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We explore a case example of networks of classical electronic oscillators evolving towards the
solution of complex optimization problems. We show that when driven into subharmonic response,
a network of such nonlinear electrical resonators can minimize the Ising Hamiltonian on non-trivial
graphs such as antiferromagnetically coupled rewired-Möbius ladders. In this context, the spin-
up and spin-down states of the Ising machine are represented by the oscillators’ response at the
even or odd driving cycles. Our experimental setting of driven nonlinear oscillators coupled via a
programmable switch matrix leads to a unique energy minimizer when one such exists, and probes
frustration where appropriate. Theoretical modeling of the electronic oscillators and their couplings
allows us to accurately reproduce the qualitative features of the experimental results. This suggests
the promise of this setup as a prototypical one for exploring the capabilities and limitations of such
an unconventional computing platform.

INTRODUCTION

The desire to solve complex combinatorial problems in
energy and time-efficient manner ignites the race to im-
plement classical state-of-the-art optimisation techniques
on traditional hardware. The implementation of the sim-
ulated annealing on CPU leads to a traditional classi-
cal solver, on complementary metaloxide-semiconductors
(CMOSs) hardware results in the CMOS annealer [1, 2],
and with field programmable arrays (FPGAs) it is known
as the digital annealer machine [3, 4]. The realisation of
another physics-inspired method on GPUs underlies the
simulated bifurcation machine [5, 6]. With such mature
dedicated hardware, the computational performance of
classical optimisation methods can be studied on a large
scale of hundreds of thousands of elements.

Novel computing paradigms can be based on novel
physical platforms augmented by traditional hardware.
In such a hybrid approach, the optimisation efficiency
depends not only on classical algorithms, and the better
quality of solutions is expected from natural internal pro-
cesses in physical systems, while the classical hardware
provides interactions between physical elements. For ex-
ample, the FPGA operates in concert with the optical
parametric oscillators [7] and the spatial light modulator
can create couplings between polariton condensates [8, 9]
for solving hard optimisation problems.

To overcome the time limitations of traditional hard-
ware, the pure passive unconventional computing ar-
chitectures can be considered. In these architectures,
the solution to the optimisation problem is found solely
through an analogue system without exchanging infor-
mation with the classical counterparts. The memristors
(short for memory resistors) can perform matrix-vector
multiplications according to Ohm’s and Kirchhoff’s laws
in a completely analogue way [10]. Circuits of memris-

tors (memristor crossbars) are used for simulating neural
networks [11–13] including Hopfield networks for solving
hard optimisation problems [14]. A further improvement
in power consumption over memristor-based Hopfield
networks is expected for networks of phase-transition
nano-oscillators with capacitive couplings [15]. These
beyond-traditional hardware approaches [16–18], as well
as all-optical passive computing architectures with a sim-
ilar principle of in-memory computing [19–22], are nat-
urally suitable for highly parallel calculations and offer
orders-of-magnitude higher energy efficiency than clas-
sical devices. Many more physical systems are under
intense investigation as quadratic unconstrained binary
optimisation (QUBO) solvers in the post-CMOS era in-
cluding lasers [23–26], photonic simulators [27], trapped
ions [28], photon and polariton condensates [29, 30], QED
[31, 32], and others [33–35].

The electronic and optical oscillator-based unconven-
tional computing machines are generally applied to the
minimization of spin Hamiltonians, to which many of the
real-life optimisation problems can be mapped with a
polynomial overhead [36]. One of the challenges in as-
sessing the potential optimisation performance of such
platforms is caused by the choice of instances of NP-
hard problems. For example, minimising the Ising spin
Hamiltonian on unweighted 3-regular graphs is proven to
be NP-hard [37], while for a subclass of Möbius ladder
graphs, which are often chosen for testing non-traditional
computing platforms [7, 15, 33–35, 38–40], the Ising
model can be minimized in polynomial time [41].

