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Abstract 

Elastic topological states have been receiving increased intention in numerous scientific and 

engineering fields due to their defect-immune nature, resulting in applications of vibration control 

and information processing. Here, we present the data-driven discovery of elastic topological states 

using dynamic mode decomposition (DMD). The DMD spectrum and DMD modes are retrieved 

from the propagation of the relevant states along the topological boundary, where their nature is 

learned by DMD. Applications such as classification and prediction can be achieved by the 

underlying characteristics from DMD. We demonstrate the classification between topological and 

traditional metamaterials using DMD modes. Moreover, the model enabled by the DMD modes 

realizes the prediction of topological state propagation along the given interface. Our approach to 

characterizing topological states using DMD can pave the way towards data-driven discovery of 

topological phenomena in material physics and more broadly lattice systems. 

 

 

 

 

 

 



I. INTRODUCTION 

Wave propagation is a typical spatiotemporal phenomenon, which is ubiquitous across science and 

engineering, especially in fluid dynamics [1,2], geoscience [3,4], plasmas [5], optics [6], atomic 

and condensed matter physics [7], as well as the more recent field of metamaterials [8–10]. 

Topological metamaterials have attracted considerable attention not only because of their 

theoretical significance but also for practical purposes related to materials applications. Wave 

propagation in elastic topological metamaterials has prominent applications, such as information 

transmission and vibration control, due to the topological protection [11–16]. 

 

The computations involving the propagation of associated waveforms rely mostly on numerical 

discretization, e.g., finite element and discrete element methods, rather than analytic closed-form 

solutions which are rarely available in exact form. This naturally generates high-dimensional 

representations of the solution to accurately reflect the underlying dynamics in both time and 

space [11,13,14,17]. However, this may occasionally be in contrast with the low-dimensional 

nature of the underlying dynamics and poses a computational challenge, especially in higher-

dimensional settings. Thus, while theoretical modeling and numerical calculation of elastic 

topological states have been extensively reported, their data-driven analysis and modeling remains 

far less explored. It is the purpose of the present work to offer a step forward towards filling that 

void. 

 

Reduced-order models offer representations of the spatiotemporal wave propagation based on the 

inherently low-rank structure of the simulation data. Within the palette of relevant techniques, 

dynamic mode decomposition is a powerful dimensionality reduction method to create reduced-



order models which identifies spatiotemporal coherent structures from high-dimensional data [18]. 

Besides, it offers a modal decomposition, where each mode contains spatially correlated structures 

with the same linear behavior in time, such as oscillations at a certain frequency with growth or 

decay. Compared with one of the most commonly used dimensionality reduction methods, proper 

orthogonal decomposition, DMD demonstrates not only dimensionality reduction, but also a 

reduced model that accounts for how these modes evolve over time. Lately, DMD has been 

successfully applied to fluid dynamics [18,19], control [20], robotics [21] and 

neuroscience [22,23]. Hence, developing such an approach for wave propagation in topological 

metamaterials is highly desirable. 

 

Here, we develop a data-driven framework using DMD for identifying interpretable low-

dimensional representations for wave propagation in elastic topological metamaterials created by 

a select mass-spring system example. The low-dimensional spatiotemporal coherent structures of 

topological state propagation in our system are extracted, among which correspond to the 

topological edge states inside the bandgap region. These spatiotemporal coherent structures allow 

for the reconstruction of the topological state propagation. Moreover, we first demonstrate how to 

classify the topological and traditional metamaterials using DMD modes via unsupervised 

clustering. Furthermore, a portion of the data, referred to as the training data, is used to predict the 

future evolution of the topological states of interest along an interface with arbitrary shape. Our 

study provides a computationally tractable data-driven characterization of the relevant states and 

their propagation, paving the way towards the classification and prediction of wave propagation 

in elastic metamaterials. 



Our presentation hereafter will be structured as follows. In section II we will provide a concise 

introduction in the mathematical and computational details of the DMD algorithm (including 

technical modifications to the standard algorithm such as the use of a stacking data matrix 

leveraged herein) and illustrate how it can be used to represent the wave dynamics. In section III, 

we use DMD to distinguish between the classification of the metamaterials as topological or 

traditional, while in section IV, we use the algorithm in order to be able to predict future 

propagation along a topological interface. Finally, in section V, we summarize our findings and 

provide some direction for future study. The appendices offer details about the band structure of 

the physical system under consideration, and about further technical aspects of the DMD 

implementation, such as the DMD spectra and the application of time-delay embedding. 

