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_________________________________________________________________________________________ 

Abstract: In a cost-based supply chain delivery performance model, accurately depicting the penalty cost associated with 
an untimely delivery is an important component of the supply chain’s delivery performance. This paper introduces a two-
stage time-sensitive supply chain, where the penalty cost caused by early and late delivery is treated as a power function 
of the default time. This default time is the deviation in time from the actual delivery time to the delivery window. Both 
the buyer and the supplier want to reduce the default time. After considering the product’s value over time and the buyers’ 
attitude with respect to a breach of contract, the penalty cost is constructed as the product of a nonlinear function of default 
time and as a linear function of the penalty factor. This yields the conditions associated with the optimal delivery window, 
to minimize the expected penalty with the power function. The paper shows the effect of the delivery window, penalty 
factor, and time sensitivity factor on supply chain performance, leading to recommendations for improved performance. 
Numerical results are provided to demonstrate the applicability of the proposed model. The model helps buyers more 
accurately determine costly losses, enabling them to reduce the impact of any default caused by suppliers. For exponentially 
distributed lead time, choosing the optimal delivery window position for delivery can reduce the expected penalty cost by 
as much as seven times. The average delivery time is shortened from 30 days to 20 days, and the expected penalty cost will 
be reduced by about 50%. This is a powerful tool for use in improving supply chain performance and also provides 
directions for improving strategies and a theoretical basis for buyers and suppliers wanting to jointly optimize supply chain 
performance. 
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1. Introduction

Performance measurement has been recognized by many 
scholars for its important role in supply chain management 
and operations (Zakir et al., 2023a). Measuring delivery 
performance in a supply chain can quantify the reliability 
of the supply chain and provide a basis for management’s 
decision-making. In order to improve supply chain 
performance and achieve common interests, some partners 
introduce external resources to form inter-organizational 
systems (IOS) (Asamoah et al., 2021). In the performance 
evaluation system, fuzzy logic can be used to deal with the 
incomplete and qualitative information contained in the 
supply chain system (Qorri et al., 2022). 

In the overall process of the supply chain, variability 
exists in any link; accurately controlling variability is 
difficult for any senior manager (Talay and Zdemir-
Akyldrm, 2018). In actual production, advanced equipment 

can be replaced, and advanced technology can be used to 
reduce the uncertainty of production time (Zhai et al., 2020). 
The delivery window provides a buffer period for various 
uncertainties and a reasonable time frame for buyers and 
sellers to ensure the on-time delivery of products. 
Abdelsadek and Kacem (2022) used an interactive 
information visualization decision support tool to improve 
delivery problems with delivery window constraints. Some 
algorithms, such as genetic algorithms  (Ongcunaruk et al., 
2021), Tabu Search (Gmira et al., 2021), Ant Colony 
(Neogi et al., 2018), etc., have been applied to optimize cost 
optimization problems involving time windows, and these 
algorithms have achieved good results. 

The costs associated with untimely (early and late) 
delivery are referred to as penalty costs, which are paid by 
the supplier to the buyer. Some industries have very strict 
time requirements. For example, clothing and luxury goods 
industries generally charge high liquidated damages if there 
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is a breach of contract (Roy and Sarker, 2021). Buyers have 
specific attitudes with respect to breaches of contract, 
leading to penalties as well as cost losses. This situation is 
not limited to the luxury goods industry; it extends across 
all types of buyers. The one-size-fits-all nature of the 
penalty function is designed to cover a wide range of 
products. However, suppliers and buyers generally want to 
combine the unique characteristics of the product itself and 
the buyers’ attitudes towards breach of contract to 
customize the penalty function. This paper applies a power 
function delivery penalty cost model to emphasize the 
characteristics of product lifecycles and attitudes towards a 
breach of contract. A power function penalty gives the 
buyer flexibility, by altering the power index to reflect both 
their attitudes towards time and the associated losses 
incurred by untimely delivery. To summarize, the 
contributions of this paper are as follows: 

 The time preference is introduced into the two-stage 
supply chain in the form of the power function of the 
penalty cost, and the exact expression of the expected 
penalty in the time-sensitive supply chain is given. 

 Analytical expressions are gained for the optimal 
position of the delivery window to minimize the supply 
chain’s expected penalty cost. 

 This paper analyses the impact of the delivery window, 
the penalty factor for early and late delivery, the ratio of 
the penalty factor for early delivery and the penalty 
factor for late delivery, and the time preference factor 
on the optimal window position and the minimum 
expected penalty. 

2. Literature Review 

A supply chain performance system uses multi-company 
data integration and process performance metrics to achieve 
supply chain management (Zakir et al., 2023b). In industrial 
practice, circular economy (CE) indicators are used to 
evaluate circular supply chain performance (Calzolari et al., 
2021). In food supply chains, among the 34 sustainability 
indicators analyzed, production accounted for the largest 
number (up to 17) of tools and quantitative indicators 
(Desiderio et al., 2021). Due to the increasing degree of 
globalization and the changes in customer demand, the 
supply chain has become quite complex.  Meta-analysis can 
be used to explain the impact of supply chain complexity 
on performance (Ates et al., 2021).  

Delivery performance is a key supply chain operations 
metric in every performance indicator hierarchy; this 
highlights the high priority of measuring delivery 
performance (Karamouz et al., 2020). Meng and Qian 
(2018) designed a blockchain framework called DelivChain 
for use as a real-time predictive delivery performance 
metric. Jun and Lee (2022) solved the pickup and delivery 
problem with time windows, using the evolutionary neural 
network. The goal here was to minimize total tardiness. 
However, Aki et al. (2018) emphasized that collaboration 
performance metrics (such as early or late delivery penalties) 
often lead to suboptimal results in the two-way 
communication process, due to the difficulty of meeting the 
technical prerequisites. 

A supplier’s policy for improving supply chain 
performance is motivated by the goal of reducing financial 
expenses. Shortening the lead time is an effective way of 
improving supply chain performance, and can increase the 
accuracy of demand forecasting, thus helping to reduce 

unnecessary inventory surplus and production capacity 
waste (Ed et al., 2019). Roy and Sana (2021) devised an 
iterative algorithm to solve the optimal solution of the 
revised expected total cost. The study showed that 
shortening the lead time can significantly reduce the total 
cost. Supply chain performance can also be improved if the 
suppliers can optimize production structures (Terzioglu et 
al., 2022). The widely-used Gaussian distribution has been 
criticized for its symmetric distribution and negative 
delivery times. This has led to the proposed use of 
approaches such as the gamma distribution, asymmetric 
Laplace distribution, and exponential distribution (Bushuev 
and Guiffrida, 2012; Roy and Sarker, 2021; Tao et al., 
2021). Variance optimization performed using Gaussian 
distribution has also been viewed as a primary measure to 
increase delivery time accuracy and supply chain stability. 
This method can also be used to optimize the supply chain 
for other distribution approaches (Bushuev, 2018). 

On-time delivery significantly impacts customer 
satisfaction and delivery reliability. The rapid development 
of the logistics industry has led customers in the 
decentralized supply chain to have high requirements for 
timely deliveries (Choi et al., 2018). The global COVID-19 
pandemic has created severe challenges for global supply 
chains (GSCs) (Sarkis et al., 2020). The rapid 
responsiveness of GSCs enables companies to quickly 
recover and remain competitive in the face of sudden 
disruptions (Nayeri et al., 2022). Kazancoglu et al. (2022), 
using a partial least squares (PLS) method, analyzed 200 
responses from companies, emphasizing the importance of 
rapid responsiveness in GSCs. 

