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Abstract

Pathogens and their hosts are embedded within the larger biosphere, what Darwin called the “en-
tangled bank.” Emerging infectious disease occurs when a parasite “switches” to a new host. Under-
standing the dynamics of emerging disease requires understanding the dynamics of host-switching,
which requires a more general understanding of how the biosphere and its constituent members cope
when conditions change. The Stockholm paradigm is an integrative evolutionary framework that de-
scribes how living systems cope with change by oscillating between exploiting and exploring the geo-
graphical and functional dimensions of their environments. It combines organismal capacity, ecolog-
ical opportunity, and the repeated external perturbations to the conditions that drive the interaction
between capacity and opportunity, catalyzing the dynamics of the entangled bank. The Stockholm
paradigm makes clear that emerging disease is an expected outcome of the expression of the same
evolutionary potential that governs the response of the rest of the biosphere when conditions change.

Keywords: capacity space, ecological fitting, evolvability, fitness space, host switch, opportunity space,
parasite, pathogen
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Introduction

... when a parasite arrives in a new habitat, it
will feed on those species whose defense traits
it can circumvent because of the abilities it car-
ries at the time.

Janzen (1980)

Parasitism may be the most common mode of life on the
planet (Price, 1980; Brooks and McLennan, 1993). An enor-
mous diversity of organisms lives and feeds on or inside
other organisms, sapping energy and nutrients, and some-
times becoming pathogenic. A broad definition includes vi-
ruses, bacteria, fungi, protozoans, worms, plant-feeding in-
sects, and plants that parasitize other plants (Nylin et al,,
2018). It is safe to say that most species, including para-
sites, play host to at least one other species that parasit-
izes it and may cause disease.

An emerging infectious disease (EID) occurs when a
parasite colonizes an evolutionarily novel host or an old
host that it has not been in contact with for some time.
Commonly referred to as host-switching, it is fundamen-
tally a result of the interaction between the capacity of a
given parasite to infect new organisms beyond their cur-
rent hosts and the opportunity to meet these new organ-
isms (Agosta et al., 2010; Araujo et al,, 2015; Braga et al.,
2018; Nylin et al., 2018; Brooks et al., 2019; Feronato et al.,
2021). Traditionally, parasites have been viewed as exem-
plars of the evolution of specialization—they have highly
intimate physiological, morphological, and ecological re-
lationships with their hosts. Parasites need their hosts to
survive. Combine this with the observation that most par-
asites are restricted to just a few closely related host spe-
cies both ecologically (i.e., at a given time or place) and
historically (i.e., through evolutionary time) and it is not
surprising that many have assumed they are the classic
evolutionary “"dead end” (Moran, 1988; Wiegmann et al.,
1993; Kelley and Farrell, 1998): when the host goes extinct,
so does the parasite. The long-standing assumption has
been that parasites are in a constant coevolutionary "arms
race” with their hosts in which natural selection favors in-
creasing specialization, leaving them with little or no ca-
pacity to colonize new hosts (for critical reviews of tradi-
tional coevolutionary theory, see Brooks and McLennan,
2002; Janz, 2011).

Yet, the world is replete with examples of parasites col-
onizing new hosts (Agosta, 2006; de Vienne et al., 2013;
Nylin et al., 2018), often closely related to their old hosts
and often as a response to a change in conditions that cat-
alyzes the movement of species (Brooks and McLennan,
2002; Hoberg and Brooks, 2008; Agosta et al., 2010; Hoberg

et al,, 2017; Brooks et al., 2019; Carlson et al., 2022). EID is
an emergent property of this larger phenomena of host-
switching by parasites. The current EID crisis is the recog-
nition that emerging diseases are increasing in frequency,
implying that the capacity for host-switching is large and
that the opportunities to do so are common (Brooks and
Ferrao, 2005; Brooks et al., 2019).

The Parasite Paradox

If parasites are so highly specialized to their hosts that
they lack the capacity to use new hosts, then host-switch-
ing and EID should be rare to nonexistent. This is the para-
site paradox (Agosta et al., 2010): how do otherwise highly
specialized parasites switch to new hosts? The answer is
that parasites, like all organisms, maintain the capacity
to respond in novel ways when conditions change, using
what they have inherited from their ancestors to survive
as best they can, including switching to new hosts (Agosta
et al., 2010; Brooks et al., 2019). The assumption that high
host specificity is synonymous with a lack of capacity to
colonize new hosts fails to recognize that (1) parasites
are specialized on specific resources not specific species,
(2) these resources may be phylogenetically conserved
across a wider array of species than the ancestral hosts,
and (3) parasites have the capacity to use any species
that contain the specific resource if given the opportunity
(Brooks, 1979; Janzen, 1979, 1980; Brooks and McLennan,
1993, 2002; Agosta, 2006; Brooks et al., 2006; Agosta et al.,
2010; Araujo et al,, 2015; Malcicka et al.,, 2015; Nylin et al,,
2018; Brooks et al., 2019; Boeger et al., 2022). In the case
of SARS-CoV-2 and COVID-19, all mammals possess the
angiotensin-converting enzyme 2 (ACE2) receptor that is
the entry point for infection, and it is not surprising that
it moved from its ancestral bat hosts to other mammals,
including humans, when given the opportunity (Brooks et
al., 2020; Low-Gan et al.,, 2021; Boeger et al.,, 2022; Ruiz-
Aravena et al.,, 2022).

The key to understanding EID lies not in understanding
how the evolution of host specialization restricts host use
but in understanding how and under what conditions host-
specific parasites colonize new hosts (Agosta et al., 2010;
Araujo et al,, 2015; Braga et al., 2018; Brooks et al., 2019).
The issue is part of a more general evolutionary question:
how can an organism that evolves the capacity to function
under one set of conditions keep functioning when those
conditions change? The short answer was provided by Dar-
win more than 160 years ago: it uses the information it in-
herited from its ancestors, which contains the potential to
do something new, like switch to a new host. If this were
not true, EID would not occur.
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Parasites and their hosts are embedded within the larger
biosphere. Understanding the dynamics of EID amounts
to understanding the more general evolutionary problem
of how organisms use the limited information they inherit
to cope with unpredictable changes in their surroundings
(Brooks et al., 2019; Agosta and Brooks, 2020). The core
mechanism is “ecological fitting in sloppy fitness space”
(Agosta and Klemens, 2008), a key piece of a larger theo-
retical framework—the Stockholm paradigm (SP)—that ex-
plains the overall evolutionary dynamics of the biosphere
and how it responds to change (Brooks et al., 2014; Ho-
berg et al., 2015; Hoberg and Brooks, 2015; Hoberg et al.,
2017; Brooks et al., 2019; Agosta and Brooks, 2020). From
the perspective of the SP, it becomes clear that EID is an
expected outcome of the same Darwinian dynamics and ex-
pression of the same evolutionary potential that governs the
response of the rest of the biosphere during periods of envi-
ronmental change.

