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EFFICIENT MANIPULATION OF BOSE-EINSTEIN CONDENSATES IN A

DOUBLE-WELL POTENTIAL

J. ADRIAZOLA, R.H. GOODMAN, P.G. KEVREKIDIS

Abstract. We pose the problem of transferring a Bose-Einstein Condensate (BEC) from one
side of a double-well potential to the other as an optimal control problem for determining the time-
dependent form of the potential. We derive a reduced dynamical system using a Galerkin truncation
onto a finite set of eigenfunctions and find that including three modes suffices to effectively control
the full dynamics, described by the Gross-Pitaevskii model of BEC. The functional form of the
control is reduced to finite dimensions by using a Galerkin-type method called the chopped random
basis (CRAB) method, which is then optimized by a genetic algorithm called differential evolution
(DE). Finally, we discuss the the extent to which the reduction-based optimal control strategy can
be refined by means of including more modes in the Galerkin reduction.

1. Introduction

The dynamics of solitary waves in dispersive media with external potentials is a topic of wide-
spread scientific interest, as it arises in many areas of application. For instance, in Bose Ein-
stein Condensates (BEC) of, e.g., alkali gases, external potentials may be created using a variety
of physical mechanisms including optical and magnetic fields, and may consist of one or a few
wells or a periodic array, and may effectively confine the BEC to one, two, or three space dimen-
sions [19, 30, 32, 33]. Another appealing experimental setting is the nonlinear propagation of light
through photonic crytals, and in the quasi-discrete realm of optical waveguides [16, 24]. Here, a
spatially-dependent index of refraction induces an effective potential [25].

In both these applications, the simplest potential enabling bifurcation phenomena and nontrivial
dynamics is arguably the double well potential. It has been studied intensely in the atomic realm,
following the hallmark theoretical work of [34]. This predicted Josephson oscillations between the
wells and quantum self-trapping that were subsequently realized experimentally in [2], as well as a
dynamical symmetry-breaking bifurcation that was later observed in [44]. More recent experiments
have added damping and driving, which may present novel phenomena including stochastic reso-
nance [37]. Relevant double-well experiments have been conducted in the optical setting as well.
The work of [7] considered the double-well potential in the context of twin-core self-guided laser
beams in Kerr media, while [20] probed two-well dynamics using photorefractive crystals. In this
latter setting, additional phenomena were demonstrated in a triple-well potential [17].

Naturally, this large volume of experimental developments and control has motivated a wide
range of theoretical explorations in numerous further directions. The relevant list is too long to do it
proper justice, but we mention some of related studies. Some more mathematical examples include
the analysis of the double-well bifurcation structure [3, 14], the low-dimensional representation of
the associated dynamical problem (and its fidelity) [23,26], and the effect of changing the nonlinear
exponent on the bifurcation [22,35]. Among the many more physical examples are the interactions
of multiple dispersive (e.g., atomic) species [11,40,42], incorporating beyond-mean-field (i.e., many-
body) effects [27,31], and the effect of larger spatial dimension (and possibly four wells) [43], among
others.

In this work, we aim to apply the deep understanding of the existence, stability and nonlinear
dynamics to the context of optimal control of BEC [5, 21]. The latter methodology has long been
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recognized as a versatile tool for engineering on-demand quantum states of interest. At the early
stages, the framework of magnetic microtraps controllable by external parameters including radio-
frequency fields or/and wire currents was used to enable the preparation of desired states [13]
(see also the detailed analysis of the relevant methodologies and their numerical Matlab-based
implementation in [12, 15]). Subsequently, such ideas have been applied to fully three-dimensional
settings, e.g., in the work of [28] and have been used recently by a subset of the present authors
in order to re-orient the density distribution of an atomic BEC and to alter the topology of its
support [1].

Here, more concretely, we intend to show how the low-dimensional representation available in
the context of double (and more generally few [9, 43]) well potentials can be used as a basis for
performing optimal control analysis and for achieving desired end quantum states, both in the
low-dimensional setting, but also in the full mean-field model of the Gross-Pitaevskii (nonlinear
Schrödinger-type) partial differential equation (PDE) [32,33]. Along the way, we learn the following
lesson, which we find interesting and important. The two-mode expansion is prevalent in the study
of the double-well system, and widely acknowledged to describe the dynamics, both qualitatively
and even quantitatively. By contrast, we find that in the context of optimal control, we must
include (at least) a third mode in the expansion to achieve useful agreement. We believe that such
lessons may prove useful for other practitioners in related contexts.

