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A B S T R A C T   

Ganoderma boninense (G. boninense) infection reduces the productivity of oil palms and causes a severe threat to 
the palm oil industry. Early detection of G. boninense is vital since there is no effective treatment to stop the 
continuing spread of the disease unless ergosterol, a biomarker of G. boninense can be detected. There is yet a 
non-destructive and in-situ technique explored to detect ergosterol. Capability of NIR to detect few biomarkers 
such as mycotoxin and zearalenone (ZEN) has been proven to pave the way an effort to explore NIR’s sensitivity 
towards detecting ergosterol, as discussed in this paper. A compact hand-held NIR with a measurement range of 
900–1700 nm is utilized by scanning the leaves of three oil palm seedlings inoculated with G. boninense while 
the other three were non-inoculated from 16-weeks-old to 32-weeks-old. Significant changes of spectral reflec-
tance have been notified occur at the wavelength of ~1450 nm which reflectance of infected sample is higher 
0.2–0.4 than healthy sample which 0.1–0.19. The diminishing of the spectral curve at approximately 1450 nm is 
strongly suspected to happened due to the loss of water content from the leaves since G. boninense attacks the 
roots and causes the disruption of water supply to the other part of plant. However, a few overlapped NIRs’ 
spectral data between healthy and infected samples require for further validation which chemometric and ma-
chine learning (ML) classification technique are chosen. It is found the spectra of healthy samples are scattered 
on the negative sides of PC-1 while infected samples tend to be on a positive side with large loading coefficients 
marked significant discriminatory effect on healthy and infected samples at the wavelength of 1310 and 1452 
nm. A PLS regression is used on NIR spectra to implement the prediction of ergosterol concentration which shows 
good corelation of R = 0.861 between the ergosterol concentration and oil palm NIR spectra. Four different ML 
algorithms are tested for prediction of G. boninense infection: K-Nearest Neighbour (kNN), Naïve Bayes (NB), 
Support Vector Machine (SVM) and Decision Tree (DT) are tested which depicted DT algorithm achieves a 
satisfactory overall performance with high accuracy up to 93.1% and F1-score of 92.6% compared to other al-
gorithms. High accuracy shows the capability of the classification model to correctly predict the G. boninense 
detection while high F1-score indicates that the classification is able to validate the detection of G. boninense 
correctly with low misclassification rate. The result represents a significant step in the development of a non- 
destructive and in-situ detection system which validated by both chemometric and machine learning (ML) 
classification techniques.   

1. Introduction 

In 2019, oil palm contributed 37.7% to the Gross Domestic Product 
(GDP) of the agriculture sector in Malaysia followed by other agriculture 
(25.9%), livestock (15.3%), fishing (12.0%), forestry & logging (6.3%) 

and rubber (3.0%) [1]. 
Oil palm industry has a major impact on Malaysia’s economy, which 

generated profitable export earnings. As reported by the Malaysian Palm 
Oil Board (MPOB) in 2020, Malaysia produced 17.18 tonnes per hectare 
of oil palm fresh fruit bunch for 5.9 million hectares of the total planted 

* Corresponding author. 
E-mail address: mohdfaizaljamlos@gmail.com (M.F. Jamlos).  

Contents lists available at ScienceDirect 

Chemometrics and Intelligent Laboratory Systems 

journal homepage: www.elsevier.com/locate/chemometrics 

https://doi.org/10.1016/j.chemolab.2022.104718 
Received 22 July 2022; Received in revised form 31 October 2022; Accepted 26 November 2022   

mailto:mohdfaizaljamlos@gmail.com
www.sciencedirect.com/science/journal/01697439
https://www.elsevier.com/locate/chemometrics
https://doi.org/10.1016/j.chemolab.2022.104718
https://doi.org/10.1016/j.chemolab.2022.104718
https://doi.org/10.1016/j.chemolab.2022.104718
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemolab.2022.104718&domain=pdf


Chemometrics and Intelligent Laboratory Systems 232 (2023) 104718

2

area. Sarawak is the biggest oil palm planted state with 1.59 million 
hectares, followed by Sabah with 1.54 million hectares. The total area of 
the other states in Peninsular Malaysia is 2.77 million hectares. Malaysia 
contributed 20.5% of world palm oil supplies making Malaysia the 
world’s second-biggest palm oil manufacturer and exporter with total 
export revenue approximately RM67.52 billion [2]. 

After 30 months of planting, oil palm trees begin to produce fruit and 
can bear fruits for 20–30 years, thus ensuring a consistent supply of oils. 
Oil palm is the world’s most efficient oil-bearing crop which produces 
one ton of oil in just 0.26 ha of land while rapeseed, sunflower and 
soybean require 1.52, 2 and 2.22 ha, respectively, to produce the same 
amount of oil [3]. However, a serious crop disease called Basal Stem Rot 
(BSR) disease threatens the sustainability of oil palm production [4]. 
The total area affected by G. boninense in 2020 was estimated to be 
about 443,430 ha or 65.6 million palm trees [5]. This disease is the main 
concern which severely affects Southeast Asia’s oil palm plantations, 
particularly in North Sumatra and Malaysia (Flood et al., 2000). This 
fungal infection can reduce the yield of oil palm production by 80%, 
which indirectly causes great losses in oil palm production and affects 
the palm oil industry. BSR disease is caused by Ganoderma boninense 
(G. boninense), a white-rot fungus that is a type of pathogenic basidio-
mycete. However, early detection and control strategies for G. boni-
nense are still undeveloped, although it was identified as the primary 
cause of death of oil palms. Therefore, early detection and identification 
of G. boninense infection are crucial to prevent production losses and 
reduce the cost of plantation management. 

