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We present a combined experimental and theoretical study of regular dark-bright soliton arrays
in a two-component atomic Bose-Einstein condensate. We demonstrate a microwave pulse-based
winding technique which allows for a tunable number of solitary waves en route to observing their
dynamics, quantified through Fourier analysis of the density. We characterize different winding
density regimes by the observed dynamics including the decay and revival of the Fourier peaks, the
emergence of dark-antidark solitons, and disordering of the soliton array. The experimental results
are in good agreement with three-dimensional numerical computations of the underlying mean-field
theory. These observations open a window into the study of soliton crystals and the dynamics,
excitations, and lifetimes of such patterns.

Introduction. Since their first observation in water
waves [1, 2], the dynamics of solitary wave structures
and patterns has evolved into a major thrust within non-
linear science. These dispersionless, localized, coherent
structures, which can undergo collisions without chang-
ing shape, are found in a wide range of integrable and
near-integrable systems with broad applicability in op-
tics [3], atomic physics [4], plasmas [5], fluids [6] and
other fields [6, 7]. For example, in nonlinear optics, soli-
tons are considered as means for information transport
through optical fibers [3], while in the context of matter
waves, they have been argued as being relevant toward
future matter-wave interferometers [4, 8, 9].

Dilute gas Bose-Einstein condensates (BECs) [8, 9] of-
fer a highly flexible and controllable platform towards
investigating the nonlinear dynamics and interactions of
such solitary wave structures [4]. The relevant states
range from dark [10] and bright [11] solitons in one-
dimension (1D), and vortices [12] in two-dimensions, to
several more exotic structures, including vortex lines and
rings in three-dimensions (3D) [13]. In all of these set-
tings, the universal interplay between dispersion and non-
linearity is responsible for the emergence and persistence
of the relevant coherent structures [4].

In addition to the single-component wave structures
mentioned above [4, 8, 9], the experimental realiza-
tion of multi-component BECs [14, 15] has provided
a substantial additional wealth of nonlinear states, in-
cluding dark-bright (DB), dark-dark, as well as dark-
antidark vector solitons, among many others summa-
rized, e.g., in Ref. [16]. Recently, more complex soliton
compounds were experimentally realized and studied in
spinor BECs, such as three-component dark-dark-bright
and dark-bright-bright solitons [17], the generation and

FIG. 1. (a) Example of a numerical initial configuration of
the two-component elongated BEC. On the x-y plane the con-
densate phase pattern corresponding to the |2,−2〉 (|1,−1〉)
state is projected along the negative (positive) y−axis. (b)
Example absorption image of the wound configuration after a
winding time of τ = 40 ms with the |2,−2〉 (top) and |1,−1〉
(bottom) states imaged separately during time of flight.

collision of such structures [18], the creation of magnetic
solitons [19, 20], as well as the proposal of twisted vari-
ants thereof [21]. While these structures merely represent
a small fraction of recent experimental and theoretical de-
velopments, they reflect the extensive and broad interest
and timeliness of this theme.

Despite the intense research efforts directed towards
solitons and their dynamics, most of the associated ex-
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perimental BEC studies have so far concentrated on in-
dividual solitons or very small clusters (or molecules)
thereof [22] and their interactions [18]. However, over
the past few years there has been a substantial interest
towards the realization and exploration of soliton gases,
given their intriguing generalized hydrodynamic proper-
ties [23]. The first experimental evidence for the realiza-
tion of a soliton gas was obtained in hydrodynamics [24],
while recently the relevant theory for integrable systems
has been summarized in [25]. These investigations, along
with earlier efforts (namely, on light pulses in optical fiber
ring resonators [26]) and also ones in soliton turbulence
in shallow water waves [27] usher us into a new era of
soliton lattices, soliton fluids, and gases, as well as tran-
sitions between them [28].