To develop new physics-inspired algorithms and ex-
plore non-trivial ways for escaping local minima of com-
plex optimisation problems, the easy-to-assemble circuits
of electronic oscillators could be considered. Although
this is a well-studied classical system, there are only a
mere handful of works with physical implementations of
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oscillator-based circuits, with most studies devoted to
theoretical and numerical simplified models [42], which
do not necessarily represent internal physical processes
that can be critical to optimisation performance. There
exist many types of electrical oscillators one may use for
computing. The vertex colouring problem of unweighted
graphs has been recently addressed with small networks
of five coupled relaxation oscillators with capacitive con-
nections [43]. An integrated circuit of 30 relaxation os-
cillators with programmable couplings was implemented
for solving the maximum independent set problem [44].
The all-electronic Ising Machine has been explored with
weighted resistive couplings for four CMOS LC oscillators
[40] with larger network of 240 oscillators implemented
on a chimera-graph architecture [45].

In this work, we explore possible global optimisation
mechanisms that could help to evaluate the new small-
size physical solvers by minimising the Ising Hamiltonian
with fundamental passive electrical circuit elements: the
resistor, the capacitor and the inductor, in the presence
of nonlinearity. The electrical network of such RLC os-
cillators is an example of a purely classical computing
system implemented on CMOS. For such electronic os-
cillator networks, we show the difference between the
Ising minimization of the trivial problems, such as Max
3-regular cut on the Möbius ladder graphs, and the non-
trivial, such as on the rewired Möbius ladder graphs and
on random 3-regular graphs. The ground state success
probability for non-trivial problems can be dramatically
increased using the dynamic control of the inductance,
the optimal value of which helps to efficiently escape
the local minima. We discuss possible ways for creat-
ing easy-reconfigurable couplings between oscillators and
possibilities for the large-scale on-chip integration of elec-
tronic circuits. Better energy-efficiency could be further
achieved with networks of energy-recycling electronic os-
cillators, in which the energy is converted between two
forms, electrostatic and magnetic energies, during each
oscillation cycle. Such conventional integrated electronic
circuits could not offer better power consumption than
passive optical computing architectures but rather can
open opportunities to study non-trivial ways for escaping
local minima and facilitate the development of physics-
inspired algorithms. The behaviour of electronic oscilla-
tors for solving hard problems may be further generalised
to the synchronisation dynamics of coupled nonlinear os-
cillators of different nature.

EXPERIMENTAL SETUP

The basic idea is to drive a collection of nonlinear os-
cillators at a frequency that is roughly twice their natural
frequency, ωd ≈ 2ω0, such that subharmonic resonance is
induced in them (see also [46]). Subharmonic resonance
is a nonlinear phenomenon and (in the case of an isolated

FIG. 1. The main idea of coupling between nodes is illus-
trated here using a pair of oscillators, each consisting of a
varactor diode, with capacitance C(V), and an inductor, L,
in parallel. These are driven via capacitors, C, to induce
subharmonic oscillations, for which ω = ωd/2. The two oscil-
lators can be either positively coupled using the resistor pair
labeled Rc(+) (red), or negatively using the resistor pair la-
beled Rc(−) (blue). The oscillations across each oscillator’s
diode/inductor are measured as a floating voltage.

oscillator) its onset occurs above a threshold amplitude in
the driving signal [47]. It is characterized by an oscillator
response that repeats every other driver period. There-
fore, two response states are conceivable [14], namely an
oscillator response corresponding to either even or odd
driving cycles. These two oscillator states will represent
the basic “spin-up” and “spin-down” states of the Ising
machine.

While the earlier work of [14] proposed generic non-
linear oscillators driven by dedicated noise generators to
induce parametric resonance, this is not feasible with the
nonlinear RLC oscillators used here. Instead, we em-
ploy a single sinusoidal voltage signal (from a function
generator) to drive all oscillators via capacitors into sub-
harmonic resonance, as shown in Fig. 1. The oscillator
consists of a varactor diode (NTE 618), featuring a non-
linear dependence of the capacitance on the voltage C(V),
and an inductor, L. The coupling between a given pair of
oscillators is achieved via resistors. Resistors connected
straight across (red, labeled Rc(+)) favor in-phase oscil-
lation between the two oscillators, whereas crossed resis-
tors (blue, labeled Rc(−)) favor out-of-phase oscillation.
The measured resistances of Rc-resistors were the same
to within 1%, the inductor values to within 0.25%, and
the capacitors to within 1%.