In earlier studies, the detection of G. boninense was done using 
several methods. For instance, visual inspection by evaluating the visible 
symptoms of the plant [6] and lab-based techniques such as 
enzyme-linked immunosorbent assay (ELISA) [7], Ganoderma selective 
medium (GSM) [8], multiplex PCR-DNA kits [9], GanoSken tomography 
[10], electrochemical DNA biosensors [11]. Visual inspection provides 
inaccurate information since the plant might show symptoms similar to 
malnutrition, lack of water or hyperacid soil. Lab-based techniques are 
somehow tedious, time-consuming, and complex which require sample 
preparation and DNA extraction of the sample. Recently, spectroscopy 
techniques to detect G. boninense have been explored since it meets the 
following criteria: non-invasive, rapid, sensitive and precise to diseases, 
which have been taken into consideration for the development and 

design for early detection [12]. Several spectroscopy techniques have 
been conducted for G. boninense detection, such as nuclear magnetic 
resonance (NMR) [13], mass spectroscopy (MS) [14], dielectric spec-
troscopy [15,16], Fourier transform Infrared (FTIR) spectroscopy 
[17–19], MIR spectroscopy [20], hyperspectral imaging spectroscopy 
[21] and visible to near-infrared (VIS-NIR) spectroscopy [22,23]. These 
numerous studies show the ability of spectroscopy techniques paired 
with classification algorithms led to promising results for the detection 
of G. boninense infection. However, NMR, MS, DS and FTIR spectros-
copy were carried out in the laboratory and were destructive since the 
samples need to be processed before measurements. VIS/IR spectros-
copy has higher accuracy in detecting plant disease than the other 
spectroscopy methods [24]. Based on the VIS-NIR spectroscopy study by 
Liaghat et al. [22], the spectral data in the NIR region portray significant 
differences between classes of samples compared to the VIS region. 
Liang et al. [25] stated that the VIS region is only useful for visual 
analysis; thus, it is not useful for asymptomatic detection. The VIS range 
is dominantly influenced by pigment concentration such as chlorophyll 
and carotenoids while NIR range is influenced by biomass composition 
in the infrared range [26]. NIR is an effective method for acquiring in-
formation on tree physiology and pathology [27]. Thus, a study based on 
only NIRS is proposed. NIRS has been used extensively for the rapid 
detection of organic components [28]. Fungi are the most common plant 
pathogens, accounting for 85% of all plant illnesses [29]. Rapid detec-
tion of fungal phytopathogens is crucial for effective disease control. 
Ergosterol is the most abundant sterol in fungi cell membranes which is 
absent in plants or microbial cells [30]. Ergosterol is a primary metab-
olite in cell wall produced by G. boninense. A study by Mohd As’wad 
et al. [31] found that ergosterol effectively detects BSR disease in oil 
palms. Ergosterol has been successfully used as an indicator for fungal 
biomass in oil palm tissues [31–33]. The unique existence of metabolites 
makes it a good marker for Ganoderma colonisation in oil palm [34]. 
Ergosterol can be detected as early as 6 h after inoculation which means 
that ergosterol can be detected once the fungus starts to colonize the root 
[35]. Therefore, it may be possible to detect infection based on ergos-
terol content before symptoms develop. Previous studies had demon-
strated the ability of NIRS techniques for detection of metabolites 
including ergosterol, as summarised in Table 1. Capability/sensitivity of 
NIR to detect few metabolites biomarkers such as mycotoxin [36] and 

Table 1 
Previous studies on metabolites detection using NIRS.  

Sample Metabolites Instrument Wavelength 
(nm) 

Models/ 
Algorithms 

Significant Result Ref 

Maize Mycotoxin, Fusarium toxins, 
Fumonisins, Penicillium toxins 

NIR spectrometer 1100–2500 RF Classification accuracy: 
Mycotoxin: 82.2% 
R&E-Fusarium toxins: 77.9% 
E-Fusarium toxins: 82.4% 
Penicillium toxins: 95.1% 
Fumonisins: 70.5% 

[36] 

Brazilian 
maize 

Fumonisins (FBs), Zearalenone (ZEN) NIR spectrometer 400–2500 PLS FBs: R = 0.809, R2 = 0.899, RMSEP = 65.9, SEP 
= 68.2, RPD = 3.33 
ZEN: R = 0.991, R2 = 0.0.984, RMSEP = 69.4, 
SEP = 69.8, RPD = 2.71 

[37] 

Grapes Ergosterol VIS-NIR 
spectrometer 

VIS: 450-850 
NIR: 1050- 
1650 

PLS R2 = 0.851 
RMSEP = 3.61 
RPD = 2.72 

[38] 

Wheat Deoxynivalenol (DON), ergosterol HSI-NIR 
spectrometer 

900–1700 PLS, LDA PLS performance of ergosterol raw spectra: Whole 
sample: R2 = 0.88 
Ground sample: R2 = 0.62 
PLS performance of DON raw spectra: 
Whole sample: R2 = 0.62 
Ground sample: R2 = 0.62 
LDA classification accuracy according to DON 
concentration: 
Whole sample: 82.52% 
Ground sample: 82.53% 

[39] 

Soil Ergosterol NIR spectrometer 700–2500 FCR, FLLR, 
FRER, FRR 

FRER and FRR produce adequate result of CVPE 
= 0.91 and 0.89, respectively. 

