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Motivation and Objectives
With high-throughput technologies in the life 
sciences, particularly in molecular biology, the 
amount of data available has grown exponen-
tially. Yet, such data are stored in several different 
formats and spread into numerous databanks 
(Galperin and Fernández-Suárez, 2012). This 
scenario makes even more difficult to find and 
retrieve the data required to answer the scien-
tists’ questions, which usually are complex and 
regard multiple biological entities and several of 
their aspects. Consequently, in the last few dec-
ades biological data integration has become a 
major focus in bioinformatics. Data integration 
is essential to comprehensively evaluate and 
search information from different databanks. For 
example, no single data source exists that sup-
plies association data between protein interac-
tions and genetic disorders.

There are several approaches, with related 
implementations, to integrate heterogeneous 
data from different sources, such as information 
linkage (e.g. SRS (Etzold et al., 1996), NCBI Entrez 
(Tatusova et al., 1999)), federated databases (e.g. 
BioKleisli (Davidson et al., 1997), DiscoveryLink 
(Haas et al. 2001)), multi-databases (e.g. TAMBIS 
(Stevens et al., 2000), BACIIS (Miled et al., 2002)), 
mediator based solutions (e.g. BioDataServer 
(Freier et al., 2002), Biomediator (Cadag et al., 
2007)) and data warehousing (e.g. EnsMart 
(Kasprzyk et al., 2004), BioWarehouse (Lee et al., 
2006)). Data warehousing is the most conveni-
ent one when the data are very numerous and 
offline processing is a necessity to mine integrat-
ed data efficiently and comprehensively. Using 
such an approach, we created an integrative 
data warehouse, where integration is performed 
based on a predefined modular data model 
that provides a unified reconciled global view of 
the integrated data. Data warehouse creation 
and updating is performed by supervised auto-
matic procedures, which also control variation of 
the integrated data in the original data sources 
(Davidson et al., 1995). The used modular data 
model supports both easy data warehouse ex-
tensibility, with the integration of new data sourc-

es, and effective automatic querying on the in-
tegrated data for their search and extraction.

Methods
We built a Genomic and Proteomic Knowledge 
Base (GPKB), which is a relational, integrative 
and multi-organism data warehouse containing 
heterogeneous genomic and proteomic an-
notation data. We import them from several well 
known public databases, including Entrez Gene, 
UniProt, IntAct, MINT, BioCyc, KEGG, Reactome, 
GO, GOA and OMIM, The very numerous data 
integrated, which regard biomolecular entities 
(mainly genes and proteins) and their biomedi-
cal features and associations, are all checked 
for data correctness and consistency (Ghisalberti 
et al., 2010). By leveraging imported similar-
ity and historical evaluation data available, we 
identify different IDs from different data sources 
as representing the same entity. This enables us 
to classify and extract different attributes avail-
able also from different data sources as referring 
to the same entity, feature or association, rather 
than as distinct attributes of different entities or of 
their features or associations.

For the GPKB, we designed a modular global 
data schema with abstraction and generaliza-
tion of the main data features. It is characterized 
by a multi-level data architecture, which includes 
source-import level, instance-aggregation level 
and concept-integration level. 

Leveraging on such data schema, we de-
fined query templates to extract the integrated 
data. These query templates allow extracting the 
user required data from any version of the GPKB 
automatically. This supports different Web ap-
plications and services connected to the GPKB 
in automatically searching and extracting data 
from the data warehouse for different goals, in-
cluding gene and protein annotation inference, 
annotation enrichment analysis and user query 
support for biomedical knowledge discovery. 

The performed inference of gene and protein 
annotations is based on the “transitive closure” 
concept. It is inspired by Swanson work (Swanson, 
1986) that is based on the transitive closure of het-
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erogeneous extensive annotation data. The infer-
ence procedure is controlled by Standard Query 
Language (SQL) templates, which are applied to 
any relational biomedical molecular database.

Results and Discussion
With the data downloaded on May 28th, 2012, 
among others, the GPKB contained 9,537,645 
genes of 9,631 organisms, 38,960,202 proteins 
of 338,004 species, 19,522 protein domains and 
824,797 protein domains annotations, 28,889 
biochemical pathways and 171,372 pathway 
annotations (77,812 gene and 93,560 protein 
annotations), 35,252 Gene Ontology terms and 
64,185,070 Gene Ontology annotations (1,272,168 
gene and 62,912,902 protein annotations), 10,212 
human genetic disorders and their 27,705 gene 
annotations. Furthermore our GPKB integrates also 
other types of data regarding DNA sequences, 
transcripts, enzymes, small molecules of biologi-
cal interest, and clinical synopses. In total it con-
tains more than 103,006,922 gene annotations 
and 183,209,462 proteins annotations. 

The great amount of biomolecular features 
and their association data that the GPKB con-
tains makes it a unique valuable resource which 
can be used for different applications, in silico 
experiments and knowledge discoveries.

The created automatic query templates 
make possible to easily search and extract each 
of the integrated data, offering an efficient base 
for various data mining algorithms and applica-
tions. As an example, by leveraging the multi-
source integrated date, we inferred new gene 
annotations through transitive closure on various 
association data regarding the features of the 
gene encoded proteins. The same approach 
enabled us also to infer possible associations be-
tween protein-protein interactions and genetic 
disorders. Towards this aim, protein-protein inter-
action data files downloaded from MINT (Licata 
et al., 2012) and IntAct (Kerrien et al., 2012) data-
bases were automatically parsed. Data of 46,154 
human protein-protein interactions (out of the 
contained 254,048 protein-protein interactions 
of 397 different organisms’ proteins), regarding 
12,178 distinct human proteins, were imported 
in the data warehouse. These human proteins, 
which represent 3.7% of all the 326,766 human 
proteins in the data warehouse, are encoded 
by 11,232 different human genes. By applying 
the  transitive closure concept on the interacting 

protein encoding gene and genetic disorder re-
lated gene association data, we identified 1,130 
gene-gene interactions and found 1,136 human 
protein-protein interactions possibly associated 
with 628 genetic disorders (such as Alzheimer, 
Cystic fibrosis, Diabetes mellitus, Parkinson, etc.). 
Such genetic disorders resulted related to 86 clin-
ical synopses and 3,481 phenotypes.

The created Genomic and Proteomic 
Knowledge Base, that is updated quarterly, can 
be freely accessible through an easy-to-use Web 
interface available at http://www.bioinformatics.
dei.polimi.it/GPKB/ where all integrated data in 
the GPKB can be comprehensively searched.
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