Figure 2(a) schematically depicts the experimental sys-
tem for a network of 8 subharmonic resonators. The
main experimental challenge is to connect these 8 oscil-
lators via a programmable and reconfigurable coupling
network. Our solution was to use a switch-matrix mod-
ule that can be configured (via the terminal block) into a
two-wire 8x32 cross-point matrix. The 8 analog-in chan-
nels of a data acquisition card (NI PXIe-6366) are syn-
chronized to the start of the driving signal via a pulse
generator and digitize the voltage profiles at all 8 oscilla-
tors. The coupling scheme is illustrated in greater detail
in Fig.2(b), which shows the example of a negative cou-
pling between oscillator 1 and 3. There are eight inputs
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FIG. 2. (a) Schematic of the basic experimental setup: the
oscillator-system is driven sinusoidally, starting at the trigger
of the pulse generator, which also initiates the data collection
at the DAQ board. The oscillators are impedance-isolated
from the AI channels of the DAQ via buffers. The coupling
network connecting the oscillators is established via a termi-
nal block (TB-2644) set to the 2-wire 8-32 configuration, and
the switch-matrix unit (PXI-2532). (b) A more detailed view
of the coupling network using the switch matrix: there are 8
inputs and 32 outputs in this configuration (16 of which are
used). The inputs connect directly to the oscillators. The
first 8 outputs connect back to the inputs in a one-to-one
fashion, but the second 8 outputs shown in this figure cross
the two wires before connecting back, as shown. The electri-
cal switches at the cross-points of this switch-matrix module,
represented here by open and closed red circles, can be pro-
grammed to be open or closed. As shown here, oscillator 1
and 3 would be negatively coupled.

to the module arranged vertically on the left (three of
which are depicted), and 16 used outputs arranged hor-
izontally at the bottom (again three are shown). The
first 8 outputs (not shown) are responsible for positive
coupling between oscillator pairs, and the next 8 outputs
(three shown) are responsible for the negative coupling.
The latter is accomplished by crossing the wire at the
bottom before feeding it back in to the respective oscil-

lator. By closing that particular switch-pair (see solid
circles), oscillators 1 and 3 are connected in the same
manner as represented by the blue resistors in Fig.1.

THE MODEL

As was shown in Ref. [48], we can model the var-
actor diode, the nonlinear circuit element, as a parallel
combination of three idealized components: a nonlinear
capacitor of variable capacitance, C(V), a nonlinear resis-
tor whose current-voltage relationship is given by ID(V ),
and a nonlinear dissipation resistance, Rl. We then apply
the Kirchhoff loop rule using two loops around the circuit
shown in Fig. 1, while also keeping mathematical track
of the currents entering the nth node through the top
capacitor and exiting through the lower capacitor. The
detailed steps in the analysis are relegated to Appendix
A; here we show only the final set of non-dimensionalized
equations of motion governing this electrical network that
will be used for the simulation results presented below.
More specifically, the voltage dynamics for each oscillator
(indexed by n) reads:

[1 + 2c(vn)]
dvn
dτ

= Ω cos(Ωτ)− 2

τc

(
Rc
Rl

)
vn+ (1)

2 [iD(vn)− yn]− 1

τc

∑
m

Bnm(vn + vm);

dyn
dτ

= vn,

where the symbols are defined as follows in terms of
the measurable circuit quantities: vn = Vn/A, with A
being the amplitude of the driving signal and Vn the
voltage across the diode; yn = Yn/(ACdω0), with Y
representing the current through the inductor. Simi-
larly, iD = ID/(ACdω0), where ID(V ) is the voltage-
dependent current through the varactor diode. C(V )
is the voltage-dependent capacitance of the diode, and
c = C(V )/Cd. (Both functions, ID and C, are given in
the appendix.) Furthermore, ω0 = 1/

√
LCd and τ = ω0t,

and Ω = ω/ω0 represent the adimensionalized time and
driving frequency. Finally, τc = RcCdω0, and Bnm is
either zero (no connection between that node pair) or 1
when the pair is negatively coupled.

