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The paper is aimed at comparing some of the most promising and novel advanced techniques for 

estimation by assessing their effectiveness on the chemical process benchmark. Global and distributed 

implementations of the extended Kalman filter are the key elements of the work. In addition, the paper 

is also aimed at describing and developing a recursive implementation of the autocovariance least 

square algorithm for the on-line updating of the tuning knobs of the filter, demonstrating its relevance in 

the performance monitoring of chemical processes. 

1. Introduction 

In process control, the state estimation problem is of paramount importance for monitoring and for the 

application of advanced control techniques, such as model predictive control, see e.g. Chen and 

Allgöwer (1998), Magni et al. (2001). One of the most effective widespread state estimation techniques 

for nonlinear systems is the Extended Kalman Filter (EKF), see e.g. Simon (2006) which, especially in 

case of application to large-scale systems, requires a considerable amount of on-line computations for 

the update of the filter gain and for the real-time simulation of the dynamic nonlinear model of the 

process. In this paper, a distributed implementation of the EKF is first proposed to deal with a complete 

process layout made by interconnected process units without overlapping states, as is often the case in 

chemical and petrochemical processes. More specifically, an independent EKF is designed for any 

subsystem based on the available local measurements and on the variables estimated by its 

neighboring units and referred to material and energy flows among the subsystems. In order to test the 

performance of this distributed EKF implementation, an ideal chemical plant consisting of a jacketed 

continuous stirred tank reactor (CSTR), a flash drum separator, and two distillation columns has been 

used as a benchmark (Figure 1). Its overall mathematical model includes 85 ODEs and 10 algebraic 

equations. For this system, a distributed architecture composed by three interconnected low-order 

EKFs has been designed and its performance has been compared to that guaranteed by a centralized 

EKF implementation. In both cases a mixed discrete/continuous-time filter implementation has been 

employed: specifically, predictions are computed by direct integration of the continuous-time system 

model, while corrections are provided, with period T, using discretized/linearized models, similarly to 

standard EKF implementations. In our benchmark example the distributed approach can reduce the 

computational time by a factor of 5 or more, without detriment of the quality of the estimation. Notably, 

the distributed EKF approach with recursive covariance update has been used also for the on-line 

estimation of a relevant process model parameter, i.e. the heat transfer coefficient of CSTR. Also in 

this case, simulation results emphasize the potentialities of the proposed approach. One of the main 
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difficulties in the use of EKF is the definition of the characteristics of the noises acting on the system 

states and on the available measurements. For this reason, in the past many efforts have been 

devoted to the development of methods for the estimation of the noise covariance matrices, see e.g. 

Mehra (1970, 1972), Odelson et al. (2006a, 2006b). In particular, the Autocovariance Least Squares 

(ALS) algorithm described in Odelson et al. (2006a, 2006b) is one of the most promising approaches 

for off-line covariance estimation. The second contribution of this paper is the development and test of 

a simple recursive implementation of the ALS algorithm for the on-line update of the covariance 

matrices used in the distributed EKF. This method has been applied to the considered benchmark 

problem also for the on-line tuning of the covariances related to the dummy noise describing the 

uncertainty of unknown parameters that allows for fast and, at the same time, precise convergence of 

the parameter estimates. 

2. Benchmark description 

The selected system consists of a CSTR where the generic reaction 2A+B->2C+D takes place. 

Products and unreacted species are sent to a flash drum separator where the components are ideally 

split in vapor-phase compounds (A and C, light elements) and liquid-phase compounds (B and D, 

heavy elements). Both the vapor and liquid phase are sent to distillation towers, which we will refer to 

as A/C and B/D tower respectively, to separate reactants and products. Also, the compound A 

recovered at the bottom of A/C tower is recycled and mixed with the fresh stream of A entering the 

reactor. The CSTR subsystem is described by 9 state variables, 2 of which (the liquid level and the 

reactor temperature) are measured. On the other hand, the A/C tower is described by 30 state 

variables, 3 of which are measured (temperature of the liquid holdup on tray 7 and top and bottom 

compositions). Finally, the B/D tower is described by 46 state variables, 4 of which are measured 

(temperature on the trays 12 and 34; top and bottom compositions). As illustrated in Figure 1, the three 

subsystems are coupled through interconnection variables (flow rate, composition and temperature) 

The mathematical model consists of mass and energy balances for reactor, unit operations, and 

recycle stream, as discussed e.g., in (Luyben, Luyben, 1997; Buzzi-Ferraris, Manenti, 2009), leading to 

a sparse, partially-structured ordinary differential equation system, which can be represented in a 

centralized form (i.e., considering the overall model as a unique system) using a state space model of 

the type: 

    
    

1
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( ) , ( )

( ) , ( )
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x(t) and u(t) are the state and the input vectors, respectively, while y(t) is the vector of measured 

variables. The terms v1(t) and v2(t) have been introduced to account for the presence of unknown 

phenomena, such as system perturbations and unmodelled chemical-physical phenomena (i.e., v1(t)) 

and measurement noise (i.e., v2(t)), and are assumed to be independent Gaussian white noises with 

diagonal covariance matrices 85 85Q R   and 
9 9R R  , respectively.  