 

II. CHARACTERIZATION BY DYNAMIC MODE DECOMPOSITION 

To demonstrate DMD on the wave propagation in the elastic topological metamaterial system of 

interest, we first construct the topological valley metamaterials using spring-mass system, which 

is realized by alternating the masses at different sites of the unit cell of a mechanical graphene-like 

lattice [14,17,24,25]. The unit cell contains two different masses 𝑚1 , 𝑚2  and linear spring 

constant 𝑘𝑠𝑝𝑟𝑖𝑛𝑔. The unit cell has four degrees of freedom specified by the displacement of 𝑚1 

and 𝑚1 (𝑈 = [𝑢𝑥
𝑚1 , 𝑢𝑦

𝑚1 , 𝑢𝑥
𝑚2 , 𝑢𝑦

𝑚2]). After periodic boundary conditions are applied on the unit 

cell, the band structure of our elastic metamaterial can be calculated by identifying the dispersion 

relation for wave vectors k within the first Brillouin zone: 

 [𝐷(𝑘) + 𝜔2𝑀]𝑈 = 0 (1) 

Here, 𝜔 denotes the angular frequency of the propagating wave. 𝑀 is the mass matrix and 𝐷(𝑘) is 

the stiffness matrix as a function of Bloch wave vector k. The details are shown in APPENDIX A.  



 

As shown in FIG. 1(a), our system bears a Z-shaped interface which is formed by combining 

metamaterials with two opposite topological phases. In FIG. 1(a), one such interface is formed by 

𝑚1 = 0.8 kg (blue), 𝑚2 = 1.2 kg (red) shown in the bottom, while the other is formed by 𝑚1 = 1.2 

kg (red), 𝑚2 = 0.8 kg (blue) shown in the top, i.e., with the masses flipped. The spring constant is 

fixed to be 105 N/m. The schematic of our elastic metamaterial and band inversion process are 

shown in Appendix A [see, specifically, FIG. 6(a) and FIG. 6(b)]; The projected band structure 

along the wave vector is also illustrated in the Appendix A [see FIG. 6(c)], where topological states 

with two types of pseudospins can be observed inside the bandgap.  

 

The system is excited by an oscillating force with the angular frequency of 400 rad/s at the input 

port of the Z shape interface shown in FIG. 1(a). The masses at the boundaries of the system are 

connected to springs fixed to the wall, i.e., 𝐹⃗𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = −𝑘𝑠𝑝𝑟𝑖𝑛𝑔𝑢⃗⃗, where 𝑢⃗⃗ contains horizontal 

displacement 𝑢𝑥  and vertical displacement 𝑢𝑦 . Because of the topological protection of wave 

propagation, the elastic wave can travel through the sharp bend robustly, the horizontal 

displacement 𝑢𝑥 of which is visualized as the time-series snapshots in FIG. 1(b). We then construct 

the data matrix for DMD by stacking the horizontal displacement 𝑢𝑥 and vertical displacement 𝑢𝑦, 

resulting in a 2n  m matrix shown in FIG. 1(b), where n is the number of masses and m is the 

number of used snapshots over time (n = 2700 and m = 379 for Z-shape interface based on the 

numerical simulations of 758 ms duration with 2 ms time interval). 

 



 

FIG. 1. Setup for simulation and for the numerical DMD implementation. (a) Simulation of wave 

propagation along the Z-shaped interface in a valley topological metamaterial built by means of a 

spring-mass system. Two different unit cells with two different topological phases are shown on 

the two sides. A magnified view of the topological boundary (black line) is shown in the inset. (b) 

Snapshots of wave propagation represented by the horizontal displacement 𝑢𝑥  along Z-shape 

interface at t = 2 ms, 192 ms, 380 ms, 570 ms and 758 ms (with the time evolving from the bottom 

to the top). The data matrix for DMD is organized by stacking horizontal displacement 𝑢𝑥 and 

vertical displacement 𝑢𝑦. 

 

After forming the data matrix, we can construct two 2n  (m  1) submatrices: 

 

𝑋 = [
| | |
𝑥1 𝑥2 ⋯ 𝑥𝑚−1

| | |
]     𝑋′ = [

| | |
𝑥2 𝑥3 ⋯ 𝑥𝑚

| | |
] (2) 

where [
|

𝑥𝑚

|
] =

[
 
 
 
 
 

|
𝑢𝑥𝑚

|
|

𝑢𝑦𝑚

| ]
 
 
 
 
 

 for simplicity of description. 𝑋 and 𝑋′ may be related by a best-fit linear 

operator A that minimizes the Frobenius norm error ‖𝑋′ − 𝐴𝑋‖𝐹  given by: 



 𝑋′ = 𝐴𝑋 ⟹ 𝐴 = 𝑋′𝑋† (3) 

where 𝑋† is the Moore-Penrose pseudo-inverse [26]. Because 2n ≫ m for our systems, so, instead 

of obtaining A directly, we seek for the eigen decomposition of A. After X is decomposed using 

singular value decomposition (SVD) and the proper rank-r truncation is chosen so that 𝑋̃ = 𝑈̃Σ̃𝑉̃𝑇, 

where 𝑈̃ ∈ ℝ2𝑛×𝑟, Σ̃ ∈ ℝ𝑟×𝑟 and 𝑉̃ ∈ ℝ(𝑚−1)×𝑟 are the left unitary matrix, diagonal matrix with 

singular values, and right unitary matrix, respectively, the matrix representation 𝐴̃ can be written 

as: 

 𝐴̃ = 𝑈̃∗𝑋′𝑉̃Σ̃−1 (4) 

where the  denotes the conjugate transpose. The eigen-decomposition of 𝐴̃ results in the matrix 

of eigenvectors 𝑊 and eigenvalues 𝜆, which are the DMD eigenvalues. This further derives the 

corresponding DMD mode 𝜙, which is the column of Φ = 𝑋′𝑉̃Σ̃−1𝑊. 

