 2, say block b.

The argument is similar to that given in Case 2. The relevant submatrix of B⊤

k+3 (with one row of the first block,
two rows of block b, one row of the last block and two separation lines inbetween) now looks as follows:

0 0
0 1
1 0
1 1

Since t1 < tb < tk′ , thresholding all rows (or all columns) of AI,J at tb will leave the above submatrix of B⊤

k+3
unchanged. We may conclude that Vdim(A) ≥ 2.

Since AI,J has k + 3 rows (with k ≥ 2), it can be argued that one of the three above cases must occur. Suppose first that
k = 2. Then there are at most 2 blocks and 5 rows. It follows that the first or the last block contains at least 3 rows.
Suppose now that k ≥ 3. If the first or last block has three or more rows then Case 2 occurs. Otherwise, if the first and the
last block contain at most two rows, respectively, then at least k−1 rows are left for the k′

−2 ≤ k−2 inner blocks. By the
igeonhole principle, there must be an inner block with at least two rows. This completes the proof of Theorem 4.1. □

.2. Preparatory considerations for the remaining proofs

Consider again the Boolean matrix Bd with d columns and 2d rows that had been defined in Section 2. It is evident that
Bd, or any matrix which equals Bd up to a permutation of its rows, satisfies the following conditions:

(i) Distinctness Condition: The rows of Bd are pairwise distinct.
(ii) General Balance Condition: For any k ∈ [d], any choice of k distinct columns of Bd and any pattern b ∈ {0, 1}k,

there are exactly 2d−k rows of Bd which realize the pattern b within the chosen columns.

The general balance condition implies the following:

(iii) 1st Balance Condition: Each column of Bd has as many zeros as ones.
(iv) 2nd Balance Condition: For any two distinct columns of Bd, any pattern from {0, 1}2 is realized within these

columns by the same number of rows.

Remark 5.1 (Proof Templates). Consider a matrix A : X × Y → [k]0. The following template for proving assertions like
Pdim(A) ≤ d will prove itself quite useful.

• Assume for contradiction that Pdim(A) ≥ d + 1.
• Pick a witness (I, J, t) for this inequality.
• Exploit the fact that the matrix B obtained by thresholding the columns of AI,J at t must be equal to Bd+1 (up to a

permutation of its rows).
• Prove that B violates one of the conditions that Bd+1 must satisfy.

Sometimes the following (slightly simpler) template can be used instead:

• Take a fixed but arbitrary function t : Y → [k].
• Let B be the matrix obtained by thresholding the columns of A at t.
• Show that no more than d columns of B have at least 2d zeros and at least 2d ones.

This also shows that Pdim(A) ≤ d because no submatrix of B with d + 1 columns and 2d+1 rows has a chance to satisfy
the first balance condition.

We next introduce matrices that, though not being Boolean, are close relatives of the matrix B .
d
190
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Fig. 1. The B4-based matrix with 3 column blocks of sizes 1, 2 and 1, respectively (left); the matrix A (middle); and the matrix A thresholded at 2,
resulting in matrix B (right).

Definition 5.2. Let k and d1, . . . , dk be positive integers and let D = d1 + · · · + dk denote their sum. The BD-based matrix
with k column blocks of sizes d1, . . . , dk is the matrix A : X × Y → [k]0, where X = [2D

] and Y = [D], that results from the
ollowing procedure:

1. Decompose the D columns of BD into k blocks of sizes d1, . . . , dk. The blocks are consecutively numbered from 1 to
k.

2. Obtain A from BD by replacing any 1-entry (resp. 0-entry) in a column belonging to block b ∈ [k] by b (resp. by
b − 1).