[40]  
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zearalenone (ZEN) [37] including ergosterol in grapes [38] is proven to 
pave the way of an idea to explore/investigate its sensitivity towards 
ergosterol, a biomarker for G. Boninense. 

The most recent study by Ghilardelli et al. [36]utilizes NIRS of 
1100–2500 nm to detect the several metabolites incursion of maize. 
Random forest (RF) is used to classify the samples. Singularly, this 
approach can classify mycotoxin, regulated or emerging 
Fusarium-produced (R&E-Fusarium toxins), E-Fusarium toxins, Peni-
cillium toxins, Fumonisins with the accuracy of 82.2%, 77.9%, 82.4%, 
95.1% and 70.5%, respectively. This study shows several significant 
wavelengths at 1430, 1470, 1820, 2140, and 2180 nm which related to 
total fungal infection and could be assigned to the first overtone of the 
OH stretching modes of glucose, NH in most amino acids, and CH 
combination bands in unsaturated fatty acid [41]. 

Another study by Tyska et al. [37]applied NIRS ranging from 400 to 
2500 nm to detect Fumonisins (FBs) and Zearalenone which are toxic 
secondary metabolites produced by some filamentous fungi in Brazillian 
maize. Based on FBs spectral data, the wavelength range 400–600 nm 
and 1900–2500 nm show significant band. As for ZEN, wavelengths 
between 400 and 500, 1200–1900 nm and 2100–2400 nm appear to be 
relevant. Partial least squares regression (PLS) regression is used in this 
study. Correlation coefficient (R), determination coefficient (R2), root 
mean square error of prediction (RMSEP), standard error of prediction 
(SEP) and residual prediction deviation (RPD) for FBs and ZEN are 0.809 
and 0.991; 0.899 and 0.984; 659 and 69.4; 682 and 69.8; and 3.33 and 
2.71, respectively. 

A study by Femenias et al. [39]is conducted to estimate the deoxy-
nivalenol (DON) and ergosterol in wheat via NIR hyperspectral image. 
The PLS performance for estimation of ergosterol for whole sample and 
ground sample are R2 = 0.85 and 0.57, respectively while the PLS per-
formance for estimation of DON for whole and ground sample are R2 =

0.56 and 0.49, respectively. Linear discriminant analysis (LDA) classi-
fication is only applied to DON samples spectra which correctly 
discriminate the samples up to 82%. 

Detection of ergosterol in grapes for grape rot indication by utilizing 
VIS-NIR spectrometer is performed by Porep et al. [38]. The PLS model 
is obtained by combining raw VIS and NIR spectral data which produce 
good prediction performance with coefficient of determination (R2), 
root mean square error of prediction (RMSEP) and ratio of prediction to 
deviation (RPD) of 0.851, 3.61 and 2.72, respectively. Further feasibility 
of NIRS for prediction of ergosterol in soil has been explored by 
Almanjahie et al. [40]. Four predictor models used are functional clas-
sical regression (FCR), functional local linear regression (FLLR), func-
tional relative error regression (FRER) and functional robust regression 
(FRR). The models are evaluated based on the cross-validated prediction 
error (CVPE). FRER and FRR produce adequate result of CVPE = 0.91 
and 0.89, respectively. 

NIRS often being favoured over other spectroscopy and analytical 
methods as has the highest accuracy for disease detection on different 
types of plants compared to mid-infrared (MIR) and visible to near- 
infrared (VIS-NIR) spectroscopy [42]. NIRS is more precise and sensi-
tive to diseases include G. boninense compared to VIS light [22]. The VIS 
region provides information based on colour whereas NIR region is 
principally attributed to C–H, O–H, and N–H vibrations. These vibra-
tions contain information on the chemical elements, structures, and 
state of molecules. For early asymptomatic disease detection, NIR region 
is the main interest as NIR spectral data contain information on the 
interior tissue while VIS spectral data contain information on the exte-
rior, such as colour and texture [43]. Compared to those in the MIR 
range, the shorter NIR wavelengths enable increased penetration depth 
and direct analysis of solid samples, requiring little to no sample prep-
aration [42]. The recent advancement in NIRS instrument development 
now also enables in-field and on-site analysis with the availability of 
portable and compact instrumentation [44]. All these advantages along 
with being chemical-free, rapid, non-destructive and non-invasive make 
it possible for utilisation of NIRS for complete early detection systems in 

real-time. A review paper by Mohd Hilmi Tan et al. [45] discussed the 
utilisation of the NIRS technique and a machine learning classifier that 
demonstrated NIRS as a feasible method for early asymptomatic detec-
tion of G. boninense in oil palm. Previous study by Ahmadi et al. [23] 
able to discriminate between healthy and asymptomatic infected sample 
ML on VIS-NIR spectral data. However, the study is conducted on 
12-years-old mature oil palm plants. G. boninense can infect oil palm 
trees at all stages, from seedlings to mature plants [46]. This fungus 
infects seedlings less than a year old in the nursery [47,48]. This paper 
proposes a novel, rapid and non-destructive detection of ergosterol in 
Ganoderma boninense via NIR spectroscopy as early as at nursery level 
with the utilisation of several machine learning classifiers such as kNN, 
NB, SVM and DT. 

kNN is a simple classifier which widely used for pattern recognition 
problems technique. It is a lazy learning method based on learning by 
comparing a given test sample with the available training samples which 
are similar to it [49]. Its simplicity enables ease of classification [50]. 
Classification is achieved by i) identifying the nearest neighbours of the 
trained data, ii) calculating the distance between them and input data, 
and iii) predicting the class of input data [51]. This classifier is suitable 
to be implemented on multi-modal classes which a sample can have 
many class labels [52]. Liaghat et al. [53,54]employed a kNN classifier 
for G. boninense detection that classified four different classes of palm 
oil health conditions and generated the highest classification accuracy of 
97.3%. kNN has also been implemented on NIR spectra to classify the 
severity of fungal infection in maize [55] and chestnuts [56]. 

