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ASYMPTOTIC DYNAMICS OF HIGHER-ORDER LUMPS IN THE
DAVEY-STEWARTSON II EQUATION
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1College of Science, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P. R. China
2Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515, USA

3Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China

Abstract. A family of higher-order rational lumps on non-zero constant background of Davey-
Stewartson (DS) II equation are investigated. These solutions have multiple peaks whose
heights and trajectories are approximately given by asymptotical analysis. It is found that
the heights are time-dependent and for large time they approach the same constant height
value of the first-order fundamental lump. The resulting trajectories are considered and it is
found that the scattering angle can assume arbitrary values in the interval of (π2 , π) which is
markedly distinct from the necessary orthogonal scattering for the higher-order lumps on zero
background. Additionally, it is illustrated that the higher-order lumps containing multi-peaked
n-lumps can be regarded as a nonlinear superposition of n first-order ones as |t| → ∞.

Keywords: Davey-Stewartson II equation, Darboux transformation, Lump, Asymptotic analysis.

1. Introduction

In this paper we consider the Davey-Stewartson (DS) II system, which was first derived by
A. Davey and K. Stewartson to model water waves with weak surface tension [1]. This can also
be considered as a long wave limit of Benney-Roskes equation [2] of the form:

iut + uxx − uyy + (2κ|u|2 + S)u = 0,

Sxx + Syy = −4κ(|u|2)xx, κ = ±1,
(1)

where u is the amplitude of a surface wave packet and S characterizes the mean motion gen-
erated by this surface wave. A recent discussion of the derivation of such models and their
multiscale expansion connections can be found in the book of [3]. Apart from the realm of
water waves, relevant models can be found to be relevant in other physical fields, such as non-
linear optics [4–6], plasma physics [7–9] and ferromagnets [10]. The system is integrable in that
it admits Lax pair (see Eqs.(6.1.2-6.1.3) in Ref. [11]) and can be solved via inverse spectral
transformation with the help of the so-called ∂̄ methods [12]. With regard to the solutions to
DS II Eq. (1), the defocusing case (κ = 1) only admits line solitons, but does not possess lump
solutions, as proved in Ref. [13]. Consequently, we limit our attention to the focsuing case
(κ = −1) to derive higher-order lumps and analyze their dynamics.

Lumps, as a class of rational soltion solutions, are localized in the all space and travel in
time. An interesting topic in the realm of soliton dynamics (especially, in connection to such
higher-dimensional settings) is to look at the scattering properties of two or more lump solitons
colliding. The simplest type of interaction lumps was first discovered by Manakov et al. in the
Kadomtsev-Petviashvili (KP) equation by employing the dressing method [14]. Subsequently
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Satsuma and Ablowitz [15] used direct and long-wave limit methods to construct classes of
lumps of the KP and DS equations. These solutions feature a trivial interaction, i.e., they consist
of n lumps traveling with distinct asymptotic velocities and their trajectories remain unchanged
before and after interaction (i.e., for large time). In other words, they experience a normal
scattering [16] and correspond to n-simple pole cases. Such interaction lump solutions on zero-
boundary background of DS II were also obtained by Arkadiev, Pogrebkov and Polivanov via
the inverse scattering method [17]. However, if the individual lumps have the same asymptotic
center-of-mass velocities, they undergo anomalous scattering (an infinite phase shift of their
trajectories) with a non-zero deflection angle after a head-on collision. These correspond to
higher-order poles [18–20].

Many authors have also used different methods to study higher-order lumps of KP-I previ-
ously [16, 22–29]. Gorshkov et al. [16] reported a second-order lump solution which describes
the nontrivial interaction and anomalous scattering of two lumps, which defied the paradigm
of solitons as non-interacting entities. Ablowitz et al. [20] used the inverse scattering trans-
formation and binary Darboux Transformation (BDT) to construct higher-order lumps that
include the solution of [16] as a special case. They found that when t runs from −∞ to 0, these
n lump peaks first attract each other and overlap, after which time they experience a large
angle scattering, then again separate into n peaks as t → +∞. Other integrable equations
such as the Boussinesq equation [30, 31], the 2 + 1-dimensional NLS equation [32, 33], 2 + 1-
dimensional asymmetric Nizhnik-Novikov-Veselov system [34] and the 2 + 1-dimensional chiral
equation [35,36] have also been found to feature similar solution structures. In Refs. [24,27–29],
the authors further found that the higher-order lumps split into a certain number of funda-
mental ones whose relative spatial separation grows in proportion to |t|q where 1