Our presentation is structured as follows. In section 2, we present the physical and mathematical
setup and its reduced (two- and three-mode) representation. Subsequently, in section 3, we present
the proposed optimal control strategy. In section 4, we display numerical results. Finally, section
5 provides a summary of our conclusions, as well as a number of directions for future study.

2. Derivation of reduced model systems

The approach to optimization we propose here is to apply optimal control to a finite-dimensional
model system, whose derivation we outline in this section. In particular, we use Galerkin truncation
to derive a low-dimensional Hamiltonian system whose dynamics captures the essence of the full
dynamics. The latter, in turn, is described by a Gross-Pitaevskii equation (GPE) in one spatial
dimension. This system may be derived from a three-dimensional model in the presence of an
anisotropic potential that squeezes the condensate into an effectively one-dimensional arrangement;
see details and nondimensionalization, e.g., in [19]. The GPE model is a nonlinear Schrödinger
equation with a spatial potential

(2.1) i∂tψ = L (x,w(t))ψ +N (ψ) = −1

2
∂2
xψ + V (x,w(t))ψ + |ψ| 2ψ,

where w(t) is a time-dependent vector of C0 control functions. In addition to conserving a Hamil-
tonian energy, this system conserves the mass

(2.2) M =

∫ ∞
−∞
|ψ| 2dx,

which in the BEC context is interpreted as the total number of atoms in the condensate.
The potential V is chosen as the superposition of a quadratic confining potential, usually imple-

mented via magnetic fields [32, 33], and a thin, tall barrier at the center, typically induced by an
optical beam [44]. Added together, these form a prototypical double-well potential; see, also, [38].
In particular, the potential takes the form

(2.3) V =
1

2
u(t)x2 + v(t)δ(x),
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where the first term models the magnetic confinement and the second term models the localized
repulsive barrier at the center, as we v(t) > 0. The time-dependent parameter vector is thus given
by w(t) = (u(t), v(t))T .

Let Φw =
{
ϕn(x;w) ∈ L2(R) | n = 0, 1, . . .

}
be the set of normalized eigenfunctions of the linear

Schrödinger eigenvalue problem

(2.4) L(x,w)ϕn = Enϕn,

for a fixed parameter vector w. Because Φw is complete in L2(R), we may represent the solution
to Eq. (2.1) at time t by the infinite series

ψ(x, t) =

∞∑
n=0

cn(t)ϕn(x;w(t)).

Plugging this representation into Eq. (2.1), and projecting both sides of the equation onto ϕn—in
the L2(C) sense—yields an evolution equation for cn(t). Together, the evolution of the infinite
vector c = (c0(t), c1(t), . . .) of complex amplitudes is then equivalent to the evolution of ψ under
GPE.

To derive an approximate reduced system, we consider the truncated series superposition of
instantaneous eigenfunctions

(2.5) ψGal
N+1 :=

N∑
n=0

cn(t)ϕn(x;w(t))

for some fixed value of N <∞. Ignoring any truncation error due to the terms in the omitted tail
of the series yields the system of interest. Such a truncation has been rigorously justified in certain
very simple cases, e.g. [10,26], but the method is commonly applied without rigorous justification.

2.1. Two-Mode Expansion. By setting N = 1 in Expansion (2.5), we find the following two-
mode Hamiltonian system [38]:

iċ0 =
∂H
∂c̄0

= αc0 + γ0|c0|2c0 + γ2

(
c2

1c̄0 + 2c0|c1|2
)
,

iċ1 =
∂H
∂c̄1

= βc1 + γ1|c1|2c1 + γ2

(
c2

0c̄1 + 2c1|c0|2
)
,

(2.6)

with instantaneous projection coefficients given by

α = 〈Lϕ0, ϕ0〉, β = 〈Lϕ1, ϕ1〉, γ0 = ‖ϕ0‖ 4, γ1 = ‖ϕ1‖ 4, γ2 =
〈
ϕ2

0, ϕ
2
1

〉
.(2.7)

Its Hamiltonian reads:

(2.8) H = α|c0|2 + β|c1|2 +
γ0

2
|c0|4 +

γ1

2
|c1|4 + γ2

(
<
{
c2

0c̄
2
1

}
+ 2|c0|2|c1|2

)
.

This expansion holds under the general assumption that V (x,w(t)) = V (−x,w(t)), i.e., that the
potential is even. This system conserves a discrete form of the mass defined in Eq. (2.2),

(2.9) Md(t) = |c0(t)| 2 + |c1(t)| 2.

