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We study the kinematics, dynamics and flow fields generated by an oscillating, compliant
membrane hydrofoil extracting energy from a uniform water stream at a chord-based
Reynolds number Re ≈ 3 × 104. Hydrodynamic forces during the foil’s motion cause
the membrane to dynamically morph its shape, effectively increasing the camber during
the oscillation cycle. The membrane’s deflection is modelled using the Young–Laplace
equation, with pressure term approximated from thin-airfoil theory. Simultaneous tracking
of the membrane deformation and the surrounding flow field using laser profiling
and particle image velocimetry, respectively, reveals the role of dynamic cambering in
stabilizing the leading-edge vortices on the membrane. In this regime of operation, we
obtain up to 160 % higher power extraction when compared to a rigid, symmetric hydrofoil.
The present work provides a demonstration of how passive compliance of soft materials
interacting with fluids may be exploited in tidal and fluvial energy extraction.

Key words: flow–structure interactions, membranes, vortex dynamics

1. Introduction

Tidal and marine sources provide opportunities for developing clean and sustainable
energy due to their relative abundance and predictable nature (Holzman 2007; Mehmood,
Liang & Khan 2012; Angeloudis et al. 2016; Neill et al. 2018). Rotary turbines (RTs)
offer many advantages that make them the widely accepted energy extraction device
today, primarily due to their high efficiency and mature technology base. However, since
the vast majority of tidal and fluvial ranges are concentrated at shallow depths and
have a time-varying energy density, there are also several disadvantages associated with
deployment of RTs to extract hydrokinetic energy (Howland, Lele & Dabiri 2019). They
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have high maintenance costs, have high ‘cut in’ speeds, perform poorly at off-design
conditions (Garrett & Cummins 2005), easily clog with marine flora, and can pose a
threat to various aquatic life. Furthermore, efficient use of inter-turbine spacing is not
always possible in farm-scale RT installations, which can result in reduced individual
turbine performance. The overall performance thus shows poor scalability in tidal and
fluvial settings, particularly when operated below their rated flow conditions (Abdullah
et al. 2012; Draxl et al. 2015; Howland et al. 2019). Owing to many of these limitations,
the use of oscillatory energy-harvesting devices has gained interest in the past decades.
Simpson et al. (2008) experimentally demonstrated that a flapping NACA0012 hydrofoil
showed promise to be used for energy harvesting in unsteady and transient environments.
Their low blade-tip speed, combined with certain structural advantages, and suitability for
installation in shallow waters allowed for a reduced maintenance cost when compared to
conventional RTs (Garrett & Cummins 2007; Strom, Brunton & Polagye 2017; Su et al.
2019).

During the energy extraction cycle, the flapping hydrofoil experiences points of high
instantaneous force (Cleaver et al. 2016; Wu et al. 2020). One of the unsteady flow
phenomena contributing to lift generation is the formation and growth of a leading-edge
vortex (LEV) – an attached LEV can generate high lift and power coefficients (Chen,
Colonius & Taira 2010; Lau 2010; Onoue et al. 2015). However, once the LEV detaches
from the hydrofoil, the instantaneous lift drops significantly. Recent efforts at improving
efficiency using hydrofoils of various cross-sections have resulted in only marginal
improvements (Kim et al. 2017). Yet another constraint is that the hydrofoils used in
oscillating foil technology for tidal applications need to have a symmetric cross-section
(Kim et al. 2017), which limits the flow turning and lift production capabilities. If one were
to design a rigid, cambered hydrofoil for a half-cycle of operation, the performance can
be expected to be high. However, the same foil would perform suboptimally in the return
stroke of the oscillation cycle. In addition, performing flapping motion requires power
input, the degree of which varies depending on whether the flapping motion is active or
semipassive or fully passive (Boudreau et al. 2018; Duarte et al. 2019). These factors lead
to a low overall cycle efficiency for flapping foil technologies as compared to conventional
RTs.