The Stockholm Paradigm: Coping with
Change by Changing

The SP describes the integration of the capacities for or-
ganisms to engage functionally with the environment, the
ecological opportunities to use those capacities, and the
repeated perturbations to the conditions of life (e.g., cli-
mate change) that drive the interaction between capacity
and opportunity and catalyze evolutionary diversification
and complexity in living systems (Brooks et al., 2014; Ho-
berg et al., 2015; Hoberg and Brooks, 2015; Hoberg et al.,
2017; Brooks et al.,, 2019). Although only recently proposed
as a synthetic framework, the SP has been under construc-
tion since 1859 when Darwin published the first edition of
On the Origin of Species (Agosta and Brooks, 2020). He pre-
sented two major metaphors for his grand theory of “how
nature works": the tree of life, depicting the selective ac-
cumulation of biodiversity and its evolutionary history of
common descent, and the entangled bank, portraying the
interactions among biodiversity that give rise to our mod-
ern notion of complex ecosystems. The entangled bank is
the "interaction arena” where the members of the tree of
life coexist, competing, cooperating, predating, and para-
sitizing each other.

At any given moment, the entangled bank is a snapshot
of a dynamic evolutionary system with the central ques-
tion being how such systems and their constituent mem-
bers persist in the face of constant change (Agosta and
Brooks, 2020). Coupled with the tree of life, it represents
the interplay between evolutionary history and the cur-
rent ecological conditions, from which emerges natural
selection and the interacting web of biodiversity that we

observe. This web comprises individual organisms, each
with inherited capacities to interact with and engage func-
tionally with the surroundings, including parasitizing other
organisms. Understanding “how nature works” means un-
derstanding how the members of the tree of life inter-
act to form the persistent entangled bank that character-
izes the biosphere. This requires building an explanatory
framework from the level of inheritance systems (individ-
ual organisms, populations, and species) to the emergent
level of ecosystems.

Part 1. How Individual Inheritance Systems
Cope with Change

For much of human history, species were largely thought
of as static—the species we see today have always been
here, and their characteristics that seemingly match their
environments so well are evidence that they are “perfectly
fit” to their surroundings. Lamarck (1809) was the first per-
son to seriously challenge the notion of immutable spe-
cies. In essence, he argued that organisms were able to
evolve directly and instantaneously to changes in their sur-
roundings, with the environment somehow driving them to
get better by producing “the right adaptation at the right
time.” Darwin showed that this notion of evolution was
wrong. He summarized his views succinctly in the second
paragraph of the final edition of Origin of Species (1872;
my boldface):

... there are two factors [in evolution]; namely,
the nature of the organism and the nature
of the conditions. The former seems to be
much more important; for nearly similar vari-
ations sometimes arise under, as far as we can
judge, dissimilar conditions; and, on the other
hand, dissimilar variations arise under conditions
which appear to be nearly uniform

Contrary to Lamarck, Darwin rejected the notion that the
environment, or "nature of the conditions,” was the driver of
evolution. Instead of viewing the surroundings as a creative
force that “pushes” or “pulls” organisms to “get better,” he
viewed it as the arena into which organisms imposed them-
selves, using the informational capacities that they inher-
ited from their ancestors to survive and reproduce as best
they can, given the current conditions. Thus, he recognized
the primacy of what he called the “nature of the organism”
in evolution, and that evolution was the result of the out-
come of the interaction between organisms, with their in-
herited capacities, and their environments, which were al-
ways changing. From this emerged natural selection.
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Nature of the organism: metabolism plus
inheritance

Organisms are cohesive functional wholes with the in-
formational capacity to impose themselves on their sur-
roundings in ways that facilitate survival and reproduc-
tion (Collier, 1988, 1998, 2003; Collier and Hooker, 1999).
Most fundamentally, they are combined metabolic-inheri-
tance systems (Ganti, 1979, 2003; Maynard Smith and Sza-
thmary, 1995) with the ability to both exploit and explore
their environments (Brooks et al., 2019; Agosta and Brooks,
2020). Organisms use metabolism to stay alive, exploiting
their surroundings as best they can with their inherited ca-
pacities and “buying” the time for reproduction to occur.
Inheritance is how organisms extend themselves through
time, exploring their surroundings through the production
of highly similar but variable offspring. The combined met-
abolic-inheritance system is a functional whole with the in-
formation encoded in inheritance specifying the metabolic
system, and with metabolism fueling inheritance.

Organisms are also historical entities. They form “com-
munities of descent” with shared evolutionary history, rep-
resented by the tree of life. Organisms retain so much of
their history in inheritance that common descent is always
the predominant explanation for their current form and
function, not the surroundings. If fruit flies are reared in
the wild or in a glass bottle in a laboratory, the result is still
fruit flies. The primacy of the nature of the organism over
the nature of the conditions stems from four fundamental
aspects of inheritance:

(1) Inheritance is highly conservative. While the inher-
itance system is open to change through genetic
mutation, duplication, recombination, and so forth,
it is highly constrained by the requirement for func-
tional integration with the rest of the system.

(2) Inheritance produces indefinite variation. Despite
its conservative nature, because of genetic muta-
tion, imperfect copying, duplication, and recombi-
nation, all offspring are highly similar but unique.
Even clones are not identical (Cepelewicz, 2020).

(3) Inheritance is highly historical. While each organ-
ism is unique, each bears a strong resemblance
to their relatives. Some of these resemblances are
truly ancient, like the Hox genes that specify de-
velopment of metazoans.

(4) Inheritance is superfluous. Organisms produce as
many offspring as possible without regard for en-
vironmental conditions. Therefore, there is frequent
reproductive overrun, with the production of many
more offspring than the environment can support.

4

Conservative inheritance means that history will al-
ways be the dominant causal explanation for the present
in biological systems, and that a “perfect fit" between or-
ganisms and their constantly changing environments can
never be achieved. Because change in the inheritance sys-
tem is highly constrained, there is an inherited evolutionary
lag-load (Maynard Smith, 1976) or phylogenetic constraint
(Brooks and McLennan, 2002) that makes it impossible for
organisms to simply evolve new capacities in the moment
change occurs. Instead, as Darwin recognized, evolution re-
quires a constant supply of preexisting variation. When the
first tetrapods transitioned from water to land, for exam-
ple, all the necessary traits needed for surviving on land, in-
cluding lungs for breathing air, limbs for walking, and eggs
capable of surviving buried in soil, had already evolved in
the aquatic environment (Skulan, 2000; McLennan, 2008).