 

As discussed in Appendix B, the rank-r truncation is chosen to be r = 131 to minimize the 

reconstruction error and also to eliminate the noise in the simulation data. Each DMD mode 𝜙 

corresponds to eigenvalue 𝜆. The temporal dynamics, referring to growth/decay and the frequency 

of oscillation of each DMD mode 𝜙, is reflected through the magnitude and phase of eigenvalue 

𝜆, respectively. In our case, because the raw data is strictly real valued, the decomposition yields 

complex conjugate pairs of eigenvalues and modes.  

 

In FIG. 2(a), the eigenvalues 𝜆 are visualized on the unit circle in the complex plane, suggesting 

the corresponding modes are oscillating with certain frequencies. The frequencies are defined as 

𝜔 = |imag(
log𝜆

∆𝑡
)| and the mode amplitudes are defined as 𝑃 = ||𝜙||2

2, which is the squared 𝐿2-

norm of the DMD modes. FIG. 2(b) gives the DMD spectrum which provides specific spatial 



modes in our system for different frequencies. It is obvious that there is a region with large mode 

amplitudes corresponding to the bandgap region (shaded area). The mode with the largest 

amplitude inside the bandgap region is chosen as the prototypical mode used to visualize the 

motion of our system. The horizontal displacement 𝑢𝑥 is chosen for the description below.  

 

FIG. 2(c) exhibits the magnitude of this most dominant DMD mode of our system, also showcasing 

the interface-involving dynamics. The decaying magnitude from the input along the Z-shape 

interface is due to the constant force excitation at the input. The characteristics of interface states 

present concentrated displacement along the Z-shape interface and rapid decay away from the 

interface. Besides, the DMD modes showcase the fact that the elastic wave can travel along an 

interface featuring bends. Apart from the magnitude, the phases of the DMD mode also reflect the 

important characteristics of our topological valley metamaterials, as shown in FIG. 2(d). The 

distribution of phase along the interface has a certain alignment, where the magnified view around 

the interface clearly shows the phase difference around the corners of the honeycomb, indicating 

specific valley polarization along a certain topological interface. The counterclockwise and 

clockwise phase evolutions are shown on three corners and the other three corners of the 

honeycomb, suggesting the valley pseudospin of the excited valley in our system. The valley 

pseudospin here refers to the phase difference of DMD modes around the corners of honeycomb. 

Note that the other DMD modes inside the bandgap have a similar pattern and it is these modes 

that will be primarily used to reconstruct the dynamical evolution below. 

 

The DMD spectra of wave propagation in topological metamaterials with a straight interface and 

a cross-shaped interface will be further illustrated in Appendix C. Similarities between the DMD 



spectra and modes can be found in topological state propagation along different interfaces 

including the high amplitude inside the bandgap and the topological interface states reflected by 

the DMD modes. This demonstrates the ability of the DMD to robustly discover the nature of 

topological state propagation. 

 

 

FIG. 2. DMD spectrum and DMD modes. (a) Eigenvalues are visualized on the complex plane 

located around the unit circle. (b) The mode amplitude varies as a function of frequency. The 

shading area indicates the bandgap region. (c) The magnitude of the DMD mode with the largest 

amplitude inside the bandgap region. (d) The phase of the DMD mode with the largest amplitude 

inside the bandgap region. The inset shows the magnified view around the interface (black line) 

illustrating the phase difference and valley pseudospin. The black and green arrows show the 

pseudospin up and pseudospin down indicated by the phase evolution around hexagon corners, 

respectively. 

 



Using the extracted DMD modes and corresponding time dynamics, we can reconstruct the wave 

propagation in topological metamaterials using the following expression: 

 𝑋̂ = ΦΛ𝑡−1𝑍 (5) 

where the diagonal entries of Λ  contains DMD eigenvalues and 𝑍 = Φ\𝑥1 . 𝑥1  is the initial 

condition of our system and backslash is to solve the linear system following the MATLAB 

notation. Here, we only use the DMD modes inside the bandgap region (10 pairs of DMD modes) 

and the corresponding eigenvalues to reconstruct the whole process of wave propagation. As 

displayed in FIG. 3(a), several time-series snapshots represent the wave propagation in our system. 

