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Vanda Dasǩová,‡ Damián Padín,‡ and Ben L. Feringa*

Cite This: J. Am. Chem. Soc. 2022, 144, 23603−23613 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Controlling chiral recognition and chiral informa-
tion transfer has major implications in areas ranging from drug
design and asymmetric catalysis to supra- and macromolecular
chemistry. Especially intriguing are phenomena associated with
chiral self-recognition. The design of systems that show self-
induced recognition of enantiomers, i.e., involving homochiral
versus heterochiral dimers, is particularly challenging. Here, we
report the chiral self-recognition of α-ureidophosphonates and its
application as both a powerful analytical tool for enantiomeric ratio
determination by NMR and as a convenient way to increase their
enantiomeric purity by simple achiral column chromatography or fractional precipitation. A combination of NMR, X-ray, and DFT
studies indicates that the formation of homo- and heterochiral dimers involving self-complementary intermolecular hydrogen bonds
is responsible for their self-resolving properties. It is also shown that these often unnoticed chiral recognition phenomena can
facilitate the stereochemical analysis during the development of new asymmetric transformations. As a proof of concept, the
enantioselective organocatalytic hydrophosphonylation of alkylidene ureas toward self-resolving α-ureidophosphonates is presented,
which also led us to the discovery of the largest family of self-resolving compounds reported to date.

■ INTRODUCTION
Since the discovery of molecular chirality by Pasteur in the 19th
century1 and the introduction of the tetrahedral carbon by van ’t
Hoff2 and Le Bel,3 the chemical community has been fascinated
by the myriad of phenomena associated with stereochemistry.
The homochiral nature of the essential building blocks of
biological systems, often denoted as “a signature of life,”4 shows
the key role of chiral information transfer, which is far from being
fully understood. Especially intriguing is chiral self-recognition
of enantiomers, i.e., homochiral versus heterochiral dimer (and
higher order aggregates) formation, governing phenomena
ranging from conglomerate and racemate formation in
crystallization5 to nonlinear effects in asymmetric (auto)-
catalysis.6 Among the most prominent examples are the
attrition-enhanced deracemization7 and the chiral “sergeant
and soldier” effect in supramolecular systems.8 However,
predicting chiral recognition at the molecular level is still
challenging, and transmission of chiral information along length
scales is mainly based on serendipitous discovery.
A remarkable case of chiral self-recognition is the self-induced

diastereomeric anisochronism effect9 in NMR (SIDA, also
known as self-induced recognition of enantiomers). This rather
unknown and often overlooked phenomenon arises from the
spontaneous aggregation of certain chiral nonracemic molecules
in solution, leading to diastereomeric homo- and heterochiral
associates that exhibit different NMR signals (Figure 1a).10

Consequently, under ideal conditions,11 this effect enables the
direct determination of the enantiomeric ratio in a scalemic
mixture by simple NMR analysis.
Although it is difficult to predict whether a chiral compound

will show the SIDA effect, certain families of compounds,
including some chiral ureas,12 P(V)-based compounds,13

carboxylic acids,14 amides,12,15 and alcohols,10,16 have been
found to exhibit this phenomenon. All of these chiral
compounds display an evident structural feature, the presence
of self-complementary hydrogen-bond acceptor and donor
groups that lead to the formation of aggregates in solution.
Furthermore, the presence of a stereogenic center next to these
functionalities imposes a distinct three-dimensional (3D)
arrangement of the homo- and heterochiral aggregates,17 giving
rise to diastereomeric species with different physicochemical
properties (NMR spectra, solubility, polarity). Additionally,
these aggregates are also prone to exhibit spontaneous
fractionation of enantiomers into enantiomerically enriched
and depleted fractions in the absence of any chiral inductor (also
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denoted as self-disproportionation of enantiomers, SDE).18