The superfluous reproduction of variable but highly sim-
ilar offspring without regard for the conditions produces
Darwin's “necessary misfit" (Brooks and Hoberg, 2007). The
combination of reproductive overrun and conservative in-
heritance guarantees an imperfect fit between organisms
and their environments, but within this imperfect fit lies
the potential for coping with future change (Agosta and
Brooks, 2020). If all organisms were “perfectly fit” to the
current conditions, there would be little capacity to respond
when those conditions change. For Darwin, “adaptation”
was the process of coping with change by using preexist-
ing capacities to survive as best as possible, reinforced by
natural selection in the new conditions. Natural selection
emerges from Darwin'’s necessary misfit and is proportional
to the amount of mismatch between organisms and their
surroundings (Brooks and Hoberg, 2007).

Life's only discernable “goal” is continued survival. This
is fueled by metabolism but achieved through reproduc-
tion and inheritance. The information contained within the
inheritance system specifies the development of a new or-
ganism including the metabolic system and other capac-
ities to engage functionally with the environment (Collier,
1988, 1998, 2003; Collier and Hooker, 1999). Metabolism al-
lows organisms to exploit the environment long enough to
reproduce, but inheritance is what allows the exploration
of variable and changing conditions (Agosta and Brooks,
2020). Inheritance is the essence of being evolvable.

To be a good exploiter requires functioning well enough
in the current conditions. To be a good explorer requires
being able to cope when those conditions change (Kovac,
2007; Popadiuk, 2012). To be evolvable, organisms need to
be able to do both (Brooks et al., 2019; Agosta and Brooks,
2020; and see Page, 2011; Popadiuk, 2012). At first this
might seem a paradox: there is a long history of assuming
an evolutionary tradeoff between being especially good at
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doing one thing (specializing) and being able to do multi-
ple things (generalizing). The assumption is based on the
premise that in the evolution of specialization, natural se-
lection whittles variation down to such a degree that spe-
cies (inheritance systems) lose the capacity to do anything
else, like colonize a new host. This perspective fails to rec-
ognize that the capacity for exploration emerges and grows
naturally in living systems because of the conservative but
evolvable nature of the inheritance system and despite
persistent natural selection for better-performing variants
(Agosta and Brooks, 2020).

A conservative system of indefinitely growing
capacities

Compared to metabolism, the portion of the lifetime en-
ergy budget of an organism allocated to inheritance is very
small. Reproduction requires only a small fraction of the
metabolic budget because replication is a recycling process
of “copy from a template, rinse and repeat” and because
producing gametes is inexpensive compared to maintaining
an organism throughout its lifetime. Staying alive amounts
to staying organized, and this is very expensive and ephem-
eral in an entropic universe governed by the second law
of thermodynamics (Lotka, 1913, 1925; Schrodinger, 1945).
But producing offspring is relatively cheap and persistent
(Brooks and Wiley, 1988; Agosta and Brooks, 2020). This
means that once the combined metabolic-inheritance sys-
tem emerged, evolution was both highly “affordable” and
probable given the routine overproduction of similar but
varied propagules.

The relatively low cost of reproduction is critical for evo-
|ution, but the inherent nature of the information in the in-
heritance system is what produces the indefinite variation
and capacity to respond when conditions change. First, mu-
tation coupled with mistakes during replication (imperfect
copying) provide a background source of de novo variation.
Second, the information encoded by DNA is both digital
and combinatorial. Organisms are cohesive analog wholes,
but they are digital replicators from which the information
encoding for a new organism can be recombined and read
at multiple levels of the genome and at multiple times. This
generates the potential for an enormous amount of infor-
mation, both expressed and unexpressed, to be stored in
inheritance systems (Brooks and Wiley, 1988; Smith, 1988,
1998, 2000; Maynard Smith and Szathmary, 1995, 1999;
Szathmary, 2000, 2015; de Vladar et al., 2017). There are,
of course, constraints that arise from correlations between
parts of the integrated system, including molecular affini-
ties, cell-to-cell adhesion, genetic correlations, mate recog-
nition systems, and symbiosis (Brooks and Wiley, 1988). If,
for example, one gene requires another gene to function,

then the potential information (variation) that could be ex-
pressed by inheritance is constrained. If one species re-
quires another species for survival, then entire genomes
are linked, again constraining the information that can be
expressed. But despite these constraints, digital replication
generates enormous amounts of variation that is the source
of the preexisting capacities that evolution relies on when
conditions change (Brooks and Wiley, 1988; Smith, 1988,
1998, 2000; Maynard Smith and Szathmary, 1995, 1999;
Szathmary, 2000, 2015; de Vladar et al., 2017).

Third, as the inheritance system evolves and diversi-
fies (Figure 1), the information contained within it expands
and so does the difference between the information that
is expressed—"what'’s realized"—and the information that
could be expressed—"what's possible"—at any given time
(Brooks and Wiley, 1988; Brooks and Agosta, 2012; Agosta
and Brooks, 2020). As Darwin recognized, “diversity begets
diversity”—in an expanding system of accumulating infor-
mation/variation/capacities, the realization of one possibil-
ity always produces new possibilities. In this way, life cre-
ates and grows its own capacity space to explore, or what
Ulanowicz (1997) called the "window of vitality." Capacity
space represents a realm of possibilities, with an abstract
space proportional to the difference between realized ca-
pacities and potential capacities to engage functionally with
the environment (Figure 1). This difference is tantamount to
evolutionary potential. The greater the difference between
"what's realized” and "what's possible,” the greater the po-
tential for the inheritance system to do something new, like
switch to a new host, when conditions change (Brooks and
Agosta, 2012; Agosta and Brooks, 2020).

Upon life’s inception, it had some minimal but sufficient
capacity to achieve some minimal but sufficient level of
functional engagement with the surroundings (Moreno and
Ruiz-Mirazo, 2009). In this moment, life emerged as a com-
bined metabolic-inheritance system capable of exploiting
the surroundings long enough for reproduction and evolu-
tion to occur, thereby catalyzing the growth of the capacity
space that it continues to explore. While the buildup of his-
torical constraints (genetic correlations, mate recognition
systems, symbiotic relationships, etc.) in the inheritance sys-
tem slows the overall rate of growth of diversity over time
(Figure 1), the difference between potential capacity and re-
alized capacity continues to grow. This is the Brooks-Wiley
dynamic (Brooks and Wiley, 1988), and it guarantees that as
evolution unfolds, “what'’s realized” will be an ever smaller
subset of “what's possible” regardless of persistent natural
selection for better-performing variants. From this perspec-
tive, the risk space for host-switching and EID is truly large
and indefinite (Brooks and Ferrao, 2005; Brooks et al., 2014,
2019; Boeger et al., 2022).
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Figure 1. The Brooks-Wiley dynamic. As evolution unfolds and life diversifies, the realized capacities for organisms to engage
functionally with their surroundings grow. The realization of one possibility always gives rise to new possibilities, so the potential
for new capacities grows in tandem. The difference between realized and potential capacity equates to evolutionary potential, the
“Window of Vitality” where reproduction and survival could occur, and it too grows as the system evolves. While the growth of all
three components is indefinite, the rate of growth slows over time because of the buildup of historical correlations in the inher-
itance system (e.g., genetic correlations that constrain the expression of information). Modified from Agosta and Brooks (2020).