Movements that combine wing compliance with oscillatory kinematics (pitching and
heaving) are widely prevalent in the natural world – in aquatic animals, birds and
mammalian flight (Dickinson, Lehmann & Sane 1999; Videler, Stamhuis & Povel 2004;
Warrick, Tobalske & Powers 2005; Dabiri 2009; Chen, Wang & Gursul 2018). Wing
deformability has been shown to aid in performance and in the stability of the LEV,
as the wing is able to adapt to sudden changes in flow and turbulent gusts (Muijres
et al. 2008; Mountcastle & Combes 2013; Waldman & Breuer 2017). However, the use
of compliant wings has mostly been limited to propulsive applications. In this work, we
employ an oscillating, compliant membrane in the energy extraction mode of operation.
The membrane passively adapts its shape in a uniform water flow, and, by tuning the
material’s elastic properties, we assess the lift-generating capabilities under both steady
and oscillatory conditions. We conduct simultaneous measurements of lift and power
coefficients for oscillating membranes and compare them to those of an energy-harvesting,
rigid hydrofoil. We model the instantaneous deformation of the membrane using a
Young–Laplace type equation, which takes into account the deformation-dependent
membrane stiffness in response to a fluid flow. We identify the leading mechanisms
contributing to the high power extraction capability of compliant membranes. Lastly,
we discuss the potential application of flapping membranes in tidal and fluvial energy
extraction settings.
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Figure 1. Schematic representations of an oscillating compliant membrane hydrofoil used in hydrokinetic
energy extraction. (a) Cross-sectional schematic of the membrane foil deforming during the heaving and
pitching oscillations in a uniform water flow. (b) Side-view schematic showing the membrane hydrofoil
oscillating in the uniform water flow.

2. Experimental methods

The experiments were carried out in a free-surface water channel (flume) that has a test
section of 0.8 m × 0.57 m in cross-section and 5 m in length. The tests were conducted
over a range of flow speeds, U∞ = 0.1 m s−1 to 0.4 m s−1, which correspond to a
Reynolds number, Re ≡ U∞c/ν, in the range 1 × 104 to 4 × 104. Here, c is the chord
length of the membrane foil and ν is the kinematic viscosity of the fluid. The hydrofoil was
actuated in heave and pitch mode, with amplitudes h0 and θ0, respectively, and oscillation
frequency f . For the experiments reported in this study, h0 = 1.2c, and θ0 was varied in
the range [15◦, 35◦], and at a reduced frequency, f ∗ ≡ fc/U∞ = 0.08. The chord length
c = 0.1 m and span s = 0.4 m. End plates placed at both ends of the hydrofoil ensured
that the deformation profile and the overall flow field over the hydrofoil do not vary
significantly in the spanwise direction. The heaving motion, h(t), and the pitching motion,
θ(t), were prescribed to be triangular and trapezoidal, respectively, drawing insights from
prior studies (Simpson et al. 2008; Ashraf et al. 2011; Lu, Xie & Zhang 2014). Larger pitch
angles were not tested, as these introduced interactions between the wake of the support
structure and the foil, affecting the reliability of the force measurements. The membrane
hydrofoils were fabricated in-house by mixing a silicone elastomer compound with a
measured percentage of thinner component in order to tune the material’s elastic properties
(Das, Breuer & Mathai 2020a). The results reported here correspond to a membrane of
elastic modulus E ≈ 140 kPa and thickness t ≈ 380 ± 20 μm. A rigid, flat-plate hydrofoil
was also tested under identical experimental conditions to allow for direct comparisons
with the performance of the membrane hydrofoil.

Figure 1(a) shows a top-view illustration of the oscillating membrane hydrofoil in a
uniform flow. A side-view schematic (figure 1b) shows the same foil suspended from
a six-axis load cell used to measure the forces and torques during the oscillations.
Simultaneously to the load measurements, the membrane’s midplane deformations were
tracked using a laser profiler across the midspan of the foil (see inset to figure 1b), and the
flow field around the membrane was obtained using two-dimensional (2-D) particle image
velocimetry (PIV) measurements.

942 R4-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

32
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.322


V. Mathai, G.A. Tzezana, A. Das and K.S. Breuer

x

y

0

10

15

x/c

0

30

20

10

–10
0 0.5 1.0

α
ef

f

10

5

10

15

U∞

Urel

U∞

x = U∞t
50

w0/c (measurement)

w
0
/c

 (
p
re

d
ic

ti
o
n
)

w
 (

m
m

)

15 10 20 30 40

Pitch angle, θ0 (deg.)

θ0 (deg.)