NB is a simple Bayesian probabilistic classifier based on Bayes de-
cision theorem. Bayes theorem is strong independence assumptions 
theorem [57]. This assumption is considered naïve as it assumes that the 
effect of an attribute on a class is statistically independent of all other 
attributes [58,59]. NB enable prediction of class membership probabil-
ities which determine the probability of a given data item belongs to a 
particular class label [60]. NB has been increasingly applied for classi-
fication due to its efficiency, simplicity and satisfactory performance. NB 
has been increasingly applied for classification due to its efficiency, 
simplicity and good performance. Implementation of NB on spectral 
data has been tested for the detection of G. boninense [53,54]. 

The SVM has been used in many applications as this classifier is 
effective and sturdy to noise [61]. The SVM was originally intended for 
binary classification and was investigated to solve multi-class classifi-
cation problems. It allows the SVM to classify samples in two classes or 
more. SVM construct or locate the optimal hyperplane as the decision 
line, separating the positive (+1) classes from the negative (− 1) classes 
in the binary classification with the two classes largest margin [62]. If 
the samples are linearly separable, the SVM is used to find the optimal 
separating hyperplane. This is done by maximising the margin between 
the hyperplane and the training sample called support vectors [61,63]. 
SVM was successfully applied to detect and classify grape leaf diseases 
with an accuracy of 88.89% [64]. 

DT classifier is a predictive model which maps observations of data 
for determination of the class of a given feature [60]. It has a tree-like 
structure in which all sources are split into subsets based on its attri-
bute values [65]. The leaves represent class labels, and the branches 
represent conjunctions of features leading to that class. This process split 
the data until no further splitting is possible or all has the same value of 
target variable. Many decision trees consist of random forest tree clas-
sifiers and output the category based on classes output by particular 
trees [66]. Sankaran et al. [67] investigated VIS-NIR spectroscopy as an 
approach to detect laurel wilt disease on avocado leaves by introducing 
four different classifiers, including a DT-based classifier. DT yielded high 
classification accuracies of over 94% when classifying asymptomatic 
leaves from infected plants. While the application of NIRS with the aid of 
ML has provided great insight into detection of plant disease and me-
tabolites in plant, the reliable model for predictive analytics for early 
detection of G. boninense has yet been discovered. Thus, this proposed 
study is necessary to choose the best machine learning classifier which 
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has the best overall performance and easy user-experience for devel-
opment and deployment of G. boninense predictive model. 

2. Methodology 

The dataset and proposed methodology have been discussed in detail 
in this section. 

2.1. Oil palm seedlings sample preparation 

Six oil palm seedlings at 16-weeks-old are obtained from UniKL BMI, 
Bangi, Selangor. Three of the oil palm seedlings are inoculated with G. 
boninense while the other three were non-inoculated seedlings, as 
shown Fig. 1. The inoculated samples are planted in polypropylene bags 
containing rubberwood blocks with Ganoderma pathogens. Fresh basi-
diomata of G. boninense is isolated from artificially infected oil palm 
seedlings at Sime Darby Research Banting, Malaysia. Ganoderma Se-
lective Media (GSM) [68] is used for the cultivation of G. boninense 
fruiting body. A pure culture of GSM G. boninense mycelium is then 
re-isolated onto potato dextrose agar (PDA) followed by incubation at 
25 ◦C for 14 days. Then, the culture is transferred to Rubber Wood Block 
(RWB) for further cultivation. The RWB (6 × 6 × 6 cm3) is used as a 
substrate for G. boninense inoculation cultivation. First, RWB is cleansed 
and oven-dried (70 ◦C–80 ◦C) to remove unwanted debris and natural 
saprophyte followed by sterilization at 121 ◦C for 15 min. Next, the RWB 
is packed in polyethylene bag containing 80 ml of malt extract broth 
(MEB) and then autoclaved for an hour to allow absorption of the media. 
The pure culture of G. boninense is then transferred into RWBs con-
taining MEB and incubated (dark condition) at 25 ◦C for 30–60 days or 
until the wooden block was fully covered by mycelia fungal [69]. Fully 
colonized RWB is placed at the position of 2/3 of the polybags (size of 
15 × 23 cm2) filled with soil mixture. Palm seedling roots are allowed to 
have direct contact with the source of Ganoderma inoculums, RWB. The 
samples are divided into two classes based on inoculation status. 
Non-inoculated samples are Sample 1 to Sample 3 (S1–S3) labelled as 
‘healthy’ and inoculated samples are Sample 4 to Sample 6 (S4–S6) 
labelled as ‘infected’. The seedlings are maintained with regular wa-
tering and fertilizer application. One three-month-old oil palm seedling 
is obtained to assess the effect of water stress on plant and for com-
parison study with the G. boninense infected samples. The seedling is 
not watered since day 1 until day 4. 

Fig. 1. Oil palm seedlings a) non-inoculated samples b) inoculated samples.  