A conservative system of retained evolutionary
potential

The growth of capacity space as evolution unfolds is in-
definite but not unlimited. The conservative nature of in-
heritance produces extremely high levels of historical co-
hesion in biological systems. As previously mentioned, as
a system expands, cohesive forces form constraints that
slow the expansion. For example, gravity acts as a cohesive
force that slows the expansion of the universe, allowing for
the emergence of structures like stars, planets, and galax-
ies. In biology, the demand that all parts of the system be
functionally integrated plays an analogous role (Brooks and
Wiley, 1988). The essential point is that, while the inheri-
tance system is open to change, it is severely constrained
by the requirement for functional integration with the rest
of the system. This is the reason that the concept of “self-
ish” genes driving evolution (Dawkins, 1976) is largely irrel-
evant—once integrated into an inheritance system, genes
are part of a larger functional whole.

Across the biological hierarchy, historical correlations
among various parts of the combined metabolic-inheri-
tance system build up as evolution unfolds (Brooks and
Wiley, 1988). This is the “cost of integration” and places
severe constraints on both the rate of evolution and the

realm of possibilities that evolution can explore. At the
same time, it also facilitates evolution by lowering the “cost
of innovation” in two key ways. First, conservatism signifi-
cantly reduces the threshold for generating novel informa-
tion because inheritance mainly recycles and recombines
old information (Jacob, 1977; Gould and Lewontin, 1979;
Gould and Vrba, 1982; Janzen and Martin, 1982; Brooks
and McLennan, 2002; McLennan, 2008). The ability to co-
opt and combine preexisting traits for new functions alle-
viates the inability to simply produce the “right adaptation
at the right time” in response to change.

Second, conservatism slows down the entire evolu-
tionary process. While severely limiting on one hand, this
“buys time" for preexisting parts of the system to meet
and become integrated into a new functional whole (May-
nard Smith and Szathmary, 1995; Brooks and Agosta, 2012;
Agosta and Brooks, 2020). Conservative inheritance “stores
history” long enough to produce a constant and growing
lag between “what's possible” and “what's realized” for liv-
ing systems (Figure 1). Because inheritance is conservative,
no living system can be perfectly fit to its current condi-
tions. And this is key to continued survival. Persisting indef-
initely relies far more on having the potential to cope when
conditions change and far less on how fit an inheritance
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system is to the current conditions. For the SP, the essen-
tial point is that all inheritance systems retain this poten-
tial to some degree (Agosta and Brooks, 2020), even host-
specific parasites (Agosta et al., 2010; Brooks et al., 2019).

Nature of the conditions: opportunities in sloppy
fitness space

The capacity to exploit and explore emerges from the
“"nature of the organism,” but the opportunities to do so are
a function of the conditions in which organisms find them-
selves. The “nature of the conditions” gives rise to oppor-
tunity space where organisms find chances for survival de-
pendent on their inherited capacities to exploit and explore
(Brooks et al.,, 2019; Agosta and Brooks, 2020). For a given
species, only a subset of the global opportunity space for
the biosphere is available for survival and reproduction.
This subset of opportunity space available to any given spe-
cies is its realized opportunity space or what is more com-
monly referred to as fitness space.

Fitness space emerges when capacity space is imposed
on opportunity space (Figure 2). Fitness describes how
well organisms cope with their surroundings; fitness space,
therefore, is analogous to “niche space” and represents the
set of conditions in which survival and reproduction can oc-
cur (Hutchinson, 1957). Organisms are “fit” for any condi-
tions in which they have the capacity to survive and repro-
duce. The fundamental demographic of evolution is not
“survival of the fittest” but “survival of the fit" (Brooks and
Agosta, 2012; Brooks et al., 2019; Agosta and Brooks, 2020).
If only a single or few fittest variants survived, the stock of
standing variation for evolution to act on when conditions
change would be very small. There would be little poten-
tial to respond because today’s fittest variant may not be
fit at all in the new conditions, leaving little room for in-
heritance to explore new options in fitness space. Fortu-
nately, survival does not require being the absolute best,
it requires only being good enough to cope with the con-
ditions at hand. All organisms that reproduce are fit, and
while some are fitter than others, they all compose a fit-
test collective—a distribution of variants with adequate ca-
pacity to survive the current conditions. This fittest collec-
tive includes a range of variants—a genotypic-phenotypic
distribution—that represent the evolutionary potential to
cope when conditions change.

The need to achieve positive fitness dictates that organ-
ismal capacity must always complement ecological oppor-
tunity, but it does not need to perfectly match (Agosta and
Brooks, 2020). Moreover, capacity cannot perfectly match
opportunity because conservative inheritance ensures that
evolution always lags behind the conditions (Maynard
Smith, 1976), while also storing a history of past success.

Capacity
Space

Opportunity
Space

Fundamental
Fitness Space

Figure 2. Fitness space emerges from the interaction of or-
ganismal capacities to engage functionally with the environ-
ment—capacity space—and the ecological chances to use
those capacities—opportunity space. The difference between
what organisms are doing to survive and reproduce—realized
fitness space—and what they could be doing—fundamental
fitness space—makes fitness space inherently “sloppy.” Modi-
fied from Agosta and Brooks (2020).

Conservative inheritance therefore all but guarantees that
fitness space will be “sloppy” (Agosta and Klemens, 2008)
not tightly optimized to any particular set of conditions.
The sloppiness is proportional to the difference between
realized fitness space—what organisms are currently doing
to survive and reproduce—and fundamental fitness space—
what organisms could be doing if given the opportunity
(Figure 2). And this difference is proportional to the capac-
ity to cope with change.

To be evolvable, all species including parasites must
maintain an inheritable difference between the actual and
the possible in fitness space. This appears to be a universal
feature of life emerging from the conservative but muta-
ble nature of the organism (Brooks and Wiley, 1988; Agosta
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and Klemens, 2008; Daniels et al., 2008; Brooks and Agosta,
2012; Soberon and Arroyo-Pena, 2017; Agosta and Brooks,
2020). This is how the collective biosphere has coped with
constant change over the past 4 billion years.

Darwinian conflict resolution in sloppy fitness
space

Understanding how species mount an initial response
when conditions change is key for managing EID (Brooks
et al,, 2019). It boils down to a more general understand-
ing of the dynamics of inheritance systems in sloppy fit-
ness space (Agosta and Brooks, 2020). Since organisms will
produce as many highly similar offspring as possible re-
gardless of the conditions, reproductive overrun is inevita-
ble. This produces Darwin's constant “struggle for survival,
routinely putting organisms in conflict with their surround-
ings, including other organisms. Superfluous reproduction
means that all inheritance systems may grow too much
and become victims of their own success. If the conditions
change, they may also become victims of circumstance.
Both cases trigger Darwinian conflict resolution (Agosta
and Brooks, 2020).