This system has stationary solutions of the form (c0(t), c1(t)) = (ρ0, ρ1)e−iΩt. In particular, it
has a solution corresponding to the nonlinear continuation of the ground state with ρ1 = 0 and
Ω = α + γ0ρ

2
0, and a second solution corresponding to the nonlinear continuation of the excited

state, with ρ0 = 0 and Ω = β + γ1ρ
2
1. In the absence of a barrier, i.e., for v = 0, and total mass

Md = 1, these are the only such states, and both are linearly stable. In the presence of a barrier,
however, the excited state can become unstable in a symmetry-breaking pitchfork bifurcation.
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We may take advantage of the conservation law of Eq. (2.9) to reduce the system from two
degrees of freedom to one as follows, which provides a convenient visualization of the the dynamics
and bifurcation. Consider the canonical transformation

(2.10) c0 = Aeiθ, c1 = (q + ip)eiθ.

We reduce the number of degrees of freedom from two to one using the conserved mass (2.9) which
now reads A2 = Md − q2 − p2. The Hamiltonian in these coordinates is given by

H =
γ0M

2
d

2
+ αMd + q2 (β − α+Md (3γ2 − γ0)) + p2 (β − α+Md (γ2 − γ0))

+
(γ0

2
+
γ1

2
− γ2

)
p4 + (γ0 + γ1 − 4γ2) p2q2 +

(γ0

2
+
γ1

2
− 3γ2

)
q4.(2.11)

We show the phase portraits associated with Hamiltonian (2.11) for values of v = 0 and v = 10
with fixed Md = 1 with u = 1 in the first column of Figure 2.1. In the reduced system, the
ground state standing wave becomes a fixed point at the origin, and the excited state standing
wave becomes the boundary circle p2 + q2 = 1. For v = 10, two new asymmetric states have
emerged from the odd solution and appear as fixed points on the q-axis. The right column shows
the standing waves constructed from the Galerkin ansatz, including the initial and desired states
of the control problem ψ0 and ψd

For v = 0, the double-well structure is absent (i.e., the setting is one of a parabolic trap with
equidistant linear eigenvalues), hence the two-mode reduction is not expected to provide an ad-
equate representation of the dynamics (except for very low masses Md). Of course, to find the
coefficients c0 and c1, we back substitute using the above canonical transformations through

(2.12) c0 =
√
Md − q2 − p2eiθ, c1 = (q + ip)eiθ,

where θ ∈ [0, 2π] is arbitrary by the phase invariance of the Hamiltonian (2.11). Without loss of
generality, we choose θ = 0 so that ψGal

2 , given by Equation (2.5), is real.
Hereafter, we assume, for a fixed barrier height of v = 10, that the value of Md is chosen such

that the stable fixed points, for q 6= 0, are asymmetric states, as is shown in the bottom panels
of Figure 2.1. That is, we operate well within the symmetry-broken regime of the double-well
potential.

The phase space shown in (the bottom panels of) Figure 2.1 makes clear the goal of our optimal
control problem: to find functions u(t) and v(t), with fixed and identical initial and terminal
conditions, that drive the system from one asymmetric steady state ψ0(x) to the other one ψd(x).
From a physical perspective, our aim is to drive atoms from a state in which most reside in one well,
into one which most reside in the other, using the experimentally-developed ability to temporally
drive double-well potentials [37] and more specifically magnetic and optical confining beams [13,
32,33]. This control problem is mathematically formulated in Section 3.

Numerical validation. Before describing the optimal control problem in detail, we numerically test
the ability of the two-mode system (2.6) to approximate the dynamics of the GPE (2.1) with
appropriate initial conditions. We consider the evolution of the initial condition ψ(x, 0) = ϕ0(x) as
shown in Figure 2.1 subject to the GPE with imposed controls

(2.13) utrial(t) = 1 + 2 sin

(
πt

T

)
and vtrial(t) = 10 cos4

(
πt

T

)
over the time interval t ∈ [0, T ], with T = 2. We have proposed these trial controls based on ad hoc
reasoning, using on the following partial intuition: before performing an optimization, we suspect
that an optimal potential would allow the barrier at the origin to lower so that the initial mass on
the one well can be transferred significantly to the other well, followed by a raising of the barrier
anew in order to localize the wavefunction into the desired well of the potential. The choices in the
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Figure 2.1. Left panels: the phase space of system (2.11) for v = 0 (top) and
v = 10 (bottom), with the ground state marked with a black star, showing that two
fixed points have bifurcated from the bounding circle as v was raised, now sitting at
approximately (q, p) = (±0.7550, 0). Right panels, same parameter values, show in
black the ground state standing wave and in red/blue the odd-symmetric standing
waves (top) and the symmetry broken standing waves ψ0 and ψd (bottom).

modulation of the parabolic trap, the strength of the localized barrier, and the length of time in
simulation were all chosen arbitrarily in this dynamical example.