Actual delivery time is considered random. A delivery 
may miss the promised target time, resulting in a penalty 
for non-contract delivery (Chevroton et al., 2021). An on-
time delivery made within an agreed-upon window does not 
incur loss costs. To study this cost-driving problem, several 
researchers have developed models with a deterministic 
lead time (Han et al., 2019) and controllable lead time (Dey 
et al., 2021). Sajadieh and Jokar (2009) relaxed control of 
the lead time and expanded it to be an uncertain lead time; 
this approach is also a key method used in this study. 
Majumder et al. (2018) used classical optimization 
techniques to minimize the joint expected cost of the supply 
chain system in the context of normally-distributed lead 
time. Li (2020) obtained the exact total cost equation, using 
the normally distributed form of lead time. 

Untimely deliveries, including early and late deliveries, 
often generate losses for the supplier; these are called 
penalty cost. Previous studies have generally considered the 
penalty cost to be a linear function of time. However, this 
assumption of a linear penalty may underestimate the 
potential loss incurred due to untimely delivery. For 
example, late delivery is the most common type of untimely 
delivery. The consequence of late deliveries includes stock-
out, declining sales, poor customer experience, and loss of 
future orders (Makinde and Munyai, 2020). Niemi et al. 
(2020) found that a 15-day delay led to an estimated 6% of 
lost sales, while a 45-day delay of 6.9% of total deliveries 
resulted in an estimated 30% of lost sales. In most studies, 
given that an early delivery increases the buyer’s inventory 
cost, the penalty function is assumed to be linear in time and 
volume. In reality, costs extend far beyond this, as there 
may also be product damage, additional human resources 
required to reconcile inventories, and other costs. In the 
just-in-time (JIT) truck routing problem, where an 
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excessively early or late delivery can impose an extremely 
high penalty, the large neighborhood search (LNS) 
metaheuristic method was developed to minimize the total 
earliness-tardiness cost (Baals et al., 2022). In the digital 
restaurant industry, static threshold policies are used to 
manage the queue problem, as both early and late 
fulfillment of orders will cause customer dissatisfaction 
(Farahani et al., 2022). Given the above, applying a power 
function penalty cost to reflect the real numerous costs 
caused by early and late deliveries is reasonable. 

2. Model Settings and Problem Formulations 

2.1. Model Settings and Optimum Position of the 
Delivery Window 

This paper evaluates supply chain delivery performance 
using a time-sensitive penalty cost with a power function 
model. Before describing the model, it is important to state 
the following assumptions about the supply chain. There is:  
(1) only one supplier and one buyer; (2) a single product 
with a fixed delivery lot; and (3) a one-time delivery 
without replenishment or chargeback. 

Penalties are closely related to time and penalty 
coefficients in the supply chain. The supplier’s actual 
delivery time 𝑥 usually follows a specific distribution, such 
as a uniform distribution, normal distribution, or 
exponential distribution. The delivery window ∆𝑐 
represents the acceptable interval of time for the delivery, 
during which the shipment does not generate a penalty. The 
start time of the delivery window is recorded as 𝑐 , with 
deliveries before this window which a delivery generates an 
early delivery penalty cost. Delivery after the delivery 
tolerance period 𝑐  +  ∆𝑐 generates  a late delivery penalty 
cost. 

Both penalties increase as the distance between the 
actual delivery time and the delivery window increases. 
However, different buyers have different levels of 
sensitivity to time, as well as to the interval of time between 
early delivery and late delivery. The power function is used 
to express the buyer’s sensitivity to default. The length of 
time for early delivery is expressed as (𝑐  −  𝑥) , so the 
lead time sensitive function is [(𝑐  −  𝑥)  ] , where  𝑝  is 
the lead time preference coefficient with 𝑝 ≥  1. The delay 
time sensitive function is expressed as [(𝑥 − 𝑐 − ∆𝑐)  ] , 
where 𝑞 is the delay time preference coefficient with 𝑞 ≥
 1. As such, the total penalty in the time-sensitive two-stage 
supply chain is: 

𝑌(𝑐 , 𝑥) = 𝑀 ⋅ [(𝑐 − 𝑥) ] + 𝑁 ⋅ [(𝑥 − 𝑐 − ∆𝑐) ]   (1) 

In Eq. (1) 𝑀 is the penalty factor for early delivery, and 
𝑁 is the penalty factor for late delivery. If 𝑝 = 1, 𝑞 = 1, 
and this model degenerates to a traditional two-stage serial 
supply model, which was studied by Bushuev and Guiffrida 
(2012). 

Supply chain performance is measured based on the 
expectation of a penalty; this is also widely assumed in 
supply chain problems. The time-sensitive expected penalty 
cost in a two-stage supply chain is expressed as: 

𝑌 = 𝐸[𝑌(𝑐 , 𝑥)] = ∫ 𝑀 ⋅ (𝑐 − 𝑥) 𝑓(𝑥)𝑑𝑥 + ∫ 𝑁
∞

∆
⋅

(𝑥 − 𝑐 − ∆𝑐) 𝑓(𝑥)𝑑𝑥                       (2) 

In Eq. (2), 𝐸[·] is the expectation operator, and 𝑓(𝑥) is the 
probability density function for the distribution of delivery 
time 𝑥. 

In general, different buyers have different levels of 
sensitivity with respect to time. For many buyers, however, 
there is an increase in the marginal loss as the delay time in 
late delivery lengthens. In other words, the penalty for the 
last unit of delay time should be more than the previous unit 
of delay time. For example, if the delivery time is three days 
later than the delivery window deadline, then the penalty 
generated on the third day should be more than the penalty 
on the second day. This is because the loss created from a 
default is usually not merely linear with respect to time; 
rather, it sets off a chain reaction. The penalty may also 
include a punishment for the suppliers’ breach of contract. 
Similarly, there may be an increase in the marginal penalty 
for early delivery. The choice of these two sensitive 
functions depends on the default’s impact on the buyer, as 
well as the buyer’s attitude toward the default. 

The expected penalty function depends on 𝑀, 𝑁, 𝑐, and 
𝑓(𝑥) . In general, these parameters cannot be arbitrarily 
changed. The delivery window and penalty factor are 
stipulated by the contract, and the parameters related to the 
distribution of delivery time cannot be changed in the short 
term. Therefore, the only decision variable is 𝑐 . This 
variable can be changed by the supplier, to decrease the 
total expected penalty in the supply chain. Previous 
approaches have set the penalty costs of early and late 
delivery as being linearly related to default time. This study 
posits that this approach is imperfect, and instead use a 
time-sensitive penalty cost function to incorporate both 
parties’ preferences for time and tolerance for non-on-time 
delivery. The goal is to make the transaction fairer, by 
giving buyers and suppliers more flexibility, taking care of 
both parties, and providing more choices when signing the 
contract. The supplier’s objective is to find the optimal 
position of delivery window 𝑐∗ to minimize the expected 
penalty 𝑌. 