In this letter, we present a combined experimental and
numerical study of tightly packed DB soliton arrays in
a two-component BEC. The soliton arrays generated in
our experiments are large enough to be analyzed using
spectral methods, fully tunable in the packing density
of solitons, and are sufficiently long-lived to allow us to
conduct detailed investigations of their dynamics. As a
key result, we demonstrate the existence of three distinct
dynamical regimes depending on the initial line density
of solitons which we refer to as underwound, optimally
wound, and overwound. These regimes are delineated
by their length scale in relation to the natural soliton
length scale as determined empirically from past realiza-
tions of DB solitons in this apparatus [17, 22, 29, 30]. The
underwound regime is characterized by the spontaneous
emergence and dynamic oscillation of dark-antidark soli-
tons followed by apparent period doubling of the periodic
array; the optimally wound configuration most closely
matches the natural soliton length scale allowing for a
more stable configuration which undergoes decay and
revival of the soliton array; lastly, the overwound case
pushes the limits of densely packed solitons giving way
to long wavelength noise and disordered dynamics. We
characterize the time dynamics in each regime through
Fourier analysis of the atomic density and describe the
qualitative nature of the solitonic features.

Experimental Methods. Our experimental technique
for the generation of dense DB soliton arrays is based on
a two-pulse Ramsey sequence in the presence of a small
magnetic gradient. We begin with elongated BECs of ap-
proximately 7× 105 87Rb atoms in the |F,mF 〉 = |1,−1〉
hyperfine state held in an optical trap with harmonic trap
frequencies of ω/2π = {3.06, 267, 278} Hz. In the pres-
ence of a 10 G magnetic bias field, a fast microwave pulse
is applied to coherently create an equal superposition of
atoms in the |1,−1〉 state and the |2,−2〉 state. During a
subsequent wait time, referred to as the winding time τ ,
a slight gradient in the magnitude of the 10 G bias field
along the long axis of the BEC leads to an accumulation
of a linear phase gradient between the spin components.
After the winding time, a second π/2 pulse is applied

FIG. 2. (a) Experimental Fourier spectra for a range of
winding times from τ = 10 ms to τ = 120 ms in steps of 10
ms. The k-vector of the corresponding fundamental peak k0
increases monotonically with τ . Each spectrum is averaged
over ten experimental realizations for a given winding time.
The standard deviation in the averaged spectra is shown as
a shaded region around each curve. (b) The center value
wavenumber from fits to the peaks in panel (a). The standard
error in each fit is smaller than the size of the markers. A
linear fit indicates a winding rate of 1.074(2) (µm s)−1. (c)–
(e) Absorption images of the wound configuration after τ =
20, 60 and 100 ms of winding, respectively.

which, depending on the phase between the precessing
spins and the microwave pulse, transfers atoms into the
|2,−2〉 state or back into the |1,−1〉 state. This process
produces a sinusoidal magnetization pattern which, as we
will show, then evolves under mean-field dynamics into a
soliton array.

The result of the phase winding procedure described
above is demonstrated in Fig. 1. Fig. 1(a) presents a typ-
ical theoretical initial condition used subsequently for the
simulation of the mean field dynamics, further described
in the Supplemental Material [31]. The figure demon-
strates the interpenetrating nature of the two atomic spin
components together with the initial phase winding pat-
tern projected onto the x-y plane. Fig. 1(b) shows an
experimental image for winding time τ = 40 ms. Two
separate imaging light pulses were used to acquire an ab-
sorption image of atoms in the |2,−2〉 state after 6 ms
untrapped time-of-flight and in the |1,−1〉 state after
7.5 ms. In the following, we will present only the im-
ages of the |2,−2〉 state since the |1,−1〉 state always
exhibits a complementary structure.

The spatial periodicity of the produced pattern can
be experimentally adjusted over a wide range by vary-
ing the winding time between the two microwave pulses.
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The progression of the periodicity with increasing wind-
ing time is illustrated in Fig. 2(a) in k-space, where the
Fourier spectra of the integrated cross-sections of the
|2,−2〉 state are shown. In Fig. 2(b), the position of
the fundamental peak in k-space, k0, as a function of
the winding time indicates a winding rate of 1.074(2)
µm−1s−1 for our magnetic environment. This implies
a magnetic gradient of 5.12(1) mG/cm along the long
axis of the BEC. Absorption images of the |2,−2〉 com-
ponent taken after τ = 20 ms, 60 ms and 100 ms are
depicted in Figs. 2(c)-(e). In the experiment, we find
that regular winding patterns can be produced for wind-
ing times up to τ ≈ 120 ms, corresponding to k0/2π =
0.1291(2) µm−1, before the produced patterns become
irregular.