The B⊤

D -based matrix with k row blocks of sizes d1, . . . , dk is defined analogously. That is, we start with the transpose of BD.
e now have k row blocks of sizes d1, . . . , dk and consider the matrix A : X ×Y → [k]0, where X = [D] and Y = [2D

], and
n conditions 1. and 2. We replace ‘column’ by ‘row’. Clearly, the B⊤

D -based matrix with k row blocks of sizes d1, . . . , dk
oincides with the transpose of the BD-based matrix with k column blocks of sizes d1, . . . , dk.

xample 5.3. The matrix A shown below in Fig. 1 is the B4-based matrix with three blocks of sizes 1, 2 and 1, respectively.
e can think of B4 as having the same block structure. If block j ∈ {1, 2, 3} of A is thresholded at j, then we obtain again

he original matrix B4. If the columns of A are thresholded at the uniform threshold 2, then we obtain the matrix B (also
hown in Fig. 1) whose second block coincides with the second block of B4.

Note that the matrix A resulting from the above procedure has the property that, for any two columns y1 in block b1
nd y2 in block b2 > b1 and any row x, we have A(x, y1) ≤ A(x, y2). We will refer to this property as block monotonicity.
At this point we also bring into play the matrix Ȧ, which is defined as the matrix A augmented with a row of zeros.

ormally, we assume that 0 /∈ X and define Ȧ : (X ∪ {0}) × Y → Z as the extension of A which satisfies Ȧ(0, y) = 0 for all
∈ Y . The (technical) use of Ȧ will become clear in Section 5.4 (in particular, this is explained after Definition 5.9), but it

s already included in the statements that follow.

emma 5.4.

1. Let D = d1 + · · · + dk and let A be the BD-based matrix with k column blocks of sizes d1, . . . , dk. Then Vdim(A) =

Vdim(Ȧ) = maxj∈[k] dj and Pdim(A) = D.
2. Let D = d1+· · ·+dk and let A be the B⊤

D -based matrix with k row blocks of sizes d1, . . . , dk. Then Vdim∗(A) = maxj∈[k] dj
and Pdim∗(A) = D.
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roof. It suffices to prove the first assertion because the second-one is then obtained by dualization. We first show
hat the pseudo-dimension of A equals D. Let t : [D] → [k] be the mapping that assigns to every column in block
∈ [k] the threshold j. Then the matrix obtained by thresholding the columns of A at t equals BD. It follows that
dim(A) ≥ VC(BD) = D. Of course Pdim(A) cannot exceed D so that Pdim(A) = D. Next, set dmax = maxj∈[k] dj. Pick

some index jmax ∈ [k] such that djmax = dmax. We still have to show that Vdim(A) = Vdim(Ȧ) = dmax. Thresholding the
columns of A at the uniform threshold jmax, we obtain a matrix B whose entries equal that of BD within block jmax. This
hows that Vdim(A) ≥ dmax. The inequality Vdim(Ȧ) ≤ dmax can be seen as follows. Pick a fixed but arbitrary J ⊆ [D] of
size 1+dmax and a fixed but arbitrary uniform threshold t ∈ [k]. Let B be the matrix obtained by thresholding the columns
of Ȧ at t . The set J must contain two columns belonging to two different blocks, say column y1 in block b1 and column
y2 in block b2 > b1. By the block-monotonicity of A (which implies block-monotonicity for Ȧ as well), no row of B can
assign label 1 to y1 and label 0 to y2. Since J and t were arbitrary choices, it follows that no set of size 1 + dmax can be
V -shattered by Ȧ. □

Setting d1 = · · · = dk = d in Lemma 5.4, we obtain the following result (which is almost the same as Theorem 3.2):

Corollary 5.5. For every d ≥ 1 and every k ≥ 1, there exists a matrix A : X × Y → [k]0 such that Vdim(A) = Vdim(Ȧ) = d
and Pdim(A) = k · d.

5.3. Proof of Theorem 4.2

Theorem 4.2 is a direct consequence of the following two results:

Lemma 5.6. Let d ≥ 2 and k ≥ 1 be given. For D = k · 2d, let A be the B⊤

D -based matrix with k row blocks of size 2d,
respectively. Then

Pdim(A) = Pdim(Ȧ) = d , Vdim∗(A) = 2d and Pdim∗(A) = k · 2d .