EXPERIMENTAL RESULTS

Let us begin by examining an antiferromagnetically
coupled Möbius ladder graph for N=6. The idea is to
minimize the Ising Hamiltonian, which means finding
the spin configuration {si = ±1} that yields the min-
imum energy for EIsing = − 1

2Σi,jJijsisj . Solving the
Max 3-regular cut problem on an unweighted graph is
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FIG. 3. (a) The coupling matrix for N=6 Möbius-ladder
graph. (b) the time evolution of the system’s energy, set-
tling at the ground-state energy of E = −8 after around 50
subharmonic periods. (c) the N=6 circuit response - time is
plotted on the horizontal axis, node number vertically, and
the voltage response is depicted in gray-scale. (d) the volt-
age profile encoding the ground state at particular instant of
time, depicted as the red, dashed line in (c).

trivially formulated as minimizing the Ising Hamiltonian
by assigning Jij = −1 to connecting edges. This cou-
pling network is shown schematically in Fig. 3(a), where
black (white) squares represent negative (zero) coupling
between that pair of nodes. It is straightforward to see
that this network that has a unique lowest-energy solu-
tion (up to a minus sign) of [1,−1, 1,−1, 1,−1]. When we
drive the lattice with this coupling network at f = 380
kHz and Vd = 4 V, the system is driven to that lowest
energy (E = −9), as seen in Fig. 3(b), and we get the
voltage response depicted in gray-scale in Fig. 3(c). We
see that after about 280µs, or 50 subharmonic periods,
the final alternating pattern firmly establishes itself. A
time snapshot of the voltage profile across all six nodes
- at a time indicated by the red dotted line in panel (b)
- is shown in Fig. 3(d). It is evident that the correct
solution is encoded in that voltage profile. It should be
mentioned that we computed the configurational energy
from experimental data as outlined in Appendix B.

Note that for this network, there is no frustration, the
optimization state is unique, and the electrical circuitry
“finds” this state quickly and with complete reliability.
This is true for any network that admits a single opti-
mal solution without frustration. In such cases (i.e., for
Möbius graphs when N/2 is odd), the circuit was found
to perform with perfect accuracy. To demonstrate prac-
tical use for computing, however, the system also has to
find solutions for the larger class of networks with frus-
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FIG. 4. (a) The coupling matrix for N=8 Möbius-ladder
graph. (b) the time evolution of the system’s energy, settling
at the ground-state energy of E = −8 after around 130 sub-
harmonic periods; interestingly the system arrives there non-
monotonically. (c) the circuit response encoding the solution
of lowest energy, depicted as the temporal voltage snapshot
in (d).

tration. In the frustrated ground state, some spins would
have to be aligned in spite of being coupled antiferromag-
netically. This would happen if N/2 is even in Möbius
ladder graphs.

Let us now examine the N=8 Möbius ladder, depicted
in Fig. 4(a). The experimental results for this network
are displayed in Fig. 4(b)-(d). Panel (b) shows the energy
evolution of the state, as computed from Eq. (9). The
energy does eventually reach the lowest possible value for
this network (after about 130 subharmonic periods), but
it does not reach it monotonically. Panel (c) and (d) re-
veal that the oscillator final response pattern encodes the
state [1, 1,−1, 1,−1,−1, 1,−1], which is one of the degen-
erate ground states with an energy of E = −8. Note that
this network does exhibit frustration - for instance, nodes
0 and 1 are negatively coupled, but this optimal state has
those same two nodes oscillate in synchrony.