Darwin recognized that a constant “struggle for survival”
was an inescapable feature of life, but for natural selec-
tion to produce the accumulated biodiversity composing
the tree of life and coexisting in the entangled bank, there
must be a persistent mechanism for resolving this conflict.
This begins by organisms using inherited information to
explore new opportunities in fitness space. Known as eco-
logical fitting (Janzen, 1985), this is the general mechanism
behind host-switching and the default response for all liv-
ing systems when conditions change (Brooks and McLen-
nan, 2002; Agosta, 2006; Brooks et al., 2006; Agosta and
Klemens, 2008; Agosta et al., 2010; Araujo et al., 2015; Mal-
cicka et al., 2015; Braga et al., 2018; Brooks et al.,, 2019;
Agosta and Brooks, 2020). The capacity for ecological fit-
ting emerges from phylogenetic conservatism (Brooks and
McLennan, 2002) and other related universal aspects of in-
heritance, including phenotypic plasticity (West-Eberhard,
2003) and evolutionary trait co-option (the ability of exist-
ing traits to be co-opted and combined in novel ways to
perform novel functions) (McLennan, 2008).

The capacity for ecological fitting affords inheritance
systems critical degrees of freedom for coping with chang-
ing environments by exploring new options in under-used,
less preferred, or previously inaccessible portions of fitness
space. The capacity to move away from portions of fitness
space that are densely populated, deteriorating, or disap-
pearing into new portions of fitness space is key to indef-
inite persistence (see, e.g., paleontological studies by Sti-
gall et al., 2107, 2019; Stigall, 2019), even if this leads to
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reduced fitness. In evolution, being fit is what matters; a
marginal existence is better than not existing. Ecological
fitting in sloppy fitness space is how life continues to apply
what Agosta and Brooks (2020) called "biological assump-
tion zero": organisms will do what they can, where they can,
when they can, within the constraints of evolutionary his-
tory (inheritance) and ecological opportunity.

Reproductive overrun of highly similar offspring means
there will always be a tendency for inheritance systems to
be specialized in regions of highly preferred fitness space,
implying the under-use of more marginal but still surviv-
able regions (Figure 3a). When conditions are stable (e.g.,
when a parasite is isolated with a single host species), ex-
ploiting the surroundings as much as possible takes pre-
cedence over exploring them. During these times, con-
ditions are largely predictable, allowing many variants to
survive and reproduce by doing much of the same thing
again and again, exploiting as much energy and materials
as possible to make as many offspring as possible, with
natural selection favoring fitter variants but with all vari-
ants that are fit enough surviving. What happens when
conditions change? Exploration of new opportunities for
survival becomes paramount. Inheritance systems begin
to spread out in fitness space, becoming more general-
ized as preexisting variation “wanders” into more marginal
or previously inaccessible parts of it (Figure 3b, c). Extinc-
tion occurs when an inheritance system runs out of op-
tions in fitness space, when its capacity no longer com-
plements opportunity.

Within the SP, “specialist” and “generalist” are not nouns
describing the static traits of static species but verbs de-
scribing dynamic states of inheritance systems within fit-
ness space (Agosta and Brooks, 2020). All inheritance sys-
tems have the capacity to become more specialized or
generalized in their fitness space, and, moreover, all have
the capacity to oscillate between these states depending
on the conditions. Species that are specializing in fitness
space, in fact, have more potential to respond to a change
in their conditions than those that are generalizing because
they have more sloppy fitness space. Specializing in fitness
space is an indicator of evolutionary potential being stored
when conditions are stable. Generalizing in fitness space is
an indicator of evolutionary potential being spent when con-
ditions change (Agosta and Brooks, 2020).

Ecological fitting provides the means for inheritance
systems to explore “what’s possible” when the conditions
change. But by itself, this only fills fitness space. Once filled,
realized fitness space equals fundamental fitness space,
leaving no more possibilities to explore. The propensity
for organisms to exploit their surroundings as much as
possible predominates, producing new conflict with no
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Figure 3. Darwinian conflict resolution in sloppy fitness space. The outer shape represents the fitness space of a single inheri-
tance system. Circles represent members of the inheritance system, and lines represent connections between them; the number
of connections indicates how cohesive and isolated members of the system are in fitness space. (A) When conditions are stable,
preferred portions of fitness space are exploited as much as possible, causing inheritance systems to become more connected
and specialized in isolation. (B, C) When conditions change, conflicts in fitness space manifest as a “struggle for survival,” lead-
ing some members of the inheritance system to move away and explore new opportunities for survival, causing the system to
become more disconnected and generalized in fitness space. (D, E) Exploration leads to the exploitation of local conditions, pro-
ducing diverging subsystems, each specializing in a different part of fitness space. (F) Selection for increased cohesion with local
conditions leads to speciation, producing a new inheritance system with its own fitness space, including an overlap with the orig-
inal inheritance system resulting from common ancestry. Modified from Agosta and Brooks (2020).

possibility of resolution. While critical for the initial re-
sponse to change, ecological fitting alone does not pro-
duce the selective accumulation of diversity represented
by the tree of life and coexisting in the entangled bank.
Conflict resolution requires an additional mechanism that
results in previously linked subgroups permanently split-
ting into two or more novel inheritance systems (Figure
3d-f). When a recently generalized inheritance system be-
comes isolated in a new part of fitness space, selection
for cohesion or co-accommodation (Brooks, 1979) with the

new environment, including other organisms, leads to in-
creased functional integration and increased connections
within the subsystem as it becomes more specialized in its
new portion of fitness space (Figure 3d). Through specia-
tion, this may produce a newly emergent inheritance sys-
tem with its own fitness space (Figure 3f). At this point, the
original conflict has been resolved by diversifying and co-
accommodating with the new conditions, but because the
nature of the organism always predominates, conflict res-
olution always leads to new conflict.
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Darwinian evolution is an iterative process of conflict
and conflict resolution (Agosta and Brooks, 2020). Diversity
accumulates rather than replaces itself because the crite-
rion for indefinite persistence is simply to be good enough
to reproduce (it is survival of the fit) and because each bout
of conflict resolution sets the stage for new conflict. Evolu-
tion is conflict resolution by ecological fitting in sloppy fitness
space, followed by co-accommodation with the new condi-
tions, all reinforced by natural selection. The fuel that drives
this forward is the potential emerging from preexisting ca-
pacities to first explore and then exploit new opportunities
in fitness space. When conditions are stable, living systems
build this potential. When conditions change, this poten-
tial is spent. Generating, maintaining, and deploying this
potential is the key to individual inheritance systems cop-
ing with change, and for our purposes, is the fundamental
source of EID (Brooks et al., 2019).