In view of the clear physically-based system decomposability into three subsystems and in view of the 

presence of interconnection variables, the input, state, and output vectors, respectively, can be 

partitioned into non-overlapping low order input, state, and output sub-vectors ui(t), xi(t), and yi(t), 

respectively, with i=1,2,3, each corresponding to a subsystem (see, e.g., Farina et al 2010, 2011). By 

partitioning the model (1) into three sub-models, we obtain an equivalent set of three sub-systems: 
 

   (2) 

 

where the possible effect of the subsystem  upon subsystem i is accounted for, since  is an 

argument of both  and . The terms v1i(t) and v2i(t) are subvectors of v1(t) and v2(t), 

respectively, and are assumed to be independent Gaussian white noises with diagonal covariance 

matrices  and , respectively, which, in turn, are submatrices of  and  of suitable dimensions. The 
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observability property is verified (for the linearized models around the nominal steady-state conditions 

of the process) for all three subsystems’ states  ix t  from their respective output variables  iy t . 

Also, observability of the state of the overall linearized system model  x t  is verified from the overall 

measurement set  y t . 

3. Centralized and distributed estimation 

In this paper a mixed discrete/continuous-time filter implementation has been employed, similarly to 

that used in (Becerra et al., 2001): specifically, predictions (i.e., a priori estimates) are computed by 

direct integration of the continuous-time system model and by neglecting the uncertainty terms, and 

corrections (i.e., the a posteriori estimates) are provided, with period T, using discretized/linearized 

models, similarly to more standard EKF implementations (for details see Simon, 2006). The first scope 

of the work is to test two different estimation schemes based on EKF. Namely, 

 first a standard centralized EKF (cEKF) is implemented, where the model (1) is accounted for and 

an estimate  x̂ t  of the state variable  x t  is recursively computed based on the collective 

measurement vector  y t ; 

 secondly, a distributed EKF (dEKF) architecture is implemented where, at each time step, 

o each subsystem computes an a priori estimate of the local state variable  ˆ
ix t  based on the 

local model (2) where piecewise constant estimates of the state variables of the neighboring 

subsystems  ˆ ,jx t j i , computed in the previous time step by the neighboring subsystems, 

are used as input terms; 

o each subsystem performs the a posteriori estimate of the local state variable  ˆ
ix t  using the 

local measurement  iy t  and the local measurement equation (2). 

As discussed, the second approach actually accounts for the process as a set of separated units. This, 

from the computational perspective, implies that three low-order EKFs are implemented, hence 

reducing the computational load; from the communication side, it implies broadcasting of information 

among subsystems, according to a communication topology which closely follows the 

“information/material/energy exchange” topology illustrated in Figure 1: in our example the state 

estimates computed by the CSTR are sent to the local estimators for the distillation towers and the 

state estimates of the A/C tower are sent back to the local estimator of the CSTR reactor as per recycle 

stream. Here we test the two estimators with sampling time T=0.02 h. A simulation plot is shown in 

Figure 2, where the time evolution of the level in the CTRS is depicted, and it is compared with its 

estimates computed with the cEKF and the dEKF. 
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Figure 1: chemical process layout and dEKF 

structure. 

Figure 2: CSTR level (solid thick line), measurement, and 

estimates of the level obtained with a cEKF (dashed line) 

with a dEKF (solid thin line). 
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Table 1:normalized root mean square error (RMSE) of the estimates obtained with cEKF and dEKF. 

  1x t  (CSTR)  2x t  (A/C tower)  3x t  (B/D tower)  x t  (overall system) 

cEKF 1.50·10
-1

 1.78·10
-2

 5.33·10
-2

 6.35·10
-2

 

dEKF 1.74·10
-1

 2.18·10
-1

 1.02·10
-1

 1.60·10
-1

 

 

Apparently, both the centralized and the distributed EKF provide accurate estimation results. 

Importantly, the computational time of the simulation decreases dramatically in dEKF as expected: the 

computational effort required is 800 to 840 s for cEKF and 130 to 160 s for dEKF, showing that the 

distributed EKF is significantly faster (5-6 times) than the classical approach; moreover, the gap is 

expected to increase with the size of the model and the complexity of the chemical process, making the 

dEKF the only effective technology for online estimation in many large-scale problems. 