Besides, in FIG. 3(b), we also quantify the reconstruction error as a function of duration calculated 

by 𝐸(𝑡) =
|𝑋(𝑡)−𝑋̂(𝑡)|2

|𝑋(𝑡)|2
, where |∙|2 represents ℓ2-norm that is the square root of the sum of the 

absolute squares of the vector entries. Most relative errors are around 0.97 and oscillating over 

time. The relative error corresponding to the snapshots shown in FIG. 3(a) is indicated by the arrow 

in FIG. 3(b). Although the relative error is rather nontrivial, the wave propagation along the Z-

shape interface can be clearly observed from the FIG. 3(a) and Supplementary video. It 

qualitatively captures the evolution dynamics despite the substantially reduced dimensionality of 

the system, which is visually similar to the original evolution dynamics shown in FIG. 1(b).  

 

DMD can accurately capture the frequency range and characteristics of topological states of elastic 

topological metamaterials. The nature of the valley pseudospin in our valley system can also be 

revealed, suggesting that DMD, functioning as a data-driven method, is able to learn the 

topological nature. Besides, the propagation of topological states can be reconstructed qualitatively 

only by the DMD modes inside the bandgap and the corresponding time dynamics. Note that DMD 

with time-delay embedding has demonstrated the ability of increasing the accuracy of 



reconstruction in several applications [22,23,27–29]. In APPENDIX D and the associated figure, 

we also show the partial decrease of reconstruction error using the augmented data matrix formed 

by shift-stacking the original data matrix. 

 

 

FIG. 3. Reconstruction of propagation of topological states. (a) Snapshots of reconstructed wave 

propagation represented by horizontal displacement 𝑢𝑥 along the Z-shaped interface at t = 2 ms, 

192 ms, 380 ms, 570 ms and 758 ms. (b) The relative error between the ground truth and 

reconstruction as a function of duration. The red arrows indicate the relative error of corresponding 

snapshots in (a).  

 

III. CLASSIFICATION OF TOPOLOGICAL AND TRADITIONAL 

METAMATERIALS 

Compared with the topological metamaterials, traditional metamaterials function by defect states 

that cannot support robust transport of elastic waves [30–33]. Here, we demonstrate how to use 

the extracted DMD modes to classify (and distinguish between) topological and traditional 

metamaterials. The original DMD modes are high-dimensional and thus difficult to classify using 



a classification algorithm. Therefore, the feasible way is to find a feature space to project the DMD 

modes on, resulting in a low-dimensional representation. Specifically, we construct a library of 

DMD modes inside the bandgap from topological metamaterials and traditional metamaterials 𝐿: 

 

𝐿 = [

| | |
𝜙1 𝜙2 ⋯ 𝜙𝑁

| | |

] (6) 

For the purpose of classification, we consider the absolute value of every element of DMD modes 

and denote the resulting matrix as |𝐿|. To simplify this problem, clusters are determined in one-

dimensional principal component space, using the projections of each column of |𝐿| onto the 

proper principal components of |𝐿|: 

 |𝐿| = 𝑈𝐿Σ𝐿𝑉𝐿
∗ (7) 

With this expression yielding the SVD of the matrix |𝐿| and using 

 𝑃 = 𝑈𝑖
𝑇|𝐿| = Σ𝑖𝑉𝑖

𝑇 (8) 

where 𝑈𝑖
𝑇 , Σ𝑖  and 𝑉𝑖

𝑇  are the transpose of the 𝑖𝑡ℎ  column of 𝑈𝐿 , 𝑖𝑡ℎ  singular value and the 

transpose of the 𝑖𝑡ℎ column of 𝑉𝐿, respectively. Note that the transpose of 𝑉𝐿 is the same as the 

conjugate transpose of 𝑉𝐿 due to the real value. 

 

The principal components can explain a significant proportion of the variance in the features in 

topological and traditional metamaterials. Therefore, finding a proper principal component 𝑈𝑖
𝑇 is 

key to distinguish two types of metamaterials. After examining all principal components, we have 

found that the second principal component is a suitable feature towards the classification task at 

hand. The second principal component of |𝐿| is shown in FIG. 4(a) and the second principal 

components of |𝐿| for straight and cross interfaces are shown in FIG. 10(a) and FIG. 10(b). This 

pattern of principal component shows the features differentiating topological and traditional 



metamaterials at the beginning of the input port. Therefore, when |𝐿|  is projected onto this 

principal component, the two types of metamaterials can be classified whereas they cannot be 

classified when |𝐿| is projected onto other principal components. The relevant diagnostic allows 

us to distinguish topological and traditional metamaterials, corresponding to topologically 

protected wave propagation and non-topological wave propagation, and hence, accordingly 

classify them.  