It does not escape us that in physical settings involving quasi-1d double wells in atomic BECs,
the width parameter u is constrained to be u(t) � 1 for the quasi-1d reduction to hold. We
have considered such scenarios as well, finding qualitatively similar results, as regards the optimal
control framework discussed later on in Section 3 within the Galerkin truncation, although over
considerably longer time scales.

We numerically integrate the two-mode system (2.6) using Matlab’s ode45. Its time dependent
coefficients from Eq. (2.7) depend on w(t) through the instantaneous eigenfunctions ϕ0 and ϕ1.
While closed-form expressions for these eigenfunctions are determined, for each value of w, in terms
of hypergeometric functions [41], we find it simpler to solve the associated eigenproblem numerically
at each time step using Matlab’s eig command. Indeed, while the former possibility is particular
to the potential considered herein, the latter one can be extended to arbitrary time-dependent
potentials.
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We solve the Gross-Pitaevskii equation (2.1) using a second-order Fourier split-step method and
approximate the delta function by a narrow Gaussian

(2.14) δ(x) = lim
a→∞

1

2πa
e−

x2

2a ,

with a = 12 here and in all subsequent computations.
In what follows, we need a way to measure the agreement between the solutions to GPE and the

finite-dimensional approximation defined by expansion (2.5). We define the projected wavefunction
as

(2.15) ψproj
N+1 =

N∑
n=0

〈
ψGPE(·, t), ϕn(·, u(t))

〉
ϕn(x, u(t)),

where ψGPE solves Equation (2.1). We quantify an expected upper bound on the Galerkin approx-
imation (2.5) through the relative error

(2.16) EN+1(t) =
‖ψGPE − ψproj

N+1‖
2

M
=

∥∥∑∞
n=N+1

〈
ψGPE(·, t), ϕn(·,w(t))

〉
ϕn(x,w(t))

∥∥2

M
,

where M is defined by Eq. (2.2) and the norm is taken in L2(R). The second equality, which is
interpreted as the relative mass content which has been excited beyond the few-mode representation
at order N , relies on the fact that the GPE (2.1) is well-approximated by Formula (2.15) in L2 (R),
i.e., EN+1 → 0 as N →∞. Therefore, we rely on various comparisons among Equations (2.5), (2.15),
and (2.16) when discussing the extent to which few-mode representations effectively shadow the full-
dynamical picture given by the GPE (2.1). Also, note that although wavefunctions are normalized
to have unit mass throughout this work, we include M in the above definition of EN+1 to maintain
clarity of how the analysis should be performed given a different scaling of Equation (2.1).

With those preliminaries, we are ready to show the results of the simulations. Figure 2.2 shows
simulations the GPE (2.1) and the two-mode model system (2.6). It presents three false-color
plots: the wave function ψGPE, the projection of the wave function onto the first two instantaneous
eigenfunctions, i.e., ψGal

2 , and the wave function ψGal
N+1 constructed from the solution to the two

mode model (2.6) using Formula (2.5). A fourth plot shows the solutions of Equation (2.6) as well
as the coefficients defining the projected wavefunction (2.15) from the GPE solution.

We make two observations based on these plots. First, our naively chosen control functions (2.13)
crudely transfer the bulk of the solution from the left potential well to the right, in both the GPE
system and the two-mode model system. Second, and despite the first observation, the agreement
between the two dynamics is poor. This is seen in the poor agreement to the computed values of
the coefficients, and through the large relative error E2(t).

This is a central observation of this study: while the two-mode reduction effectively describes the
bifurcation structure and the dynamical evolution in the vicinity of the symmetric and asymmetric
equilibrium, however, for the more highly non-equilibrium transfer proposed herein, a representation
requiring more modes becomes necessary. In that light, we now pursue a three-mode reduction of
the system.