Theorem 2.1 The expected penalty 𝑌 is convex with 
respect to 𝑐 , which in turn represents the start of the on-
time delivery window. Then, the optimal position of the 
delivery window 𝑐∗ minimizing 𝑌 should satisfy: 

=
∫ ( ∗ ∆ )
∞
∗ ∆

( )

∫ ( ∗ )
∗

( )
                 (3) 

Proof For 𝑝 >  1, 𝑞 >  1, taking the first-order partial 
derivative of 𝑌 with respect to 𝑐  yields Eq. (4): 

= 𝑀𝑝 ∫ (𝑐 − 𝑥) 𝑓(𝑥)𝑑𝑥 − 𝑁𝑞 ∫ (𝑥 − 𝑐 −
∞

∆

∆𝑐) 𝑓(𝑥)𝑑𝑥                              (4) 

Taking the second-order partial derivative of 𝑌  with 
respect to 𝑐  gets Eq. (5): 

= 𝑀𝑝(𝑝 − 1) ∫ (𝑐 − 𝑥) 𝑓(𝑥)𝑑𝑥 + 𝑁𝑞(𝑞

− 1) ∫ (𝑥 − 𝑐 − ∆𝑐)
∞

∆
𝑓(𝑥)𝑑𝑥 > 0         (5) 

Here, Eq. (5) implies that 𝑌 is convex with respect to 𝑐 . 
The optimal position of the delivery window 𝑐∗satisfies the 

condition that Eq. (4) equals 0. Simplifying = 0 yields 

Eq. (3). Eq. (3) remains true even when at least one of 𝑝 and 
𝑞 is 1. 

When the delivery parameters are determined, the 
supplier can minimize the expected penalty by determining 
the optimal position of the delivery window using Theorem 
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2.1. This theorem can be applied across different 
distribution functions. At the same time,  emerges as a 
decisive factor in determining the value of 𝑐∗ . This is 
illustrated in Proposition 2.3. 

2.2. Effect of Parameters 

This section investigates the impact of each parameter of 
penalty on 𝑐∗ and 𝑌∗. This helps both suppliers and buyers 
determine the direction of negotiation and determine the 
best trade-off between delivery reliability and penalties. 
Suppliers and buyers have opposite preferences for some 
parameters. For example, a tight delivery window is 
appealing to the buyer, but is associated with a higher 
probability of delay and tardiness penalties. A wide 
delivery window gives the supplier more flexibility to 
arrange both production and delivery, but harms the buyer 
with a high demand for time and incurs excess cost. 

This paper focuses on the simple case of the impact of 
a single parameter change on the optimal position of the 
delivery window and the expected penalty. This paper does 
not present a correlation analysis between variables, as the 
complexity of that approach is beyond the scope of this 
paper.   

Proposition 2.1 Given that 𝑀,  𝑁,  𝑝,  𝑞, and  𝑓(𝑥) are 
fixed, increasing the width of the delivery window ∆𝑐 
decreases the optimal delivery window position 𝑐∗ and the 
minimum total expected penalty cost 𝑌∗. 

Proof The optimal position of the delivery window 𝑐∗ 
satisfies the following condition: 

𝑀𝑝 ∫ (𝑐∗ − 𝑥)
∗

𝑓(𝑥)𝑑𝑥 − 𝑁𝑞 ∫ (𝑥 − 𝑐∗ −
∞
∗ ∆

∆𝑐) 𝑓(𝑥)𝑑𝑥 = 0                     (6) 

Calculating the derivative on both sides of Eq. (6) with 
respect to ∆𝑐 yields the following results: 

Case 1. 𝑝 =  1, 𝑞 =  1, 

𝑀𝑓(𝑐∗) ⋅
∗

+ 𝑁𝑓(𝑐∗ + Δ𝑐)
∗

+ 1 =  0       (7) 

Eq. (7) yields Eq. (8): 
∗

∆
= −

( ∗ ∆ )
∗ ∗ ∆

< 0               (8) 

Case 2. 𝑝 =  1, 𝑞 >  1, 

𝑀𝑓(𝑐∗) ⋅
∗

∆
+ 𝑁𝑞(𝑞 − 1) ∫ (𝑥 − 𝑐∗ − ∆𝑐)

∞
∗ ∆

𝑓(𝑥)

𝑑𝑥 ⋅
∗

∆
+ 1 = 0                     (9) 

Eq. (9) yields Eq. (10): 

∗

∆
= −

( ) ∫ ( ∗ ∆ )
∞
∗ ∆

( )

∗ ( ) ∫ ∗ ∆
∞
∗ ∆

( )
< 0    (10) 

Case 3. 𝑝 >  1, 𝑞 =  1, 

𝑀𝑝(𝑝 − 1) ∫ (𝑐∗ − 𝑥)
∗

𝑓(𝑥)𝑑𝑥 ⋅
∗

∆
+ 𝑁𝑓(𝑐∗ + ∆

𝑐)
∗

∆
+ 1 = 0                            (11) 

Eq. (11) yields Eq. (12): 
∗

∆
= −

( ∗ ∆ )

( ) ∫ ∗
∗

( ) ⋅
∗

∆
∗ ∆

< 0   (12) 

Case 4. 𝑝 >  1, 𝑞 >  1, 

𝑀𝑝(𝑝 − 1) ∫ (𝑐∗ − 𝑥)
∗

𝑓(𝑥)𝑑𝑥 ⋅
∗

∆
+ 𝑁𝑞(𝑞

− 1) ∫ (𝑥 − 𝑐∗ − ∆𝑐)
∞
∗ ∆

𝑓(𝑥)𝑑𝑥 ⋅
∗

∆
+ 1 = 0       

(13) 

Eq. (13) yields Eq. (14): 
∗

∆
= − 𝑁𝑞(𝑞 − 1) ∫ (𝑥 − 𝑐∗ − ∆𝑐)

∞
∗ ∆

𝑓(𝑥)𝑑𝑥 /

𝑀𝑝(𝑝 − 1) ∫ (𝑐∗ − 𝑥)
∗

𝑓(𝑥)𝑑𝑥 + 𝑁𝑞 ∫ (𝑥 −
∞
∗ ∆

𝑐∗ − ∆𝑐) 𝑓(𝑥)𝑑𝑥 < 0                (14) 

All four cases indicate that 
∗

∆
< 0 .The optimal 

position of the delivery window 𝑐∗ decreases in line with 
∆𝑐. The wider the delivery window is, the more forward is 
the optimal position. 

The next step is to assess the effect of ∆𝑐 on the optimal 
value function 𝑌∗. Applying the envelope theorem indicates 
that the partial derivative of 𝑌 with respect to ∆𝑐 is: 

∆
= −𝑁𝑞 ∫ (𝑥 − 𝑐 − ∆𝑐)

∞

∆
𝑓(𝑥)𝑑𝑥    (15) 

Eq. (15) yields: 

∗

∆
=

∆
{𝑐 = 𝑐∗(∆𝑐)} = −𝑁𝑞 ∫ (𝑥 − 𝑐∗ − ∆𝑐)

∞
∗ Δ

𝑓(𝑥)𝑑𝑥 < 0                          (16) 

Eq. (16) indicates that 𝑌∗ decreases as the width of the 
delivery window ∆𝑐 narrows. 

Proposition 2.2 (1) With 𝑁,  𝑝,  𝑞,  𝑓(𝑥), and ∆𝑐 fixed, 
an increase in the early delivery penalty factor 𝑀 increases 
the optimal position 𝑐∗ and leads 𝑌∗ to increase. (2) With 
𝑀, 𝑝, 𝑞, 𝑓(𝑥), and ∆𝑐 fixed, an increase in the late delivery 
penalty factor 𝐾  decreases the optimal position 𝑐∗  and 
leads 𝑌 to increase. 