 

As shown in FIG. 4(b), it is obvious that the projected values for topological and traditional 

metamaterials with different interfaces are separated well and can be simply classified using the 

k-means unsupervised clustering [34]. The classification results and ground truth have 100% 

agreement. Note that the last DMD mode for Z-shape interface is not an interface state although it 

is in the bandgap region, so the corresponding projected value does not represent the classification 

results. Using the same method, the wave propagation along different interfaces (straight and cross 

interfaces) in topological and traditional metamaterials can also be classified, as detailed in 

APPENDIX E. The classification results for straight and cross interfaces are demonstrated in the 

relevant figure therein.  

 



 

FIG. 4. Classification of topological and traditional metamaterials. (a) The feature space formed 

by the second principal component of DMD modes with Z-shape interface. (b) The values of each 

projected DMD mode from different interfaces on the feature space. Red and blue symbols indicate 

topological and traditional DMD modes, respectively. Circle, triangle and star symbols indicate 

the Z-shape, straight and cross interfaces.  

 

IV. PREDICTION OF WAVE PROPAGATION USING DMD 

Next, we demonstrate another application of the usefulness of DMD modes in topological 

metamaterials. Prediction of wave propagation is important when there is lack of data due to the 

sensor problems or measurement difficulties. Here, we use DMD modes calculated from a part of 



data (training data) to build a low-dimensional model and further to predict the future propagation 

of elastic wave given the knowledge of position of interface. Here, as shown in FIG. 5(a), we use 

the wave propagation in topological metamaterials from 0 ms to 200 ms as the training data. Then, 

DMD is used to extract the DMD modes inside the bandgap and the corresponding time dynamics 

(two pairs of DMD modes inside the bandgap are used). Since wave propagation is a process with 

time and space variation, the DMD modes are limited in space due to the nature of spatial modes, 

resulting in stoppage of wave and, accordingly, failure of the prediction. A feasible way that we 

have found relevant towards bypassing this issue is to extend the DMD modes along the given 

interface and approximate the future wave propagation using the extended DMD modes and the 

time dynamics from the training data. 

 

First, the least squares method is used in order to identify the time-varying wave velocity 𝑐(𝑡) by 

a set of pairs of the positions of wave front and corresponding time. Therefore, the position of 

wave front can be determined at arbitrary time. Next, after the extracted DMD modes inside the 

bandgap are reshaped to a matrix form, they are truncated based on the displacement 𝑑 = 𝑐(𝑡) ×

𝑡, corresponding to the number of matrix columns, as shown in the training data in FIG. 5(b). The 

DMD is used again to predict the DMD modes in the future when the elastic wave propagates to 

the arbitrary position. The prediction time is determined by the length of the given interface. Note 

that extension by DMD only considers the speed of wave propagation, assuming that it is 

effectively constant during each segment of the interface, instead of other associated properties 

such as the dispersive radiation, which is found to be minimal in the present setting. Then, the 

extended DMD modes 𝜙𝑒 are shifted according to the shape of the interface, resulting in the shifted 

DMD mode 𝜙𝑠. As an example, one of the DMD modes inside the bandgap is shown in FIG. 5(b), 



where the DMD mode is constrained in space which will cause the stoppage of wave propagation 

after 200 ms. After being extended by DMD and shifted by the shape of interface, the DMD mode 

constrained in a certain space can cover the given interface (Z-shaped interface), as shown in FIG. 

5(b). Finally, after we extend and shift all DMD modes inside the bandgap from the training data, 

the time dynamics of the training data are used to predict the wave propagation along the Z-shaped 

interface, detailed as below: 

 𝑋̂ = Φ𝑠Λ
𝑡−1𝑍𝑠 (9) 

where Φ𝑠 is formed by 𝜙𝑠. The diagonal entries of Λ contain DMD eigenvalues from training data 

and 𝑍𝑠 = Φ𝑠\𝑥1. 𝑥1 is the initial condition of our system. As shown in FIG. 5(c), several snapshots 

of predicted wave propagation clearly exhibit the elastic wave traveling along the Z-shape interface. 

This process is qualitatively similar to the snapshots shown in FIG. 1(b). According to FIG. 5(d), 

the relative error compared with the reconstructed results in FIG. 1(b) is in the range of 0.95~1, 

which is acceptable for visualization of future wave propagation. 

 



 

FIG. 5. Prediction of propagation of topological states. (a) The snapshots of horizontal 

displacement 𝑢𝑥 from 0 ms to 200 ms used for training. (b) The top panel displays one of the DMD 

modes inside the bandgap of the training data. The bottom panel displays the corresponding 

extended and shifted DMD modes along the Z-shaped interface. (c) The snapshots of the horizontal 

displacement 𝑢𝑥 for the predicted wave propagation at t = 2 ms, 192 ms, 380 ms, 570 ms and 758 

ms. (d) The prediction error as a function of duration. The arrows indicate the relative error of the 

corresponding snapshots in (c). 