P
o
w

er
 c

o
ef

fi
ci

en
t,

 C
P

0

0.1

0.2

0.3

0.4

10 20 30 40

P
o
w

er
 r

at
io

Membrane

Rigid plate

1.0

1.5

2.0

2.5

αeff

(b)(a)

(c)

(d )

Figure 2. Deformations and performance of a membrane hydrofoil during a cycle of energy extraction from a
uniform water flow. (a) Trajectory of the foil in the frame of reference of the uniform stream. (b) Deformation
profiles of the membrane coloured by the instantaneous effective angle of attack, αeff . (c) Predicted centreline
deformation (w0/c) versus measured centreline deformation during the oscillation cycle for pitching amplitude
θ0 varied from 15◦ to 35◦. (d) Cycle-averaged power coefficient for rigid foil and membrane. Inset shows power
ratio, R, which gives the ratio of the average power of the membrane to that of the rigid foil.

3. Results and discussion

We apply a transformation (Galilean) by subtracting the mean flow speed, U∞, which
yields the foil kinematics in the frame of reference of the uniform stream (see figure 2a).
The images presented show the deformed cross-section of the membrane (h0 = 1.2c, θ0 =
30◦ and f ∗ = 0.08), as obtained from the laser profilometer, at selected instants during the
oscillation cycle. Owing to its highly compliant nature, the membrane passively adapts
its shape in response to the fluid forces, yielding a positive camber during most of the
oscillation cycle. This passive compliance ensures that the deformed membrane shape
resembles an asymmetrical foil, which generates more lift and is more resistant to stall, as
compared to a rigid hydrofoil (Song et al. 2008).

A crucial parameter that determines the energy extraction potential during flapping
motion is the instantaneous effective angle of attack defined as

αeff (t) = θ(t) − tan−1
(

ḣ(t)
U∞

)
. (3.1)

As evident from (3.1), αeff is linked to the instantaneous values of the pitch angle, θ(t),
and the instantaneous heave velocity, ḣ(t). A positive power extraction generally occurs
at instants where |αeff | < |θ |. The instantaneous deformation profiles for the membrane
foil at various instants during a half-cycle of oscillation are shown in figure 2(b). The
maximum centreline deflection w0/c is measured at each instant during the cycle for a
variety of pitching and heaving amplitudes. Here, a centreline deflection w0 > 0 indicates
a positive camber, which is desirable for energy extraction. The profiles are coloured by
αeff (t) at the instant. While the membrane evolves through a complex sequence of shapes,
interestingly we note that w0 grows with αeff .

The deformation profile of the membrane is representative of the balance between
hydrodynamic forces and the tension in the membrane. Simplifying to a steady state,
the membrane deformation under a pressure loading is governed by the Young–Laplace
equation (Waldman & Breuer 2017),

κ + p
T = 0, (3.2)
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where κ is the membrane local curvature, p the pressure and T the tension in the
membrane. This model considers the 2-D projection of a membrane that is pinned between
the leading and trailing edges of a wing with a chord length c. We can further simplify
this under the assumption of a uniform pressure load – the membrane curvature can be
expressed in terms of the normalized centreline deflection, w̃ = w0/c (Das, Mathai &
Breuer 2020b), i.e. κ̃ = 8w̃/(1 + 4w̃2). The tension in the deformed membrane can be
modelled based on the elastomer’s constitutive relation. For the range of deformations in
the current work, the membrane response can be approximated to be nearly linear elastic,
with a Young’s modulus E. Thus, T = Et(λ− 1), where t is the membrane thickness and
λ = (2λ0/κ̃) sin−1(κ̃/2), with λ0 the membrane pre-stretch in the undeformed state.

The above approximations dictate a circular-arc cross-section for the membrane. As
we noted in figure 2(b), the membrane deformation profiles during the oscillation cycle
are more complex than a circular arc. The effective angle of attack αeff and the relative
velocity Urel vary dynamically during the membrane’s motion. Nevertheless, with this
simplification the deformed membrane can be modelled as a subfamily of Joukowski
airfoils (Waldman & Breuer 2017), and we can adapt the inviscid, thin-airfoil theory to
model the pressure,

p = πρU2
∞ sin(αeff + 1

2 sin−1(κ̃/2)), (3.3)

where ρ is the density of the fluid. The above expression takes into account the effective
angle of attack and the camber in the membrane (Abbott & Von Doenhoff 2012).