Proof. The identities Vdim∗(A) = 2d and Pdim∗(A) = k ·2d are immediate from Lemma 5.4. Hence it suffices to verify the
identity Pdim(A) = Pdim(Ȧ) = d. Using (8), we can infer from Vdim∗(A) = 2d that Pdim(Ȧ) ≥ Pdim(A) ≥ Vdim(A) ≥ d.
Hence the proof can be accomplished by showing that Pdim(Ȧ) ≤ d. For sake of brevity, set

s = 2d and d̄ = 1 + d .

Assume for the sake of contradiction that Pdim(Ȧ) ≥ d̄ and fix some witness (I, J, t) for this inequality, i.e.,

1. I ⊆ [D]0, |I| = 2d̄, J ⊆ [2D
], |J| = d̄ and t : J → [k] assigns a threshold to each column of AI,J .5

2. The matrix B : I×J → {0, 1} obtained by thresholding the columns of ȦI,J at t equals Bd̄ (modulo row permutations).

Note that s = 2d is the block-size in matrix A. Let AI,J and B inherit the block structure of A, i.e., a block Ib in A induces a
block Ib ∩ I in AI,J resp. in B. Then s is an upper bound on the block size in B. Moreover B has |I| = 2d̄

= 2s many rows.
We proceed with a series of easy-to-prove claims.

Claim 1: If i1 < i2, B(i1, j) = 1 and B(i2, j) = 0, then the indices i1 and i2 must be in the same row block of B.

Proof: Let tj = t(j). From B(i1, j) = 1 and B(i2, j) = 0, we infer that A(i2, j) < tj ≤ A(i1, j). If i1 and i2 were in different row
blocks, this would contradict the block-monotonicity of A.

Claim 2: Each column in B starts with a 0-entry and ends with a 1-entry.

Proof: Assume for contradiction that there is a column j of B that starts with a 1-entry. By the first balance condition,
there must be s zeros among the remaining entries. But, to make this possible, there must be a block of size at least
s+1. However, as observed above already, all blocks in B are of size at most s. We arrived at a contradiction. Hence
each column of B starts with a 0-entry. For reasons of symmetry, it ends with a 1-entry.

Claim 3: B must have a column j1 whose second entry is a one and a column j2 whose second-last entry is a zero.

Proof: If not, then Bwould have two all-zeros rows or two all-ones rows. That would contradict the distinctness condition.

Claim 4: The second entry in column j1 of B (which is 1-entry) must be followed by s−1 0-entries. The second-last entry
of column j2 of B (which is a 0-entry) must be preceded by s − 1 1-entries.

Proof: If not, we would obtain a contradiction to the first balance condition or to the fact that the blocks in B are of size
at most s. Compare with the proof of Claim 2.

5 Recall from the definition of Ȧ that this matrix is obtained from A by adding an all-zeros row which is indexed by 0.
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e are now in the position to derive the desired contradiction. Column j1 of B starts with 010s−1. It follows that entries
number 2, . . . , s+1 belong to the same row block. A similar inspection of column j2 reveals that the entries with numbers
s, . . . , 2s belong to the same row block. Thus, all entries, with the possible exception of the first- and the last-one, belong
to the same row block. It follows that there is a block of size at least 2s − 2. Since s is the maximal block size, we have
s − 2 ≤ s, or equivalently, s ≤ 2. This is in contradiction to d ≥ 2 and s = 2d

≥ 4. □

emma 5.7. Let k ≥ 2 and let A be the B⊤

k+2-based matrix with k row blocks of sizes

dj =

{
2 for j = 1, k
1 for j = 2, . . . , k − 1 .

hen Pdim(A) = 1 and Pdim∗(A) = k + 2.

roof. The identity Pdim∗(A) = k + 2 is immediate from Lemma 5.4. Clearly Pdim(A) ≥ 1. Hence it suffices to show that
Pdim(A) ≤ 1. The rows of A have indices 1, . . . , k + 2. Assume for contradiction that Pdim(A) ≥ 2 and pick a witness
(I, J, t) for this inequality so that the following holds:

• J = {j1, j2} ⊂ [2k+2
], I ⊆ [k + 2] with |I| = 4 and t : J → [k], say t(j1) = t1 and t(j2) = t2.