Both effects have been recognized as potential sources of
misinterpretation of chiral information, but they also provide
unique opportunities for the convenient analysis of scalemic
mixtures and, in some cases, ready access to enantiopure
compounds.10,19 Clearly, exploring these effects might also
greatly impact the development of new enantioselective
transformations, as they can significantly accelerate the screen-
ing of reaction conditions and the analysis of the scope and
provide an expedient way to increase the enantiopurity of the
compounds.15k Nevertheless, to the best of our knowledge, these
effects have never been exploited systematically in reaction
development. Furthermore, addressing chiral self-recognition by
design might also be highly valuable to rationally approach, e.g.,
chiral communication, asymmetric catalysis, supramolecular
chirality, and the fundamental understanding of the origin of
homochirality.
Based on our long-standing efforts on antipodal and nonlinear

effects,20 chiral auto-amplification,21 and supramolecular
chirality22 we have taken up the challenge to design molecules
that would show chiral self-recognition. Encouraged by our
previous findings on the ability of ureas to bind to phosphonates
and phosphates through moderately strong inter- or intra-
molecular hydrogen bonds,23 we envisioned a system based on
multiple self-complementary intermolecular hydrogen bonds
combining phosphonate and urea moieties in chiral α-
ureidophosphonates, potentially leading to a self-induced
recognition of enantiomers (Figure 1b). Additionally, this chiral
self-recognition could be used as an analytical tool to rapidly
assess the stereochemical outcome of an asymmetric route
toward α-ureidophosphonates,24 showcasing the principle. In
that case, it would significantly accelerate the screening of the
reaction conditions, opening new avenues in asymmetric
synthesis. To this end, we conceived an enantioselective
hydrophosphonylation25,26 of readily available alkylidene ureas
as a convenient platform to test our hypothesis (Figure 1c).
Here, we report the discovery of an entirely new family of so far
underexplored compounds, i.e., α-ureidophosphonates, that
exhibit self-resolving properties (SIDA + SDE). In addition, we
demonstrate that such self-resolving properties facilitated the
optimization of the reaction conditions, the analysis of the scope,
and the enantiomer purification of the final products.

■ RESULTS AND DISCUSSION
While the origin of the SIDA effect has been described in the
literature,10b,13b,15c a succinct explanation is provided first for
the sake of clarity. In the simplest case, considering a mixture of
two enantiomers, R and S, that tend to reversibly form dimers in
solution, the following equilibria can be proposed:

+R S RS (heterochiral dimer)F (1)

+R R RR (homochiral dimer)F (2)

+S S SS (homochiral dimer)F (3)

In a scenario where binary associations occur under fast
exchange conditions between monomeric and dimeric species
in the NMR scale, two sets of peaks would appear in the NMR
spectra as a result of the distinct time-averaged local environ-
ments for the homochiral and heterochiral associates.
Specifically, one set of peaks corresponds to the weighted
average of the three species where R enantiomer is present (R +
RR + RS, 4), and another set of peaks corresponds to the
weighted average of the three species where S enantiomer is
present (S + SS + RS, 5)

= · + · + ·R R R RR RR RS RSobs, (4)

= · + · + ·S S S SS SS RS RSobs, (5)

where δobs,R and δobs,S are the averaged chemical shifts for each
set of signals observed in the NMR spectra corresponding to the
R and S enantiomers, respectively; δR and δS are the chemical
shifts of the monomeric enantiomers; δRR, δSS, and δRS are the
chemical shifts of the dimeric homo- and heterochiral species; χR
and χS are the molar fractions of each monomeric enantiomer;
and χRR, χSS, and χRS are the molar fractions of the homo- and
heterochiral dimers. From the above equations, it becomes
evident that a change in the enantiomeric ratio of a scalemic
mixture will alter the position of the equilibria shown in 1 and 2
and, consequently, change the chemical shift of the two sets of
peaks (4 and 5). As a result, racemic and enantiopure solutions
of a chiral compound show different NMR spectra and, in the
case of a scalemic mixture, where 50:50 < e.r. < 100:0, two sets of
peaks are observed and integration of the signals directly
provides the e.r.
Importantly, as previously pointed out by Harger,13b if the

exchange rate between the species in equilibria was slow, the
position of the two sets of signals would be independent of the

Figure 1. Concept of association of enantiomers (a) and its application to the development of an enantioselective synthesis of α-ureidophosphonates
via hydrophosphonylation of alkylidene ureas (b and c).
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enantiomeric ratio, and their relative intensities would be equal
to the ratio of diastereoisomers rather than the ratio of
enantiomers.
On the Formation of Self-Resolving Homo- and