Combining (3.2) and (3.3) and non-dimensionalizing using the length scale, c, the time
scale, c/U∞, and the hydrodynamic pressure scale, 1

2ρU2∞, we obtain the relation

2π sin(αeff + 1
2 sin−1(κ̃(w̃)/2))

(λ(w̃) − 1)κ̃(w̃)
= Ae, (3.4)

where Ae = Et/(1
2ρU2∞c) is a dimensionless parameter representing the ratio between

elastic and aerodynamic stresses (also known as the aeroelastic number). The above
relation links the independent variables Ae and αeff through a known function of w̃. We
solve the set of equations using an iterative Newton’s method to obtain the centre-chord
deflection. In figure 2(c), we compare the predictions of (3.4) to the experimental
measurements of the centreline deflection for pitching amplitudes varied from 15◦ to 35◦.
The model demonstrates a remarkable agreement with the experimental measurements,
despite the simplifying assumptions outlined earlier.

The lift generated during the oscillatory motion can yield useful work only when the lift
force acts along the same direction as the heaving velocity, ḣ. The resulting power extracted
is summarized in the cycle-averaged power coefficient, CP = (〈FLḣ〉 + 〈Mθ̇〉)/(1

2ρU3∞cs),
for rigid foils and membranes (figure 2d), where M is the pitching torque. The coefficient
CP increases with pitching amplitude and appears to plateau for large θ0. The membrane
outperforms the rigid hydrofoil and gives a higher power extraction at all θ0 tested. The
inset to figure 2(d) presents the ratio between the power coefficients, R, of the membrane
and of the rigid foil. At the lowest θ0 = 15◦, the compliant membrane provides a 160 %
improvement in power extraction when compared to the rigid hydrofoil. Even at the highest
θ0 = 35◦ (which corresponds to the lowest R), the membrane yields 55 % higher power
than the rigid foil.

Next, we focus on the in-cycle variation of the lift coefficient CL(t) for varying pitch
amplitudes. Since the motion prescribed is symmetric during up- and downstrokes, we
present a phase-averaged representative half-cycle of oscillation, from t/T = 0.25 to 0.75,
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Figure 3. Comparison of lift coefficient for a rigid plate with that of a membrane during unsteady and static
conditions. Time evolution of lift coefficients (phase-averaged) for (a) rigid foil and (b) membrane. In (a,b),
the pitch amplitude, θ0, is varied from 15◦ to 35◦. (c) Lift coefficient of the membrane foil for different values
of the static angle of attack, αs. Inset shows comparison of CL versus αs for the membrane and rigid plate at
fixed Ae = 10.

where T = 1/f is the period of oscillation (figure 3a,b). This time interval was chosen
to be such that ḣ ≥ 0, and therefore we may note that, for all CL > 0 in this interval,
we extract positive power. In figure 3(a), the lift coefficient variation for the rigid foil
is presented at different values of the pitch angle, θ0. In general, as θ0 is increased, CL
also increases (see different colour curves in the figure). The peak value of CL occurs
between 0.25 < t/T < 0.5. One contribution to the lift comes from αeff , which increases
and decreases symmetrically during the half-cycle interval plotted. However, soon after
this initial increase, the lift drops off rather quickly during the latter part of the half-cycle
shown. We evaluate the same for the membrane at different θ0 (figure 3b). Here, again,
and similar to the case of the rigid foil, CL increases with increasing θ0. However, unlike
the rigid foil, the lift for the membrane does not drop off rapidly during the latter part of
the half-cycle.

The LEV does not play a significant role in controlling the maximum camber, but it has
a noticeable effect in determining both the shape of the deformed profile (see figure 2b)
and the vortex lift. Note that, while the model simplified the shape to a circular cap (a
subfamily of Joukowski airfoils), we can clearly notice that the leading edge is influenced
by the LEV that grows and remains attached. Yet, the centreline values of deformation are
in fair agreement, which is mainly our experimental finding. As will be discussed in the
following comment, this difference in the shape of the profile makes it important for us to
account for the vortex lift in order to capture the total force.