Numerical Method . To monitor the dynamics of the
DB soliton lattices we utilize the following system of cou-
pled 3D Gross-Pitaevskii equations [8, 32]:

i~∂tΨj =

(
− ~2

2m
∇2 + V (r) +

2∑
k=1

gjk|Ψk|2
)

Ψj . (1)

Here, gjk = 4π~2ajkNj/m with j = 1, 2 indexing the
relevant spin states, Nj = 3.5× 105 is the particle num-
ber per component, ajk are the 3D intra- (j = k) and
inter-component (j 6= k) scattering lengths, and m is the
mass of a 87Rb atom [31]. Additionally, the trapping po-
tential V (r) =

∑
ξ=x,y,zmω

2
ξξ

2/2 is characterized by the
aforementioned experimental trapping frequencies whose
aspect ratio leads to a cigar-shaped geometry.

To numerically initialize the dynamics, we first obtain
the ground state of the interacting time-independent sys-
tem of Eqs. (1). Then, we imprint on top of them the
desired complementary configuration between the two
components, with wave number k0 and a phase jump of
π between adjacent domains, see also Fig. S1 and [31].
Subsequently, the resulting waveform is evolved in time.

Time Evolution. In the following, we focus on the time
evolution of the soliton arrays after the end of the wind-
ing procedure. To establish a quantifiable measure of the
soliton array dynamics with which to compare theory
and experiment, we first compute the Fourier spectrum,
as was done for Fig. 2(a). We then calculate the spectral
power within one linewidth of the first (k0) and second
harmonic peaks (k1) as determined from the initial state
after the winding procedure [31]. The strength of these
peaks provides a quantifiable measure of the regularity of
the soliton array as well as the pattern contrast. The ob-
served time evolution depends on the initial periodicity of
the winding, leading to qualitatively different dynamical
features for each winding regime.

First, we consider the dynamics near the optimally
wound regime with a winding time τ = 60 ms (cor-
responding to k0/2π = 0.07 µm−1) in Fig. 3, which
showcases the most prototypical behavior of the system.
In this case, a regularly spaced array of approximately

FIG. 3. (a) Evolution of the spectral power of the first (k0)
and second harmonic peaks (k1) for τ = 60 ms. Each experi-
mental point is an average over ten independent realizations
with error bars representing one standard deviation. The 1D
Fourier transforms are taken after integrating each absorption
image along the transverse direction. (b) Experimental (blue
line) and theoretical (orange line) Fourier spectra at select
times. The shading around the experimental curve represents
one standard deviation over ten realizations. The inset de-
picts a single-shot experimental image at each time.

twenty DB solitons is formed for our experimental pa-
rameters. Fig. 3(a) illustrates the evolution of the spec-
tral power of the fundamental Fourier peak centered at
k = k0 and the second harmonic peak centered at k = k1.
Fig. 3(b) presents the full spectrum averaged over ten
independent experimental realizations for each time in-
stant accompanied in each case by a relevant single-shot
absorption image as an inset. For the first t = 20 ms, the
initial periodic structure robustly persists with no visible
dynamics as captured by the nearly constant behavior of
k0 shown in Fig. 3(a). Subsequently, a “sharpening” of
the features is observed while the overall pattern period-
icity remains unchanged. In the Fourier spectrum, this
sharpening is indicated by the emergence of low ampli-
tude higher harmonics, such as k1 in Fig. 3(a), while their
peak positions are observed to remain fixed throughout
the evolution. We attribute the onset of such dynamics
to the fact that the initially generated winding pattern
differs from the exact shape of a DB soliton lattice. Also,
the intra- and intercomponent scattering lengths in the
system are all very similar, but not exactly equal which
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(see [31]) contributes to weakly miscible dynamics.
A peculiarity during the subsequent evolution is the

emergence of a low-contrast regime which is most promi-
nent in images taken within a time frame between t =
40 ms and t = 60 ms. Here, the pattern contrast in the
experimental images has nearly or completely vanished.
This is reflected in the Fourier spectrum in both theory
and experiment by a strong decline in the amplitude of
k0, see Fig. 3(b) around t = 50 ms. This decrease occurs
faster in the experiment as compared to the theoretical
prediction, which we attribute to the presence of a finite
thermal fraction as well as the slight deviation between
numerical and experimental initial conditions.