Heterochiral AggregatesDerived fromα-Ureidophosph-
onates.To determine whether α-ureidophosphonates can form
homo- and heterochiral aggregates, the preparation of a
nonracemic α-ureidophosphonate was required. However, to
the best of our knowledge, such compounds have never been
prepared in an enantioenriched form. Consequently, we
conceived a preliminary multistep sequence to access to
enantioenriched α-ureidophosphonate 3 (Scheme 1a), which
involved an enantioselective hydrophosphonylation of Boc-
protected imine 1,27 followed by deprotection of the α-amino
phosphonate ester 2 and coupling with phenyl isocyanate. Upon
analysis by 1H-NMR and 31P{1H}-NMR of the crude mixture of
3 in CDCl3, we clearly observed the formation of two sets of
peaks whose integration matched the expected enantiomeric

ratio (90:10 of precursor 2 vs 91:9 of α-ureidophosphonate 3).
Further analysis by chiral HPLC confirmed that the enantio-
meric ratio of 3 was 91:9 (Scheme 1b). These results indicated
that α-ureidophosphonates might be aggregating in solution
and, indeed, show the SIDA effect.
It is known that SIDA strongly depends on the dielectric

constant of the medium, and solvents capable of disrupting
intermolecular hydrogen-bonding interactions can lead to its
disappearance.10a Therefore, we performed a systematic study to
disclose in which solvents compound 3 showed splitting of the
NMR signals. While highly polar solvents such as DMSO-d6,
MeOD, or DMF-d7 led to the disappearance of the SIDA effect,
lower-polarity solvents (CDCl3, CD2Cl2, toluene-d8, acetone-
d6) gave rise to two sets of signals both in 1H-NMR and 31P{1H}-
NMR whose relative ratio matched the expected enantiomeric
ratio (see the Supporting Information). 31P{1H}-NMR spec-
troscopy proved particularly suitable for the determination of
the optical purity of compound 3 thanks to the excellent

Scheme 1. (a) Preliminary Access to Scalemic 3 and (b) Comparison of the 31P{1H}-NMR (Left) and Chiral HPLC
Chromatogram (right) of Compound 3 Showcasing the SIDA Effect

Figure 2. Comparison of the enantiomeric ratios of 3 determined by 1H-NMR (left, 400 MHz, 0.05 M, CDCl3, 25 °C), 31P{1H}-NMR (middle, 162
MHz, 0.05 M, CDCl3, 25 °C), and chiral HPLC (right table). See the Supporting Information for details.
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separation of the two sets of peaks for a wide range of
enantiomeric ratios (Figure 2).
Evidence for the Formation of Dimers. The non-

equivalency of NMR spectra between enantiomers of 3 in low-
polarity solvents pointed to the formation of diastereomeric
aggregates. While the presence of self-complementary binding
sites in α-ureidophosphonates suggested a dimeric structure of
the aggregate28,29 (Figure 1b), a combined experimental and
theoretical study was performed to confirm this assumption.
First, diffusion-ordered spectroscopy (DOSY) measurements
allowed us to calculate the diffusion coefficients of 5 in different
solvents and, eventually, estimate the molecular weight of the
aggregates.30 Thus, in CDCl3, compound 5 (92:8 e.r.) showed a

diffusion coefficient ofD = 7.0 × 10−10 m2/s, which corresponds
to an estimated molecular weight of MW (measured, CDCl3) =
865 g/mol (Figure 3a). Given that the molecular weight of
monomeric 5 isMW (calculated) = 334 g/mol, the estimation of
865 g/mol suggests the formation of a dimeric structure in
CDCl3. In contrast, the measurement of the diffusion coefficient
of 5 in DMSO-d6 gave a value of D = 2.4 × 10−10 m2/s,
corresponding to an estimated molecular weight of MW
(measured, DMSO-d6) = 390 g/mol, indicative of the formation
of a monomeric species in this solvent (Figure 3b). Overall, this
data is in excellent agreement with the observation of the SIDA
effect in CDCl3, where aggregation is expected, and not in
DMSO-d6.