Fig. 2. Spectral acquisition of leaves by using DLP NIRscan Nano spectrometer. 
Each measurement is repeated three times at the same area to collect average 
and accurate data. 
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2.2. High-performance liquid chromatography (HPLC) analysis 

The high-performance liquid chromatography (HPLC) analysis is 
conducted to confirm the presence of ergosterol after inoculation pro-
cedure. High-performance liquid chromatography (HPLC) method is an 
analytical chemistry technique for separating, identifying, and quanti-
fying every component of a mixture. The pump passes a pressurized 
liquid solvent with the sample mixture through a column with a solid 
adsorbent material. The different flow rate for each component leads to 
separation of the components as they flow out from the column. 
Ergosterol is extracted from the root tissue using microwave-assisted 
extraction (MAE) method. Oil palm root tissue is crushed in liquid ni-
trogen into powder then transferred into a Pyrex test tube with a Teflon 
screw cap. 2 ml of methanol and 0.5 mL of 2 M sodium hydroxide were 
added, and the tube is tightly sealed. The test tubes are microwaved at 
70 ◦C at medium-high power in 30 s exposure time. After the solutions 
were cold, they are neutralised with concentrated hydrochloric acid. 
The solutions are extracted three times with 2 ml of pentane and then 
evaporated until dry by using Buchi Rotary Evaporator. The solution is 
quantified using HPLC with an ergosterol (≥95% purity, Sigma-Aldrich) 
standard. An ergosterol standard is prepared for constructing the stan-
dard curve. All ergosterol concentrations are reported on a per unit 
weight basis and each sample is analysed in triplicate. 

2.3. Data collection by DLP NIR spectroscopy 

The NIR spectral reflectance data is measured using a hand-held DLP 
NIRscan Nano spectrometer (DLP2010NIR DLP® NIRscan™ Light, 
Texas Instruments (TI), Dallas, Texas, United States) with a measure-
ment range of 900–1700 nm (176–333 THz). The digital resolution of 
the NIR device was 228 which defines the number of captured wave-
length points across the spectral range. The exposure time is set to 0.635 
s with the scan of average of 6 per acquired spectrum. Spectral reflec-
tance data are collected from leaves of the oil palm seedlings as shown in 
Fig. 2. The reflectance process involves reflected light from the sample, 
measuring its absorbent qualities by how much light is absorbed back. 
Sample collection is taken from 6 oil palm seedlings from 16-weeks-old 
to 32-weeks-old. Spectra for each sample are acquired for 3 times per 
week in 4 months duration. Meanwhile, the spectral collection for water 
stress assessment is only done from day 1 to day 4. The whole spectral 
data is saved in CSV file format and transferred into the computer for 
further analysis. 

2.4. Data pre-processing 

Prior to further analysis, pre-processing is applied to the raw 
collected data. Data pre-processing can influence results for spectral 

data as raw spectral data consist high correlated variables, noises and 
irrelevant information [70,71]. The raw data contained a serial number, 
wavelength, intensity, absorbance, and reflectance measurement from 
wavelengths ranging from 901 to 1701 nm. The first step in data 
pre-processing is acquiring the relevant dataset. Only reflectance and 
wavelength are required for this study. Then, the spectral data above 
1673 nm is eliminated since they contained noise and contributed to 
irrelevant readings. The spectral has sudden decline peak as shown in 
Fig. 3. The raw exported data also had missing data or blank rows. Thus, 
data cleaning is done by removing blank rows, unrequired columns and 
irrelevant wavelengths using Macro function on Microsoft Excel. Failing 
to do this might draw inaccurate and faulty conclusions. Data labels of 
‘infected’ or ‘healthy’ are added to data to differentiate between known 
infected and healthy samples. 

2.5. Chemometrics data analysis 

Chemometrics are employed to extract and concentrate the conno-
tative information for further discrimination of healthy and infected 
sample. Principal component analysis (PCA) is applied to the spectra 
sample to extract relevant information of the NIR spectra. PCA spectral 
loadings can determine feature importance of the spectral wavelength. 
Maxima and minima from the important bands in the loadings were used 
to draw the annotations. Each principal component (PC) is a linear sum 
of variables multiplied by corresponding weighted coefficients. The X- 
loadings of PCs demonstrate the importance of different variables which 
aid to finding optimal wavelengths for spectral evaluations [72]. The 
relationship between ergosterol concentration and NIR spectra of oil 
palm sample can be examined by employing a partial least square (PLS) 

Fig. 3. Wavelength above 1673 nm is removed for further analysis and clas-
sification since it contains noise and irrelevant information. 

Fig. 4. Flowchart classification model integration on R studio.  
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regression on the collected NIR spectral data. PLS implements a pre-
dictive model of ergosterol content. The prediction by PLS provides 
correlation coefficient (R), coefficient of determination (R2), standard 
error of prediction (SEP) and root mean square error of prediction 
(RMSEP). 

2.6. Machine learning classification 

Several machine learning classifications are tested to find the most 
effective and suitable classifier model to distinguish between healthy 
and infected oil palm sample. R-studio software (version 4.1.0) is uti-
lized to perform the classification as shown by the flow chart in Fig. 4. 

Acquired spectral data is combined into one single CSV file for 
classification model development. Different machine learning (ML) al-
gorithms such as K-Nearest Neighbour (kNN), Naïve Bayes (NB), Sup-
port Vector Machine (SVM) and Decision Tree (DT) are implemented in 
the R script to perform classification on spectral data. Some libraries are 
required to be installed for machine learning classifications execution. 
Data is imported into R Studio by executing command “iris = read.csv 
(file.choose(), header = T)“ in R script. 