Part Il. How Ecosystems Cope with Change

Within the SP, basic Darwinian evolutionary dynamics
played out in the context of sloppy fitness space explain
how individual inheritance systems, including host-specific
parasites, explore new opportunities for survival when con-
ditions change. The recent modeling work of Araujo et al.
(2015), Braga et al. (2018), and Feronato et al. (2021) pro-
vides a quantitative demonstration of this exploration of
infection opportunities in the context of parasites switch-
ing to new hosts. But this is only part of the story. The con-
text of the EID crises is the interconnected web of ecosys-
tems—the entangled bank—that comprises the biosphere
and that we depend on for survival and have the capacity
to alter in ways that favor EID (Brooks et al., 2019). Under-
standing EID as a phenomenon related to global change re-
quires a broad evolutionary framework that describes how
the collective biosphere responds when it is perturbed
(Brooks and Ferrao, 2005; Hoberg and Brooks, 2008; Agosta
et al.,, 2010; Brooks et al., 2014; Hoberg et al., 2015, 2017;
Brooks et al., 2019; Boeger et al., 2022).

In the early 20th century, some believed that the entan-
gled bank was a “superorganism”—a single entity composed
of individual species working together for their collective
survival, like a colony of bees or the cells that compose or-
ganisms. This view was advanced most prominently by Cle-
ments (1905, 1916). Unlike a colony of bees or a multicellu-
lar organism, however, the species that make up ecosystems
do not share a singular inheritance system. Therefore, the
assemblage of species that compose an ecosystem can-
not be an “organism” (Tansley, 1935). Each member of an
ecosystem works toward its own survival using the capac-
ities it has inherited, including the capacity for ecological
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fitting. As each member degrades the surroundings to meet
its own requirements, it alters the surroundings in such a
way—from producers to consumers to decomposers—that
converts them into new biomass that may meet the func-
tional needs of other members. Within ecosystems, other-
wise independent inheritance systems are therefore linked
by a complex set of trophic interactions, with each species
ensuring its own survival by indirectly providing the means
for other species to survive. Each organism's fitness space
represents potential fitness space for another organism; the
sheer diversity of parasites exemplifies this.

Ecosystem function is an emergent property of each
member’s activities, each with its own inherited capacities
to exploit the current conditions as best it can. Ecosystems
are therefore “centers of exploitation” for their constitu-
ent members—places where organisms use metabolism to
stay alive long enough to reproduce while also retaining
the capacity to explore new opportunities when conditions
change. This gives rise to a collective evolutionary potential
stored within ecosystems, or what Agosta and Brooks (2020)
called an evolutionary commons. When perturbed, expres-
sion of the evolutionary commons may result in ecologi-
cal rewiring of trophic connections within ecosystems (e.g.,
host-switching), but on a large enough scale perturbations
may cause ecosystems to break apart. When this happens,
the capacity for ecological fitting stored within the evolu-
tionary commons means there is the potential for new eco-
systems to form out of the remnants of the old.

The evolutionary commons makes the biosphere ex-
tremely robust and resilient to perturbations, not fragile
as some have assumed. This has dual implications for hu-
mans. No matter how much we perturb it, the biosphere is
unlikely to collapse. After all, the aftermath of each great
mass extinction event has been mass evolutionary renewal,
the production of new biodiversity emerging from the spe-
cies that survived. At the same time, since the biosphere is
indifferent to the fate of any given species, the expression
of the potential stored in the evolutionary commons may
not always work in our favor. The ecosystems we depend
on may disappear or change too much to support our sur-
vival, or they might give rise to the next EID. Understand-
ing how the potential stored in the evolutionary commons
is expressed when the biosphere is perturbed is the key to
assessing the risk space for EID in a period of global change
(Brooks et al., 2019). To do so requires going beyond ex-
plaining the dynamics of individual inheritance systems in
a relatively stable, unchanging fitness space.

What happens when external perturbations change the
nature of the conditions so much that the dimensions of
fitness space itself change for multiple inheritance systems,
including entire biotas, at once? When the dimensions of
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fitness space itself are altered, old opportunities to survive
and reproduce may disappear and new opportunities may
arise. The nature of the organism is to take advantage of
new opportunities by exploring new parts of fitness space
that were previously inaccessible or nonexistent. As men-
tioned previously, bouts of ecological fitting in static fitness
space alone would be self-limiting, leading to episodes of
expansion that simply fill fitness space, and this would not
lead to the indefinite diversification that characterizes the
tree of life or the complexity that characterizes the entan-
gled bank. To build a diverse, complex, persistent biosphere
requires an essential ingredient: repeated systemic pertur-
bations that routinely alter the fitness space of multiple
species. These perturbations catalyze the dynamics that al-
low living systems to fluctuate between exploiting and ex-
ploring both the geographical and functional dimensions of
fitness space (Brooks et al., 2019; Agosta and Brooks, 2020).

Fluctuating in geographical fitness space

For Darwin and Wallace, cofounder of the theory of nat-
ural selection, where a species lived was the primary com-
ponent of its fitness space. Darlington (1943) extended this
to include not only the places where species lived, but the
movement of species to and from those places catalyzed by
external changes in the conditions. He concluded that spe-
cies arose in “centers of diversification,” where external per-
turbations caused geographical ranges to fluctuate around
a continuously occupied core. These fluctuations might be
driven by the formation of barriers to dispersal, producing
episodes of isolation leading to speciation, and the break-
down of those barriers, producing episodes of biotic ex-
pansion from the core and, as Darlington saw it, setting the
stage for new species to replace older species.

The notion of new species arising in geographic cen-
ters of origin and then expanding into new areas to replace
older species is based on the idea that the species-area re-
lationship (Cain, 1938) is a result of the environment com-
prising a limited number of niches for species to fill. In this
way of thinking, once an area becomes saturated, new spe-
cies can be added only if another species leaves or goes
extinct (e.g., MacArthur, 1969; Roughgarden and Feldman,
1975; Hairston, 1980; Case, 1981). Niches, however, are an
emergent property of the nature of the organism, not the
conditions, synonymous with fitness space (Hutchinson,
1957). No fixed number of niches are in the environment
for species to fill; each organism’s fitness space represents
potential fitness space for another organism.

Following Darlington, Wilson (1959, 1961) proposed the
taxon cycle. Multiple species from a given area may colo-
nize new areas when a change in conditions expands the
amount of suitable habitat and then may contract their

ranges when another change in conditions reduces the
amount of suitable habitat. MacArthur and Wilson (1963,
1967) extended this to produce the equilibrium theory of
island biogeography. They proposed a one-way dynamic in
which “islands” were colonized by “source areas” that con-
tained a preexisting pool of species. Like Darlington’s, their
theory relied heavily on the species-area relationship and
the idea of an equilibrium number of species that could
fill a limited number of niches. When an island had fewer
than the equilibrium number of species, it was open to col-
onization. When the equilibrium number of species was
reached, it was closed to colonization, unless a new spe-
cies displaced an old one or an old species went extinct.
For MacArthur and Wilson, the available fitness space on
an island was a fixed, static quantity and only preexisting
species could fill it.