2.2. Three-Mode Expansion. In order to increase the fidelity of the reduced model to the full
GPE, we now compute a model equation using N = 2 in the expansion (2.5). The form of the Hamil-
tonian system is long and fairly unenlightening, so we display the associated Hamiltonian (A.1) in
Appendix A. To simplify the search for stationary solutions, we perform a canonical transformation
similar to Eq. (2.12), yielding Hamiltonian (A.5). Not surprisingly, we find asymmetric standing
waves similar to ψ0 and ψd from Figure 2.1. In fact, the contribution to these modes from c2 is
no greater than one part in 10−10 in absolute-value squared. This numerically justifies the simpli-
fication of using the fixed point, corresponding to the left-asymmetric state from Figure 2.1, with

6



Figure 2.2. All false-color plots of wavefunctions show the squared absolute value
of the wavefunction. Top left: a full numerical simulation of the GPE (2.1). Top

right: the projected wavefunction ψproj
2 as in Equation (2.15). Bottom left: a com-

parison of numerically computed and projected coefficients cn(t) for n = 0 and
n = 1, as well as the loss of mass to higher modes given by the error formula (2.16).
Bottom right: the wavefunction ψGal

2 , as defined by Equation (2.5), with coefficients
shown in the bottom left panel.

no contribution from the third mode. Additionally, this also allows for consistency in testing the
accuracy of the three-mode model.

Using the above-mentioned initial condition, we run the same test shown in Figure 2.2, but
for the three-mode model, as shown in Fig. 2.3. In this case, the approximation is considerably
more accurate, especially up to intermediate times. For example at t = 1, the relative error E3 is
about 0.05. More importantly, we see that the even modes in the reduction effectively capture the
even-projected dynamics of the GPE (2.1) for up to intermediate times.

However, we lose a great deal of accuracy for the remainder of the simulation, where, by t = T

the relative error has grown to about 0.35. The plot of c1 and cproj
1 shows that this is due to a

significant excitation of higher-order odd modes which have been neglected. Despite this, we find
that the three-mode model performs well enough in our pursuit of optimal controls. Later on, we
quantify how much each of the higher-modes contribute, through the relative error (2.16), while
the condensate is being controlled in the full dynamical setting. We find that the inclusion of just
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Figure 2.3. Conventions here are the same as that of Figure 2.2, but for the three-
mode model given by Hamiltonian (A.1). We see a substantial reduction in the error
E3(t) in contrast with the error E2(t) shown in Figure 2.2, allowing the three-mode
model to more effectively capture the full dynamics given by Equation (2.1).

one more odd mode substantially reduces the relative error. In Section 4, we discuss this in greater
detail, and, for now, leave the pursuit of higher-dimensional models as subject for future work.

We make a final comment on the role that the mass M has on the relative error E3. Indeed, for
smaller values of the mass M , we see a reduction in E3, as expected since nonlinear interactions
in Equation (2.1) are substantially smaller. Using M = 0.2 which is only slightly above the
symmetry-breaking bifurcation value, we find E(T ) to be near 0.25. Although this error has been
reduced, enhancing the efficacy of the reduced dynamical system, the mode ψ0 corresponding to
the asymmetric stationary state of Hamiltonian (2.11) is only slightly asymmetric, failing to meet
our stated goal of concentrating the mass in a single well. For this reason, we continue to use
M = 1 in what follows, since this strikes a good balance between a small enough relative error and
an adequate initial condition ψ0.

3. Optimal Control Strategy

The optimal control problem we pursue, motivated by the previous section, is to construct a
function w(t) that drives an initial state c0 to a desired state cd under the dynamics of the two- or

8



three-mode model. More precisely, the control problem is to find a local minimizer of the problem

(3.1) min
w(t)∈W

J = min
w∈W

{
M2

d − |〈cd, cT 〉| 2
}
,

where the admissible space of controls is given by W = {w(t) ∈ C0([0, T ]) : w(0) = w(T ) = wb},
for a prescribed value of wb. We call this objective functional the discrete infidelity, as opposed to
the full infidelity

(3.2) Jfull = M2 − |〈ψd, ψT 〉| 2

first used by Hohenester, et al. [13]. In both cases, the infidelity penalizes misalignments of the
final computed state with a desired state. Note that since the discrete mass Md is conserved by the
dynamics governing c, the optimal, perhaps unachievable, final state is the desired, which yields
an optimal infidelity of zero.