31

Figure 3. Two-dimensional (2D)-DOSY analysis of 5 in CDCl3 (a) and DMSO-d6 (b).
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Single crystals suitable for X-ray diffraction analysis could be
grown for the heterochiral aggregate (racemic) of the related
compound 4 (Figure 4). Its structure in the solid state revealed a

clear intermolecular association between two α-ureidophosph-
onates with opposite chirality in an antiparallel orientation
(head-to-tail), where both N−H groups of the urea functionality
of one molecule are engaged in a hydrogen-bonding interaction
with the phosphonate group of its partner (N−H···O�P bond
distances between 2.14 and 2.15 Å).
Additionally, DFT calculations at the ωb97XD/6−311+

+G(d,p)-SMD(PhMe)//ωb97XD/6−31+G(d,p) level32 indi-
cated that such antiparallel disposition of α-ureidophosphonates
is greatly preferred over other possible (parallel) dimeric
structures (Figure 5). Remarkably, such an antiparallel arrange-
ment stabilizes the dimeric structure up to 12.9 kcal/mol for the
heterochiral aggregate and 11.3 kcal/mol for the homochiral
associate, as compared to the monomeric form.
The analysis of the binding isotherms for compound 5, both in

racemic and enantioenriched form, by 1H-NMR titration33

allowed us to quantify the magnitude of the dimerization (see
the Supporting Information). Both homochiral and heterochiral
dimers showed association constants (Ka) in the range of 103
M−1, (3.3± 0.8)× 103 M−1 for the former and (8.3± 0.2)× 103
M−1 for the latter. While the SIDA effect is concentration-
dependent, these relatively high association constants ensured
the observation of the SIDA effect in a broad range of
concentrations (0.2−0.01 M, in this study).
SDE by Achiral Column Chromatography and Frac-

tional Precipitation. The results shown above clearly suggest
that α-ureidophosphonates form dimers in solution, leading to
diastereomeric aggregates. As a result of this dimerization, the
phenomenon of SDE by achiral column chromatography was
also investigated with α-ureidophosphonate 5, having an initial
92:8 e.r. of the crude material. A single chromatographic run
using n-hexane/iPrOH 9:1 as eluent afforded 5 in 96%
combined yield, where the first fraction provided a highly
enantioenriched sample (98.5:1.5 e.r.) accounting for 31% yield
(Table 1). The majority of the product (48%) eluted with the
initial 92:8 e.r. The final fractions showed strong depletion of
enantiopurity (58.5:41.5 and 52.5:47.5 e.r.) with 17% of the
overall yield.34

Alternatively, the spontaneous separation of enantiomers can
also be achieved by harnessing the different solubility of the
homo- and heterochiral dimers in organic solvents. Thus, when a
saturated solution of compound 3 (135.5 mg) with an initial
79:21 e.r. in hexane/iPrOH8:2was cooled to 2 °C for 24−40 h, a
white solid precipitated (Figure 6). The analysis of the
supernatant solution and the solid fraction revealed a remarkable
fractionation of enantiomers. While the precipitate consisted of
nearly racemic 3 (42.2mg, 53:47 e.r.), the supernatant contained

compound 3 with significantly increased enantiopurity (92.1
mg, 92.5:7.5 e.r.). These experiments showcase the potential of
SDE to obtain highly enantioenriched compounds by employing
inexpensive purification methods.
Application of the Self-Resolving Properties of α-

Ureidophosphonates to the Development of an Enan-
tioselective Hydrophosphonylation Reaction. At the
onset of our studies, we selected the reaction comprising the
readily available (E)-1-benzylidene-3-phenylurea356 and the

Figure 4. X-ray diffraction analysis of racemic 4.

Figure 5. DFT-optimized structures of dimeric 5. See the Supporting
Information for details.