3
≤ q ≤ 1

2
as

|t| → ∞.
However, up to now, the asymptotic dynamics and scattering phenomena of the higher-order

lumps of DS II equation were studied, to our knowledge, on a vanishing background. Mañas
and Santini studied a large class of higher-order lumps on the zero background of the DS II
equation with the use of a Wronskian scheme [37] and later different groups [38,39] also used the
inverse scattering method to construct such rational solutions. They behave highly nontrivially
upon interaction (a head-on collision results in a orthogonal scattering). A natural question
arises whether there exist novel lumps of DS II equation which feature anomalous scattering
phenomena and scatter with non-orthogonal angle after collision. To this end, we need to
construct a family of new rational lump solutions of DS II on a non-zero background and to
explore their interactions which is a focal point of the present work.

The Darboux transformation (DT) has been used successively to obtain soliton, breather
and rogue wave solutions in the last several years [40–52]. Given its earlier success, we utilize
this method herein to construct higher-order rational lump solutions on non-zero constant
background for DS II equation. To realize this goal, first we need to solve the Lax pair equations
to find a hierarchy of solutions, which are used to construct more general DT. Indeed, one of our
key results consists of the confirmation of the feature that arbitrary order Taylor coefficients of
the fundamental eigenfunction (the usual exponential solution to Lax pair) all satisfy Lax pair
equations with the same plane wave seeding solution.

Motivated by the above results, we shall concentrate on the following results.

• Beginning with the plane wave seeding solution, a hierarchy of new eigenfunctions
generated by these Taylor coefficients of a usual exponential solution to the Lax pair,
which are used to generalize the n-fold DT.
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• Apart from the π
2

scattering occurring in collision between lumps [37, 38], we find a
family of higher-order lumps on nonzero background of the DS II equation where the
scattering angle can be an arbitrary constant in the interval of (π

2
, π). The anomalous

scattering and the time evolution process are illustrated by analyzing the approximate
asymptotic formula of these lumps’ trajectories.
• The approximate heights of these lump peaks evolve in time and approach the maximum

value of the first-order fundamental lump as |t| → ∞, which demonstrates how the nth-
order lumps constitute a superposition of n distinct peaks.

The rest of this paper is organized as follows. In Section 2, we begin with the plane wave
seeding solution, and establish that the Taylor coefficients of the fundamental eigenfunction all
satisfy Lax pair equations. In Section 3, the rational lump solutions up to the third-order are
obtained by using DT, and their dynamical properties are studied. Our conclusions, as well as
some potential directions of future study are given in the final Section.

2. Eigenfunctions and Darboux transformation

The DS II Eq. (1) admits the following Lax pair equations [11]

Ψy = JΨx + UΨ, Ψt = 2JΨxx + 2UΨx + VΨ, (2)

with a constant diagonal matrix J =

 i 0

0 −i

, and two potential matrices

U =

 0 u

v 0

 , V =

 (w + iQ)/2 ux − iuy

vx + ivy (w − iQ)/2

 . (3)

Here, the vector Ψ = (ψ, φ)T (T denotes transpose), the potentials u, v = −u∗ ∈ C, and the
field Q = 2κ|u|2 + S ∈ R, are functions of the three independent variables x, y, t.

In this work, we restrict our attention to the plane wave seeding solution, i.e.,

u = a exp
[
i(bx+ cy + dt)

]
, v = −a exp

[
− i(bx+ cy + dt)

]
, Q = b2 − c2 + d, (4)

with a, b, c, d ∈ R and assume that the solution of the Lax pair is in the form of the following
exponential function

ψ = a1 exp
[
i(b1x+ c1y + d1t)

]
,

φ = a2 exp
[
i(b2x+ c2y + d2t)

]
,

(5)

where ak ∈ R and bk, ck, dk ∈ C (k = 1, 2). Insertion of this expression into the Lax pair (2),
results in the parameters of the above fundamental eigenfunction Ψ = (ψ, φ)T (column vector
solution to Lax pair) satisfying:

a2 =
(b1 + ic1)a1

a
, c±1 =

c+ ib

2
± Ξ

2
,

d±1 = b2 − 2bb1 +
d

2
± (−ib+ c+ 2ib1)Ξ

2
,

b2 = b1 − b, c2 = c1 − c, d2 = d1 − d,

Ξ =
√

4a2 + c2 − (b− 2b1)2 + 2ic(b− 2b1).