In this study, 576 spectral data are used for classification. The whole 
pre-processed spectral data have been utilizing for the classification 
purpose with wavelength ranging from 900 to 1673 nm. 70% of dataset 
are assigned as training data (473 spectral data) while 30% of the 
remaining data are allocated as testing data (173 spectral data). This 
method also known as hold-out validation, where the dataset is divided 
into two different parts in order to create train and test set [73]. It is a 
reliable approach to employ existing dataset for validation [74]. Each 
classifier is trained and tested ten times on each dataset to randomise the 
data and to examine variability performances of the classification 
models. Thus, consistency and persistence of the model can be observed. 
The performance of the classification models is evaluated based on 
confusion matrix since the confusion matrix is more widely used to 
assess the efficiency of a machine learning classification model [75]. The 
number of correct and incorrect outputs in a classification problem are 
summarised and compared with the training model. 

2.7. Performance evaluation 

Performance evaluations such as accuracy, precision, recall, speci-
ficity, and F1-score are interpreted by calculating four statistical indices 
based on the confusion matrix. A confusion matrix is a summary of 
prediction results on a classification algorithm. The number of correct 
and incorrect predictions are summarised with count values and broken 
down by each class [76]. The different performance parameters can be 
computed to measure the validity of classification model by using four 
elements of confusion matrix: true positive (TP), true negative (TN), 
false positive (FP), false negative (FN), which is given in equations (1)– 
(5). 

Accuracy=
TN + TP

TN + TP + FN + FP
(1)  

Precision=
TP

TP + FP
(2)  

Recall=
TP

TP + FN
(3)  

Specificity=
TN

TN + FP
(4)  

F1 − score= 2
(

Recall × Precision
Recall + Precision

)

(5) 

The healthy sample is assigned as “positive” and the G. boninense 
infected sample is assigned as “negative”. TP refers to the correctly 
predicted healthy sample, FP refer to incorrectly predicted healthy 
sample, TN refers to the correctly predicted infected sample, and FN 
refer to incorrectly predicted infected sample. Accuracy indicated the 
number of correct predictions made by the classification model. Preci-
sion is how many predicted healthy samples are correctly predicted. 
Recall indicates that from all actual healthy samples, how many are 
correctly predicted as healthy while specificity indicates that from all 
actual infected samples, how many are correctly predicted as infected. 
The F1-score indicates the average of precision and recall [77]. The best 
model has the maximum values of both recall and precision [78] can be 
used to comprehensively evaluate the prediction accuracy of a machine 
learning model [79]. High F1-score which consider both FP and FN 
indicate that the machine learning algorithm is unlikely to predict 
incorrectly. Thus, misprediction could be avoided. 

3. Results and discussions 

3.1. Ergosterol concentration 

The calibration plot was obtained by using standard solutions of 
ergosterol and plotting the peak areas against the concentration of the 
standard solutions. Chromatogram shows the detection of pure ergos-
terol at 282 nm after separation by HPLC. The highest peak corre-
sponding to ergosterol compound. The retention time is 6.673 min. The 
range of standard ergosterol concentrations used for obtaining the 
calibration plot is 0–1 μg/g. The plot shows a good linearity, with co-
efficient of determination, R2 of 0.9865 as shown in Fig. 5(a). No 
ergosterol is detected on non-inoculated seedlings. This result corrobo-
rates the finding by Mille-Lindblom et al. [80], which reported that 
ergosterol is a fungal-specific as it is not found naturally in plants or 
other microbial cells. Ergosterol only can be detected in G. boninense 
infected oil palm sample. This finding is in agreement with the study by 
Toh Choon et al. [32] and Phin [81], which found that ergosterol is only 
detected in infected oil palm seedlings indicating the metabolites caused 
by G. boninense incursion. This significant finding validates ergosterol 
as a sensitive marker for detection of G. boninense infection for the 
detection of basal stem rot (BSR) in oil palm. 

The concentration of ergosterol in samples by week post inoculation 

Fig. 5. (a) Calibration curve of HPLC peak area versus ergosterol concentration; (b) Relationship of inoculation period and ergosterol concentration of oil palm 
germinated seedlings. 

M.I.S. Mohd Hilmi Tan et al.                                                                                                                                                                                                                



Chemometrics and Intelligent Laboratory Systems 232 (2023) 104718

7

(wpi) is determined using the equation Y = 308.26x+3.3651 from 
standard curve calibration. This equation is used to calculate the 
ergosterol concentration based on peak area from HPLC analysis and is 
summarised in Table 2. Fig. 5(b) shows that there has been a steady 
incline in the ergosterol concentration from 8, 12, 16, and 20 wpi in the 
G. boninense inoculated seedlings. These results agree well with existing 
studies published from the study of Ganoderma infections in oil palm 
[82]. The concentration of ergosterol for wpi 8, 12, 16 and 20 are 
0.0657, 0. 4152, 1.0202 and 1.5628 μg/g, respectively. A good positive 
correlation value of R2 = 0.989 is observed between the inoculation 
period and ergosterol concentration. 