Table 1. Achiral Phase Flash Column Chromatography of 5
with an Initial 92:8 e.r

fraction e.r. % yield

1 98.5:1.5 31
2 92:8 48
3 58.5:41.5 9
4 52.5:47.5 8
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commercially available diethyl phosphite as our model system.
In the past decades, a wide range of catalysts have been used in
enantioselective hydrophosphonylations of imines,25,26

although, to the best of our knowledge, a direct comparison of
different catalyst classes is missing, and asymmetric hydro-
phosphonylation of alkylidene ureas is unprecedented.
Motivated by addressing this gap, Lewis acidic metal complexes
(A, B), cinchona alkaloids (C,D), thiourea-derived catalysts (E,

F),36 chiral cyclopentadienyl-based Brønsted acid catalysts (G,
H),37 and chiral phosphoric acids (I−L) were examined (Table
2). A model reaction between alkylidene urea 6 and diethyl
phosphite was carried out in the presence of 10 mol % of a chiral
catalyst. Al-salen complex A showed high catalytic activity;
however, the hydrophosphonylation resulted in a nearly racemic
product 3. In comparison, Sharpless-catalyst B gave the product
with better enantioselectivity (36:64 e.r.), albeit in lower
conversion. Cinchona alkaloids C and D (entry 2), thiourea-
based catalysts E and F (entry 3), and cyclopentadienyl
Brønsted acids G and H (entry 4) did not prove to be suitable
for our transformation, giving the product with low to good
conversions and <55:45 e.r. Finally, using the simple (S)-
BINOL-derived chiral phosphoric acid I, product 3 was
obtained in a promising 82% conversion and 62.5:37.5 e.r.
Encouraged by this result, we further explored the catalytic
activity of other chiral phosphoric acids J−L (entries 5 and 6).
Among them, the commercially available MacMillan TiPSY
catalyst L afforded the desired product with 87:13 e.r. while
maintaining a conversion of 79% (entry 6).

Figure 6. Spontaneous fractionation of enantiomers based on the
different solubility of homo- and heterochiral dimers of 3.

Table 2. Catalyst Screeninga

entry catalyst conversion (%)b e.r.c

1 metal complexes A, B 88/26 49:51/36:64
2 Cinchona alkaloids C, D 31−43 <52.5:47.5
3 thioureas E, F <10 <55:45
4 cyclopentadienyl-based Brønsted acids G, H 56−60 <52.5:47.5
5 phosphoric acids I−K 61−83 62.5:37.5−78:22
6 phosphoric acid L 79 87:13
7 phosphoric acid Ld 88 (63)e 92.5:7.5

aGeneral reaction conditions: alkylidene urea 6 (0.2 mmol), the indicated catalyst (0.02 mmol, 10 mol%), and diethyl phosphite (0.24 mmol) in
PhMe (1 mL) at room temperature for 18 h. bDetermined by 31P{1H}-NMR. cEnantiomeric ratios were determined by 1H-NMR/31P{1H}-NMR
analysis, benefiting from the SIDA effect, and/or chiral HPLC analysis (see the Supporting Information for details). dUnder optimal conditions:
Alkylidene urea 6 (0.2 mmol), L catalyst (0.01 mmol, 5 mol%), and diethyl phosphite (0.24 mmol) in deoxygenated PhMe (2 mL) at 30 °C for 48
h. eIsolated yield in brackets.
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Taking advantage of the SIDA effect enabling efficient
reaction analysis, we further conducted an extensive reaction
optimization, including an investigation of the solvent effect,

temperature, catalyst loading, stoichiometry, and concentration
(see the Supporting Information for details). We found that the
best results were obtained using 1.2 equiv of diethyl phosphite

Scheme 2. Scope of the Enantioselective Hydrophosphonylation of Alkylidene Ureas with Phosphitesa,b,c

aGeneral reaction conditions: alkylidene urea (0.2 mmol), the corresponding alkyl/aryl phosphite (0.24 mmol), and catalyst (S)-L (0.01 mmol, 5
mol %) in deoxygenated PhMe (2 mL) at 30 °C for the indicated time. bYields of isolated products are given. cEnantiomeric ratios were
determined by 1H-NMR/31P{1H}-NMR analysis, benefiting from the SIDA effect, and chiral HPLC analysis for selected examples as controls (see
the Supporting Information for details). dPerformed in a 2 mmol scale. eReaction performed at 6 °C. fUsing (R)-L as the catalyst.
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and 5 mol % of TiPSY catalyst L in deoxygenated toluene (0.1
M) at 25 °C. Under these conditions, compound 3 was obtained
in 63% isolated yield and 92.5:7.5 e.r. (entry 7).
Having identified the optimal reaction conditions, we