3



For the sake of convenience, without loss of the generality of the possible dynamical behaviors
for DS II equations, in what follows, we always select b = c = d = 0, in which case the seeding
solution becomes

u = −v = a, Q = 0, (6)

and the exponential eigenfunction (5) reduces to

ψ± = exp
[
ib1x±

√
a2 − b21(iy − 2b1t)

]
,

φ± =
b1 ±

√
a2 − b21i
a

exp
[
ib1x±

√
a2 − b21(iy − 2b1t)

]
.

(7)

By performing a Taylor expansion for the above exponential eigenfunction around the point
b1 = λ = α + iβ where α and β are real constants and satisfy some constraints as seen in
Remark 1, we have the power series:

ψ(b1 = λ+ ε) = ψ[0] + ψ[1]ε+ ψ[2]ε2 + · · ·+ ψ[N ]εN +O(εN+1),

φ(b1 = λ+ ε) = φ[0] + φ[1]ε+ φ[2]ε2 + · · ·+ φ[N ]εN +O(εN+1),
(8)

where ψ[k] = 1
k!
∂kψ
∂bk1
|b1=λ, φ[k] = 1

k!
∂kφ
∂bk1
|b1=λ, k = 0, 1, 2, · · · , N and ε > 0 is an infinitesimal

constant.

Remark 1. To obtain higher-order lumps of the DS II equation, the parameters α and β satisfy
that α is arbitrary when β 6= 0, or α > a when β = 0. In our paper, we focus on the case
α = 0, β 6= 0 below.

Remark 2. In what follows, since the derivation of the eigenfunction components ψ and φ with
respect to the parameter variable b1 results in the singularity of the denominator (the denom-

inator shall contain
√
a2 − b21), we avoid the degenerate case scenario by assuming hereafter

that α = 0, β 6= 0 .

Remark 3. Assume that (ψ, φ)T solves the Lax pair (2) with the seeding solution u = −v =
a,Q = 0. By performing a Taylor expansion as in Eq.(8), the arbitrary order Taylor coefficients
(ψ[k], φ[k])T are solutions to Lax pair with u = −v = a,Q = 0. Based on the special seeding
solution u = −v = a (irrespectively of the expansion point b1 6= a as interpreted in Remark 1)
and the analyticity of the eigenfunction Ψ (see Eq. (7)), one can conclude that all derivatives
of Ψ with respect to variable b1 satisfy the linear Lax pair Eq. (2) with u = −v = a. Its Taylor
coefficients Ψ[k] = (ψ[k], φ[k])T as above Eq. (8) are also solutions to the Lax pair Eq. (2) with
the same seeding solution u = −v = a.

Remark 4. We just consider the case of (ψ+, φ+)T , and for simplicity, we still use (ψ, φ)T

instead of (ψ+, φ+)T below. For the case with (ψ−, φ−)T superscripts, the same dynamics of the
solutions are obtained.

Remark 3 implies that there exists a hierarchy of eigenfunctions composed of Taylor coeffi-
cients for the same seeding solution. Based on the conclusion, the nth-order rational solution
of the DS II equation generated by the n-fold DT (Eq. (49) in Ref. [40]) is generalized in the
following Theorem.

Theorem 1. Given the seeding solution u = −v = a and choosing n distinct Taylor coefficients
Ψ[kj ] = (ψ[kj ], φ[kj ])T (kj = 1, 2, · · · , n) as eigenfunctions, then the new nth-order rational

4



solution of DS II equation (1) is given by

u[n] = a+ 2i
δ2
δ1

(9)

where

δ1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂n−1x ψ
[k1]
1 · · · ∂n−1x ψ

[kn]
n ∂n−1x φ

[k1]∗
1 · · · ∂n−1x φ

[kn]∗
n

∂n−2x ψ
[k1]
1 · · · ∂n−2x ψ

[kn]
n ∂n−2x φ

[k1]∗
1 · · · ∂n−2x φ

[kn]∗
n

...
...

...
...

...
...

ψ
[k1]
1 · · · ψ

[kn]
n φ

[k1]∗
1 · · · φ

[kn]∗
n

∂n−1x φ
[k1]
1 · · · ∂n−1x φ

[kn]
n −∂n−1x ψ

[k1]∗
1 · · · −∂n−1x ψ

[kn]∗
n

∂n−2x φ
[k1]
1 · · · ∂n−2x φ

[kn]
n −∂n−2x ψ

[k1]∗
1 · · · −∂n−2x ψ

[kn]∗
n

...
...

...
...

...
...