• The matrix B : I × J → {0, 1} obtained by thresholding the columns of AI,J at t equals B2 (up to row permutations).

onsequently B satisfies the distinctness condition and the balance conditions. Consider the smallest index i1 and the
econd-smallest index i2 in I . Note that, since |I| = 4 and the last row block of A is of size 2, neither i1 nor i2 belongs to
he last block, i.e., either i1 = 1 and i2 = 2 (so that i1 and i2 represent the first row block) or i2 belongs to one of the inner
locks consisting of a single row only. In both cases, the remaining indices in I do not belong to the same row block as
2 or i1. We proceed by case analysis:

ase 1: B(i1, j) = B(i2, j) = 0 for all j ∈ J .
Then the first two rows of B realize the all-zeros pattern, which contradicts the distinctness condition.

ase 2: There exist j ∈ J and i′ ∈ {i1, i2} such that B(i′, j) = 1.
Then the block-monotonicity in A implies that all remaining entries in column j of B are 1-entries, which contradicts
the first balance condition.

In both cases, we arrived at a contradiction. □

Lemma 5.7 does not cover the case k = 1 in the second assertion of Theorem 4.2. But this case is easy to handle:
etting A = B⊤

3 , we obtain Pdim(A) = VC(A) = 1 and Pdim∗(A) = VC∗(A) = 3.
For technical reasons, we will later also need the following result:

Lemma 5.8. Let k ≥ 2 and let A be the B⊤

k+1-based matrix with k row blocks of sizes

dj =

{
2 for j = k
1 for j = 1, . . . , k − 1 .

Then Pdim(Ȧ) = Pdim(A) = 1 and Pdim∗(A) = k + 1.

Proof. The proof is quite similar to the proof of Lemma 5.7. The identity Pdim∗(A) = k + 1 is again immediate from
Lemma 5.4. Clearly Pdim(Ȧ) ≥ Pdim(A) ≥ 1. Hence it suffices to show that Pdim(Ȧ) ≤ 1. The rows of Ȧ have indices
0, 1, . . . , k + 1. Assume for contradiction that Pdim(Ȧ) ≥ 2 and pick a witness (I, J, t) for this inequality so that the
following holds:

• J = {j1, j2} ⊂ [2k+2
], I ⊆ [k + 1]0 with |I| = 4 and t : J → [k], say t(j1) = t1 and t(j2) = t2.

• The matrix B : I × J → {0, 1} obtained by thresholding the columns of AI,J at t equals B2 (up to row permutations).

Consequently B satisfies the distinctness condition and the balance conditions. Consider the smallest index i1 and the
second-smallest index i2 in I . Note that, since |I| = 4 and the last row block of A is of size 2, neither i1 nor i2 belongs
to the last block. All blocks of A, except for the last-one, are of size 1. Thus the indices in I \ {i1, i2} do not belong to the
same row block as i2 or i1. The proof can now be accomplished by the same kind of case analysis that we have used at
the end of the proof of Lemma 5.7. As before, a contradiction is obtained in any case. □

5.4. Proofs of Corollary 4.3 and of Theorems 4.4 and 4.5

Matrices A with the properties as prescribed by Theorems 4.4 and 4.5 are easy to construct by means of a suitable
operation that merges matrices of a given matrix family into a single matrix.
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D
efinition 5.9 (Merge-Operation). Let (Ak)k≥1 with Ak : Xk ×Yk → [k]0 be a given family of matrices. Let X (resp. Y ) denote
the disjoint union of the sets Xk (resp. Yk) with k ≥ 1. Assume that X ∩ Y = ∅. For every x ∈ X , let k(x) denote the unique
k such that x ∈ Xk. The notation k(y) is understood analogously. The matrix A : X × Y → [0, 1] given by

A(x, y) =

{ Ak(x)(x,y)
k(x) if k(y) = k(x)

0 otherwise
,

is called the merge of the family (Ak)k≥1.

