Data, Calibration and Processing of Thermal Infrared Data from the LisR ISS Mission

Monday 12th September 2022 Calcon | Logan | Utah

Space Station Instruments

Andreas Brunn, Alan Rainot, Marius Bierdel, Max Gulde, Akshay Miryalkar, Atin Jain

Outline

- Company, Mission and Instrument
 - Technical Details, orbit parameters, key parameters
 - Spectral Response Curves
- Ground In Lab Calibration / Characterization
 - Radiometric Characterization (absolute calibration, flat fielding)
 - Focusing of the system
- In orbit adjustment of the flat fielding parameters
- Image processing Steps to L2 LST products
- Outlook and conclusion

calcon|Logan|Utah

Massive environmental, societal, and regulatory drivers Agricultural transition urgently needed

Climate Change Up to 46% yield loss in key crops at 2°C increase

Population Growth Estimate +40% higher water use in agriculture by 2030

Food Security +90% price increase for corn, wheat & rice by 2030

Sources: Global Center of Adaptation, Global Industry Analysts 2021, Infrastructure News 2021, Research and Markets 2019, Geospatial Analytics Market, Green Technology and Sustainability Market, Markets and Markets 2019, Transparency Market Research 2020, Bloomberg (ESG Assets, 2021) Foto by Markus Spiske from Pexels

Andreas Brunn, andreas.brunn@constellr.space

calcon | Logan | Utah

We rely on public imagery, and fill the gaps with our own satellites A robust and cost-effective approach, standing on the shoulders of giants

Free and open data

Landsat-8

& many more to come...

Sentinel-2

Sentinel-3

ECOSTRESS

Combined with proprietary layers

crop classification

vegetation index

flood maps

irrigation map

soil organic carbon

Andreas Brunn, andreas.brunn@constellr.space

LisR Mission

calcon|Logan|Utah

www.constellr.space 4

LisR Mission – Long wave Infrared demonStratoR

Mission Objectives

Demonstrate...

- ConstellR's core miniaturized technology for Land
 Surface Temperature retrieval
- the capability of small COTS components such as the TIR detector to derive LST
- free-form technology for the optics on a CubeSat scale

Validate and showcase ...

- patented calibration approach for LST data and
- the business case for commercial LST data

LisR Mission

- Mission duration: until June 2022
 - Launch: 19.02.2022
 - Installation outside ISS: 09.03.2022
 - Initial Activation: 14.03.2022

LisR Mission – Long wave Infrared demonStratoR

Launched to the International Space Station on 19th February 2022

In cooperation with

Fraunhofer

calcon|Logan|Utah

(SPACEOPTIX

LisR Payload – Long wave Infrared demonStratoR

A miniaturized system to monitor Land Surface Temperature

Mission and Instrument Key Parameters

Target Data Product	L2 Land Surface Temperature			
Orbit	ISS Orbit, 370 - 460 km altitude, 51.6° inclination $7.6 - 7.7$ km/s			
Revisit Time	non-constant, 3-5 days for many areas and times			
Coverage	Land and coastal regions between -51° and +51° Latitude			
Max. Spectral Response	Band 1: 10.14µm, Band 2: 10.55µm			
Full Width Half Maximum (FWHM)	Band 1: 0.41µm, Band 2: 0.9µm			
Detector	Cryocooled Quantum Well Infrared			
	Photodetector (QWIP)			
Frame Size	320 x 256 pixels, (320 x 128 per band)			
Pixel Pitch	30 μm			
Optics	Free Form optical assembly			
Initial Integration Time	2250 μs			
Imaging sequence	6 images / second in operational mode			
Focal Length	150 mm			
GSD	81.5			
Swath width	26.1 km			

Spectral Response

- Commercial off the shelf cryocooled QWIPS one band detector array.
- Two overlayd filter elements divide the focal plane horizontally.

- Operations in pushframe configuration levarages the ISS foreward movement to achieve full coverage of the surface in both bands
- Band registration is achieved using image processing methods

On Ground Camera Calibration

Goals

- Characterize the camera response
 - DN to Radiance (initial absolute calibration)
 - Initial Flatfielding of Frame
- Focus adjustment (distance between focal plane and entrance pupil of the optical assembly)

Equipment

- Black Body Source (Heitronics ME30)
- Chiller (Julabo FL300)
- Collimator (1000 mm focal length)

Absolute Calibration

Black Body has been imaged

- at 8 different temperatures (-9 to 80°C)
- at 5 different integration times (1250 to 2750µs)

to

- find the right integration time for an optimum well fill at nominal surface temperatures between -20 and 60°C
- find saturation temperatures

LisR Mission

Absolute Calibration

and to find the link between detector DN and Radiance Level.