3.2. NIR spectral data of healthy and infected oil palm sample 

The acquired raw spectral data is observed in NIR wavelengths 
ranging from 900 to 1700 nm as shown in Fig. 6. Red line plots represent 
the infected sample while blue line plots represent the healthy sample. 
The observed reflectance for infected samples is higher than the healthy 
samples. The findings in this study mirror those of the previous study by 
Zhao et al. [83] that performed detection of fungus infection on grape-
seed petals using NIR HIS ranging from 700 to 1700 nm. They have 
found that the reflectance of infected sample is higher than healthy 
sample which might explained by the decay phenomenon of the infected 
petals. Despite higher reflectance in infected samples, the spectral data 
sometimes overlapped between healthy and infected samples making it 

difficult to distinguish the infected sample from the spectra. Moreover, 
the visual interpretation of NIR spectra is complicated as specific bands 
in this region are overtone containing information molecular vibration 
and generic functional groups [44]. The diminishing of the spectral 
curve at approximately 1450 nm is strongly suspected to happened due 
to the loss of water content from the leaves. G. boninense commonly 
attacks the roots and causes the disruption of water supply to the other 
part of plant. 

3.3. Operation of PCA and PLS chemometrics 

PCA is employed to transform the full wavelengths (219 wave-
lengths) into several principal components (PCs). X-loadings of first PCs 
are applied for qualitatively identifying the optimal wavelengths that 
were responsible for the specific features. Fig. 6 shows the clustering of 

Table 2 
Summary of HPLC analysis on G. boninense infected oil palm sample.  

Stage of 
infection 
(wpi) 

Replicates Area Average area 
(triplicates) 

Ergosterol concentration 
(ug/g) 
(Calculated based on 
equation y = 308.26x +
3.3651 from standard 
curve) 

8 1 33.96 23.620 0.657 
2 20.37 
3 16.53 

12 1 123.72 131.347 0.4152 
2 137.45 
3 132.87 

16 1 303.53 317.853 1.0202 
2 279.91 
3 370.12 

20 1 478.63 485.123 1.5628 
2 557.46 
3 419.28  

Fig. 6. Raw reflectance spectral data in NIR region for healthy and infected 
sample. Noted that significant changes occur at wavelength ~1450 nm. 

Fig. 7. Cluster plots based on the first three PCs (a) Cluster plot based on PC-1 
and PC-2; (b) Cluster plot based on PC-1 and PC-3; (c) Cluster plot based on PC- 
2 and PC-3. 
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two groups within the space of PC-1 and PC-2, PC1 and PC-3, PC-2 and 
PC3, respectively. The first three PCs explained 99% original variations 
and their score plots are displayed in Fig. 7. Each point in these scatter 
plots represented one spectrum from one sample. In Fig. 7(a) and (b), 
two group of samples provide an ostensible clustering. However, there is 
a slight cross between healthy and infected samples Fig. 7(c). Based on 
Fig. 7(a) and (b), the spectra of healthy samples are scattered on the 
negative sides of PC-1, while spectra of infected samples tend to be on a 
positive side of PC-1. In conclusion, the score plots successfully distin-
guished the healthy and infected sample. 

Selection of optimal wavelengths is of critical significance for 
removing the redundant information from high-dimensional data, 

optimizing calibration models and producing excellent results [85]. 
Thus, identification of optimal wavelengths carrying the most valuable 
and authentic information is a challenging task in the current hyper-
spectral data analysis. The X-loadings of PC-1 to PC-3, which revealed 
the importance of the analysed variables, are shown in Fig. 8(a). Vari-
able with large positive or negative loading coefficient was significant 
and considered as an optimal wavelength. The first three loading plots of 
PCA indicated that the reflectance at two wavelengths of 1310 and 1452 
nm with the large loading coefficients had the greatest discriminatory 
effect on healthy and infected petals. The identified optimal wavelength 
at 1452 nm is approaching to the first overtones O–H stretching near 
1450 nm, attributable to water content [86]. Whereas for the optimal 
wavelength at 1310 nm can be associated with the second overtone of 
CH3 groups which is contributed by ergosterol that contains CH3 com-
ponents as shown in Fig. 8(b). 

A PLS regression is used on NIR spectra to implement the prediction 
of ergosterol concentration. The PLS model is produced by non-pre- 
treated, 2nd order-derived spectral data provided a prediction model 
of ergosterol in palm oil sample as shown in Fig. 9. However, the PLS 
model is characterized by a decent predictiveness with R2 = 0.741, 
RMSEP = 0.283, and SEP = 0.284. The correlation coefficient, R = 0.861 
shows good correlation between the ergosterol concentration and oil 
palm NIR spectra. 

Based on the selected significant wavelengths of 1310 nm and 1452 
nm, the relationship between ergosterol concentration and infected 
reflectance spectral can be observed as plotted in Fig. 10(a). As the 

Fig. 8. (a) X-loadings of the PCs of the samples. 1310 and 1452 nm are selected 
as the optimal wavelength (b) Chemical structure of ergosterol [84]. 

Fig. 9. Relationship between NIR predicted values and measured ergosterol 
content in oil palm sample. 

Fig. 10. (a) Correlation of ergosterol concentration and infected reflectance 
spectra at 1310 and 1452 nm by wpi (b) Comparison between reflectance (%) 
for water stress and G. boninense infected oil palm sample over time. 
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ergosterol concentration increases, the spectral reflectance shows 
decrement at 1310 nm and increment at 1452 nm as wpi goes by. The 
noticeable correlation between ergosterol concentration and infected 
reflectance spectra is suspected by the changing of water content. 
Further analysis is conducted to compare the reflectance for water stress 
and G. boninense infected oil palm sample over time as shown in Fig. 10 
(b). Noted that the comparison is done at wavelength 901.15 nm. Water 
stress reflectance data is collected for day 1, 2, 3 and 4 while for G. 
boninense infected sample is wpi 8, 12, 16 and 20. As shown in Fig. 10 
(b), the percentage of reflectance is decreasing over time for both water 
stress and G. boninense infected oil palm sample. G. boninense begins to 
infest the root area interrupting the water transportation to the leaves. 
This is validated by water stress testing and G. boninense infected 
reflectance spectra which shows similar reaction towards water 
depletion. 