Remarkably, this evolution regime is followed by a re-
vival of the periodic pattern with the same periodicity
as the original pattern, shown in Fig. 3 around 70 ms.
The fact that the system recovers its original periodic
structure indicates a strong dynamical persistence of the
soliton array and constitutes a key feature of our experi-
mental and theoretical results. Eventually these dynam-
ics lead to the loss of regularity of the pattern inside each
BEC, which becomes pronounced for evolution times ex-
ceeding 80 ms.

The next case to be considered concerns the dynami-
cal evolution of soliton arrays in the underwound regime
where the characteristic size of a typical DB soliton is no-
ticeably smaller than the length scale of the initial wind-
ing pattern. This case is realized e.g. with a winding
time of τ = 40 ms, resulting in k0/2π = 0.045 µm−1.
This regime leads to the spontaneous emergence of dark-
antidark solitons [22, 30, 33], instead of DB solitons,
which are characterized by the bright solitonic feature
existing on top of a finite background. Dark-antidark
solitons appear as a qualitatively new feature in our ex-
periment (Fig. 4), which is also verified upon numerical
integration of the 3D mean-field Eqs. (1) [31].

Monitoring the spectral power of the k0 peak in
Fig. 4(a) for times up to t = 100 ms reveals that the
k0 peak diminishes as the k1 peak grows, in congruence
with the formation of the dark-antidark soliton struc-
tures from the broader initial configuration. The persis-
tence of the initial winding pattern is demonstrated in
Fig. 4(a) by the high spectral power of the k0 peak for
early times. The onset of antidark formation is captured
by the appearance of right-shifted peak deformations in
the integrated cross-section presented, e.g., in Fig. 4(c)
at t = 34 ms. The antidark soliton peaks move from the
right to the left within each domain at later times, see
Fig. 4(d) taken at t = 62 ms.

The antidark solitons, consistently appearing in each
experimental realization, emerge at the edges of each
bright domain. Our numerical studies confirm the emer-
gence of an array of dark-antidark solitons which, how-
ever, form at the center of the bright domains and do not
experience drifts from right to left. We interpret this dis-
crepancy as the result of a small, yet nonzero amount of

FIG. 4. (a) Time evolution of the spectral power of the
significantly underwound case (τ = 40 ms). The experimen-
tal points are obtained after averaging the spectra of ten in-
dividual realizations of the experiment for each time step.
(b)-(g) Stages in the evolution in the significantly underwound
case: Single absorption images and their vertically integrated
cross sections taken after evolution times of t = (2, 34, 62, 76,
78, and 80) ms, respectively.

counterflow in the system produced by the initial winding
procedure, which is not accounted for in the numerical
simulations.

At t ≈ 76 ms, a low-contrast regime similar to the one
described in the context of the τ = 60 ms case is ob-
served in many iterations of the experiment; see, e.g.,
Fig. 4(e). The pattern contrast then partially recov-
ers. Two peculiar observations in some images during
the recovery and subsequent evolution include (i) the
formation of peak/notch/peak features, reminiscent of
dark-dark solitons [34, 35], corresponding to each origi-
nal stripe (Fig. 4(f)), and (ii) the observation of images
with an apparently doubled number of stripes (Fig. 4(g))
compared with the initial configuration (Fig. 4(b)). Cor-
respondingly, in the Fourier spectrum the second har-
monic peak k1 surpasses the near-vanishing k0 peak in
this regime, as shown in Fig. 4(a) around t = 80 ms, con-
sistent with the observation of an apparent “soliton dou-
bling”. The mean-field theory exhibits similar features
identifying these observations of shape deformations of
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the individual solitons. While the observation of the
peak/notch/peak features is infrequent, the observation
of the “doubled” pattern as in Fig. 4(g) is consistently
reproduced.

Lastly, we consider an overwound configuration which
features densely packed solitons. Fig. 2(e) shows an im-
age of the structures generated with a winding time of
τ = 100 ms, leading to an initial winding characterized
by k0 = 0.11 µm−1. The periodicity of this configuration
has a shorter length scale than the typical soliton length
scale in this system, which leads to qualitatively differ-
ent dynamics than the former cases. Here, the periodic
structure persists for t ≈ 20 ms, giving way to disordered
solitonic dynamics at longer time scales. The evolution
is characterized in the Fourier spectrum by a gradual de-
crease in the amplitude of the peak at k0 and a growth
of broad noise at lower k values. The pattern of solitons
remains irregular for the remainder of the probed time
evolution extending out to t = 100 ms. Absorption im-
ages and detailed Fourier analysis of this tightly wound
case are available in the Supplemental Material [31].