Figure 5 relates to a different 3-regular graph - compar-
ing Figs. 4(a) and 5(a) reveals the coupling modifications.
The raw data is shown (in the manner of previous figures)
in panels (c) and (d), which depict the initial and final
time-interval responses. Figure 5(b) computes the config-
urational energy, according to Eq. (9) (in the Appendix)
as before, at each period of oscillation. It is evident that
after around 50 subharmonic periods (or about 250 µs),
the electronic system has settled into the final state of
the minimum energy, E = −8. The panels (b)-(d) also
illustrate that in the evolution towards the final state,
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FIG. 5. (a) Another 3-regular graph of N=8. (b) energy
evolution of the network; we reach a ground state of energy
E = −8 after around 45 subharmonic periods. (c), (d) early
and late circuit response, respectively. (e) the final state,
as encoded in the voltage profile. (f) time-evolution of the
voltage at node 3 (red) and 4 (blue).

certain parts of the eventual state emerge much earlier
than others. In this example, nodes 0 and 1 come into
synchrony early, at around 70 µs, whereas nodes 3 and 4
do not snap into an anti-synchronous response until late,
between 200 and 300 µs. This is illustrated in panel (f),
which plots the voltage profiles of nodes 3 and 4 (red and
blue trace, respectively).

As two final examples of 3-regular graphs, consider
Fig. 6(a) and (c). The driver frequency is again 400
kHz, the driver amplitude is gradually raised until a
subharmonic pattern first emerges, and the steady-state
circuit responses are shown in Fig 6(b) and (d), re-
spectively. Both states encoded here in the voltage
pattern match one of the optimized solutions for these
graphs. For the two graphs they are, respectively,
[1, 1,−1, 1,−1,−1, 1,−1] and [1, 1,−1, 1, 1,−1,−1,−1],
both of which yield an energy of E = −8 for their re-
spective networks.

It should be emphasized that these ground-state solu-
tions in these 3-regular graphs compete with other pat-
terns of fairly low energies, and such patterns can also
emerge at or near the driver-amplitude threshold. In
fact, when the driver is turned off and then on again,
the same pattern does not always reappear even in the
absence of changes to the driving conditions. A detailed
statistical analysis has not been attempted yet but would
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FIG. 6. Two additional 3-regular graphs, depicted in (a) and
(c). Panels (b) and (d) show the steady-state circuit response
yielding the respective ground states of energy E = −8.

clearly be an interesting topic for further study.
Furthermore, in order to attain the ground states, in

some cases it proved necessary to randomly permute the
inductors for the eight oscillators. The measured induc-
tance values for all inductors agreed to within 0.25%, but
even that low level of spatial “noise” in some instances
proved sufficient to prevent the evolution to one of the
correct ground states; here a mere rearranging of that
noise would allow such states to manifest. In effect, our
experimental results suggested the relevance of introduc-
ing some inductor noise to move the system out of local
minima and nudging it towards the global minimum.

NUMERICAL SIMULATIONS OF ELECTRICAL
CIRCUITS

We now turn to numerical simulations of this system
described by Eq. (1). Such simulations add three impor-
tant facets to the picture: (i) they can, in principle, be
used to map out more systematically the role of noise,
initial conditions, and driving parameters, (ii) they al-
low us to more easily perform a statistical test, evaluat-
ing the efficiency of this computational scheme, and (iii)
they allow an investigation of larger systems than can be
currently implemented experimentally.

Our aim in this first proof-of-principle work is to repro-
duce in the simulations some of the experimental results
shown previously. The numerical integration of Eq. (1)
leads quickly to the correct ground state for networks
without frustration. For instance, in the antiferromag-
netically coupled ring with N=8, this happens within
roughly 10 subharmonic periods, or around 50 µs. This
time is shorter than what we see in Fig. 3, but with higher
driving amplitudes the experimental time can be reduced
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ground state of energy E ≈ −8 after around 20 subharmonic
periods. (c), (d) early and late circuit response, respectively.
(e), (f) early and late time evolution of the voltage of the 8
oscillators starting from very small (∼10−3V ) random initial
conditions (the different colors stand for different oscillators
and the time unit used is the driving period Td). The driving
parameters used read ωd = 1.26ω0 and Vd = 3.1V .

to align more closely with the simulations.