3.4. Evaluation of machine learning classifiers 

Machine learning is employed on all collected spectral data to 

discriminate between healthy and infected samples. The different ma-
chine algorithms discussed earlier are implemented in R studio envi-
ronment. The spectral datasets are trained and tested using machine 
learning techniques such as K-Nearest Neighbour (kNN), Naïve Bayes 
(NB), Support Vector Machine (SVM) and Decision Tree (DT). The re-
sults of the different machine algorithms based on confusion matrix are 
presented in Table 3. 

The results show that the highest accuracy is obtained using the DT 
model with accuracy of 93.1%, followed by kNN and NB with accuracy 
of 83.8% and 73.9%, respectively. Thus, DT exhibits highest ability to 
classify between the healthy and infected sample. SVM shows the least 
accurate performance of only 70.1%. As for precision, all classifications 
models perform the ability to predict the healthy sample with the pre-
cision ranging from 89.2% to 98.9%. As briefed in methodology section, 
noted that TP refers to the correctly predicted healthy sample, FP refer to 
incorrectly predicted healthy sample, TN refers to the correctly pre-
dicted infected sample, and FN refer to incorrectly predicted infected 
sample. All classification models show low false positive implying low 
sample is incorrectly predicted as healthy which means; the infected 

Table 3 
Performance results are obtained from different machine learning algorithms.  

Classifications Confusion Matrix Performance Result (%) 

TP FP TN FN Accuracy Precision Recall Specificity F1-score 

kNN 74 9 71 19 83.8 89.2 79.6 88.8 84.1 
NB 72 4 41 36 73.9 94.7 66.7 91.1 78.3 
DT 75 5 86 7 93.1 93.8 91.5 94.5 92.6 
SVM 93 1 29 51 70.1 98.9 64.6 96.7 78.2  

Fig. 11. Performance evaluation of different classification techniques.  
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sample is being distinguished from healthy sample by all the models. 
Besides, the specificity for all classifiers determine that the classification 
models are able to correctly predict the infected sample. Low FN value 
resulted in higher recall which exposes the ability of the classifier to 
correctly predict a healthy sample. Lower recall resulting misclassifi-
cation of infected sample being identified as healthy. DT computes the 
highest recall up to 91.5%. Despite accuracy, good F1-score that indi-
cated there are low false positive and low false negatives thus correctly 
predicting the actual sample. DT produces the highest F-score perfor-
mance of 92.6% compared to other classifiers. The performance of four 
machine learning techniques is plotted in Fig. 11(a–e) and the com-
parison for each classifier performance is illustrated into Fig. 11(f). The 
classification models are run ten times to evaluate the overall perfor-
mance of the model. 

While performing the classification, it is noticed that SVM took a 
longer time to process and not suitable for large datasets. Based on the 
performance evaluation, DT algorithm achieves the satisfactory overall 
performance with accuracy of about 93.1%, precision of 93.8%, recall of 
91.5%, specificity of 94.5% and F1-score of 92.6% which indicates the 
reliability and feasibility to distinguish between G. boninense infected 
and healthy oil palm sample. Moreover, DT takes less time to execute 
which is suitable for a real-time prediction model. The results demon-
strate a promising discrimination technique with several machine 
learning classifiers as a reliable classification of G. boninense disease 
based on extracting important and valuable information from large set 
of data. Compared to other studies, this integrated NIR with ML tech-
niques may represent a rapid, non-destructive real-time detection 
method for asymptomatic disease at young plants. 

4. Conclusion 

Based on HPLC analysis, the inoculation oil palm seedlings indicated 
the presence of ergosterol which proof the presence of G. boninense in 
inoculated seedlings. No ergosterol can be found in healthy sample. The 
ergosterol concentration gradually increase over week post inoculation. 
The optimal wavelengths are identified at 1310 and 1452 nm where 
1452 nm is attributed to water content and 1310 nm could be related to 
ergosterol content. Based on the PLS model, good correlation between 
the ergosterol concentration and oil palm NIR spectra is observed. In this 
study, several machine learning classifiers which are kNN, NB SVM and 
DT were performed on NIR spectral data to predict and classify healthy 
and infected oil palm. Nonetheless, it is identified that DT is a potential 
classifier for this research since DT exhibits consistent good performance 
compared to the other classifiers. DT produces high accuracy of 93.1% 
and F1-score of 92.6%. Accuracy and F1-score are the most common 
metrics used for binary classification in machine learning and significant 
since they portray the ability of the classification model to classify 
correctly. A direct comparison of the developed model is not possible 
due to a scarcity of research on the prediction of ergosterol in G. boni-
nense infected oil palm using the NIRS approach. Although the findings 
of previous studies are not directly comparable to this present developed 
model, yet this DT classification model indicates that it has a promising 
potential for detection of G. boninense. Nevertheless, this is the first 
study incorporating ergosterol for detection of G. boninense in oil palm 
using NIR, which is confirmed as a reliable alternative methodology for 
the analysis of such metabolite’s incursion. 
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