Erwin (1979, 1981, 1985) proposed a biogeographical
theory that included both a mechanism for speciation and
allowance for fitness space to be a dynamic property of the
organism. The taxon pulse hypothesis posits that groups of
species (biotas) experience fluctuations in their geographic
ranges catalyzed by repeated changes in environmental
conditions that drive diversification. When changing con-
ditions cause dispersal barriers to break down, species ex-
pand geographically but also in fitness space as the in-
heritance systems generalize, spending potential in their
exploration of new areas. When conditions change again,
new barriers to dispersal may arise, isolating populations
both geographically and in fitness space, promoting diver-
sification and speciation. When changing conditions break
down dispersal barriers again, a new phase of geographic
expansion and generalization in fitness space is initiated.
And so on, as changing conditions catalyze new bouts of
isolation and expansion, variously isolating and mixing to-
gether species geographically, producing the historically
contingent complex patterns of species distributions and
coexistence that we observe.

The empirical evidence for taxon pulse—driven biotas is
extensive (e.g., Spironello and Brooks, 2003; Bouchard and
Brooks, 2004; Brooks and Ferrao, 2005; Halas et al., 2005;
Folinsbee and Brooks, 2007; Hoberg and Brooks, 2008;
Lim, 2008; Eckstut et al., 2011). A history of repeated taxon
pulses, especially over large areas, produces biotas that
are idiosyncratic, composed of many species that have as-
sociated with each other for varying lengths of times and
have arrived under different conditions. These dynamics in
geographical fitness space, catalyzed by external pertur-
bations, cause complex mosaics of species coexisting and
interacting, forming dynamic ecosystems that can break
apart and reform based on the inherited capacities of the
constituent members.
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Fluctuating in functional fitness space

Fitness space is composed of not only the places where
species can live but also the things they can do in those
places. Taxon pulses lead to the mixing and matching of
species in different locations, which in turn catalyzes phases
of exploration of new opportunities for survival during peri-
ods of geographic expansion followed by phases of exploi-
tation of those opportunities during periods of isolation.
Thus, along with fluctuations in geographical fitness space,
the oscillation hypothesis posits that inheritance systems
fluctuate between generalizing and specializing in func-
tional fitness space (Janz et al., 2006; Janz and Nylin, 2008;
Nylin and Janz, 2009; Nylin et al., 2014).

The oscillation hypothesis was originally proposed to ex-
plain the evolution of host range in plant-feeding insects,
but its applicability is far more general (Agosta et al., 2010;
Brooks et al., 2019; Agosta and Brooks, 2020). Nonetheless,
the dynamics of changes in functional fitness space are rel-
atively easy to visualize for groups of organisms that form
highly specific interactions with each other, like insects and
plants or parasites and hosts. For these organisms, it is rela-
tively easy to draw a connection between “host” and “func-
tion,” and therefore between "host space”—the range of
hosts that can be used—and the functional dimensions of
fitness space. And since host space is a part of fitness space,
there will always be a difference between realized host range
(the set of hosts that are being used) and fundamental host
range (the set of all hosts that could be used). As with fitness
space in general, host space is inherently sloppy (Agosta,
2006; Agosta et al., 2010; Brooks et al., 2019).

The capacity for ecological fitting means that despite
forming highly specific associations, parasites can always
have opportunities to explore new hosts. Parasitism is not
an inherent evolutionary dead end. The capacity for host-
switching manifests as changes in host range that do not
track phylogenetic patterns of host-relatedness directly but
are constrained by the phylogenetic distribution of neces-
sary resources found in related hosts (Brooks and McLennan,
2002; Brooks et al., 2006). The literature contains a mountain
of evidence that shows this pattern, so phylogenetically con-
servative host-switching should be viewed as a routine phe-
nomenon (Brooks and McLennan, 2002; Agosta, 2006; de Vi-
enne et al,, 2013; Nylin et al., 2018). Moreover, studies reveal
phylogenetically conservative patterns of associations over
long periods of time that alternate between increases and
decreases in host range, in accordance with the oscillation
hypothesis (e.g., Janz et al,, 2006; Nylin et al., 2014; Jorge et
al., 2018; Brooks et al.,, 2015; Boeger et al., 2022).

The evolution of pocket gophers (Geomyidae) and
their parasitic lice (Geomydoecus) in North America pro-
vides a particularly instructive example (Brooks et al., 2015).
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Transmission of lice occurs when gophers are in their nests,
so the opportunities for the parasite to switch to new hosts
are limited even when external perturbations catalyze geo-
graphic expansion. Nevertheless, host-switching driven by
external perturbations is a common theme in the history
of these associations (Brooks et al., 2015). A burst of diver-
sification in pocket gophers and lice 4.2 million to 1.8 mil-
lion years ago coincided with a period of substantial cli-
mate and habitat change (Spradling et al., 2004). Around
half of the associations that emerged during this time were
the result of host-switching, followed by episodes of cospe-
ciation. The pattern shows clear evidence of the oscillation
dynamic, alternating between episodes of host range ex-
pansion by lice—generalizing in fitness space—followed
by episodes of isolation and diversification—specializing in
fitness space—in association with their new hosts (Brooks
et al., 2015). Computer simulations have reproduced these
patterns, showing how easily oscillations in sloppy fitness
space can emerge from basic Darwinian dynamics in the
context of opportunity space that includes the chance to
encounter new hosts (Araujo et al., 2015; Braga et al.,, 2018;
Feronato et al., 2021).

Avoiding extinction: fluctuating in combined
geographical-functional fitness space

External perturbations like climate change alter both the
geographical and functional dimensions of fitness space
for multiple species, affecting parts of or even the entire
biosphere (Brooks and Agosta, 2012; Brooks et al., 2019;
Agosta and Brooks, 2020). Even without external pertur-
bations, as dynamic complex systems, ecosystems experi-
ence continuous internal change because of “autonomous
turnover” of species distributions, abundances, and inter-
actions (O’Sullivan et al.,, 2021). If ecosystems were fragile,
these perturbations would simply break them apart, with
limited potential to form new connections within the sys-
tem or to form new systems. But because of the collective
capacity for coping with change retained within ecosys-
tems—the evolutionary commons—they are relatively im-
mune to the "butterfly effect” (Agosta and Brooks, 2020).