While the deformations were fairly well captured by the inviscid model, it is important to
note that the model underpredicts the lift measured in the experiments (figure 3a,b). This
can be expected, since unsteady effects arising from the membrane/foil kinematics, drag
(d’Alembert’s paradox) and separated, vortical flows at the leading edge are not included
in (3.4). We map out the static lift coefficient, CL = FL/(1

2ρU2∞cs), by performing lift
measurements at different Ae (obtained by varying U∞) at stationary angles of attack,
αs (figure 3c). Here, FL is the lift force and s is the span of the hydrofoil. The membrane
experiences high lift coefficients, reaching a peak lift coefficient of around 3.5 at the lowest
Ae = 5. It may be noted that the peak CL we achieve here is higher than the values reported
in prior works (CL < 1.8) using stiffer membranes (Song et al. 2008; Rojratsirikul, Wang
& Gursul 2010). Next, we present CL versus αs variation at Ae ≈ 10 (see inset), which
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corresponds to the aeroelastic number of the oscillating foil experiments. Firstly, we note
that, for the rigid plate, the slope of CL versus αs is in good agreement with the CL ∝ 2πα

based on thin-airfoil theory, and the stall behaviour is comparable to prior measurements
(Abbott & Von Doenhoff 2012). In contrast, the membrane displays a higher lift and
gentler stall behaviour, with lift slope exceeding 2π (Song et al. 2008). Moreover, the
membrane hydrofoil provides a finite lift even at very small angles of attack, in agreement
with prior works (Waldman & Breuer 2017). However, the static lift contribution (inset to
figure 3c) is lower than the peak lift coefficients measured during the oscillatory motion.
Therefore, unsteady vortex dynamics around the foil might play a role in enhancing the
lift contribution. These will be analysed in further detail using PIV measurements of the
vorticity field surrounding the hydrofoil. The LEV has a noticeable effect in determining
both the instantaneous deformed shape of the membrane (see figure 2b) and the vortex lift.
Note that, while the model simplified the shape to a circular cap (a subfamily of Joukowski
airfoils), it is apparent that the region near the leading edge is influenced by the LEV that
grows and remains attached. This aspect, unaccounted for in the model, makes it important
for us to consider the vortex lift contribution.

Further to the enhanced lift coefficients for the membrane foil, in figure 3(b), we
observe lift fluctuations, particularly prominent during the time interval 0.25 < t/T < 0.5.
The frequency of these oscillations is nearly unchanged despite the variations in θ0. In
comparison, for the rigid flat plate (figure 3a), the peak in the lift curve is not noticeable
at low θ0 – presumably due to the absence of an LEV at small pitch amplitudes. From the
laser profilometer images, we detect that the membrane undergoes shape oscillations at
a frequency comparable to its natural frequency (dimensionless) under water, estimated
as f̃n = π

√
Ae(λ0 − 1)/(8Reff ), where λ0 is the pre-stretch ratio and Reff = R + Ra is

the effective mass ratio, which takes into account the membrane mass ratio R and the
added-mass coefficient Ra = 0.68 for a vibrating membrane (Minami 1998; Tzezana &
Breuer 2019). Here, the added-mass coefficient of heaving/pitching was ignored because
the heaving and pitching accelerations were small compared to the membrane vibrations.
The measured lift force fluctuations for the membrane may therefore be understood as
originating from the damped vibrations of the membrane foil in water, which occurs every
time the membrane abruptly flips its shape at the end of a pitching cycle. When the foil flips
its orientation, the change in the membrane’s shape is not an instantaneous reflection of the
loads. One can define a Stokes number, using the ratio of the membrane’s response time,
τn, to the foil oscillation time scale, τosc. The ratio of the response times can be written
as τn/τosc ≈ (0.08/π)

√
8(R + Ra)/(Ae(λ0 − 1)) ≈ 0.07 in our experiments. Hence, this

phase lag, although noticeable, is not significant for the current experiments.
To understand the flow-field evolution around the oscillating hydrofoils, we look into