Conclusions. Our work reveals a surprising dynam-
ical richness in the evolution of dense DB soliton ar-
rays demonstrated through novel experimental realiza-
tions and numerical simulations. Depending on the den-
sity of the initial soliton patterns, the observed dynamics
include: (i) the emergence of a low-contrast stage fol-
lowed by a pronounced revival of the regular pattern, in-
dicating the coherent evolution of the soliton array, (ii) an
emergence of dark-antidark solitons in the underwound
configuration (iii) the persistence of the soliton patterns
for times up to and exceeding 100 ms and, finally, (iv)
the observation of strong shape deformations of the soli-
tary waves upon sufficiently long time evolution (includ-
ing a near-splitting into two lobes). These features have
been directly observed in our experimental images, and
are also reflected in the Fourier analysis (which averages
over numerous realizations) of the soliton arrays. The
relevant features are qualitatively reproduced in our fully
3D numerical simulations.

We expect this work to provide a stepping stone to-
wards a deeper exploration of multi-component soliton
arrays and their properties. By making use of different
atomic species with tunable interactions, together with
analysis of lattice vibrational modes, the methods pre-
sented in this work could be extended to investigate the
effect of crystal rigidity on soliton lattices. In particular,
this may pave the way towards performing vibrational
spectroscopy and extracting the relevant structure fac-
tors, and exploring the excitation spectra of soliton lat-
tices. From a broader perspective, dense soliton arrays
in BECs have the potential to provide insights into the
strongly interacting regime of multiple coherent struc-
tures, affording an alternative perspective on superfluid
crystal dynamics which is complementary to investiga-
tions of supersolids [36] in other contexts.
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[2] D. J. Korteweg and G. De Vries, The London, Edinburgh,

and Dublin Philosophical Magazine and Journal of Sci-
ence 39, 422 (1895).

[3] Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From
Fibers to Photonic Crystals (Academic Press, 2003) pp.
1–540.

[4] P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-
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Supplemental Material: “Dense dark-bright soliton arrays in a two-component
Bose-Einstein condensate”

EXPERIMENT CHARACTERIZATION

In this section, we provide a more complete description
of the winding process described in the main text. We
begin with an elongated BEC entirely in the |1,−1〉 state,
which we will refer to as spin up, with a magnetic bias
field of 10 G in the vertical direction perpendicular to the
long axis of the condensate. Here, it is helpful to consider
a collection of Bloch spheres, one for each point along the
long axis, as schematically illustrated in Fig. S1, with all
Bloch vectors pointing up and in phase.

A near-resonant microwave pulse is tuned to coherently
transfer half of the atomic population to the |2,−2〉 state,
which we will refer to as spin down, with a pulse time of
approximately 0.1 ms. The pulse produces a uniform
spin mixture across the condensate. Equivalently, this
corresponds to a π/2 rotation of the Bloch vectors, leav-
ing them in phase along the equator of the Bloch sphere.
Hence, we refer to this pulse protocol as a π/2 pulse.
The superposition state, shown in Fig. S1 on the second
row, is then allowed to evolve in the optical trap during a
variable amount of time, referred to as the winding time
τ .

During the winding time, each of the Bloch vectors
precess at a different rate and adjacent Bloch vectors
will acquire a phase difference proportional to their en-
ergy difference as δφ = (δU/~)t. In the single parti-
cle limit, this energy difference is given by the differen-
tial Zeeman splitting induced by a small gradient of the
magnetic field strength along the long axis of the BEC.
We take the energy to be locally linear in the magnetic
field for small changes giving δφ =

(
1
~
∂U
∂B

)
B=B0

∆B t,

where the variation in the energy between the |1,−1〉
and |2,−2〉 states of 87Rb at B0 = 10 G is 2.0972h
MHz/G using the Breit-Rabi formalism [37]. The change
in magnetic field between two points in the condensate
can then be approximated by assuming that the gradient
is linear along the long axis of the condensate, leading to
δφ =

(
1
~
∂U
∂B

)
B=B0

(
∂B
∂x

)
∆x t.