φ
[k1]
1 · · · φ

[kn]
n −ψ[k1]∗

1 · · · −ψ[kn]∗
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and δ2 is the n+1 row of δ1 replaced by a row vector η=(∂nxψ

[k1]
1 , · · · , ∂nxψ

[kn]
n , ∂nxφ

[k1]∗
1 , · · · ∂nxφ

[kn]∗
n ).

Remark 5. Comparing with the n-fold DT (see Eq.(49) in Ref. [40]), we use here the Taylor
coefficients as new eigenfunctions in order to construct a variety of solutions of DS II.

3. The higher-order lump solutions

For the DS II equations, under certain parameter restrictions, multi-lump solutions have
been obtained in [15] on nonzero background. Later, M. Mañas et al. employed a Wronskian
scheme and M. Ablowitz et al. employed the inverse scattering transformation and Laurent
coefficients to study the lump solutions on top of a zero background [37,38]. They have found
that some lumps described a non-trivial interaction, in other words, after a front collision, these
lumps underwent scattering with a π

2
scattering angle. In the current work, we shall investigate

higher-order lumps of the DS II equation on top of a nonzero constant background and show
that they possess novel scattering where the scattering angle can be in the interval of (π

2
, π).

A: the first-order fundamental lump
In this part, without loss of diversity of dynamical behaviors of lump solutions, for simplicity,

we choose the pure imaginary expanding point λ = iβ in Eq. (8), i.e., α = 0, and consider the
following new moving coordinate frame

X = x, Y = y − (4β +
2a2

β
)t. (10)

The two eigenfunction components are given by the first-order Taylor coefficients

ψ1 = ψ[1] =
(iMX + βY )e

i(iβ2X+2M3t+βMY )
β

M
,

φ1 = φ[1] =
(M + β)(1−MX + iβY )e

i(iβ2X+2M3t+βMY )
β

Ma
,

(11)

5



with M =
√
a2 + β2. Then, insertion of (ψ1, φ1)

T = (ψ[1], φ[1]) into the one-fold DT, Eq. (9)
with parameters n = 1, k1 = 1 yields a first-order fundamental lump solution

u[1] = a
[
1 +

−1 + 2iβY(
MX − M+β

2M

)2
+ a2

4M2 + β2Y 2

]
. (12)

It was first obtained by Satsuma and Ablowitz by taking a “long wave” limit of the correspond-
ing one-soliton solution constructed by the direct method [15]. The solution is stationary in

the moving coordinate (X, Y )- frame. It has a single maximum peak (3M2+β2)
a2

|a| at (M+β
2M2 , 0)

and two local minima 0 at (M+β
2M2 ±

√
3M2+β2

2M2 , 0). Recalling the transformation connecting the
moving frame to the rest one ((x, y)-plane), this first-order lump travels with a uniform velocity

(0, 4β + 2a2

β
). Its dynamics is illustrated in the (X, Y )-plane in Fig. 1.

|u[1]|

(a) (b)

Figure 1. (Color online) (a) The first-order lump of the DS II equation with

parameters a = 1, β = 1
2
,M =

√
5
2

, (b) the Y -crossection showing one maximum
and two minima.

Remark 6. In the above section, when λ is real and |λ| ≤ |a| , we observe that the line rogue
wave solutions of DS II are obtained. On the other hand, we note that when λ is a complex
constant (or pure imaginary constant) and |λ<| > |a| (or λ = iβ) where λ< denotes the real
part of λ, the lump solutions of DS II are derived, i.e., the character of the solutions changes
depending on the specific selection of λ within the complex plane.

Remark 7. In what follows, we shall set a > 0 and β > 0 without loss of generality.

B: the second-order non-fundamental lump
This part is devoted to using one- and two-fold DT to construct two second-order non-

fundamental lump solutions and study their dynamical properties. For the sake of convenience,
the discussion is considered in the moving coordinate frame (10) below.
Case 1 the second-order lump using one-fold DT

In this case, choosing the following set of parameters in Eq. (9)

λ1 = iβ(β > 0), n = 1, k1 = 2, (13)

6



then the one-fold DT yields a second-order non-fundamental lump solution. Because of the
cumbersome expression of this solution, we just provide here the corresponding eigenfunctions

ψ[2] =
i(2M2β2XY − 2M4t+ 6M2β2t−M2βY + β3Y + iM3β2X2 − iMβ3Y 2)e−β

2X+i(2M3t+MβY )

2M3β
,

φ[2] =
(M + β)i

a
ψ[2] +

[
iM2X + (βY − i

2
)M + iβ

2

]
(M + β)e−β

2X+i(2M3t+MβY )

M3β
.