An advantage of the infidelity (3.1) is that it is insensitive to the global phase of the dynamics,
which is physically unimportant. A more traditional least-squares approach can be introduced via
the objective

(3.3) J LSQ
d =

1

Md
|cd − eiScT |

2
,

where the phase S ∈ [0, 2π]. Although we do not pursue such an optimization we report the values

of both J LSQ
d and the value of

(3.4) J LSQ
full =

1

M
‖ψd − eiSψT ‖

2
,

after a minimization over S, as a relative, and more familiar, measure of optimality at the level of
the full-dynamical picture.

The optimal control problem (3.1) is posed over the admissible space W, which is infinite di-
mensional. We approximate this by a finite dimensional admissible space, constructed using a
Galerkin-type method called the chopped random basis method (CRAB), first used by [6, 8] and
explained in great detail in the work of [1]. We use the following basis and trial functions

(3.5) wCRAB = wtrial + wb

ND∑
j=1

εwj
j2

sin

(
jπt

T

)
,

where the value of wb is consistent with the boundary conditions implied by the trial controls utrial

and vtrial in Equation (2.13).
The amplitudes εwj are random variables drawn uniformly from [−1, 1]. We choose the coefficients

Aj = j−2εwj to decay quadratically because the Fourier series of an absolutely continuous functions

exhibits the same type of decay [39]. In this way, the search space for optimal control w is not
severely restricted, yet candidate controls remain technically feasible. To find the coefficients εwj ,

we use the differential evolution (DE) method [36] outlined in Appendix B.

Remark. The numerical optimization problem associated with the objective functional in Equa-
tion (3.1) is often stated in the variational form of Euler-Lagrange equations and solved using a
form of gradient descent [1,4]. This requires functional derivatives of the objective J with respect
to the control vector w and thus involves derivatives of the basis functions ϕn in Equation (2.5).
Since these derivatives cannot be written in closed-form, this renders gradient-based methods cum-
bersome. Thus we choose not to pursue such a strategy here. In previous work [1], we numerically
solve a similar optimization problem using both the CRAB method, and when possible, a combina-
tion of the CRAB method and a gradient descent, and find that the CRAB method alone is fairly
successful in finding efficient control policies.
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4. Results of Numerical Optimization

In this section we present the results of our numerical optimization. We briefly summarize the
strategy outlined over the past sections. We perform the optimization on the three-mode reduced
system described by the Hamiltonian (A.1). We use the initial and desired profiles for the two-
mode system shown in Fig. 2.1, as we found that c2 was negligibly small in the corresponding
stationary solutions of the three-mode system. We minimize the phase-insensitive infidelity J
defined in Eq. (3.1). The control function w(t) is constructed using the CRAB method (3.5), and
the optimization is performed using the DE method described in Appendix B. We find, through
trial and error, that ND = 15 basis functions are sufficient for the CRAB approximation. That is,
a CRAB basis (3.5) with this many modes reduces the optimal control problem (3.1) to a nonlinear
programming problem in 2ND dimensions whose solution we find acceptable.

Figure 4.1 shows the result of this numerical optimization. This computation yielded an objective
function J = 0.0501, as defined by Equation (3.1), and a least squares infidelity JLSQ = 0.0422, as
defined by Equation (3.3). The figure also shows the full infidelity Jfull and the full least-squares

objective J LSQ
full resulting from using optimal controls in simulating the GPE (2.1).

It is important to recognize that the dynamics selected by the optimizer somewhat conforms to
the anticipated physical intuition about the optimal strategy. It can indeed be observed in the figure
that the barrier height v(t) decreases to about 0, while the parabolic confinement becomes tighter,
which enables the mass to be transferred from one side of the lowered barrier to the other. This
transfer is visible at time t ≈ 1 in the top right panel of the figure. Subsequently, v(t) rises sharply
again, as the parabolic confinement returns to its original value, so that the combination of the two
now ensures confinement of the transmitted mass to the right well. It is through this procedure that
the infidelity is substantially decreased in the lower left panel, and indeed subsequently remains
small, during the return of the confinement conditions to their original settings.

We also show, in Figure 4.2, an error analysis. The left panel in Figure 4.2 is equivalent to the
lower-left panel of Figure (2.3), showing the coefficients cj(t) and the relative error E3(t) defined by
Equation (2.16). While the maxt E3(t) is lower in the simulation using the optimal control, than in
the trial control, it is interesting to note that using the optimal control yields significantly better
agreement between the dynamics of the full GPE system and its projection onto the first three
modes at the final time T , decreasing from a maximum of about 15% to just about 5% at time T .
The right panel of the figure computes the error EN (t) for values of N ≤ 6. We find EN (t) decreases
monotonically, pointwise in t, as expected. Although we have shown that three modes suffices to
control the GPE, this result indicates the expected accuracy for N > 3.