Finally, a second π/2 pulse is applied which continues
to rotate the Bloch vector about the same axis as the ini-
tial pulse. The last row of Fig. S1 shows how, depending
on the acquired phase, the Bloch vectors will be unaf-
fected, rotated back to the up state, rotated to the down
state, or someplace in between along a sinusoidal pattern.
When the phase difference between two points in the con-
densate is 2π, both of those regions will be rotated in the
same way by the final π/2 pulse and thus represent a full
wavelength of the final magnetization pattern – choosing
∆x = λ, we identify the winding wavenumber

k0(t) =
2π

λ
=

(
1

~
∂U

∂B

)
B=B0

(
∂B

∂x

)
t. (S1)

FIG. S1. Schematic of the winding process where position
in the BEC is represented on the horizontal axis and time
progresses downward. A microwave pulse rotates the Bloch
vector into the equatorial plane which then precesses at an in-
creasing rate from left to right due to a magnetic field gradient
during the winding time, shown in grey. A second microwave
pulse then rotates the Bloch vectors again depending on their
orientation at the end of the winding time.

The slope extracted from Fig. 2(b) of the main text is the
winding rate in Eq. (S1) from which the magnetic field
gradient is obtained.

As each spin domain of the prepared magnetization
pattern has undergone an additional phase rotation on
the Bloch sphere relative to the adjacent domains, we
would expect the condensate wave function to also ac-
quire phase gradients of π across each winding. In the
condensate picture, the effect of the small magnetic gra-
dient during the winding time can be understood as a
force which accelerates the spin-up and spin-down com-
ponents in opposite directions. This acceleration results
in a relative velocity corresponding to the phase differ-
ence in the condensate wave function between the two
spin components. This phase difference then emerges as
phase windings after the final π/2 pulse remixes the two
spin components, which then localize as phase jumps un-
der mean field interactions to produce nearly stationary
dark-bright solitons.

ANALYSIS OF THE FOURIER TRANSFORM OF
THE DENSITY

The primary quantitative measure of the periodicity of
the DB soliton trains presented in this work is the spec-
tral power obtained from the peaks in the Fourier trans-
form of the density. From the single component absorp-
tion images, we see a periodic modulation of the density
along the long axis of the condensate. We integrate the
transverse direction to obtain a 1D cross section. During
all experimental runs, some thermal fraction of atoms
builds up due to various sources of heating – the ther-
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mal fraction is extracted from the 1D cross section by
fitting the atomic density to a Thomas-Fermi profile [9],
fitting the portion of the cloud remaining outside of the
Thomas-Fermi radius to a Gaussian, and then subtract-
ing that Gaussian profile from the whole cross section.
Each resulting cross section was checked for spurious fits
until an adequately flat zero density background was ob-
tained. Each cross section is then normalized to a fixed
value before applying the fast Fourier transform (FFT) to
obtain the spectral characteristics of the atomic density
in k-space.

The Fourier spectra of the initial winding configura-
tions are shown in Fig. 2(a) of the main text, showing
a dominant peak corresponding to the periodicity of the
winding and a smaller second harmonic feature. We ob-
serve that throughout the experimental observations of
the subsequent time evolution, the central positions of
the peaks in the FFT data (the wavenumbers ki) do
not significantly change, i.e., these values are set during
the winding procedure, and the time evolution is char-
acterized by the change in strength of the FFT peaks
and/or development of broadband noise. The regular-
ity and contrast of the wound configuration at particular
length scales can be quantified by the relative strength
of the spectral power over fixed k-space ranges.

The spectral power is obtained in a systematic man-
ner by fitting the fundamental spectral peak of the initial
winding configuration with a Gaussian curve to obtain a
line width σ in k-space. Then, the line width is used as
limits of integration for the spectral power for all subse-
quent time slices, thus characterizing the spectral power
of the periodic configuration within one σ of the central
peak value k0. This method allows one to compare the
relative spectral power between k0 − σ and k0 + σ for
both theory and experiment in a consistent way.