(14)
Distinctly from the first-order case, the two eigenfunction components are dependent on t, so
the solution is non-stationary in the moving coordinate frame. When |t| → ∞, it contains
two separated individual lump peaks, while in the intermediate times, the two lump peaks
fuse together. In order to analyze their interaction process, their heights and the traveling
paths of the two local maxima for the two lump peaks need to be determined. Since the exact
analytical formulas are very complicated to obtain, we make the following reductions. Taking
into consideration the expression

u[2] = a− 2i
ψ[2]φ

[2]∗
X − φ[2]ψ

[2]∗
X

|ψ[2]|2 + |φ[2]|2
, (15)

the maximum of |u[2]| shall occur near the minimum of the denominator which is approximately
at the zeros of the leading terms of this polynomial part.

Solving |ψ[2]| = 0, when β > 0,M2 − 3β2 = a2 − 2β2 > 0, for large time |t|, we identify the
two lump peaks whose maximum asymptotic coordinates are given by

X = ±
√
−Mβ(M2 − 3β2)t

Mβ
+

a2

4βM2
+
M + β

2M2
, Y = −M

β
X +

M + β

2Mβ
, t→ −∞, (16)

and

X = ±
√
Mβ(M2 − 3β2)t

Mβ
+

a2

4βM2
+
M + β

2M2
, Y =

M

β
X − M + β

2Mβ
, t→ +∞, (17)

with M =
√
a2 + β2. It is confirmed by direct comparison with the numerical profiles of

the exact solutions that these approximate asymptotic expressions adequately reflect the lump
center positions for all times as shown in Fig. 2.

Before studying the maximum amplitudes of the two lumps, we take a = 1, β = 1
2
,M =

√
5
2

.

Substituting the asymptotic coordinates (16) and (17) into the solution u[2] (15), the amplitude
of one lump is larger than 4 and approaches 4, whereas for the other one, the amplitude is less
than 4 and approaches 4 as t → −∞. The same conclusion holds as t → +∞, as shown in
Fig. 3. Notice there is a slight deviation of our above asymptotic expressions from the limiting
value, given their approximate nature.

From Eqs. (16) and (17), the asymptotic trajectories define two straight lines with different
slopes for t→ ±∞. More concretely, the asymptotic line for t→ +∞ is obtained from the line
for t→ −∞ by reflection with respect to the X-axis, and the angle between the two asymptotic
lines is denoted by Θ. Since the two lump peaks first experience a head-on collision henceforth
undergoing a scattering process, according to the coordinates (16) and (17), the scattering angle
Θ is given by

cos Θ = − a2

a2 + 2β2
. (18)

7



Figure 2. (Color online) The time evolution of the second-order lump of
Eq. (15). The contour plots of these lumps at distinct times is plotted using
the exact analytical solution (15) by leveraging the eigenfunction of Eq. (14),
and the two dot straight lines denote the two asymptotic lines given by Eqs. (16)
and (17).

(a) (b)

Figure 3. (Color online) (a) the two maximum amplitude values of the two
lumps from t = −10000 to t = −10, (b) the two maximum amplitude values of
the two lumps from t = 10 to t = 10000.

Here cos Θ reaches to the minimum value −1 as a → ∞ and attains a maximum value 0 as
a goes to 0; in other words, the scattering angle Θ ∈ (π

2
, π). Fig. 4 shows the traveling paths

of the two lump peaks before and after collision. It is seen that the two lumps located at the
second and fourth quadrants first accelerate and approach each other along a straight line.
After a front collision and undergoing a large scattering angle, they decelerate and move away
each other along the other straight line (among the ones given above) and, finally, they move
along the first and third quadrants. Also, the approximate estimations of the center positions
are nearly coincident with the exact ones illustrated by the density plots.

