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Why develop high-accuracy lunar calibration?
Competing interests:
 Expectations for Earth observing sensors to measure climate-related observables

− e.g. NASA’s Earth System Observatory
− requires unprecedented sensor accuracy and stability on orbit

 Movement of future Earth observing satellite programs toward constellations of smallsats
− e.g. Landsat Next
− potentially provided by the commercial sector
− requires sensor calibration inter-consistency

To meet both these objectives together 
suggests a critical requirement for a reliable, 
common calibration reference available to all 
the satellite sensors

The Moon can provide this

Other capabilities enabled:
• transfer of pre-launch calibration to on-

orbit operations
• additional opportunities for lunar views; 

reduced time to converge on calibration
• inter-calibration to benchmark sensors 

such as CLARREO PF, TRUTHS
• bridging a gap in an otherwise 

continuous observation record
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The radiometric Moon
• continuously changing brightness
• mottled appearance, distribution of albedo (maria and highlands)
• non-Lambertian surface reflectance
• exceptional surface stability: invariant at 10−8 per year (Kieffer, 1997)

A model is used to predict the brightness for any Moon observations taken from low Earth 
orbit.  The model constitutes the lunar calibration reference.
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Achieving high-accuracy lunar calibration follows two tracks:
Addressing both is needed

Improving the lunar reference (model)
• Specifications of the Moon’s radiometric 

behavior — variations associated with:
o obs geometry: phase angle & librations
o spectral content

• Requires new measurement datasets

Improving lunar measurements from sensors
• Spatial sampling of the Moon disk

o properties of Moon scans
o spatial characteristics of sensor elements

• Evaluating uncertainties associated with each 
contributing factor
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Addressing Lunar Modeling Needs — the Absolute Scale

A lunar radiometric reference has potential sub-percent absolute uncertainty
• with SI traceability — talk by Steve Brown later in this session

The current USGS ROLO model for spectral irradiance: 5−10% uncertainty
• recognized low bias, determined by comparison to other measurements

Setting the absolute scale for lunar irradiance requires new, high-accuracy 
measurements

Measurements being acquired now
• airborne Lunar Spectral Irradiance  

(air-LUSI) — Kevin Turpie talk later
o flights in March 2022, Nov. 2019  

• Calibrated aerosol photometers
o LIME project, Tenerife (ESA)
o AERONET, Mauna Loa (US)
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Addressing Lunar Modeling Needs — the Absolute Scale

Upcoming measurements for setting the lunar irradiance absolute scale
ARCSTONE — cubesat-based lunar disk reflectance

• anticipated launch:  3Q 2024
• talks by Trevor Jackson and Greg Kopp later in this session

NIST Lunar Spectral Irradiance at Mauna Loa Observatory (MLO-LUSI)
• instrumentation installed, functional testing completed, remote operation working
• full robotic operation anticipated within ~6 months

Measurements of opportunity by orbiting climate observatory sensors
CLARREO Pathfinder

• scheduled launch to ISS:  December 2023

TRUTHS
• anticipated launch timeframe:  2026-2028 
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Addressing Lunar Modeling Needs — Accounting for Lunar Librations

Alternative approach to model libration specification:  MapLib
Implemented in SLIM by H. Kieffer — J. Appl. Rem. Sens. (2022) doi: 10.1117/1.JRS.16.038502
• based on albedo maps derived from lunar orbiting imager data
• near-normal incidence and emission angles, different from Moon observations from Earth
• applied to the J1/N20 VIIRS series above, analysis ongoing

Example:  JPSS-1/NOAA-20 VIIRS
lunar comparison time series 

• quasi-annual oscillations, correlated 
among bands (M1-M6 shown)

• analysis suggests also correlated     
with librations, but another influence     
is present

VIIRS lunar data provided by VCST
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Addressing Lunar Modeling Needs — Reformulating the ROLO Model

Objective:  a reduced uncertainty lunar reference, traceable to SI standards
Incorporating air-LUSI measurements is key, but air-LUSI acquisitions alone do not 
have sufficient observation geometry coverage to build a new model
The ROLO dataset is still useful as a basis for modeling

• extensive phase and libration coverage
• self-consistent calibration (against stars)
• ongoing USGS effort toward reprocessing — collaboration with EROS

Other lunar modeling efforts in the community:
 H. Kieffer — SLIM

• ROLO dataset, plus 11 other ground- and space-based measurement sources
 ESA — LIME