The merge-operation reveals why we introduce the matrix Ȧ: The pseudo-dimension (or any other combinatorial
dimension for that matter) of the matrix A restricted to the columns Yk is nothing more than the pseudo-dimension of the
functions in Ak augmented with an infinite number of functions that are zero everywhere. The pseudo-dimension of this
function class clearly equals the pseudo-dimension of the matrix Ȧk. The merge-operation has the following properties:

Lemma 5.10. Let A : X × Y → [0, 1] be the merge of the family (Ak)k≥1. Then the following holds:

1. P1/(2k)(A) ≥ Pdim(Ak) for all k ≥ 1.
2. Let d0 ∈ N. If supk Pdim(Ȧk) ≤ d0, then Pdim(A) ≤ d0.
3. V1/(2k)(A) ≥ Vdim(Ak) for all k ≥ 1.
4. Let d0 ∈ N. If supk Vdim(Ȧk) ≤ d0, then Vdim(A) ≤ d0.

Proof. We only prove the first two assertions of the lemma; the proofs of other two assertions are quite similar.
Note that, for k = k(x) = k(y), A coincides with Ak except for scaling down the values 0, 1, . . . , k by factor k. Since Ak

takes integer values, each set that can be P-shattered by Ak can actually be P1/2-shattered. After down-scaling, the width
of shattering becomes 1/(2k). From these observations, the first assertion of the lemma easily follows.

We proceed with the proof of the second assertion. Let d be an arbitrary but fixed positive integer such that Y contains
a set of size d that is P-shattered by A. It suffices to show that d ≤ d0. Fix some witness (I, J, t) so that the following holds:

1. I ⊂ X , |I| = 2d, J ⊂ Y , |J| = d and t : J → N assigns a threshold ty := t(y) to every y ∈ J .
2. The matrix B obtained by thresholding the columns of AI,J at t equals Bd (with rows indexed by I and columns

indexed by J).

It follows that B satisfies the distinctness condition and the balance conditions.

Claim 1. For every y ∈ J , we have ty > 0.

Proof. ty ≤ 0 would imply that column y of B has no 0-entry, which contradicts the first balance condition. □

Claim 2. The mapping y ↦→ k(y) assigns the same value to all y ∈ J .

Proof. Assume to the contrary that there exist y1, y2 ∈ J such that k(y1) ̸= k(y2). Then, for every row x of B, at least one
of the entries B[x, y1] and B[x, y2] equals 0 (because k(x) cannot be equal to both, k(y1) and k(y2)). By the first balance
condition, any column in B has as many 0- as 1-entries. Since this is particularly true for the columns y1 and y2, it follows
that, for every row x of B, exactly one of the entries B[x, y1] and B[x, y2] equals 0. Thus column y2 of B is the entry-wise
logical negation of the column y1. This, however, contradicts the second balance condition. □

Claim 3. Let k1 denote the common k-value of all y ∈ J . Then any row x in B with k(x) ̸= k1 has 0-entries only.

Proof. This is straightforward. □

We conclude from Claims 2 and 3 that d ≤ Pdim(Ȧk1 ) and, by assumption, the latter quantity is at most d0, which
concludes the proof. □

We now conclude with the proof of Corollary 4.3 and Theorems 4.4 and 4.5.

Proof of Corollary 4.3. Lemma 5.8 tells us that for every k ≥ 2 there exists a matrix Ak such that Pdim(Ȧk) = Pdim(Ak) = 1
and Pdim∗(Ak) = k+1. Let A be the merge of the family (Ak)k≥2. The first two claims of Lemma 5.10 imply that Pdim(A) = 1
while the dual of the first claim yields Pdim∗

1/(2k)(A) ≥ Pdim∗(Ak) = k + 1. Since Pdim∗(A) ≥ Pdim∗

1/(2k)(A) for every k, it
follows that Pdim∗(A) = ∞. □

Proof of Theorem 4.4. Corollary 5.5 tells us that for every d ≥ 1 and k ≥ 1, there exists a matrix Ak : X × Y → [k]0
such that Vdim(Ak) = Vdim(Ȧk) = d and Pdim(Ak) = k · d. Let A be the merge of the family (Ak)k≥1. The first claim of
Lemma 5.10 tells us then that P (A) ≥ Pdim(A ) = k·d. The last two claims of Lemma 5.10 imply that Vdim(A) = d. □
1/(2k) k
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roof of Theorem 4.5. We start with the proof of the first claim in Theorem 4.5. Lemma 5.6 tells us that there exists a
atrix Ak with Pdim(Ȧk) = Pdim(Ak) = d and Pdim∗(Ak) = k · 2d. Let A be the merge of the family (Ak)k≥1. The first two
laims in Lemma 5.10 imply that Pdim(A) = d while the dual of the first claim yields Pdim∗