Reverting back to the rest coordinate (x, y)- frame, from Eq. (10), the peak locations are

given by (x, y) = (X, 2a
2t+4β2t+βY

β
) when |t| � 0. The corresponding coordinate y satisfies the

following equations,

βy =(2a2 + 4β2)t−Mx+
M + β

2M
, t→ −∞,

βy =(2a2 + 4β2)t+Mx− M + β

2M
, t→ +∞,

(19)

8



(a) (b) (c)

Figure 4. (Color online) Location of the two pulses: (a) incoming (t = −100)

and (b) outgoing (t = 100) with parameters a = 1, β = 1
2
,M =

√
5
2

. (c) The
nontrivial collision process of before (t → −∞) and after (t → +∞) scattering
and the angle is indicated, and when |t| = 100, these two lumps nearly totally
locate at the two straight lines. In panel (c), a schematic of the incoming and
outgoing wave angles is provided.

where t can given by solving Eqs. (16) and (17), i.e.,

|t| =
√
Mβ

M2 − 3β2

[
x− a2 + 2β(M + β)

4βM2

]2
(20)

with M > 0, β > 0 and M2−3β2 > 0 when a2 > 2β2. Combining Eqs.(19) and (20), it is found
that the two lumps locate at two parabolas in the (x, y)-plane, which is illustrated in Fig. 5.

Figure 5. (Color online) The second-order lump peak trajectories with param-

eters a = 1, β = 1
2

and M =
√
5
2

in the xy-plane. The blue parabolic curve is
given by the first formula of Eqs. (19) and (20) , the red parabolic curve is given
by the second formula of Eqs. (19) and (20), and the black points describe the
peak coordinates.

9



Case 2 the second-order lump using two-fold DT
To compare with the second-order lump in Case 1, we choose the following set of parameters

in Eq. (9)

λ2 = λ1 = iβ, n = 2, k1 = 1, k2 = 2. (21)

A new second-order lump is obtained by using the two-fold DT. For large time t, this solution
features a generally opposite time evolution process in comparison to the Case 1 above, that
is, when t → −∞ the two lump peaks locate at the first and third quadrants whereas they
move to the second and fourth quadrants as t → +∞. To demonstrate this phenomenon, the
asymptotical trajectories of these two lump peaks are determined. Similarly to our discussion
above, the approximate coordinates of the maxima of two lumps are given by

X = ±
√
−Mβ(M − 3β2)t

Mβ
− a2

4M2β
+
M + β

2M2
, Y =

M

β
X − M + β

2Mβ
, t→ −∞, (22)

and

X = ±
√
Mβ(M2 − 3β2)t

Mβ
− a2

4M2β
+
M + β

2M2
, Y = −M

β
X +

M + β

2Mβ
, t→ +∞. (23)

where M =
√
a2 + β2 and

√
Mβ(M2 − 3β2)|t| is well-defined as a2 > 2β2. In this case, the

scattering angle is given by

cos θ = − a2

a2 + 2β2
(24)

This asymptotic dynamics is illustrated in Fig. 6. It is clearly seen that these approximate
estimations are in good agreement with the exact solution illustrated by the density plot.
Furthermore, comparing Fig. 6(c) with Fig. 4(c), it is also found that the second-order lump
obtained by using the one-fold DT evolves effectively in a time-reversed way in comparison
with the one obtained by using two-fold DT (see also Eqs.(16) and (23) and Eqs.(17) and (22),
respectively).

Remark 8. Though the two scattering angles in Case 1 and Case 2 are the same (see Eqs.(18)
and (24)), the directions of incoming and outgoing waves are opposite. Also, the scattering
angle is not necessarily normal, which is a central difference of the results herein from the one
of two lumps for DS II equation on zero background [37, 38].

C: the non-fundamental third-order lump
The third-order lump and its asymptotics can be studied in the same manner as in the second-
order lump case, and for this reason we omit here some of the technical details. To illustrate
its dynamical evolution process and asymptotic heights, the locations of the three lump peaks
shall be given.
Case 3 the third-order lump using the one-fold DT
With the choice of the following set of parameters in Eq. (9):

λ1 = iβ, n = 1, k1 = 3, (25)

a third-order lump u[3] is obtained by using one-fold DT. The following eigenfunctions are used,

ψ[3] = − 1

6M5β
(ψ

[3]
Re + iψ

[3]
Im)eξ, φ[3] =

−i(M + β)

M5βa
(φ

[3]
Re + iφ

[3]
Im)eξ, (26)

10



(a) (b) (c)

Figure 6. (Color online) Location of the two pulses: (a) incoming (t = −100)

and (b) outgoing (t = 100) with parameters a = 1, β = 1
2
,M =

√
5
2

. (c) The
nontrivial collision process of before (t = −∞) and after (t = +∞) scattering
and the angle is indicated. When |t| = 100, these two lumps are practically
located at two straight lines. The scattering angle is also indicted by Θ.