MEAN-FIELD IMPLEMENTATION OF THE
SOLITON ARRAYS

To numerically study the nonequilibrium dynamics of
the dense DB soliton arrays we employ the dimensionless
version of the 3D coupled Gross-Pitaevskii equations [17,
22] provided in the main text, see also Eq. (1). As such,
the underlying particle (N1 = N2 = N/2 = 3.5 × 105)
and mass (m1 = m2 = m) balanced 87Rb mixture is
described by

i∂tΦ1(t) = −1

2
∇2Φ1(t) + V (r)Φ1(t)

+ (4πa1,1N1|Φ1(t)|2 + 4πa1,2N2|Φ2(t)|2)Φ1(t),

i∂tΦ2(t) = −1

2
∇2Φ2(t) + V (r)Φ2(t)

+ (4πa2,1N1|Φ1(t)|2 + 4πa2,2N2|Φ2(t)|2)Φ2(t),

(S2)

Here, the Laplacian operator is ∇2 ≡ ∂2x + ∂2y + ∂2z ,
whilst the employed 3D scattering lengths for 87Rb

are a1,1 = 100.40(10), a2,2 = 98.98(4), and a1,2 =
98.98(4) in units of the Bohr radius a0 [38]. State 1 is
|F,mF 〉 = |1,−1〉, state 2 is |2,−2〉, and m is the mass
of 87Rb. The dimensionless 3D parabolic external poten-

tial reads V (r) = 1
2ω

2
x

(
x2 + (ωy/ωx)

2
y2 + (ωz/ωx)

2
z2
)

with r = (x, y, z). Following the experimental implemen-
tation the axial and transverse trapping frequencies are
(ωx, ωy, ωz) = 2π× (3.06, 267, 278)Hz justifying a highly-
elongated (cigar-shaped) geometry possessing an aspect
ratio ωx/ωy ≈ ωx/ωz ≈ 0.01.

Moreover, the rescaling used for the spatial and tem-
poral coordinates is x′ = a−1ho x, y′ = a−1ho y, z′ = a−1ho z,

with aho =
√

~/mωx denoting the harmonic oscillator
length along the longitudinal x-direction, and t′ = ωxt,
respectively. Accordingly, the wave function of each hy-
perfine state (j = 1, 2) is rescaled as Φj(x

′, y′, z′) =√
Nj/a3hoΨj(x, y, z) and the Laplacian is rescaled as
∇2
r′ = a2ho∇2.

To emulate the experimental preparation we first ob-
tain the ground state of the fully interacting 3D binary
setting utilizing a fixed point iterative scheme of the New-
ton type [39]. Since the interactions lie close to the mis-
cibility/immiscibility threshold (a21,2 ≈ a1,1a2,2) [40, 41]
but slightly on the miscible side, the ground state wave
functions of the individual components are spatially mis-
cible while the total density has a Thomas-Fermi profile.
As a subsequent step, we craft on top of the aforemen-
tioned ground states the following sinusoidal ansatz (see
Fig. 1(a) in the main text)

Φ̃1(x, y, z) =
√

cos2 (kx)Φ1 (x, y, z; 0) eiπ cos(kx/2), (S3)

Φ̃2(x, y, z) =

√
sin2 (kx)Φ2 (x, y, z; 0) eiπ cos(π/4+kx/2),

(S4)

where Φj(x, y, z; 0) is the ground state of each compo-
nent at t = 0. Notice that these crafted wave func-
tions of the two components along the longitudinal x-
direction are complementary with respect to one another.
An almost perfect total Thomas-Fermi density profile oc-
curs in the decoupled case with weak spatial undula-
tions appearing for increasing (principal) wavenumbers
k = k0/(2π) illustrated in Figs. 2(a) and 2(b) of the
main text. Finite intercomponent interactions for a fixed
k0 lead to more pronounced spatial undulations. Subse-
quently, we let the above system dynamically evolve for
times up to t = 100ms. The spatiotemporal evolution
of the two-component bosonic system is captured using
a fourth-order (in time) Runge-Kutta method character-
ized by temporal and spatial discretization dt = 10−4 and
dx = 0.03, dy = dz = 0.05 respectively. Also, a second
order finite difference scheme is employed to resolve the
spatial derivatives.
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FIG. S2. Numerically calculated density snapshots for (a1)–(a6) τ = 40ms, (b1)–(b6) τ = 60ms, (c1)–(c6) τ = 100ms windings.
In all cases, only one component is visualized since the second is complementary to it. Insets depict the integrated along the
y − −z plane density profiles; notice the different scale in each inset, selected for better visualization. Progressively antidark
structures develop for τ = 40ms; see e.g. the dynamics close to the center. The initial soliton array at τ = 60 ms loses its
contrast around t = 50ms and a recurrence of the pattern takes place at later times. In the τ = 100ms scenario the coherence
of the initial DB soliton array is lost in the course of the evolution due to interactions.

