

In-Orbit Radiometric performance of Sentinel-2/MSI: Inter-comparison with LANDSAT8/OLI-1 and LANDSAT9/OLI-2 over desert PICS using DIMITRI-toolbox

B. Alhammoud¹, C. Mackenzie¹, J. Jackson¹, S. Clerc², J. Bruniquel², B. Lafrance³, S. Enache³, R. Iannone⁴, V. Boccia⁵, M. Bouvet⁶

1) ARGANS Ltd, 2) ACRIS-ST, 3) CS Group, 4) Rhea Group, 5) ESA/ESRIN, 6) ESA/ESTEC

12 September 2022, CALCON2022

Dataset and Tools

- Sentinel-2 radiometry vicarious validation
- Sentinel-2A/B radiometry intercalibration
- Sentinel-2A/B and LANDSAT-8/9 Radiometry intercomparison

Conclusion

Libyan dunes as seen by MSI-A Credit: Copernicus Sentinel data (2015)/ESA, CC BY-SA 3.0 IGO

17 CalVal sites for Sentinel-2 & 10 CalVal sites for Landsat8/9

Sentinel-2/MSI: L1C: TOA reflectance + AUX-data 13 bands VNIR/SWIR 2015-present

Datasets

3

Collection 2 Data Access

Landsat Collection data products are available to download at no charge from EarthExplorer.

LANDSAT/OLI: L1TP: TOA reflectance + AUX-data 8 bands VNIR/SWIR 2013-present

CalVal sites available in DIMITRI-toolbox

17 CalVal sites for Sentinel-2 & 10 CalVal sites for Landsat8/9

Bright sites: Desert:	Dark sites: Land:
 6 CEOS- PICS 	La Crau
 Gobabeb RRVP BSCN Ice/Snow DOME-C 	Water 6 Open Ocean Boussole (Costal)

Site type	Water	La Crau	Desert	Snow
Reflectance range	0-0.2	0.2-0.3	0.2-0.7	0.7-0.9

Vicarious Methods in DIMITRI-toolbox

Copernicus	DIMITRI Database for Imaging Multi-spectral Instruments and Tools for Radiometric Intercomparison		esa
Rayleigh scattering calibration	Sun-Glint inter-bands calibration	Desert (PICS) calibration	Sensor-to-Sensor intercalibration
Absolute calibration coefficient: as ρ ^{obs} /ρ ^{sim}	Absolute Inter-band calibration coefficient: as ρ ^{B(i)} /ρ ^{B(ref)}	Relative calibration coefficient: as ρ ^{obs} /ρ ^{sim} (MERIS as REF)	Absolute inter-calibration coefficient: as ρ ^{obs} /ρ ^{REF}
 Over VIS bands Uncertainty <5% Very stringent criteria 	 Over VNIR bands Uncertainty <2% Very stringent criteria 	 Over VNIR bands Uncertainty <5% Uses surface BRDF 	 VIS, NIR & SWIR Uncertainty <5% Limited matchups

https://dimitri.argans.co.uk

Optical Mission Performance Clus

RAYLEIGH METHOD: 6 CalVal sites & time-series up to April 2022

- S2A/MSI; 91 acquisitions used; VIS are within 3% ; Except B01 (Software limitation)
- S2B/MSI; 73 acquisitions used; VIS are within 3%

Wavel	MSI-A	MSI-B
ength		
(nm)		
443	1.038	1.028
490	1.007	1.002
560	1.009	1.005
665	1.009	1.012

In-Situ measurements: over Railroad Valley (RadCaTS dataset) up to Dec. 2020

- Average over 79 overpasses S2A and 45 overpasses S2B
- ROI: 0.1°x0.1° latitude x Longitude
- All bands are within 5% (excluding B09, B10).

(RADCATS dataset were provided by the NASA Landsat Cal/Val Team as part of the ESA expert users effort)

In-Situ measurements: over RadCalNet dataset up to May. 2022: (TOA reflectance, NADIR-view)

- About 400 overpasses S2A and 350 overpasses S2B
- ROI: 0.1°x0.1° latitude x Longitude
- Interannual variability.

-

RadCalNet

Committee on

Earth Observation Satellites

In-Situ measurements: over RadCalNet dataset up to May. 2022: (TOA reflectance, NADIR-view)

- About 400 overpasses S2A and 350 overpasses S2B ٠.
- ROI: 0.1°x0.1° latitude x Longitude ٠.

Committee on Earth Observation Satellites

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Observed Ref

Multi-temporal Relative Radiometry Vicarious Validation

Desert-PICS Method : 6 CalVal sites & time-series up to May 2022

- S2A/MSI; 882 acquisitions used; VNIR are within 3%; No detectable trend
- S2B/MSI; 664 acquisitions used; VNIR are within 3%; <u>No detectable trend</u>

Wavel ength (nm)	MSI-A	MSI-B
443	0.989	0.978
490	0.991	0.986
560	1.005	1.003
665	0.999	0.991
705	NA	NA
740	1.011	1.007
784	1.006	0.989
842	0.991	0.983
865	0.999	0.991

Synthesis over the Radiometry Vicarious Validation

- Good consistency over all the methods
- Results are within 3% (mission target req.)
- Maximum discrepancy is observed over
 - Rayleigh B01
 - Matchups with LS-8 B01 & B02
 - Matchups with In Situ B01, B02 & B11
- Good temporal stability (No trend detectable)
- Slight bias of MSI-A vs MSI-B of ~1% (Corrected since 25th Jan-2022)

Sentinel-2A-2B radiometry intercalibration: Bias assessment

ical Mission Performance Ch

Wavelength (microns)

Sentinel-2A-2B radiometry intercalibration: Bias temporal variability

Desert-PICS method – Up to 2021/05 : Results

~1220 L1-C Products 6 Desert-PICS

ACRI CARGANS

Trend for S2A/S2B:

• VNIR ~ 0.01- 0.2%

OPT-MPC

tical Mission Performance Cluste

Sentinel-2A-2B radiometry intercalibration: Bias temporal variability

al Mission Performance Cl

Sentinel-2A-2B radiometry intercalibration: Bias temporal variability

tical Mission Performance Clus

Sentinel-2A/B and LANDSAT-8/9 Radiometry intercomparison

Sentinel-2A/B and LANDSAT-8/9 Radiometry intercomparison

Desert-PICS Method : X-mission intercomparison (LIBYA4)

Sentinel-2A/B and LANDSAT-8/9 Radiometry intercomparison

Desert-PICS Method : X-mission intercomparison (LIBYA4)

OLI-2/OLI-1

Sentinel-2A/B and LANDSAT-8/9 Radiometry intercomparison

In-Situ measurements: X-mission intercomparison over RadCalNet test sites

- Good consistency over the results of the different methods: Angular-Matchups, Rayleigh scattering (over VIS bands), and PICS (over VNIR bands)
- S2A/MSI shows brighter TOA-reflectance than S2B/MSI over VNIR bands by 1-2%, with an average value of 1.1%
- Successful intercalibration and correction of the bias S2A/S2B
- No significant temporal variability over PICS Cal/Val sites for the VNIR bands.
- Good consistency with similar missions (<2%)
- RadCalNet good quality dataset and very useful for CalVal activities

Acknowledgement

Thank you !

Thanks to:

OPT-MPC team and DIMITRI team for their support

RADCATS dataset were provided by the NASA Landsat Cal/Val Team as part of the ESA expert users effort

RadCalNet for providing the in-situ measurements

Sentinel-2A /2B fly at 180° apart. (Credit: www.esa.int)