4. Application of cEKF and dEKF for parameter estimation 

State estimators are a valid approach for parameter identification i.e., for providing reliable estimates of 

unknown model parameters. The rationale of parameter estimation methods based on this is to 

consider the model parameters as time-invariant state variables, and to estimate them through suitable 

state estimators. In this section we use EKF for the estimation of the overall heat transfer coefficient U 

for the CSTR, which is a key-parameter under several points of view. Actually, the possibility to 

estimate and monitor the trend of this parameter is essential to ensure the optimal conversion of 

chemical species, to prevent reactor runaways, to preserve the whole production efficiency (Fogler, 

1992; Levenspiel, 1999). The CSTR sub-model has been modified by adding the equation 

   UU t v t  where vU is a Gaussian white noise with variance QU. Figure 3 shows the results of 

application of EKF (results are equivalent for  cEKF and dEKF). Notably, different values of QU 

correspond to different estimator convergence rates and, on the other hand, on different steady state 

uncertainty. Specifically, the smaller QU, the slower but more accurate the parameter estimation; 

conversely, the larger the variance, the faster but less reliable the estimation. 

 

 

Figure 3: Dynamic behaviors of estimated parameters depend on standard deviation 

In conclusion, an adaptive tuning of QU can be highly beneficial for providing fast convergence rates 

and reliable parameter estimates. An algorithm with this purpose is discussed next. 

Recursive covariance estimation 

In order to provide reliable state estimates, EKF generally requires the knowledge of the noise 

covariance matrices Q  and R . Despite the estimates of these matrices can be, in some cases, 
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obtained by physical insight, in general they are unknown. Recently, the Autocovariance Least Squares 

(ALS) method has been proposed in (Odelson et al., 2006a, 2006b; Murali et al, 2007). In a few words, 

the ALS method consists in solving the following least square problems, with Q̂  and R̂  (estimates of 

covariance matrices Q  and R , respectively) as arguments 

ˆ,ˆ

2

( )
,  min    s.t.:    ,

ˆ
ˆ ˆ ˆˆ ˆ ˆ0;   ;   

ˆ( )
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where  ˆ
S

Q  and  ˆ
S

R  denote vectors whose entries are the entries of Q̂  and R̂ , respectively (i.e., 

Q̂  and R̂  “stacked”),   is a (full column rank) matrix depending on system, and the entries of vector b 

are sampled covariances of the output estimation error, i.e., 
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ˆ ˆ) ,..., (( )T T

s s

T

Nb C C 
 
 

 with: 

       
1

ˆ ˆ ˆ
1

( )( )
dN k

T

k

jd

C y t k y t k y t y t
N k





    

  (4) 

where  ŷ t  denotes the predicted output. In this paper we use a recursive version of this algorithm 

where the covariance matrices used for the EKF filter implementation at time t, and the covariance 

terms ˆ
kC  are updated online at each sampling step according to the following equations 

( ) ( 1) ( ( 1) ( 1))

( ) ( 1) ( ( 1) ( 1))

opt

Q

opt

R

Q t Q t Q t Q t

R t R t R t R t





     

     
 (5) 

                ˆ ˆ 1 1 1ˆˆ ˆ1 1 1
T

k k c kC t C t y t k y t k y t y t C t              (6) 

where    1 , 1opt optQ t R t   are obtained by solving the ALS problem at time t-1 and the parameters 

ρQ, ρR, ρC take values in the interval [0,1]. In this way we can obtain a smooth adaptive estimation of 

the covariance matrices and, at the same time, we can use an updated linearized model around the 

current operating point, for the computation of the weighting matrix  . 

Recursive covariance estimation of QU for adaptive parameter estimation 

In this work, we have used the recursive ALS method detailed above for the online tuning of the 

variance QU, which basically represents the uncertainty of the estimate of parameter U. The idea 

developed in this section is to set the large initial values of QU  to attain a rapid initial convergence to a 

neighborhood of the estimation. As expected (see Figure 4), the recursive ALS method reduces the 

values of QU iteratively, which at the same time guarantees a very good steady state accuracy of the 

parameter estimate. 

5. Conclusions 

The paper offered a qualitative and quantitative comparison of different advanced techniques for the 

state and parameter estimation in chemical processes. Specifically, global and distributed EKF 

implementations are described, tested, and compared according to the mandatory conciseness of the 

contribution. In addition, the combined EKF-ALS technique has been formulated and implemented. It is 

quite useful for the online reliable estimation of a wide set of parameters in chemical plants (e.g., 

fouling factors, cleanliness factors, unit operation efficiency). The next planned step is to apply the 

abovementioned novel and advanced techniques to an industrial case. 
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Figure 4: estimation of overall heat exchange coefficient U (up) using the proposed technique to 

combine EKF-ALS. The standard deviation is progressively reduced in the proposed technique (down). 
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