5. Conclusions

In the present work, we have applied the methodology of optimal control to dynamics in double-
well potentials, one of the most prototoypical (and highly controlled) experimental settings, both in
atomic Bose-Einstein condensates and in nonlinear optics. We have adapted the relevant method-
ology to the well-established description of Galerkin truncations within this setting. Typically,
two-mode truncations are used in order to explore the steady states, stability, bifurcations and
dynamics of such double-well systems. A key finding of the present work is that such a two-mode
approximation is not sufficient in order to characterize the dynamics associated with optimal trans-
port. Indeed, it was found that the involvement of a three-mode approximation was crucial in order
to adequately describe the relevant dynamical process, identified as optimal by the differential evo-
lution algorithm deployed herein. Despite quantitative inaccuracies in using a low-order Galerkin
reduction, we see that controlling the three-mode model effectively controls the GPE wavefunction
in numerical simulations. Furthermore, our numerical results showcase the extent to which the
model can be refined by taking the Galerkin reduction out to higher orders. We leave the potential
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Figure 4.1. The result of using numerical optimal control theory. Top left: optimal
controls identified via our numerical methodology. Top right: The solution of the
GPE (2.1) in absolute-value squared. The dotted white line, at T = 2, represents
the moment the controls are held at their constant terminal values wb. Bottom
left: the full infidelity Jfull and full modified least-squares objective J LSQ

full . Bottom
right: wavefunction profiles, in absolute-value squared, of the initial state, the state
computed via the three-mode model at T = 2, and the state computed via the
GPE (2.1) at T = 2.

inclusion of these higher modes in a reduction-based optimal control strategy as subject for future
work.

Additionally, the adaptation of such optimal control methodologies to low-dimensional truncated
Galerkin dynamics is a technique that could find significant potential for further applications. Some
possibilities include multi-component and spinor condensates [18] where few-mode approximations
have proven useful [11, 40, 42]. Moreover, extending such control strategies beyond the mean-field
framework and into the realm of many-body effects [27,31], is of particular interest in its own right;
for a review of the latter, see, e.g., the recent preprint of [29]. Finally, it would be natural to extend
these ideas to higher-dimensional systems where few-well arrangements have also been explored [43].
Such studies are currently under consideration and will be presented in future publications.
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Figure 4.2. Left: Numerical solution of the three-mode model, projected coeffi-
cients, and the error consistent with Figure 4.1. Right: the error of modes two
through six, with the natural number N used consistently with the Galerkin reduc-
tion defined by Equation (2.5).
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Appendix A. Details of the Three-Mode Model

The Hamiltonian for the three-mode model is found to be

H = α|c0|2 + β|c1|2 + σ|c2|2 + 2∆={c0c̄2}+
γ0

2
|c0|4 +

γ1

2
|c1|4 +

γ2

2
|c2|4

+ γ3

(
<
{
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0c̄
2
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}
+ 2|c0|2|c1|2
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0c̄
2
2

}
+ 2|c0|2|c2|2

)
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2
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+ 2

(
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+ 2<
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c0|c1|2c̄2
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,(A.1)

where the projection coefficients are given by

α = 〈Lϕ0, ϕ0〉, β = 〈Lϕ1, ϕ1, , 〉 σ = 〈Lϕ2, ϕ2〉, ∆ = 〈ϕ0, ϕ̇2〉,
γ0 = ‖ϕ4

0‖, γ1 = ‖ϕ4
1‖, γ2 = ‖ϕ4

2‖, γ3 =
〈
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0, ϕ
2
1

〉
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2
1ϕ2

〉
.(A.2)

from which the analogous system to the two-mode system (2.6) can be derived easily. The appear-
ance of the term with coefficient ∆ is due to the time-dependent nature of the basis functions ϕn,
and did not appear in the two-mode system due to the parity of the first two modes. This, as well
as the implicit claim that 〈ϕ0, ϕ̇2〉 = −〈ϕ2, ϕ̇0〉 may be verified numerically.