with

ξ = −β2X + i(MβY + 2M3t), M =
√
a2 + β2,

ψ
[3]
Re = 3β2M4X2Y − β4M2Y 3 − 6M6tX + 18M4β2tX − 3βM4XY + 3β3M2XY

− 12βM4t+ 12β3M2t− 3β2M2Y + 3β4Y,

ψ
[3]
Im = Mβ(M4X3 − 3β2M2XY 2 + 6M4tY − 18β2M2tY + 3M2βY 2 − 3β3Y 2),

φ
[3]
Re = ψ

[3]
Re − 6β2M3XY + 6M5t− 18M3β2t+ 3βM3Y + 3β2M2Y − 6β3MY,

φ
[3]
Im = ψ

[3]
Im − 3βM4X2 + 3M2β3Y 2 + 3M3βX − 3β2M2X + 3Mβ2 − 3β3.

For large t, this solution is split into three lumps whose asymptotic coordinates of the maxima
are given by

X1,2 = ±
√

3Mβ(M2 − 3β2)t

Mβ
+ ∆ +

M − β
3Mβ

, Y = −M
β
X1,2 +

M + β

Mβ
+

a2

4Mβ
,

X3 = −M + β

3M
, Y3 = −M

β
X3 −

M + β

2Mβ
− a2

3Mβ
,

t→ −∞,

(27)
and

X1,2 = ±
√
−3Mβ(M2 − 3β2)t

Mβ
+ ∆ +

M − β
3Mβ

, Y =
M

β
X1,2 −

M + β

Mβ
− a2

4Mβ
,

X3 = −M + β

3M
, Y3 =

M

β
X3 +

M + β

2Mβ
+

a2

3Mβ
,

t→ +∞,

(28)

where ∆ = 3(M+β)(Mβ+M−β)
4M2β

and when a2 > 2β2 the quantity
√

3Mβ(M2 − 3β2)|t| is well

defined. The dynamics of this third-order lump is illustrated in Fig. 7. Fig. 8 shows that
the exact (density figures) and approximate peak locations (red, blue and black points) are
generally in good agreement for large |t|. When t � 0, the three lump peaks are separated
and two of them are located at the second and fourth quadrants. Subsequently they approach

11



and eventually overlap with the middle one. As time progresses, the three lump peaks again
split into three distinguishable peaks, with the middle one remaining fixed while the other two
peaks separate from each other and move to the first and third quadrants. Note that the two
peaks (located at the first and third quadrants (or the second and fourth quadrants) move
along two distinct straight lines but their slopes are same with the corresponding second-order
lump obtained by using one-fold DT (see also Eqs. (16)–(17) and (27)–(28)). Furthermore, the

(a) (b) (c) (d)

Figure 7. (Color online) The time evolution process of the third-order lump

obtained by using the one-fold DT with parameters a = 1, β = 1
2

and M =
√
5
2

at
distinct time. (a) t = −200; (b) t = −10; (c) t = 0; (d) t = 200.

(a) (b)

Figure 8. (Color online) Location of the three lump peaks in Case 3: (a) t =
−200, (b) t = 200. The black point represents the location of the fixed lump; the
red point denotes the approximate coordinates of one lump, and the blue point
denotes the approximate coordinates of the other lump.

approximate heights of the three lump peaks are also calculated by substituting the asymptotic
coordinates into the expression of the third-order lump solution, as illustrated in Fig. 9. It is
seen that (i) each peak height approaches the asymptotic value 4 where the minor difference
comes from the approximate coordinate estimate (similarly to what was discussed before) of
lump peaks; (ii) the peak height (red point) grows as time evolves whereas the other one (blue
point) decreases as t � 0, but the peak height (red point) decreases as time evolves whereas
the other one (blue point) grows for t � 0. Moreover, the middle one (black point) generally
remains unchanged during the evolution process.

12



(a) (b)

Figure 9. (Color online) The evolution of the heights of the three lump peaks
over time: (a) from t = −100000 to t = −200, (b) from t = 200 to t = 100000.
The black line represents the height of the fixed lump; the red line denotes the
height of second lump, and the blue line denotes the height of the third lump.

Remark 9. The trajectories of the three lump peaks in the xy-plane can be obtained using (10),
(27) and (28) as in the two-lump case but are not shown here.

Case 4 the third-order lump using three-fold DT
Comparing with the third-order lump obtained by using the one-fold DT in Case 3, in the

present case, we shall use the three-fold DT to construct a similar third-order lump, but which
possesses a generally “opposite” time evolution process. That is, when t � 0 two lumps are
located at the first and third quadrants whereas they move to the second and fourth quadrants
as t� 0, with the middle lump remaining still during the entire time evolution.