Proof Calculating the derivation on both sides of Eq. (6) 
with respect to 𝑀 (or 𝑁) yields the following results (Eqs. 
(17)-(24)): 

Case 1. 𝑝 =  1, 𝑞 =  1, 

∗

( )
= −

∫ ( )

∗ ∗ Δ
< 0            (17) 

∗

=
∫ ( )
∞
∗ ∆

∗ ∗ ∆
> 0              (18) 

Case 2. 𝑝 =  1, 𝑞 >  1, 

∗

( )
= −

∫ ( )
∞
∗ ∆

∗ ( ) ∫ ∗ ∆
∞
∗ ∆

( )
< 0  (19) 

∗

=
∫ ( ∗ ∆ )
∞
∗ ∆

( )

∗ ( ) ∫ ∗ ∆
∞
∗ ∆

( )
> 0     (20) 

Case 3. 𝑝 >  1, 𝑞 =  1, 

∗

( )
= −

∫ ( ) ( )

( ) ∫ ( ) ( ) ∗ ∆
< 0   (21) 

∗

=
∫ ( )
∞
∗ ∆

( ) ∫ ∗
∗

( ) ∗ ∆
> 0     (22) 

Case 4. 𝑝 >  1, 𝑞 >  1, 
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∗

( )
= − 𝑝 ∫ (𝑐 − 𝑥) 𝑓(𝑥)𝑑𝑥 / 𝑀𝑝(𝑝 −

1) ∫ (𝑐 − 𝑥) 𝑓(𝑥)𝑑𝑥 + 𝑁𝑞(𝑞 − 1) ∫ (𝑥
∞
∗ ∆

− 𝑐∗ − ∆𝑐) 𝑓(𝑥)𝑑𝑥 < 0            (23) 

∗

= 𝑞 ∫ (𝑥 − 𝑐∗ − ∆𝑐)
∞
∗ Δ

𝑓(𝑥)𝑑𝑥 / 𝑀𝑝(𝑝

− 1) ∫ (𝑐 − 𝑥) 𝑓(𝑥)𝑑𝑥 + 𝑁𝑞(𝑞 − 1) ∫ (𝑥
∞
∗ ∆

− 𝑐∗ − ∆𝑐) 𝑓(𝑥)𝑑𝑥 > 0             (24) 

All four cases show that 
∗

( )
< 0 and 

∗

> 0; that is, 

as the early (late) delivery penalty factor 𝑀 (𝑁) increases, 
the optimal delivery window position 𝑐∗  decreases 
(increases). 

To assess the effect of 𝑀  ( 𝑁 ) on 𝑌∗ , applying the 
envelope theorem yields: 

                    
∗

( )
=

( )
{𝑐 = 𝑐∗(𝑀)} = ∫ (𝑐∗ − 𝑥)

∗

𝑓

(𝑥)𝑑𝑥 > 0                     (25) 

∗

= {𝑐 = 𝑐∗(𝑁)} = ∫ (𝑥 − 𝑐∗ − ∆𝑐)
∞
∗ 𝑓(𝑥)𝑑𝑥 > 0

                      (26) 

Eq. (25)-(26) shows that the minimal expected penalty 
𝑌∗ increases whenever 𝑀 or 𝑁 increases. 

It is important to carefully observe the conditions 
satisfied by the optimal location of the delivery window in 
Theorem 2.1. When the ratio of 𝑀 and 𝑁 is determined, the 
optimal position of the delivery window is also determined. 
Proposition 2.2 indicates that increasing the value of 𝑀 
decreases 𝑐∗ , and increasing the value of 𝑁  increases 𝑐∗ . 
However, when 𝑀 and 𝑁 are doubled at the same time, 𝑐∗ 
does not change. This yields the following proposition: 

Proposition 2.3 When 𝑝 , 𝑞 , and 𝑓(𝑥)  are fixed, 

increasing  increases the optimal position of the delivery 
window 𝑐∗. 

Proof For the convenience of calculation, the 
conditional expression Eq. (7), satisfied by 𝑐∗ , is 
transformed into Eq. (27): 

𝑝 ∫ (𝑐∗ − 𝑥)
∗

𝑓(𝑥)𝑑𝑥 − 𝑞 ∫ (𝑥 − 𝑐∗ − ∆𝑐)
∞
∗ ∆

𝑓

(𝑥)𝑑𝑥 = 0                           (27) 

The process and calculation of this proof are similar to 
Proposition 2.2. As such, only the results are showed here. 
First, simultaneously calculate the derivation on both sides 
of Eq. (7) with respect to . Then, continue to analyze the 
four cases. 

When 𝑝 = 1, 𝑞 = 1, there is: 

 
∗

= −
∫ ( )

∗ ∗ ∆
< 0          (28) 

When 𝑝 = 1, 𝑞 > 1, there is: 

∗

= −
∫ ( )
∞
∗ ∆

∗ ( )  ∫ ∗ ∆ ( )
∞
∗ ∆

< 0 (29) 

When 𝑝 > 1, 𝑞 = 1, there is: 

∗

= −
∫ ( ) ( )

( ) ∫ ( ) ( ) ∗ Δ
< 0      (30) 

When 𝑝 > 1 , 𝑞 > 1, there is: 
∗

=

−
∫ ( ) ( )

( ) ∫ ( ) ( ) ( ) ∫ ∗ ∆
∞
∗ ∆

( )
<

0            (31) 

Eqs. (28)-(31) take the same form as Eqs. (17)-(24) in 
Proposition 2.2, with only the coefficients changing. In 

these four cases, there are 
∗

< 0 . This leads to the 

conclusion that as the ratio of 𝑀  and 𝑁  increases, the 
optimal delivery window position increases. 

This proposition emphasizes that determining the ratio 
of 𝑀  to 𝑁  also determines the optimal position of the 
delivery window 𝑐∗ . The buyer can indirectly adjust the 
delivery time by changing the ratio of the two parameters. 
For example, if the buyer wants the goods to arrive as early 
as possible, the buyer can lower the value of . Based on 
Propositions 2.2 and 2.3, one can also decrease the value of 
the early delivery penalty coefficient 𝑀  or increase the 
value of the late delivery penalty parameter 𝑁. This method 
can be used to decrease 𝑐∗ . These two cases are special 
cases involving a decrease in the ratio of 𝑀  to 𝑁 . It is 
feasible that simultaneously decreasing the early delivery 
penalty parameter 𝑀  and increasing the late delivery 
penalty parameter 𝑁 will achieve the same goal. 

This study has discussed discussed the effect of ∆𝑐, 𝑀, 
and 𝑁, but the preference parameters 𝑝 and𝑞 remain to be 
discussed. Intuitively, an increase in 𝑝 should indicate that 
the early delivery penalty is more serious. As a result, the 
optimal delivery position 𝑐∗ should be smaller. However, 
the reality is not this simple. To determine the effect of 𝑝 
on 𝑐∗,  the derivation of Eq. (6) with respect to 𝑝  is 
calculated to yield Eq. (32): 

𝑀 ∫ (𝑐∗ − 𝑥)
∗

𝑓(𝑥)𝑑𝑥 + 𝑀𝑝 ∫ (𝑐∗ − 𝑥)
∗

𝑙𝑛

(𝑐∗ − 𝑥) + ∗ ⋅
∗

𝑓(𝑥)𝑑𝑥 + 𝑁𝑝(𝑝 − 1) ∫ (𝑥
∞
∗ ∆

− 𝑐∗ − ∆𝑐) 𝑓(𝑥)𝑑𝑥 ⋅
∗

= 0           (32) 

Here, the following derivation rule is applied: 