Brightness temperature of the Black Body is converted to radiance level using Plancks law

Linear fit between the radiance and per band mean detector DN delivers the pre launch initial absolute radiometric calibration parameters (gain and offset)

Initial Flatfielding (lab)

Take images of the blackbody at cold and warm temperatures

- homogeneous reference over the full focal plane
- well within the linear response of the detectors
- used -9°C and +40°C for the lab flatfielding

$$G^{rc} = \frac{median_{rc}\left(median_{n=1\dots N}\left(S_{n}^{rc}(T_{high})\right)\right) - median_{rc}\left(median_{n=1\dots N}\left(S_{n}^{rc}(T_{Low})\right)\right)}{median_{n=1\dots N}\left(S_{n}^{rc}(T_{High})\right) - median_{n=1\dots N}\left(S_{n}^{rc}(T_{Low})\right)}$$

$$O^{rc} = \frac{median_{rc} \left(S_n^{rc}(T_{Low}) \right) \cdot \left(S_n^{rc} \left(T_{high} \right) \right) - median_{rc} \left(S_n^{rc} \left(T_{High} \right) \right) \cdot \left(S_n^{rc} (T_{Low}) \right)}{S_n^{rc} (T_{High}) - S_n^{rc} (T_{low})}$$

Offset correction map

In Lab Instrument Focusing

Crucial for sharp images from ISS platform is proper adjustment to infinity.

Adjustment of distance between the focal plane array and the entrance pupil of the optics.

Labs are usually too small to achieve parallel radiation

1000mm telescope (reversed) has been used to achieve parallel rays

thanks a lot to Paul Loregio from Airbus to make the lab work possible and so smooth

In Lab Instrument Focusing

Images of a hot circular blind at different distances between FP and Entrance Pupil are taken The number of full real white pixels in the image are counted (using a little Image processing tool) The higher the number becomes the sharper the edge of the circle is imaged

In Orbit Flatfielding

homogeneous images of cold Ocean (+4°C) and desert areas (qpprox. +28°C) replace the lab images.

Several thousands of images are averaged to exclude surface structure from the calculations

Histoari

offset

Andreas Brunn, andreas.brunn@constellr.space

calcon|Logan|Utah

www.constellr.space 1

Image Processing Chain I

<u>Archiving</u>: decryption, storage of image and metadata in a database, conversion of coordinates, location of images

Table "raw.lisr raw frame"					
				Default	
record_id frame_id frame_math frame_md created_ts proc_state proc_try proc_ts proc_id proc_msg footprint frame_ts sc_pos solar info	intager intager text joon procision with time zone procision timestamp with time zone text joonb geometry timestamp with time zone geometry joonb		not null not null not null not null not null not null	now() 'waiting':proc_state \$	
Indexes: 'lisr_ma_frame_phay' PRIMAY KEY, biree (record_id, frame_id) 'lisr_ma_frame_footprint_dat' git: (footprint) 'lisr_ma_frame_fract_gits(c_pox) foreign-kay contraints' 'lisr_ma_frame_record_id_reprint(c_pox) foreign-kay contraints' 'lisr=d \draw.lisr_rem_telementy lisr=d \draw.lisr_rem_telementy Colume List 'ma_frame.record_id_list on two lists between the colume Lists' on two lists on two lists between the colume Lists' on two lists on two lists between the colume Lists' on two lists on two lists on two lists of two lists of two lists'					
<pre>g f t v file_path file_item_not created_ts proc_state proc_ts proc_ts proc_ts proc_isg Indexes:</pre>	text text bigint jsomb text integer timestamp with time zon proc_state smallint timestamp with time zon timestamp with time zon timestamp with time zon		not nul: not nul: not nul: not nul: not nul: not nul: not nul:	 foo() Signoc_state 	
"IIS"_raw_telemetry_pacy "PKUMAK REF, DTPee (§, f, t) Forsign-key constraints: "lisr_raw_telemetry_file_path_fkey" FOREIGN REY (file_path) REFERENCES lisr_raw_file(file_path)					

calcon|Logan|Utah

Image Processing Chain II

Dead Detector Correction

Flatfielding

Absolute Calibration

Orthorectification and band registration

To come: Mosaicking to 100 km stripes

Image Processing Chain III

Conversion from Radiance to Land Surface Temperature

- Initially: Cross reference to Ecostress Temperature data
 - Linear fit between Ecostress Temperature and LisR Radiance
- Finally: when the in orbit radiometric calibration is finalized split window approach will be used.
 - To calibrate the split window parameters Ecostress and Landsat LST products will be used.

Image Processing Chain IV

- Ecostress seems to be the ideal reference source as it is flying on the same platform than LisR and is mostly available, if not it is replaced by geostationary LST data with coarser resolution,
- Temperatures between LisR and Ecostress match well
- LisR has less striping and banding artefacts
- LisR seems to be sharper than Ecostress images

LisR Mission

calcon|Logan|Utah

Next Steps

- final absolute calibration (with reference to well calibrated reference systems like Sentinel 3, Seviri)
- adjustment of processing parameters for split window processing
- spatial resolution characterization
- absolute temperature characterization

Company Milestones

- First own VIS/NIR/TIR satellite in orbit by mid 2024
- Constellation of VIS/NIR/TIR satellites by early 2025
- Hyperspectral VIS/NIR/SWIR satellites through purchase of ScanWorld approx. end of 2025

calcon|Logan|Utah

Thank you very much

Questions?

Andreas Brunn ConstellR andreas.brunn@constellr.space