More importantly, the simulations perform well on the
3-regular graphs from before, as shown in Fig. 7. It is
clear that the simulations manage to find one correct
ground state of energy E ≈ −8 within roughly 20 sub-
harmonic periods (Fig. 7(b)). Figures 7(c) and (d)
show the oscillation pattern of all 8 oscillators at an
early time and at long times, respectively. The corre-
sponding voltage traces of the oscillators are displayed
in the lower two panels, (e) and (f). The same quali-
tative picture is observed for different initializations of
the system. It is interesting to also note how the system
overcomes metastable dynamics (i.e., between 10 and 20
subharmonic periods) to reach the desired lowest energy
minimum. Comparing the numerical findings to the ex-
perimental results (Fig. 5), we see qualitative agreement
in the final state and how it emerges via the establish-

ment of the subharmonic response. For instance, in both
experiment and simulation, we observe that a certain
subset of oscillators moves into the subharmonic regime
quickly, whereas others take significantly longer to snap
into place. Furthermore, we find both experimentally
and numerically that the final oscillator amplitudes are
not always equal, and those oscillators that are lower in
amplitude have not completely suppressed their alternate
peaks and therefore exhibit a larger Fourier component at
the driver frequency (Fig. 7(f)). The same phenomenon
is apparent in Fig. 6, for instance, and indicates some
limitations in the analogy of the electrical circuits, ex-
plored here, with Ising machines. Indeed, our oscillators
are not “true spins” but rather are able to feature a more
complex subharmonic response in their continuous time
dependence. One way to overcome this issue of the het-
erogeneity of the oscillators’ amplitudes is to introduce
feedback that drives all amplitudes to the same occupa-
tion [49].

The one quantitative difference that we consistently
observe is that in the simulations the final state can be
obtained more quickly than in the experiments. One
reason for the longer times in the experimental system
could be the presence of a certain level of inhomogene-
ity between the oscillators. Another factor could be that
varactor-diode dissipation is not precisely captured in the
model. Nonetheless, it is evident that the key features of
the experimental results are correctly reproduced in the
numerics.

To explore the role of the driver (through the varia-
tion of its parameters) in greater detail, Fig. 8(a) shows
the energy of the eventual state as a function of the two
driving parameters - frequency ωd (x-axis) and ampli-
tude Vd (y-axis). Evidently we can distinguish between
three qualitatively different regions. The dark blue re-
gion (A) corresponds to eventual states with an energy
close to the ground-state energy (E ≈ −8) of the network
in Fig. 4. The oscillator response pattern (Fig. 8(b), first
row) is very close to one of the degenerate ground states,
i.e., the [1, 1, -1, 1, -1, -1, 1, -1], as expected. In this re-
gion the variation in the energy values, originates mainly
from the aforementioned discrepancies on the oscillator
amplitudes.

The situation is quite different in the green-blue re-
gion (B), appearing for smaller driving amplitudes and
larger driving frequencies. These parameters lead to
a steady state with an energy E ≈ −5.4, in which a
subset of oscillators (here 2) performs smaller ampli-
tude oscillations with the driving frequency, while the
rest performs subharmonic oscillations (Fig. 8(b), second
row). The subharmonic oscillations are completely lost
in the yellow regions of Fig. 8(a). Note that this re-
gion includes apart from the small-frequency and small-
amplitude region (where the subharmonic resonance is
expected to be suppressed), also the high-frequency re-
gion with ωd > 1.65ω0 (C). For these parameter values



7

2
1.1 1.3 1.5 1.7

3

4

5

-8 -6 -4 -2 0

-10

-5

5

0

0

0 20

10

40

0

0

8

990 1000

1

1

4

980 1000

0 20 40

0 20 40

990 1000

8

4

980 1000

4

8

12

-0.2

0.2

990 1000

8

4

980 1000

FIG. 8. (a) Dependence of the final energy for the Möbius-
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the first column shows the time evolution of the energy at the
A,B,C points, whereas the second and third columns depict
the corresponding circuit response at late times.

the oscillators oscillate in phase, with the driving fre-
quency ωd (Fig. 8 (b), third row), and thus lose the de-
sirable analogy to Ising systems.