((𝑐∗ − 𝑥) ) = 𝑒( ) ( ∗ ) = 𝑒( ) ( ∗ ) 𝑙𝑛

(𝑐∗ − 𝑥) + ∗ ⋅
∗

                  (33) 

Eq. (33) yields Eq. (34): 
∗

=

−
∫ ( ∗ )

∗
( ) ∫ ( ∗ )

∗
( ∗ ) ( )

∫ ∗
∗

⋅ ∗ ( ) ( ) ∫ ∗ ∆
∞
∗ ∆

( )
=

     −
∫ ( ∗ ) ( ⋅ ( ∗ ) ) ( )

∗

∫ ∗
∗

⋅ ∗ ( ) ( ) ∫ ∗ ∆
∞
∗ ∆

( )

  (34) 

It is possible for 𝑝 or 𝑞 to take the value of 1, however, 
the value of a single point does not affect the overall 
monotonicity. As such, the unnecessary classified 
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discussion is omitted. The denominator in 
∗

 is greater 

than 0, and the sign of 
∗

 depends on the sign of the 

numerator 𝑀 ∫ (𝑐∗ − 𝑥) (𝑝 ⋅ 𝑙𝑛(𝑐∗ − 𝑥) + 1)𝑓(𝑥)𝑑𝑥
∗

. 
Thus, only the positive and negative values of the 
numerator need to be discussed. Here, 𝑐∗  is viewed as a 
variable. For clarity, this study define 

𝑔(𝑦) = 𝑀 ∫ (𝑦 − 𝑥) (𝑝 ⋅ 𝑙𝑛(𝑦 − 𝑥) + 1)𝑓(𝑥)𝑑𝑥  (35) 

In particular, 𝑔(𝑐∗) is equal to the numerator in 
∗

 for 

𝑦 = 𝑐∗ . In Eq. (35), (𝑦 − 𝑥)  and 𝑓(𝑥)  are always 
positive; only 𝑝 ⋅ 𝑙𝑛(𝑦 − 𝑥) + 1  may be positive or 
negative. The zero point of 𝑝 ⋅ 𝑙𝑛(𝑦 − 𝑥) + 1 is denoted as 

𝑐 ; this yields 𝑐 = 𝑦 − 𝑒 . 

The positive part of 𝑔(𝑦)is  

𝑀 ∫ (𝑦 − 𝑥) (𝑝 ⋅ 𝑙𝑛(𝑦 − 𝑥) + 1)𝑓(𝑥)𝑑𝑥      (36) 

The negative part is  

𝑀 ∫ (𝑦 − 𝑥) − 1(𝑝 ⋅ 𝑙𝑛(𝑦 − 𝑥) + 1)𝑓(𝑥)𝑑𝑥     (37) 

The positive or negative value of 𝑔(𝑦) depends on a 
comparison of the positive part, Eq. (36), and negative part, 
Eq. (37), which are determined by 𝑦  and the probability 
density function 𝑓(𝑥) of the delivery time. In other words, 
the positive or negative value of 𝑔(𝑦)  depends on the 
relationship between 𝑦 and the 0 position of the numerator. 

Turning to a discussion of 
∗

, the sign of this parameter 

is determined by the relationship between 𝑐∗ and the zero 

position. Therefore, it is possible for 
∗

 to be positive or 

negative, because the determining factor 𝑐∗  can take any 
value. The value of 𝑐∗, determined by the ratio of 𝑀 and 𝑁 
for a fixed value of 𝑝 according to Proposition 2.3, can be 
modified by different value of 𝐾, which is not present in the 

numerator of 
∗

. 

Similarly, we can analyze the effect of 𝑞 on 𝑐∗ can be 
analyzed and yields: 

∗

= 𝑁 ∫ (𝑥 − 𝑐∗ − ∆𝑐) (𝑞 ⋅ 𝑙𝑛(𝑥 − 𝑐∗ − ∆𝑐) +
∞
∗ ∆

1)𝑓(𝑥)𝑑𝑥 / 𝑀𝑝(𝑝 − 1) ∫ (𝑐∗ − 𝑥)
∗

𝑓(𝑥)𝑑𝑥 + 𝑁𝑞

∫ (𝑥 − 𝑐∗ − ∆𝑐)
∞
∗ ∆

⋅ ∗ ∆
𝑓(𝑥)𝑑𝑥           (38) 

The positive or negative value of 
∗

 depends on the 

relationship between the positive and negative parts of the 
numerator, which is still determined by 𝑐∗ and 𝑓(𝑥); 𝑐∗ is 
called the threshold 𝐴(𝑝) (indicating that the threshold is 
related to 𝑝), when the numerator in Eq. (34) is equal to 0. 
The variable 𝑐∗ is called the threshold 𝐵(𝑞) (indicating that 
the threshold is related to 𝑞) when the numerator in Eq. (38) 
is equal to zero. This yields the following assumption. 

Assumption 2.1 (1) When 0 < 𝐴(𝑝) ≤ 𝑐∗ , as 𝑝 
increases, the optimal position of delivery window 𝑐∗ first 
increases and then decreases. When 𝐴(𝑝) > 𝑐∗ , 𝑐∗ 
decreases as 𝑝  increases. (2) When 𝐵(𝑞) > 𝑐∗ , with the 
increase of 𝑞, the optimal position of delivery window 𝑐∗ 
first decreases and then increases; when 𝐵(𝑞) ≤ 𝑐∗ , 𝑐∗ 
decreases as 𝑞 increases. 

The analysis of the positive and negative values of 
∗

 

and 
∗

 determines that as the time preference coefficient 𝑝 

and 𝑞 change, the optimal position of the delivery window 
does not simply increase or decrease as hypothesized. 
Rather, the optimal position is closely related to the actual 
delivery parameters. The effect of 𝑝 and 𝑞 on the minimum 
expected penalty cannot be calculated by just using the 
envelope theorem. This is because the calculation is too 
complicated. Hence, a specific analysis is conducted using 
a numerical example. 

2.3. A Special Case: Mixed Linear and Quadratic Time 
Dependent Penalty 

This study considers the expected penalty to be linear-
quadratic time dependent, where 𝑝 and 𝑞 take the value of 
either 1 or 2. In other words, there are four cases (𝑝 =
1,2;  𝑞 = 1,2) as indicated later in this section. These reflect 
the combination of 1 and 2 with respect to the index of early 
delivery and late delivery. In this special case, the optimal 
delivery window position 𝑐∗ is expressed in a simple form. 

When 𝑝 = 1 , 𝑞 = 1 , the supply chain is called a 
traditional two-stage supply chain (Bushuev and Guiffrida, 
2012). The expected penalty is: 

𝑌 = ∫ 𝑀(𝑐 − 𝑥)𝑓(𝑥)𝑑𝑥 + ∫ 𝑁(𝑥 − 𝑐 − ∆𝑐)𝑓(𝑥)𝑑𝑥
∞

  

(39) 

When 𝑝 = 2, 𝑞 = 1, the supply chain is called a lead 
time sensitive supply chain. The expected penalty is: 

𝑌 = ∫ 𝑀(𝑐 − 𝑥) 𝑓(𝑥)𝑑𝑥 + ∫ 𝑁(𝑥 − 𝑐 −
∞

∆𝑐)𝑓(𝑥)𝑑𝑥                      (40) 

When 𝑝 = 1, 𝑞 = 2, the supply chain is called a delay 
time sensitive supply chain. The expected penalty is: 

𝑌 = ∫ 𝑀(𝑐 − 𝑥)𝑓(𝑥)𝑑𝑥 + ∫ 𝑁(𝑥 − 𝑐 −
∞

∆𝑐) 𝑓(𝑥)𝑑𝑥                      (41) 

When 𝑝 = 2, 𝑞 = 2, the supply chain is called a two-
stage time-sensitive supply chain. The expected penalty is: 

𝑌 = ∫ 𝑀(𝑐 − 𝑥) 𝑓(𝑥)𝑑𝑥 + ∫ 𝑁(𝑥 − 𝑐 −
∞

∆𝑐) 𝑓(𝑥)𝑑𝑥                         (42) 

These four cases above cover all possible delivery 
preferences and cost compensations. Applying Theorem 
2.1 yields the conditions satisfied by the optimal positions 
of the delivery window. 