a case with a pitch amplitude θ0 = 30◦. Figure 4 shows the lift coefficient, CL, variation
during the half-cycle of oscillation for a rigid symmetric foil (black curve in upper main
panel) and a membrane foil (blue curve in lower main panel). Note that these lift curves
were reproduced from figure 3(a,b). As earlier discussed, the peak lift coefficients are
higher for the membrane compared to the rigid foil, and we also identified that the
force fluctuations for the membrane occur at approximately the natural frequency of
the membrane in water. The uppermost and lowermost inset panels of figure 4 show a
sequence of instantaneous vorticity fields obtained from PIV measurements around the
rigid hydrofoil and the membrane, respectively. These correspond in time to the points
marked as (1), (2) and (3) in the lift curves for the rigid foil and the membrane. For the
rigid plate, a large LEV structure develops during the instant marked as (1), but the vortex
begins to shed by the time instant (2). By (3), the vortex has completely detached. In the CL
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Figure 4. Lift forces and flow structures around a rigid foil (upper panels) and membrane (lower panels) during
a half-cycle of oscillation. The inset panels (1)–(3) with black and blue bounding boxes compare the vorticity
field around the rigid foil (upper panels) and the membrane (lower panels), respectively. Shaded regions in the
two central panels show the total lift prediction based on a semi-empirical model. The blue and red regions in
the vorticity fields depict negative and positive vorticity, respectively.

versus t/T plot, we observe that the peak lift coincides in time with the development of the
LEV, and, soon afterwards, we observe a declining lift curve. The relatively short duration
for which the LEV remains attached can explain the declining lift curve for the rigid
hydrofoil. In contrast, for the membrane foil, the LEV stays attached for a considerably
longer duration, as seen from the vorticity fields (lowermost panels (1)–(3)). Consequently,
the lift curve does not decrease sharply as in the case of the rigid plate.

Thus, the attached LEV dynamics, combined with the greater flow turning induced
by the membrane’s camber, is believed to generate the higher lift performance for
the membrane hydrofoils. We can decompose the lift into a steady component and a
phase-averaged vortex lift, FL = Fsteady + Fvortex, where the latter can be linked to the
LEV dynamics around the oscillating hydrofoil. The steady lift, Fsteady, was obtained
from force measurements on the hydrofoil in a uniform flow and fixed angle-of-attack
setting. We follow an approach similar to those by Onoue & Breuer (2016) and Van der
Kindere et al. (2019), by making use of the static lift measurements at various αs and Ae as
given in figure 3(c). For the vortex lift, we estimate the LEV circulation as Γ = ∫∫

s ω · ds,
where ω represents the vorticity vector and s the surface over the hydrofoil where the LEV
is formed. The vortex measurement only accounts for the developing LEV. We do not

942 R4-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

32
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.322


Fluid–structure interactions of membrane foils

consider the viscous boundary layer very close to the foil surface because the PIV field is
not sufficiently resolved to capture this region very close to the foil surface. The flow field
at the lower side of the membrane foil was expected to be nearly potential (irrotational) and
did not contribute significantly to the vortex lift. This semi-empirical approach yields a lift
variation that is phenomenologically in agreement with the experimental measurements, as
shown by the grey and blue shaded regions in the CL versus t/T plots for the rigid foil and
the membrane, respectively. Interestingly, the shape of the CL versus t/T plot is reproduced
fairly well with the inclusion of this vortex lift, since the steady contribution is lower in
magnitude and left–right symmetric. These characteristics of compliant membranes may
provide key benefits in hydrokinetic energy-harvesting applications.

4. Conclusions

In summary, we have studied the fluid–structure interactions of a compliant membrane
hydrofoil undergoing heaving and pitching oscillations in a uniform water stream.
Membranes passively camber during the oscillations, which leads to enhanced lift
generation and power extraction. Membrane compliance generally aids in the development
and stabilization of an LEV over the hydrofoil. We modelled the instantaneous membrane
deformation using an inviscid model, which predicts the centreline deformations
accurately for a range of pitching amplitudes. The total lift force generated by the
oscillating membrane is decomposed into a lumped model that includes a steady lift and
a vortex lift contribution. The origin of the high lift performance of membrane hydrofoils
lies in the membrane’s deflection (camber) and the delayed shedding of the LEV.

The present work has demonstrated that a soft material can be used as an efficient
flapping foil energy extraction device. Further, we have revealed the capabilities of the
membrane hydrofoils to maintain their performance even at low pitching amplitudes,
θ0, in regimes where rigid hydrofoils are not efficient. At the highest pitch amplitude
tested (θ0 = 35◦), we report around 55 % power enhancement for the membrane foils.
Additionally, during operation, the membrane foils provide a gentler and delayed stall
behaviour, and their elastic properties can be adapted for tidal and fluvial settings where
seasonal variations can be expected.
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