In terms of the optimal driving parameters, the ex-
periments also show that the optimal operating regime
frequency is near the lower edge of the subharmonic res-
onance curve, and as the frequency increases the ground
state is no longer reachable, similar to what is indicated
by the region of point B in Fig. 8. One difference is that in
the experiment, the driver amplitude cannot be increased
indefinitely. In fact, experimentally, it is advantageous
to stay near the lower amplitude-threshold for subhar-
monic resonance. At higher amplitudes, other patterns
- likely driven by inhomogeneities - become dominant.
While simulation and experiment paint the same quali-
tative picture, differences in the details will likely become
smaller with further fine-tuning of diode characteristics,
especially concerning resistive dissipation. Nonetheless,
it is important to stress that both experiments and cur-

rent numerical simulations reach an optimal solution for
3-regular graphs, and they thus demonstrate the clear
promise of this network of subharmonic LC-resonators as
a purely passive unconventional computing architecture.

CONCLUSIONS AND FUTURE CHALLENGES

In summary, we have presented a concrete experimen-
tal realization of a nonlinear electrical oscillator circuit,
operating under external drive in the regime of subhar-
monic resonance and allowing for a controlled selection
of couplings, so as to realize different types of 3-regular
graphs for small number of nodes systems, such as N = 6
and N = 8. We have illustrated a concrete protocol so
as to interpret this nonlinear coupled dynamical system
as an effective spin-lattice and have shown that in such
an interpretation, it is possible to reach the ground state
energy, both in the case of unique minimizers and also
in the presence of frustration. The role of noise in facili-
tating the departure from local minima and reaching the
global minimum has been experimentally discussed. Im-
portantly, the understanding of the RLC-characteristics
of the relevant oscillator elements can, in principle, en-
able a Kirchhoff-law based theoretical model of the sys-
tem that is found to be in very good qualitative agree-
ment with the experimental observations. While here we
have emphasized a proof-of-principle realization of the
relevant setting, it is clear that the theoretical analy-
sis enables a scaling of the system to higher numbers of
nodes and, as shown herein, the consideration of both the
advantages, but also the limitations of the subharmonic
oscillator response in acting as an effective spin.

As indicated also above, this experimental realiza-
tion provides a useful proof-of-principle, but also paves
the way towards future efforts and associated questions.
Clearly, issues related to scalability of considerations to
large N , aspects related to the added wealth of phe-
nomenology of the electrical oscillators (in comparison to
simple spin variables) and its influence on the observed
dynamics, as well as the role of noise and ensembles of re-
alizations (and corresponding averaging) are among the
many worthwhile avenues for further exploration. One
can imagine, for instance, a large-scale implementation
of this scheme that utilizes on-chip integration of the
electronic circuits and coupling logic. Such studies are
currently in progress and will be reported in future pub-
lications.
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APPENDIX 1: THE CIRCUIT EQUATIONS

Let us think of the left oscillator in Fig. 1 as oscil-
lator n and the right one as oscillator m. Let us first
consider the Kirchhoff loop rule on a “bowtie-shaped”
path; we start with the circuit point in Fig. 1 at the bot-
tom of the left inductor, move up across the inductor,
go diagonally down (and right) across resistor Rc(−), up
the right inductor, and finally diagonally down (and left)
across Rc(−). For this closed path we can write the loop
rule as, Vn−RcJnm+Vm−RcJmn = 0, where Jnm is the
current through the resistor connecting the top of oscil-
lator n to the bottom of oscillator m, and Rc = Rc(−).
This implies that,