Theorem 2.2 Denote 𝑐∗  as the optimal positions of the 
delivery window, which minimize 𝑌 (𝑖 = 1, 2, 3, 4). Then, 
𝑐∗  satisfy the following conditions: 

𝐹(𝑐∗ ) − 1 + 𝐹(𝑐∗ + ∆𝑐) = 0           (43) 

𝐺(𝑐∗ ) − 1 + 𝐹(𝑐∗ + ∆𝑐) = 0          (44) 

𝐹(𝑐∗ ) − 𝐸(𝑥) − 𝐺(𝑐∗ + ∆𝑐) + (𝑐∗ + ∆𝑐) = 0   (45) 

𝐺(𝑐∗ ) − 𝐸(𝑥) − 𝐺(𝑐∗ + ∆𝑐) + (𝑐∗ + ∆𝑐) = 0    (46) 

where 𝐹(𝑥) is a cumulative distribution function, and  
𝐺(𝑥) = ∫ 𝐹(𝑦)𝑑𝑦. 
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Proof Let 𝑔 (𝑐 ) be the derivatives of 𝑌  with respect to 
the delivery window position, then 

𝑔 (𝑐 ) = = 𝑀 ∫ 𝑓(𝑥)𝑑𝑥 − 𝑁 ∫ 𝑓(𝑥)𝑑𝑥
∞

=

𝑀𝐹(𝑐 ) − 𝑁 1 − 𝐹(𝑐 )            (47) 

𝑔 (𝑐 ) = = 2𝑀 ∫ (𝑐 − 𝑥)𝑓(𝑥)𝑑𝑥 −

𝑁 ∫ 𝑓(𝑥)𝑑𝑥
∞

= 2𝑀 ∫ (𝑐 − 𝑥)𝑓(𝑥)𝑑𝑥 − 𝑁 1 − 𝐹(𝑐 )   

(48) 

𝑔 (𝑐 ) = = 𝑀 ∫ 𝑓(𝑥)𝑑𝑥 − 2𝑁 ∫ (𝑥 − 𝑐 −
∞

∆𝑐)𝑓(𝑥)𝑑𝑥 = 𝑀𝐹(𝑐 ) − 2𝑁 ∫ (𝑥 − 𝑐 − ∆𝑐)𝑓(𝑥)𝑑𝑥
∞

 

(49) 

𝑔 (𝑐 ) = = 2𝑀 ∫ (𝑐 − 𝑥)𝑓(𝑥)𝑑𝑥 − 2𝑁 ∫ (𝑥 −
∞

𝑐 − ∆𝑐)𝑓(𝑥)𝑑𝑥                       (50) 

This completes the processing of 𝑔 (𝑐 ) . For the 
integral term above with 𝑥  in Eqs. (48)-(50), this study 
applies the cumulative integral transformation: 

∫ 𝑥𝑓(𝑥)𝑑𝑥 = ∫ ∫ 𝑓(𝑥)𝑑𝑦𝑑𝑥 = ∫ ∫ 𝑓(𝑥)𝑑𝑥𝑑𝑦 =

∫ 𝐹(𝑐 ) − 𝐹(𝑦)𝑑𝑦 = 𝑐 𝐹(𝑐 ) − 𝐺(𝑐 )        (51) 

For a continuous random variable 𝑥 with a probability 
density function 𝑓(𝑥) , the expectation of 𝑥  can be 

expressed as 𝐸(𝑥) = ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

. To compute 

∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

∆
, we use the interval additivity of the 

definite integral, yielding Eq. (52): 

∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

∆
= ∫ 𝑥𝑓(𝑥)𝑑𝑥

∞
− ∫ 𝑥𝑓(𝑥)𝑑𝑥

∆
=       

𝐸(𝑥) − (𝑐 + ∆𝑐)𝐹(𝑐 + ∆𝑐) + 𝐺(𝑐 + ∆𝑐)      (52) 

We then rewrite 𝑔 (𝑐 ), 𝑔 (𝑐 ), 𝑔 (𝑐 ): 

𝑔 (𝑐 ) = 2𝑀 ∫ (𝑐 − 𝑥)𝑓(𝑥)𝑑𝑥 − 𝑁 1 − 𝐹(𝑐 +

∆𝑐) = 2𝑀 𝑐 𝐹(𝑐 ) − 𝑐 𝐹(𝑐 ) − 𝐺(𝑐 ) − 𝑁 1 −

𝐹(𝑐 + ∆𝑐) = 2𝑀𝐺(𝑐 ) − 𝑁 1 − 𝐹(𝑐 + ∆𝑐)      (53) 

𝑔 (𝑐 ) = 𝑀𝐹(𝑐 ) − 2𝑁 ∫ (𝑥 − 𝑐 − ∆𝑐)𝑓(𝑥)𝑑𝑥
∞

=

𝑀𝐹(𝑐 ) − 2𝑁 𝐸(𝑥) − (𝑐 + ∆𝑐)𝐹(𝑐 + ∆𝑐) + 𝐺(𝑐 +

∆𝑐) − (𝑐 + ∆𝑐) 1 − 𝐹(𝑐 + ∆𝑐) = 𝑀𝐹(𝑐 ) −
2𝑀[𝐸(𝑥) + 𝐺(𝑐 + ∆𝑐) − (𝑐 + ∆𝑐)]      (54) 

𝑔 (𝑐 ) = 2𝑀 ∫ (𝑐 − 𝑥)𝑓(𝑥)𝑑𝑥 − 2𝑁 ∫ (𝑥 − 𝑐 −
∞

∆𝑐)𝑓(𝑥)𝑑𝑥 = 2𝑀𝐺(𝑐 ) − 2𝑁[𝐸(𝑥) + 𝐺(𝑐 + ∆𝑐) −
(𝑐 + ∆𝑐)]                          (55) 

When the derivatives Eqs. (53)-(55) equal 0, the 
coefficients can be simplified to obtain Eqs. (44)-(46). 

Theorem 2.2 shows that, due to the choice of the 
quadratic form of the time-sensitive penalty cost function, 
the effective forms that do not include the explicit integral 
form are generated ultimately. This involves using the 
derivation of the quadratic form, the first-order of which 
corresponds to the expectation of the actual arrival time 𝑥 
and the integral form of the cumulative distribution function. 

 

 

3. Results and Discussion  

3.1. The Necessity of Finding the Optimal Delivery 
Window Position 

Two numerical examples using penalty-based mixed linear 
and quadratic time dependence are presented to build the 
general model in this section. The parameter values refer to 
examples of Tao et al. (2021) and Roy and Sarker (2021). 