 

V. CONCLUSIONS AND FUTURE CHALLENGES 

In this paper, we provide a guide towards the potential impacts of the application of the DMD 

method on the wave propagation in topological elastic metamaterials. The analysis of DMD 

eigenvalues and spectrum show the oscillation and frequency of the DMD modes. Besides, the 



notable topological interface states and valley pseudospin of the valley system can be reflected by 

the DMD modes. Furthermore, the reconstruction of topological state propagation is achieved by 

the low-dimensional model constructed only by the DMD modes inside the bandgap and the 

corresponding time dynamics. Apart from the fundamental characterization by DMD, we 

demonstrate the potential that the method bears as concerns the tasks of classification and 

prediction of wave propagation using DMD modes and associated reduced dynamical descriptions. 

We put forward a generic feature space to project the DMD modes on for the classification of 

topological and traditional metamaterials. The prediction of wave propagation along the interface 

can be achieved by the extension and shift of DMD modes, where the error is at an acceptable 

level to visualize the future wave propagation. The DMD provides a data-driven method to explore 

the wave propagation in topological metamaterials and to reveal the potential topological nature. 

Besides, it opens up an avenue to classify and predict the wave propagation in the pure data-driven 

approach. 

 

Naturally, this is only a first step along this direction and raises a number of questions that still 

merit further addressing. One key aspect of interest concerns how to reduce the error. While the 

results presented herein represent adequate reconstructions (and even predictions) of the time 

evolution dynamics, it would be highly desirable for such examples to match far more adequately, 

in a quantitative sense, the real system dynamics. From the point of view of applications, it would 

be relevant to explore the method in other classes of systems including in ones stemming from 

higher dimensions and to explore how adequately the method can fare in such more data-intensive 

settings. Such topics are presently under consideration and associated potential progress will be 

reported in future publications. 



  

APPENDIX A: BAND STRUCTURE OF TOPOLOGICAL ELASTIC 

METAMATERIALS 

Our elastic metamaterial is built based on a honeycomb spring-mass system. As displayed in FIG. 

6(a), the unit cell is composed of two masses 𝑚1 and 𝑚2 connected by a spring. The length and 

the spring constant are a and 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 . Therefore, the basic vectors for this unit cell are 𝑎⃗1 =

[𝑎𝑥, −𝑎𝑦] , 𝑎⃗2 = [𝑎𝑥, 𝑎𝑦] , where 𝑎𝑥 = 3𝑎 2⁄  and 𝑎𝑦 = √3𝑎 2⁄ . After applying the Bloch’s 

theorem, equations of motion of two masses in one unit cell can be written as: 

 −𝜔2𝑚1𝑢⃗⃗
(1) = 𝑘𝑠𝑝𝑟𝑖𝑛𝑔[(𝑢⃗⃗(2) − 𝑢⃗⃗(1)) ∙ 𝑒𝑥]𝑒𝑥

+ 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 [(𝑢⃗⃗(2)𝑒𝑖𝑘∙⃗⃗⃗⃗ 𝑎⃗⃗1 − 𝑢⃗⃗(1)) ∙ 𝑒𝑘] 𝑒𝑘

+ 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 [(𝑢⃗⃗(2)𝑒𝑖𝑘∙⃗⃗⃗⃗ 𝑎⃗⃗2 − 𝑢⃗⃗(1)) ∙ 𝑒𝑘
′ ] 𝑒𝑘

′  

(10) 

 

 −𝜔2𝑚2𝑢⃗⃗
(2) = 𝑘𝑠𝑝𝑟𝑖𝑛𝑔[(𝑢⃗⃗(1) − 𝑢⃗⃗(2)) ∙ 𝑒𝑥]𝑒𝑥

+ 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 [(𝑢⃗⃗1𝑒−𝑖𝑘∙⃗⃗⃗⃗ 𝑎⃗⃗1 − 𝑢⃗⃗(2)) ∙ 𝑒𝑘] 𝑒𝑘

+ 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 [(𝑢⃗⃗(1)𝑒−𝑖𝑘∙⃗⃗⃗⃗ 𝑎⃗⃗2 − 𝑢⃗⃗(2)) ∙ 𝑒𝑘
′ ] 𝑒𝑘

′  

(11) 

where  𝑒𝑥 = [1, 0]𝑇, 𝑒𝑘 = [−
1

2
,
√3

2
]𝑇 and 𝑒𝑘

′ = [−
1

2
, −

√3

2
]𝑇 are three unit vectors along the springs 

on one mass. The band structure 𝜔(𝑘) of our system can be obtained by solving the eigenvalue 

equation in the main text as a function of Bloch wave vector k in the first Brillouin zone. The 

corresponding eigenmodes 𝑈 = [𝑢𝑥
(1)

, 𝑢𝑦
(1)

, 𝑢𝑥
(2)

, 𝑢𝑦
(2)

] can also be obtained. 

 



We choose the equal masses on two sites (𝑚1 = 𝑚2 = 1 kg) and 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 = 105 N/m to find the 

Dirac point at the corner of the Brillouin zone (K point), as shown in the middle panel of FIG. 6(a). 