Choosing the following set of parameters in Eq. (9)

λ1 = λ2 = λ3 = iβ, n = 3, k1 = 1, k2 = 2, k3 = 3, (29)

a third-order lump ũ
[3]
lump of DS II is obtained by using three-fold DT. Since the expression of this

solution is lengthy and complex, once again we leverage the analytical means of approximating
the trajectories and heights of the three lump peaks similarly to previous cases. Indeed, we
omit lengthy details but only focus on some relevant results for the time evolution of the lump
peaks. For large t, the approximate coordinates of these three lumps are given by

X1,2 = ±
√
−3Mβ(S2 − 3β2)t

Mβ
−∆ +

M − β
M2β

, Y =
M

β
X1,2 +

M + β

Mβ
− 3a2

2Mβ
,

X3 = ∆, y =
M

β
X3 −

2(M + β)

M2β
,

t→ −∞,

(30)
and

X1,2 = ±
√

3Mβ(S2 − 3β2)t

Mβ
−∆ +

M − β
M2β

, Y = −M
β
X1,2 −

M + β

Mβ
+

3a2

2Mβ
,

X3 = ∆, y = −M
β
X3 +

2(M + β)

M2β
,

t→ +∞,

(31)
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where ∆ = 3(M+β)(Mβ+M−β)
4M2β

and when a2 > 2β2 the quantity
√

3Mβ(M2 − 3β2)|t| is well

defined. When |t| = 200 the exact analytical solution and approximate coordinates (30) and
(31) are plotted in Fig. 10. It is seen that when t < 0 the two lumps are located in the first and
third quadrants whereas they move to the second and fourth quadrants after the collision, which
is confirmed by Fig. 10. By a close observation, we find the evolutions of profile in Figs. 8 and 10
are opposite approximately along time t. For example, Fig. 8(a) for t=-200 is corresponding to
Fig. 10(b) for t = 200. But, comparing with Eqs.(27) and (31), one can find that for the same
|t|, these peak coordinates in the two cases are not totally uniform. In other words, the modulus
of the third-order lump u[3] with parameters (25) is not equal to that one of the third-order

lump ũ[3] with parameters (29) at the same |t| (i.e., |u[3](x, y, t)| 6= |ũ[3](x, y,−t)|). The heights
of three peaks can be computed by inserting the approximate coordinates into the expression
of this solution, hence we do not repeat this step here.

(a) (b)

Figure 10. (Color online) Location of the three lump peaks in Case 4: (a)
t = −200, (b) t = 200. The black point represents the location of the fixed lump;
the red points denote the approximate coordinates of the second lump, and the
blue points denote the approximate coordinates of the third lump.

Remark 10. These cases further demonstrate that the scattering process does not necessarily
occur at normal angles for the multi-lump solutions of the DS II equation, a key finding of the
present work.

4. Conclusion and Discussion

In this paper, we showed the asymptotic properties of the newly obtained family of the
higher-order lump solutions for the DS II equation in the moving coordinate frame (10). For
the higher-order lump, when |t| → ∞ we find that it splits into multi-peak lumps whose heights
evolve with time and approach the same constant value corresponding to that of the simple
first-order fundamental lump, and the peak trajectories have a time dependence that grows as√
|t|, a feature similar to what has been found for the KP I equation [18–20] and for higher-

order lumps on zero background of the DS II equation [38]. Nevertheless, they define straight
lines with different slopes for t → ±∞. The lumps are found to collide head-on undergoing a
scattering process, and the scattering angle Θ ∈ (π

2
, π) is identified herein as being different from

the higher-order lump on the zero background case where the scattering must be orthogonal.
Besides, though we just discussed solutions up to the third-order, nth-order lumps can be
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obtained by using the n-fold DT (9). Generalizing the results obtained herein to arbitrary n
would be an interesting topic for further study.

Our results concerning the dynamics for rational solutions of DS II can be a basis for cor-
responding observations in areas of application where the DS II is relevant, including most
notably in nonlinear optics and plasma physics, among others. The method of construction
and asymptotical analysis of exact solutions of the DS II in this paper can also be widely used
to other 2+1 dimensional integrable systems, such as the KP equation, the 2 + 1 dimensional
Fokas equation, etc. Indeed, this prompts theoretical, numerical and even experimental studies
to consider the angle of interaction of lump-like solutions that can arise in settings that bear
such solutions.
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