• nighttime aerosol photometer measurements from Teide peak, Tenerife
 GSICS activity: comparison of model outputs generated from a common set of inputs
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Addressing Sensor Measurement Needs — Irradiance from Images

Objective:  to determine the cause(s) of offsets in instrument lunar irradiance 
measurements compared to lunar model results
• These often exceed the known bias in the ROLO model
• Given a refined, high accuracy lunar reference, measurement errors need to be examined

Irradiance measurement equation:

• each factor carries an uncertainty  

The sensor radiometric calibration applies only to the pixel radiance term Li
• calibration uncertainty does not equate to uncertainty in irradiance measurements
• obtaining accurate measurements requires attention to all components of this equation
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Spatial sampling of the Moon with a line-scanning sensor

Example:  Landsat OLI
• pushbroom sensor
• 14 focal plane modules
• 30 m GSD, Moon diameter ≈250 pixels across-track
• Moon scans acquired using target-synced pitch maneuvers
• raster pattern to scan the Moon thru all 14 FPMs in two orbits
• slew rate for ~8x oversampling

OLI image acquired 2013-03-27  19:26:28



CALCON Technical Meeting  14 September 2022

Spatial sampling of the Moon with a line-scanning sensor

Example:  Landsat OLI
• pushbroom sensor
• 14 focal plane modules
• 30 m GSD, Moon diameter ≈250 pixels across-track
• Moon scans acquired using target-synced pitch maneuvers
• raster pattern to scan the Moon thru all 14 FPMs in two orbits
• slew rate for ~8x oversampling

Apply Landsat geolocation capabilities to Moon scans
• OLI sensor is fixed to the spacecraft bus
• interpolate s/c attitude telemetry (50 Hz) to scan frame 

sampling (236 Hz) to compute line of sight (LOS) vectors 
for each pixel

• matching LOS to the Moon’s size and position in inertial 
space can specify which pixels intercepted the Moon

OLI image acquired 2013-03-27  19:26:28



CALCON Technical Meeting  14 September 2022

Spatial sampling of the Moon with a line-scanning sensor

Example:  Landsat OLI
• pushbroom sensor
• 14 focal plane modules
• 30 m GSD, Moon diameter ≈250 pixels across-track
• Moon scans acquired using target-synced pitch maneuvers
• raster pattern to scan the Moon thru all 14 FPMs in two orbits
• slew rate for ~8x oversampling

Apply Landsat geolocation capabilities to Moon scans
• OLI sensor is fixed to the spacecraft bus
• interpolate s/c attitude telemetry (50 Hz) to scan frame 

sampling (236 Hz) to compute line of sight (LOS) vectors 
for each pixel

• matching LOS to the Moon’s size and position in inertial 
space can specify which pixels intercepted the Moon

OLI image acquired 2013-03-27  19:26:28

 allows to compute 
oversampling directly!
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across-track FOV 
(detector array)

LOS vectors
OLI

orbit track
Moon disk

Lunar scan pitch maneuver is conducted in s/c reference frame: ECEF
•  s/c attitude coordinates rotate during scan due to orbital motion
•  sensor FOV rotates with respect to a “stationary” target = Moon

LOS analysis of Landsat OLI Moon scans
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Ramifications:
• Moon center is displaced in the across-track direction 

through the scan
• Moon disk image elongation is not aligned with the 

along-track direction
• oversampling varies at different detector positions

− impact on irradiance measurements is          
being investigated

across-track FOV 
(detector array)

LOS vectors
OLI

orbit track
Moon disk

Lunar scan pitch maneuver is conducted in s/c reference frame: ECEF
•  s/c attitude coordinates rotate during scan due to orbital motion
•  sensor FOV rotates with respect to a “stationary” target = Moon

LOS analysis of Landsat OLI Moon scans
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Summary and Conclusions
• Lunar calibration has the potential to achieve sub-percent absolute accuracy

‒ with SI traceability, given anchoring measurements
‒ necessary for climate sensing by Earth observing satellites, especially constellations

• Investment is needed to improve the lunar reference
‒ time and labor: scientific studies, development of methods and analytic specifications
‒ to acquire additional high-accuracy, spectrally resolved lunar irradiance measurements

• to set the absolute scale
• with verifiable low uncertainties
• technically feasible

• Ongoing and planned activities to acquire the needed new measurements
‒ upcoming talks in this CALCON session

• Attention needed toward improving lunar measurements from sensors
‒ a refined lunar reference will enable high-accuracy calibration against the Moon
‒ impacts for constellation approaches to Earth observations
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