After breaking spatial inversion symmetry by unequal masses on two sites, two bands can be 

opened to form a bandgap. The left and right panels exhibit the band structure when 𝑚1 = 0.8 kg, 

𝑚2  = 1.2 kg and 𝑚1  = 1.2 kg, 𝑚2  = 0.8 kg, respectively. At the K valley, eigenmodes 

corresponding to two bands when 𝑚1 = 0.8 kg, 𝑚2 = 1.2 kg are 𝑈1 =
1

√2
[0,0,1, −𝑖]𝑇 and 𝑈2 =

1

√2
[1, 𝑖, 0,0]𝑇 , while the eigenmodes are 𝑈1 =

1

√2
[1, 𝑖, 0,0]𝑇  and 𝑈2 =

1

√2
[0,0,1, −𝑖]𝑇 after 

alternating the masses on two sites (see the insets with black arrows that represent the eigenmodes). 

The obvious band inversion can be seen from the eigen modes of the unit cell. 

 

In FIG. 6(b), the projected band structure is calculated using a sandwiched supercell shown in the 

right panel of FIG. 6(a). It combines the metamaterials of 𝑚1 = 0.8 kg and 𝑚2 = 1.2 kg, 𝑚1 = 1.2 

kg and 𝑚2 = 0.8 kg, and 𝑚1 = 0.8 kg and 𝑚2 = 1.2 kg so that two topological states of different 

pseudospins corresponding to two types of interfaces emerge inside the bandgap. The excitation 

frequency of our simulation is 400 rad/s as indicated by the black dashed line in FIG. 6(b). 



 

FIG. 6. The band structure of the valley topological metamaterials. (a) The schematic of our elastic 

metamaterials based on the spring-mass system. The basic vectors of unit cell are shown in 𝑎⃗1 and 

𝑎⃗2. The length of the spring is a. The first Brillouin zone with high symmetry points , M and K 

is shown in the middle panel. The sandwiched supercell for the calculation of projected band 

structure is shown in the right panel. (b) From left to right, the band structure when 𝑚1 = 0.8 kg, 

𝑚2 = 1.2 kg, 𝑚1 = 1 kg, 𝑚2 = 1 kg and 𝑚1 = 1.2 kg, 𝑚2 = 0.8 kg are shown. The eigenmodes 

corresponding to the K valley are shown in the first panel and the third panel. Motions along 

horizontal and vertical directions are marked on the two sites. (c) The projected band structure 

with two topological states inside the bandgap. The black dashed line indicates the excitation 

frequency of the simulation setup. 



 

APPENDIX B: THE TRUNCATION OF SINGULAR VALUES OF THE DATA MATRIX 

Choosing the proper truncation of the singular value decomposition of X is important to obtain the 

best-fit linear operator A. To identify the truncation r of the singular values, we wish to ensure the 

minimization of the reconstruction error. The reconstruction 𝑋̂ is conducted by DMD modes inside 

the bandgap region and corresponding time dynamics and is compared with the original wave 

propagation. In FIG. 7(a), the map of the reconstruction error calculated by 𝐸(𝑡) =
|𝑋(𝑡)−𝑋̂(𝑡)|2

|𝑋(𝑡)|2
 is 

given as a function of the number of singular values (truncation r) and duration. The singular value 

spectrum shows that singular values decay slowly, indicating that many modes are needed. 

Accordingly, with the increase of the number of singular values in a certain range (1~140), the 

reconstruction error does not change significantly in the logarithm scale. However, when the 

number of singular values further increases, the reconstruction error will significantly increase. 

 

Therefore, the proper truncation is in the range of 1 to 140, which we magnify in the FIG. 7(b). As 

the number of singular values increases, the reconstruction error will decrease to a minimum. We 

choose the r = 131 as the number of singular values corresponding to the inflection point in the 

singular value spectrum. 



 

Fig. 7. (a) The reconstruction error as a function of truncation and duration. The error is shown on 

a logarithmic scale. (b) The zoom-in reconstruction error as a function of truncation from 1 to 140 

and duration. The vertical dashed lines in (a) and (b) correspond to the selected r = 131. 

 

APPENDIX C: DMD SPECTRA AND MODES OF WAVE PROPAGATION ALONG 

INTERFACE WITH DIFFERENT SHAPES 

FIG. 8(a) gives the DMD spectrum indicating the relation between the frequency and the mode 

amplitude for the topological states propagation along the straight interface (configuration shown 

in the inset). Similar to FIG. 2(b), it is clear that the region with high mode amplitude corresponds 



to the bandgap region (shaded area). The mode inside the bandgap region with the largest 

amplitude is chosen as the prototypical mode of interest (and of relevance to the dynamics). FIG. 