Example 1. Uniformly distributed lead time 

Consider a toy manufacturer that produces toys to supply to 
retailers. Delivery time is uniformly distributed between 0 
days and 35 days, that is, 𝑥~𝑈(0,35) . The remaining  
parametric values are: 𝑀 = 1507 , 𝑁 = 1320 , ∆𝑐 = 15 . 
The probability density function of delivery time 𝑥  is 
𝑓(𝑥) = , the cumulative distribution function of 𝑥  is 

F(𝑥) = , and the cumulative integral of the distribution 

function is 𝐺(𝑥) = . Eqs. (43)-(46) in Theorem 2.2 are 
applied to calculate the optimal position of the delivery 
window: 𝑐∗ = 9 (𝑝 = 2, 𝑞 = 1),  𝑐∗ = 4 (𝑝 = 2, 𝑞 = 1), 
𝑐∗ = 16  (𝑝 = 1 , 𝑞 = 2), and 𝑐∗ = 10  (𝑝 = 2 , 𝑞 = 2). 
Based on Eqs. (39)-(42), the corresponding minimum 
expected penalty are: 𝑌 = 4025.53 , 𝑌 = 5745.98 , 
𝑌 = 6415.36, and 𝑌 = 26923.81. Different expected 
penalty cost resulting from different delivery window 
positions (different deviation from the optimal delivery 
window) are shown in Table 1. 

Table 1. Expected penalty cost for different delivery 

window positions (Uniformly distributed lead time) 

 𝑌  𝑌  𝑌  𝑌  

𝑐∗ − 5 5172 - 11769 44223 

𝑐∗ − 3 4471 6821 7950 32542 

𝑐∗ − 1 4093 5837 6415 27195 

𝑐∗ 4026 5746 6315 26924 

𝑐∗ + 1 4038 6036 6561 28267 

𝑐∗ + 3 4306 8109 7784 35844 

𝑐∗ + 5 4898 12745 9494 50011 

It is observed that the delivery window position is only 
one day later than the optimal delivery window position. 
The expected penalty 𝑌  will increase the most, reaching 
5.05%. A delivery window position extension of up to five 
days will cost 1.2 times the additional penalty for 𝑌 . Even 
𝑌 , with the least amount of loss, will cause an additional 
loss of 21.66%. 

Example 2. Exponentially distributed lead time 

The delivery time of a type of sofa from A-Zenith Furniture 
Co., Ltd. follows an exponential distribution, with mean 
𝛽 = 30 (an analysis of the collected data shows that the 
two-tailed significance of the test obtained after the one-
sample Kolmogorov-Smirnov goodness-of-fit test is 0.564 
(>0.05), and therefore, the delivery time follows 
exponential distribution). The remaining parametric values 
are: 𝑀 = 80 , 𝑁 = 200, ∆𝑐 = 4 . The probability density 

function of delivery time 𝑥  is 𝑓(𝑥) = 𝑒𝑥𝑝 − ; the 

cumulative distribution function of 𝑥  is 𝐹(𝑥) = 1 −

𝑒𝑥𝑝 − ; the expected 𝑥 value is 30, and the cumulative 

integral of the distribution function is 𝐺(𝑥) =
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𝑥 +30𝑒𝑥𝑝 − − 30.  Theorem 2.2 enables the 

calculation of the optimal position of the delivery window  
in four cases as: 𝑐∗ = 35, 𝑐∗ = 7, 𝑐∗ = 147, and 𝑐∗ =
40. Table 2 shows the expected penalty cost for different 
deviations of the delivery window position from 𝑐∗ . 

Table 2. Expected penalty cost for different delivery 

window positions (exponentially distributed lead time) 

 𝑌  𝑌  𝑌  𝑌  

𝑐∗ − 5 2817 4851 11759 127741 

𝑐∗ − 1 2783 4461 11725 125174 

𝑐∗ 2782 4442 11723 125069 

𝑐∗ + 1 2784 4463 11725 125174 

𝑐∗ + 5 2814 5019 11755 127672 

𝑐∗ + 10 2902 7044 11843 135354 

𝑐∗ + 30 3665 36624 12606 213917 

It is noted from Table 2 that, unlike Example 1, a one-
day delay would cause considerable additional losses, and 
the impact of a one-day deviation from the optimal position 
of the delivery window in the exponential distribution is 
almost negligible. The main reason for this is that the 
exponential distribution has a large delivery time span and 
a small delivery window. However, the delivery window 
position is 10 days later than the optimal delivery window 
position, and the expected penalty increases significantly. 
A 10-day delay will result in additional cost losses of 4.31%, 
58.58%, 1.02%, and 8.22%, respectively, for the four 
expected penalties. In addition, a deviation of up to 30 days 
has the most serious impact on 𝑌 , which will cause a 7-
times additional loss. 

By completing a longitudinal comparison of the data in 
Table 1 and Table 2, when the values of 𝑝  and 𝑞  are 
determined, the more the position of the delivery window 
deviates from the target value, the higher the additional 
penalty cost is. By a horizontal comparison, the larger the 
index is, the larger is the expected penalty. Reasonable use 
of delivery windows by suppliers can minimize 
unnecessary financial expenses. This is a cost-free 
optimization that ensures that resources are used to the 
fullest extent possible. 

Due to space limitations, Subsections 3.2-3.5 only show 
the parameter analysis of Example 2. 

3.2. Effect of Delivery Window Width 

Fig. 1 illustrates the effect of changing the width of the 
delivery window Δ𝑐 from 5 to 60 on the optimal position of 
that delivery window. When the delivery window is 
widened, the optimal positions of the delivery window 
trend downward. The rate of that decrease is relatively slow 
in all four cases. When the delivery window is doubled, that 
is, from 4 to 8, the optimal position of the delivery window 
is advanced by two days, zero days, four days, and two days 
in the four cases, which is less than 7%. At the same Δ𝑐 the 
optimal position of the delivery window for the delay time 
sensitive expected penalty is the largest. This is because 
when the late delivery penalty increases, the delivery 
window position becomes larger, and the probability 
increases that the delivery will not be delayed. 

 

Fig. 1. The effect of ∆𝑐  on 𝑐∗ 

The values and trends of 𝑐∗  and 𝑐∗  are similar, 
because both have a similar penalty policy for early and late 
delivery. Fig. 2 shows the effect of the width of the delivery 
window Δ𝑐  on the minimum expected penalty 𝑌∗ . The 
scale of the y-axis scale is very large, so the effect of Δ𝑐 on 
𝑌∗ is also large, although the slope of the line in Fig. 2 does 
not appear to be large. Increasing the value of Δ𝑐 
significantly reduces 𝑌∗ . When the delivery window 
doubles, the expected penalty in the four cases decreases by 
8.27%, 12.4%, 2.7%, and 8.64%, respectively. In particular, 
when 𝑝 = 2, 𝑞 = 2, the expected penalty is reduced from 
125069 to 114268, a reduction of 10801. This is quite a 
substantial cost saving. The results support Proposition 2.1, 
namely that the wider the Δc is, the smaller the optimal 
position is and the less the penalty costs are. 

 

Fig. 2. The effect of ∆𝑐  on 𝑌∗ 

3.3. The Effect of the Ratio of 𝑴 To 𝑵 

Fig. 4 illustrates the effect on the optimal position of the 
delivery window when the ratio of 𝑀 and 𝑁 varies between 
0.01 and 10. From Proposition 2.3, one can know that 
increasing the ratio  will decrease the optimal position 𝑐∗. 