The butterfly effect—in which a small change in one part
of a system has a large effect on the whole system (Lo-
renz, 1972)—has been used as a metaphor to describe the
supposed fragility of the biosphere. It is, however, a truly
poor way to describe a complex evolutionary system. Ro-
bustness, resiliency, and responsiveness in the face of in-
ternal and external change are hallmarks of complex sys-
tems (Kitano, 2004, 2007; Page, 2011). Complex systems are
multilevel, hyperdiverse, hyperconnected, functionally re-
dundant, and modular. All these features contribute to the
anti-butterfly effect being a fundamental property of the
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biosphere (Agosta and Brooks, 2020). While they all have
vulnerability thresholds beyond which perturbations can no
longer be absorbed, ecosystems do not simply collapse in
response to the loss or addition of new species and, more-
over, the biosphere does not collapse when ecosystems are
lost or change. If living systems were this brittle, the com-
plex persistent biosphere would not exist. Again, recall that
so far the aftermath of each mass extinction event has been
mass evolutionary renewal.

Ecosystems are resilient and changeable in proportion
to the capacities of their constituent members for ecolog-
ical fitting in sloppy fitness space, which provides species
degrees of freedom for exploring new opportunities by
moving to new geographic areas and by co-opting existing
functions for new functions, including forming new trophic
connections with other species. When perturbations lead to
geographic expansion, they also catalyze intense periods of
exploration of new opportunities for survival, causing spe-
cies to spend evolutionary potential by generalizing in fit-
ness space. When perturbations lead to geographic isola-
tion, exploitation of the new opportunities is reinforced by
natural selection, leading species to specialize functionally
in fitness space. And since new diversity emerges in isola-
tion when conditions are stable, new evolutionary poten-
tial to exploit new opportunities can build before the next
perturbation catalyzes a new episode of geographic ex-
pansion. In this way, alternations in geographical and func-
tional fitness space are coupled but out of phase. Each new
perturbation leads to a pulse of geographic expansion, the
mixing of different species, including hosts and parasites,
and the spending of potential as each species generalizes,
followed by episodes of isolation and then specialization
when potential is restored.

The entangled bank is constructed from and persists in-
definitely because of repeated and overlapping cycles of
taxon pulses and correlated oscillations in functional fit-
ness space across multiple temporal and spatial scales. The
built-in capacity of individual inheritance systems to alter-
nate between periods of specialization and generalization
in combined geographical-functional fitness space is how
they, and by extension the collective biosphere, avoid ex-
tinction. The biosphere is robust, resilient, and respon-
sive. But there are limits to its evolvability. The prodigious
amounts of informational capacity produced by living sys-
tems affords them the potential to cope with change, but
they cannot predict the future and are therefore vulnera-
ble to extinction. No matter how fit a species is in today’s
conditions, it can still be unfit tomorrow when conditions
change. Individual inheritance systems and the connec-
tions between them therefore routinely go extinct, but the
biosphere persists because of the capacity to absorb even

massive perturbations arising from the dual exploiter-ex-
plorer nature of its constituent members and collective po-
tential stored in the evolutionary commons (Agosta and
Brooks, 2020).

Concluding Remarks

The EID crisis fundamentally involves three variables: hu-
mans, the ecosystems on which we depend and which con-
tain the organisms that are the sources of EID, and external
factors such as climate change, land conversion, urbaniza-
tion, and global trade and travel that cause changes in the
conditions that catalyze EID (Brooks et al., 2019). The over-
arching message of this paper is that we cannot disentan-
gle EID from the overall response of ecosystems to climate
change and that EID is fundamentally an expression of the
same evolutionary potential that allows the rest of the bio-
sphere to cope with change by changing. Or more simply,
we cannot understand EID without a more general under-
standing of how nature works. This understanding is rooted
in Darwinism and synthesized by the SP.

The SP tells us that in a period of global change, we
should expect more host-switching and therefore more EID.
It tells us the risk space for EID is very large and that the re-
alization of these risks increases the more ecosystems are
perturbed. The anti-butterfly effect, mediated by the ca-
pacity for ecological fitting in sloppy fitness space, means
that cospeciation and coextinction are unlikely in parasite-
host interactions, implying that pathogens routinely persist
longer than their original host. For SARS-CoV-2, not only
is the ACE2 receptor phylogenetically conserved among
mammals, specialization on binding to the ACE2 receptor
is conserved among coronaviruses (Low-Gan et al., 2021;
Ruiz-Aravena et al., 2022), suggesting a large amount of
sloppy fitness space in these interactions and a large po-
tential for host-switching.

The risk space for EID is substantial, but the SP also tells
us it is not random. Conservative inheritance means the
traits involved in transmitting parasites to hosts, like the
ACE2 binding site, are highly specific. Therefore, the com-
munity structure of parasite-host interactions should be
highly conservative, even without pervasive cospeciation/
coextinction dynamics. Brooks et al. (2006) examined six
assemblages of lung flukes (platyhelminths) that parasit-
ize frog species in temperate forests and grasslands in the
USA and tropical dry and wet forests in Mexico and Costa
Rica. They predicted that if ecological fitting was the dom-
inant factor structuring the communities, as opposed to
cospeciation/coextinction, then (1) associations should be
largely determined by conservative traits related to para-
site transmission rather than host phylogenetic relatedness
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and (2) communities should exhibit similar patterns of asso-
ciations at the generic and family levels, even though they
are from widely separated areas and very different habitats.
Their data corroborated both predictions: conservatism in
parasite and host traits related to transmission (i.e., habitat
and feeding preferences) was the primary determinant of
the associations, not host phylogeny, with each community
converging on a similar phylogenetic structure. The shared
requirement for aquatic habitats of tadpoles for all frog
species allows potential colonization by essentially any lung
fluke species if given the opportunity; additional lung fluke
species are associated with frog hosts largely as a function
of how much time the adults spend in the aquatic habitat.
The SP tells us that while the potential for EID is large,
where and when EID will emerge is predictable based on
knowledge of the conservative traits of parasites and hosts,
suggesting proactive measures rooted in evolutionary prin-
ciples (Brooks et al., 2014, 2015, 2019; Boeger et al., 2022).
Knowing, for example, that malaria (1) is caused by organ-
isms in the genus Plasmodium and (2) is spread to humans
exclusively through bites of adult mosquitoes in the genus
Anopheles, all of which (3) have aquatic larvae and feed on
vertebrates is a large step toward narrowing the “malaria
risk space.” Basic natural history knowledge set in a proper
theoretical framework provides humans with significant ca-
pacity to predict and preempt where the next case of emer-
gence may occur. This is the fundamental objective of the
DAMA protocol (Brooks et al., 2014, 2015, 2019; Boeger et
al., 2022), which stands for Document, Assess, Monitor, and
Act. DAMA is a direct application of the SP to the problem
of emerging disease. It recognizes that the EID risk space
is large but nonrandom because of phylogenetic conser-
vatism. It is designed to anticipate EID before it happens,
or when it does happen, to be better prepared to mitigate
the spread not just among humans but among nonhuman
species that may be potential suitable hosts. The combi-
nation of the SP—providing a theoretical foundation for
understanding emerging disease in the context of global
change—and DAMA—providing a framework for applying
the SP to emerging disease—can be a powerful approach
for transforming our response to the EID crisis to a more
proactive, evolutionarily informed effort.
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