8(b) exhibits the magnitude and phase of this dynamic spatial mode of our system. The interface 

state can be observed from the magnitude of the DMD modes. The displacement is concentrated 

along the straight interface and decays rapidly away from the interface. Besides, the elastic wave 

can travel along the interface with bends. The phases of the DMD modes also reflect the 

characteristics of topological states. The distribution of phase along the interface has a certain 

pattern, representing the valley pseudospin of our system as described in the main text. Likewise, 

in FIG. 8(c) and FIG. 8(d), we calculate the DMD spectrum and DMD modes inside the bandgap 

region with the largest amplitude for the topological states propagation along the cross interface 

(configuration shown in the inset). The DMD mode in FIG. 8(d) shows that the elastic wave travels 

along the path at the beginning and when it arrives at the intersection, it propagates to two sides 

instead of the straight path. Because of the valley-locking effect, the wave will propagate along 

certain interface with same valley projection [11,35–37]. The generated elastic wave is projected 

by the K valley according to the group velocity in projected band structure (FIG. 6(c)). Therefore, 

the elastic wave will only propagate along the K-valley-projected topological interfaces. Note that 

apart from DMD modes shown in FIG. 8(b) and FIG. 8(d) which have the largest amplitudes in 

the DMD spectra, other DMD modes inside the bandgap region are also interface states. 

 



 

Fig. 8. DMD spectrum and DMD modes of straight interface and cross interface are shown in (a), 

(b) and (c), (d), respectively. The insets in (a) and (c) are the configurations of elastic topological 

metamaterials. 

 

APPENDIX D: DYNAMIC MODE DECOMPOSITION WITH TIME-DELAY 

EMBEDDING 

Recently, the approach of time-delay embedding has been shown to be a general method to 

generate proper observable measurements to render the reconstruction more accurate as discussed 

in the main text. By embedding future temporally consecutive snapshots into the current snapshot, 

time-delay embedding augments the limited spatial observables and provides extra observables. 

The DMD with time-delaying embedding can be achieved by the augmented data matrix 𝑋𝑎𝑢𝑔 by 

shift-stacking the original data matrix as shown below: 



 

𝑋𝑎𝑢𝑔 =

[
 
 
 
 
 
 
 
 
 
 
| | |
𝑥1 𝑥2 ⋯ 𝑥𝑚−ℎ

| | |

| | |
𝑥2 𝑥3 ⋯ 𝑥𝑚−ℎ+1

| | |

| | |
𝑥ℎ 𝑥ℎ+1 ⋯ 𝑥𝑚−1

| | | ]
 
 
 
 
 
 
 
 
 
 

 
(12) 

where ℎ is the number of stacks. 𝑋′𝑎𝑢𝑔 can be induced likewise. Using the augmented data matrix 

to conduct DMD, the reconstruction error can be reduced. As shown in FIG. 9, the relative error 

calculated by 𝐸 =
|𝑋−𝑋̂|𝐹

|𝑋|𝐹
 decreases with the increase of the number of stacks and becomes 

saturated at around 0.65 even with a larger number of stacks. However, when the number of stacks 

increases, the augmented data matrix becomes large, leading to a heavy computation cost. 

Therefore, there is a tradeoff balance between accuracy and efficiency in the case of real-world 

applications and practitioners should seek to strike a relevant balance to that effect. 

 

FIG. 9. The relative error of reconstruction as a function of number of stacks. 

 



APPENDIX E: CLASSIFICATION OF TOPOLOGICAL AND TRADITIONAL 

METAMATERIALS WITH DIFFERENT INTERFACES 

For classification of topological and traditional metamaterials with different interfaces, we follow 

the generic method we introduce in the main text. The principal components can explain a 

significant proportion of the variance in the features in topological and traditional metamaterials. 

Therefore, we extract the principal components of the library composed of DMD modes of 

topological and traditional metamaterials with different interfaces. As for different shapes of the 

interfaces, the feature space from the principal components for the DMD modes to project on can 

be determined as visualized in FIG. 10(a) and FIG. 10(c), corresponding to the straight interface 

and cross interface. Similarly, the feature spaces are also the second principal components in the 

singular value decomposition, in which the main difference between topological wave propagation 

and non-topological wave propagation is reflected, and hence can distinguish two types of 

metamaterials. After the DMD modes inside the bandgap for both topological metamaterials and 

traditional metamaterials are projected onto the feature space, the DMD modes lead to a scalar 

value. As shown in FIG. 10(b) and FIG. 10(d), projected values of topological and traditional 

DMD modes are separated in the feature space and can be classified using the k-means 

unsupervised clustering. For both topological propagation along straight interface and cross 

interface, the classification results and ground truth have 100% agreement. 



 

Fig. 10. Classification of topological and traditional waveguides with different interface. (a) (c) 

The synthetic feature space of topological metamaterials with straight interface and cross interface. 

(b) (d) The values of each projected DMD mode on the feature space, corresponding to (a) and (c). 

Red and blue circles indicate topological and traditional DMD modes, respectively. 
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