Vn + Vm = Rc(Jnm + Jmn), (2)

where we are not assuming the latter two currents to be
the same. Let is now consider another Kirchhoff loop,
this time starting at the left-bottom corner of Fig. 1,
moving up across the signal generator, down across the
left capacitor, Cd, down further across the parallel com-
bination of diode and inductor, and finally down across
the bottom capacitor, Cd. Here we can write,

Vd − Vc1 − Vn − Vc2 = 0. (3)

We also know that,

Cd
dVc1
dt

= I+, Cd
dVc2
dt

= I−. (4)

Taking the time derivative of Eq.(3) and substituting
Eq.(4), we get

d

dt
(Vd − Vn) =

1

Cd
(I+ + I−). (5)

Let us now consider these two currents. I+ is the cur-
rent delivered to the nth oscillator via the top capacitor,
and I− the current flowing back to the signal generator
from the nth node. Where does this current, I+, flow
next? Part of it goes through the parallel combination
of diode and inductor, and part of it becomes Jnm. Now
we examine the diode more closely. It can be effectively
modeled as a parallel arrangement of a nonlinear resis-
tor with a certain current-voltage relationship, ID(V ), a
nonlinear capacitor C(V ) and a dissipation resistor Rl.
These three will be specified in greater detail later. At
present, we can therefore express I+ as,

I+ = −ID + C(V )
dVn
dt

+
Vn
Rl

+ Yn + Jnm, (6)

where Y represents the current through the inductor.
The minus sign is added to the first term because the
diodes are oriented up in the forward direction in the
circuit. It is evident that I− is the same as I+ except
that the last term must be replaced by Jmn. Substitut-
ing Eq. (6) and its equivalent into Eq. (5), and also using
Eq. (2), we arrive at:[

1 + 2
C(Vn)

Cd

]
dVn
dt

=
dVd
dt
− 2

RlCd
Vn+ (7)

2

Cd
[ID(Vn)− Yn]− 1

RcCd
(Vn + Vm)

dYn
dt

=
Vn
L
.

We can also assume a sinusoidal driving signal, Vd =
A sin(ωt). Equation (7) describes a pair of nodes, but it
can be naturally generalized to a network by adding up
all the coupling currents, in which case the last term of
the first equation in Eq.(7) would have to sum over all
connected nodes m. We now non-dimensionalize these
governing equations by introducing ω0 = 1/

√
LCd and

τ = ω0t, as well as vn = Vn/A and Ω = ω/ω0. This then
leads to Eq. (1).

Lastly, let us cite the functional forms for C(V ) and
ID(V ) that were empirically obtained in Ref. [48].

ID(V ) = Is(exp(−βV )− 1),

with β = 38.8 V−1 and Is = 1.25× 10−14 A.

C(V ) =

Cv + Cw(V ′) + C(V ′)2 if V ≤ Vc,

C0e
−αV if V > Vc.

Here, V ′ = (V −Vc), α = 0.456 V−1, Cv = C0 exp(−αVc),
Cw = −αCv, C = 100 nF/V2, and Vc = −0.28 V.

APPENDIX 2: CONFIGURATIONAL ENERGY

In the context of Ising model, the energy of a N-particle
spin configuration {Si}, also known as the state of the
system, is given by:

E = −1

2

N∑
n=1

N∑
m=1

JnmSnSm. (8)

In casting this coupled electrical resonator system in the
form of the Ising problem, we note that there are only
two stable states for our subharmonic resonators (with
responses at even or odd periods of the driver), as ex-
plained previously. These are associated with spin-up
and spin-down. However, transient resonator behavior
can be described by superpositions of these. We asso-
ciate these superpositions with angles that differ from 0
and π; for instance, a state that is an equal superpo-
sition of the even and odd states would be reasonably
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associated with an angle of π/2. Thus, we keep track of
each oscillator’s response both at even and odd periods
of the driver, A and B respectively, and from the ratio
of these we compute an angle, θn(t) = 2 arctan(A/B)
at each measurement time, t. The energy formula then

takes the form,

E = −1

2

N∑
n=1

N∑
m=1

Jnm cos(θn − θm). (9)
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