1/(2k) ≥ k · 2d. This proves the
first claim of Theorem 4.5. In order to prove the second claim, we can instead use Lemma 5.8 and start with the existence
of a matrix Ak for which Pdim(Ȧ) = Pdim(A) = 1 and Pdim∗(Ak) = k + 1. Then apply the same argument as for the first
claim. □
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Appendix. Assouad’s bound for uniform dimensions

We say that J ⊆ Y is VC-shattered by A : X × Y → {0, 1, ∗} if, for every function b : J → {0, 1}, there exists an
x ∈ X such that, for every y ∈ J , we have B(x, y) = b(y). We first note that (4) is also valid for every matrix of the form
A : X × Y → {0, 1, ∗}: the central observation in the proof is that Bd contains B⊤

⌊log d⌋ as a submatrix. This implies that
VC(A) ≥ ⌊log VC∗(A)⌋, which is equivalent to (4).

Consider now a matrix of the general form A : X × Y → Z with Z ⊆ R. Making use of the concept of uniform
Ψ -dimensions from [4], the result of Assouad can be extended to several other combinatorial dimensions. Let Ψ denote
a family of substitutions of the form ψ : R → {0, 1, ∗}. Denote by ψ(A) the matrix obtained from A by performing the
substitution ψ entry-wise. The uniform Ψ -dimension of A is then defined as

ΦU (A) = sup
ψ∈Ψ

VC(ψ(A)) .

Let ΨY denote the set of all collections ψ̄ = (ψy)y∈Y with ψy ∈ Ψ . Denote by ψ̄(A) the matrix obtained from A by replacing
each entry A(x, y) with ψy(A(x, y)). The (non-uniform) Ψ -dimension of A is defined as

Φ(A) = sup
ψ̄∈ΨY

VC(ψ̄(A)) .

As usual, we get the corresponding dual dimensions by setting Φ∗(A) = Φ(A⊤) and Φ∗

U (A) = ΦU (A⊤). Note that
ψ(A⊤) = ψ(A)⊤ while ψ̄(A⊤) is not generally equal to ψ̄(A)⊤.

As noted in [4], several popular combinatorial dimensions can be viewed as (uniform or non-uniform) ψ-dimension.
Here we are particularly interested in the P-, Pγ -, V -and Vγ -dimension:

Remark A.1. We next explain how to interpret known dimensions as special cases of the Ψ -dimension.

1. If Ψ is the set of mappings ψt of the form ψt (a) = sgn(a − t) for some t ∈ R, then Φ(A) = Pdim(A) and
ΦU (A) = Vdim(A) (see [4]).

2. If Ψ is the set of mappings ψt of the form

ψt (a) =

{1 if a ≥ t + γ

0 if a < t − γ

∗ otherwise

for some t ∈ R and γ > 0, then Φ(A) = Pγ (A) and ΦU (A) = Vγ (A).

The following calculation, with ψ ranging over all functions in Ψ , shows that Theorem 3.5 can be extended to any
uniform Ψ -dimension at the place of the VC-dimension:

Φ∗

U (A) = ΦU (A⊤) = sup
ψ

VC(ψ(A⊤)) = sup
ψ

VC(ψ(A)⊤)

= sup
ψ

VC∗(ψ(A)) ≤ sup
ψ

(
2VC(ψ(A))+1

− 1
)

= 2supψ VC(ψ(A))+1
− 1 = 2ΦU (A)+1

− 1 .

We remark that a similar argument for the non-uniform Ψ -dimension fails as it then no longer holds that ψ̄(A⊤) = ψ̄(A)⊤
(which is the argument we use in the third equality above).
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