FURTHER DYNAMICAL FEATURES OF THE
SOLITON ARRAYS

Characteristic density profiles during the nonequi-
librium dynamics of the 3D system of coupled GPEs
[Eq. (S2)] are presented in Fig. S2 for the three wind-
ing protocols discussed in the main text, namely for τ =
40 ms, 60 ms, and 100 ms. Particularly, Fig. S2(a1)-
(a6), show the underwound configuration for τ = 40 ms.
The selected time instants correspond to the dynami-
cal region where k0 possesses a high [Fig. S2(a1)], mod-
erate [Fig. S2(a2)], and lower [Fig. S2(a3)] intensity as
captured by the spectral power illustrated in Fig. 4(a)
of the main text. In this time interval an ordered soli-
ton array is observed persisting also for later times, see
Fig. S2(a4) and the integrated density profile depicted
as an inset. Recall that a similar dynamical pattern is
seen in the experimental cross section e.g. of Fig. 4(b).
Such an ordered pattern remains robust until the sub-
stantial descent of k0’s intensity occurring approximately
for t > 60 ms. The descent of k0’s intensity signifies the
spontaneous emergence of dark-antidark soliton arrays,
see Fig. S2(a5), (a6) and their relevant insets especially
around the trap center.

Turning to the optimally wound scenario, τ = 60 ms,

it is found that the regularity of the soliton array is
slightly distorted sooner than in the τ = 40 ms case,
compare Fig. S2(a1)-(a3) with Fig. S2(b1)-(b3). A lower
contrast region occurs at later evolution times [see e.g.
Fig. S2(b4)] followed by a recurrence tendency towards
the original array where solitons are equally spaced and
regularly ordered [Fig. S2(b5), (b6)] in accordance with
the experimental observations.

Finally, Fig. S2(c1)-(c6) demonstrates the dynamical
evolution of an overwound configuration, prepared in the
experiment with winding time τ = 100 ms. Notice that a
regular highly dense soliton array occurs at initial times
[Fig. S2(c1)] but this regularity is soon lost as it is shown
e.g for t = 30 ms [Fig. S2(c2)] and t = 40 ms [Fig. S2(c3)].
Progressively, even more irregular soliton patterns are ev-
idenced, persisting in such a disordered arrangement for
evolution times up to t = 100 ms [see Fig. S2(c4)-(c6) and
the corresponding integrated density profiles provided as
insets]. Fig. S3 shows detailed results for the overwound
case discussed above and described in the main text.
Panels of Fig. S3(a)-(d) demonstrate the FFT results for
the time progression as the ordered array decays into a
disordered collection of solitons at times t = 0 ms, 5 ms,
8 ms, and 10 ms. We observe that as the primary spec-
tral peak k0 decays, broadband noise develops for k < k0
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FIG. S3. Time evolution after 100 ms winding. (a)-(d)
Fourier transform of the density for evolution times t = 0 ms,
5 ms, 8 ms, and 10 ms, respectively, with a representative
absorption image inset for each. Experimental data averaged
over ten realizations is drawn in blue with shading represent-
ing one standard deviation. The Fourier transforms of the
corresponding theory realizations are shown in orange.

indicating disordered dynamics of a longer length scale
than the initially formed solitons. For each time segment
an inset is provided with an example of an experimen-
tal absorption image to identify the qualitative nature of
the soliton dynamics. The character of the experimental
observations shown in Fig. S3 persists through the rest
of the experimentally probed time, up to t = 100 ms,
where we observe that the solitons do not decay but also
do not remain in an ordered array. The theory curves are
illustrated for comparison – while the aforementioned 3D
GPE predictions capture the same qualitative behavior,
the decay into the disordered array occurs at later time
intervals.
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