As was done with the two-mode system, we use changes of variables and the, now three-mode,
discrete mass to reduce dimensionality. Because we may only reduce the number of degrees of
freedom to two for the three-mode system, we lose the comfort of visualizing the dynamics via
phase portraits as before. Nevertheless, we pursue a reduction since this helps make identifying
fixed points of the dynamical system simpler. To this end, we begin by using

(A.3) c0 = η0e
iθ, c1 = reiθ, c2 = η1e

iθ,

where ηj ∈ C and r ∈ R. We can easily eliminate r by using the discrete mass once again: r =√
Md − |η0|2 − |η1|2. Now, converting to polar coordinates via

(A.4) η0 =
√
ρ0e

iθ0 , η1 =
√
ρ1e

iθ1 ,

we find the following, two-degree of freedom Hamiltonian

H =
Md

2
(2β + γ1Md) +

ρ2
0

2
(γ0 + γ1 − 2γ5 (cos (2θ0)− 2))− ρ2

1

2
(γ1 + γ2 − 2γ7 (cos (2θ1)− 2))

ρ0 (α− β − γ1Md + γ5Md (2 + cos (2θ0))) + ρ1 (β + γ1Md − γ7Md (2 + cos (2θ1))− σ)
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+ 2ρ
3/2
0 ρ

1/2
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3/2
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ρ0ρ1 (sin (θ0) sin (θ1) + 3 cos (θ0) cos (θ1)) .

(A.5)
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Appendix B. Optimization via Differential Evolution

DE is a stochastic optimization method used to search for candidate solutions to non-convex
optimization problems. The idea behind DE is a so-called genetic algorithm that draws inspiration
from evolutionary genetics. DE searches the space of candidate solutions by initializing a population
set of vectors, known as agents, within some chosen region of the search space. These vectors are
then randomly mutated into a new population set, or generation.

Algorithm 1: Differential Evolution Mutation

Result: A vector z mutated from agents in a given generation as required by the DE
Algorithm (2).

Input: 4 distinct members a, b, c, d from the current generation of agents each with N
components, the crossover ratio RC ∈ (0, 1), and weight F ∈ (0, 2).

for j=1:N do
Compute a random variable rand;

if rand < RC then
z[j]← a[j] + F ∗ (b[j]− c[j])

else
z[j]← d[j]

end

end

Algorithm 2: Differential Evolution

Result: A vector likely to be globally optimal with respect to an objective J .
Input: A maximum number of iterations Nmax, crossover ratio RC ∈ (0, 1) and weight

F ∈ (0, 2)
while counter < Nmax do

Generate a population pop of Npop vectors.
for i = 1 : Npop do

CurrentMember← Popi;

Choose three distinct vectors ai, bi, ci different from the vector Popi;
Mutate ai, bi, ci, and the CurrentMember into the mutated vector z using the
mutation parameters RC , F and Algorithm 1;

if J(z) < J(CurrentMember) then
TemporaryPopi = z;

end

end

Pop← TemporaryPop;

counter← counter + 1;

end

The mutation operates via two mechanisms: a weighted combination and a “crossover” which
randomly exchanges “traits”, or vector elements, between agents. The method requires three pa-
rameters; the weight F ∈ (0, 2), the crossover parameter RC ∈ (0, 1), and the size of the population
Npop, which, by Algorithm (1), is required to be an integer greater than three. A pseudo-code illus-
trating the implementation of the relevant algorithms is given in Algorithms (1) and (2). Through
trial and error, we find the parameters F = 0.8, RC = 0.9, Npop = 20 work well. DE ensures
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that the objective functional J decreases monotonically with each generation. As each iteration
“evolves” into the next, inferior vectors “inherit” optimal traits from superior vectors via muta-
tions. DE only allows mutations which are more optimal with respect to J to pass to the next
generation. After a sufficient number of iterations, the best vector in the final generation is chosen
as the candidate solution most likely to be globally optimal with respect to an objective functional.

Genetic algorithms, which require very few assumptions about the objective functional, are part
of a wider class of optimization methods called metaheuristics. Although metaheuristics are useful
for non-convex optimization problems, they do not provide guarantees about the global optimality
of candidate solutions. Since the algorithm is stopped after a finite number of iterations, different
random realizations return different candidate optimizers. The results we show are the best among
five different realizations.

In practice, we do not recommend taking less realizations since one runs the risk of computing
highly sub-optimal controls, which, indeed, is a generic issue when solving non convex optimization
problems using stochastic methods. Of course, taking more realization is expensive, but we find
that with the optimization and physical parameters used throughout this work, five realizations
is sufficient to guarantee the discovery of, at least, a couple of optimal control policies which are
extremely competitive with regards to the objective functional (3.1). From a computation of 30
realizations, about a third of the control policies are within 1% of the infidelity returned by the
best control.
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