As the ratio of  increases, with a value around 1.5 as the 
critical point, first, 𝑐∗ sharply decreasesand then decreases 
increasingly slowly. For example, for 𝑝 = 2  and 𝑞 = 1 , 
when the ratio decreases from 0.2 to 0.1, the delivery 
window optimal position increases by 25%, from 10 to 14; 
when decreasing to 0.4, 𝑐∗ increases to 20 and doubles. The 
critical values for the four cases are around 1, 0.2, 2, and 

Journal of Engineering, Project, and Production Management, 2023, 12(2), 113-124 

120    Yang, J. and Xing, X. 



 

 

0.6. The buyer assesses the ratio . When its value falls 
between 0 and a value around 1.5, adjusting the ratio is a 
powerful tool that the buyer can use to adjust the delivery 
time. However, when the ratio exceeds a certain range, 
adjusting the ratio has very little impact on the delivery time. 

 

Fig. 3. The effect of  on 𝑐∗ 

3.4. The Effect of 𝒑 and 𝒒 

Figs. 4 and 5 show the effect of the time preference 
coefficient on the optimal position of the delivery window. 
When  𝑞 (𝑝) is fixed, 𝑐∗  decreases (increases) as 𝑝 (𝑞) 
increases. Small changes in 𝑝  or 𝑞  result in significant 
changes in 𝑐∗. For example, when 𝑞 = 2, 𝑝 increases from 
2 to 3, and then 𝑐∗ decreases from 40 to 14, a reduction of 
65%. When 𝑝 = 2 , 𝑞  increases from 2 to 3, and 𝑐∗ 
increases from 39 to 124, an increase of more than 2-times.  

 

Fig. 4. The effect of 𝑝 on 𝑐∗ 

 

Fig. 5. The effect of 𝑞 on 𝑐∗ 

As shown in Figs. 6 and 7, when combined with the 
effect of the time preference coefficient on 𝑌∗ , small 

changes in 𝑝 or 𝑞 can significantly impact 𝑌∗. One might 
take for granted that increasing the time preference 
coefficient would increase the expectation penalty. 
However, Fig. 6 shows that when 𝑞 = 2, 𝑌∗ first increases 
until reaching 2, and then decreases as 𝑝 increases. This 
also indirectly proves the rationality of Assumption 2.1. 
The effects of 𝑝 and 𝑞 on 𝑐∗ and 𝑌∗ are large and complex. 
As such, buyers should be careful and thorough in 
determining the values of 𝑝 and 𝑞, and should not modify 
them without careful consideration. 

 

Fig. 6. The effect of 𝑝 on 𝑌∗ 

 

Fig. 7. The effect of 𝑞 on 𝑌∗ 

3.5. Sensitivity Analyses 

Figs. 8 and 9 show the results of a sensitivity test, where the 
value of parameter 𝛽  changes from 5 to 50. In the four 
different penalty cases, theposition of the optimal delivery 
window increases as 𝛽 increases. When β is reduced from 
30 to 20, the optimal positions of the delivery window are 
reduced from 35, 7, 147, and 40, to 22, 6, 88, and 26, with 
decreases of 37.14%, 14.29%, 40.14%, and 35%, 
respectively. The parameter 𝛽 has little effect on 𝑐∗ , has a 
large effect on 𝑐∗ , and has similar effects on  𝑐∗ and 𝑐∗ . 
This outcome is reasonable, because the late delivery 
penalty coefficient is larger than the early delivery penalty 
coefficient in this example, so naturally, the delay time 
sensitive supply chain is more sensitive to the value of 𝛽. 
As such, the optimal position of the delivery window should 
increase as the mean delivery time (𝛽) increases, and the 
supplier should avoid high compensation levels due to late 
delivery. Meanwhile,the minimum expected penalty cost 
increases as 𝛽 increases. The values of 𝑌∗, 𝑌∗, and 𝑌∗ are 
not significantly different; 𝑌∗  experiences the most 
significant increase. When 𝛽 = 50, 𝑌∗=360117 is 75, 45 
and 17 times of 𝑌∗ = 4775, 𝑌∗ = 8040, and 𝑌∗ = 21783, 
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respectively. A penalty this high is also consistent with the 
original intention of the time-sensitive penalty: to 
encourage on-time delivery without default. When the 
average delivery time β decreases from 30 to 20, the 
expected penalty decreases by 36.48%, 40.12%, 39.7%, and 
57.49%, respectively. The results show that reducing the 
average delivery time will significantly decrease the 
supplier's expected penalty cost.  

 

Fig. 8. The effect of 𝛽 on 𝑐∗ 

 

Fig. 9. The effect of 𝛽 on 𝑌∗ 

4. Conclusion  

This paper discusses the optimal position of delivery 
windows in a two-stage time-sensitive supply chain, as well 
as the effect of different parameters on the optimal position 
of the delivery window and the minimum expected penalty. 
Penalties are generated when suppliers default. In general, 
the penalty is not purely linear per unit of time, as that 
approach only considers the cost loss. In addition, it is 
important to consider the penalties for breach of contract 
and subsequent losses. Given these facts, this study 
proposes a special case of expectation penalty with a power 
function. This involves expectation penalties that mix linear 
and quadratic functions over time. This special case applies 
to many situations in the actual supply chain. The exact type 
of penalty depends on the buyer's industrial structure and 
attitude towards a breach of contract. The supplier, however, 
can determine the optimal delivery start time to minimize 
the expected penalty. 

Coordination between suppliers and buyers is strategic 
with respect to supply chain operations. The time-sensitive 
penalty proposed in this paper may satisfy the buyer's 
demand for punctuality and delivery preferences. The 
supplier can determine the optimal position of the delivery 

window, by minimizing the expected penalty based on 
available information, using Theorem 2.1. Proposition 2.1 
demonstrates that increasing the delivery window Δ𝑐 
decreases the optimal position of delivery window 𝑐∗ and 
the expected penalty cost. Suppliers and buyers can 
cooperate to set a mutually-agreeable delivery window 
width. Given an acceptable width, the buyer can make 
appropriate concessions, as the width has a rather limited 
impact on the delivery window position. In contrast, 
suppliers generally prefer a delivery window that is as large 
as possible, because of the large impact of the delivery 
window width on the penalty. Propositions 2.2 and 2.3, 
which focus on the penalty factor for early delivery factor 
𝑀  and late delivery factor 𝑁 , recommend increasing the  

ratio  to decrease the optimal position of delivery window 

𝑐∗. They also show that 𝑐∗ is fixed if   is determined. The 
conclusion, that increasing lead and delay time preference 
coefficient 𝑝, 𝑞 will increase the expected penalty within a 
certain range, and decrease outside the range, is given by 
Assumption 2.1. Buyers can determine their preference for 
default through a time preference coefficient. However, 
determining the value of different parameters needs to be 
done carefully. The sensitivity analysis shows that 
decreasing lead time can significantly decrease the optimal 
position of delivery window 𝑐∗ and the expected penalty 
cost. Decision-makers could determine whether to improve 
supply chain performance by comparing the cost of 
improving the supply chain with the cost savings of 
optimizing the delivery window.  

This study has limitations and requires future research. 
First, the choice of penalty with power function in this 
paper is an effective choice for an idealized simulation. 
However, the real cost-time relationship is not necessarily 
continuous. As such, the relationship between penalty and 
time could be extended to use a piecewise function, because 
sellers may not significantly change the punishment 
strategy for a small period of time. Second, when a breach 
of contract will generate a significant penalty, suppliers 
should consider ways to avoid this risk. Therefore, 
researchers should consider adding the risk-averse attitude 
of the supplier. Finally, the model could be extended to 
include multi-vendor and multi-seller systems. 
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