explored the scope of phosphites and alkylidene ureas with
various substitution patterns (Scheme 2).38 Initially, we tested a
broad variety of phosphites in the hydrophosphonylation
reaction of 6. While diethyl phosphite and dimethyl phosphite
afforded the corresponding α-ureidophosphonates 3 and 5,
respectively, in good yields and enantioselectivities, other
bulkier phosphites led to the desired products with lower
stereoselectivities (4, 7−11). Importantly, we observed that for
the more reactive diphenyl and neopentylene phosphites, lower
temperatures (6 °C) were required to achieve better stereo-
control (9 and 10, 87:13 e.r. and 76:24 e.r., respectively).
Remarkably, the hydrophosphonylation reaction using dimethyl
phosphite could be performed in a 2 mmol scale using 2 mol% of
catalyst L, resulting in α-ureidophosphonate 5 in 96% isolated
yield and 92:8 e.r.
Next, we analyzed the variations on the alkylidene urea

backbone by introducing both electron-donating and electron-
withdrawing groups in ortho-, meta-, or para-positions.
Substitution in R1 was well tolerated, and α-ureidophosphonates
12−18 were obtained in good to excellent yields and
enantiomeric ratios ranging from 79.5:20.5 to 96.5:3.5. We
were pleased to observe that the reaction tolerated not only
electron-poor (12−15) and electron-rich aromatic groups (16−
19) but also the presence an unprotected phenol (18) and a
heteroaromatic group (19).
The substitution effect was more pronounced in the case of

variation on the Ar group. The introduction of electron-
withdrawing substituents led to a slight reduction of the
enantioselectivity. Thus, products 20 and 21, bearing halogen
groups in the para-position, and 22, possessing two trifluor-
omethyl groups in meta-positions, were obtained in moderate
yields and enantioselectivities. In contrast, higher isolated yields
and enantioselectivities were obtained for α-ureidophospho-
nates bearing electron-rich aryl rings (23−28). An exception to
this observation was noted for α-ureidophosphonate 27 having a
bulky mesitylene group. We reasoned that such bulky
substituent might lead to an unfavorable conformation of the
starting alkylidene urea, as the urea group andmesitylenemoiety
cannot adopt a coplanar conformation, giving rise to a
diminished reactivity and stereoselectivity.
It is important to remark that all α-ureidophosphonates

shown in Scheme 2 form dimers in low-polarity solvents, which
enabled the facile analysis of their enantiomeric purity by simple
NMR techniques, as shown earlier for compound 3. The analysis
of the scope of the hydrophosphonylation reaction provided us
with a library of up to 25 examples of compounds exhibiting
chiral self-recognition properties (SIDA and SDE), which, to the
best of our knowledge, represents the largest family of self-
resolving compounds reported to date.

■ CONCLUSIONS
To conclude, we have described an entirely new family of
compounds, α-ureidophosphonates, that show self-resolving
properties, namely, their enantiomeric purity can be directly
determined by simple NMR techniques (SIDA effect) and their
optical purity can be easily increased by inexpensive
physicochemical techniques (achiral column chromatography
and fractional precipitation). A combined experimental and
computational work enabled us to determine that the formation

of stable homo- and heterochiral dimers anchored through
multiple intermolecular hydrogen bonds between the urea
moieties and phosphonate groups is, ultimately, responsible for
their self-resolving properties. Moreover, such self-resolving
properties were systematically applied to the development of
their first enantioselective synthesis via an unprecedented
organocatalytic hydrophosphonylation of alkylidene ureas.
Remarkably, the hydrophosphonylation reaction proved to be
general and provided the desired α-ureidophosphonates in good
yields and good enantiomeric excesses.
The fact that aggregation of enantiomers can transform an

enantiomeric relationship into a diastereomeric one has
important implications in the development of new asymmetric
transformations and chiral supramolecular systems. Its potential
to significantly simplify reaction analysis and be explored in
phenomena ranging from chiral recognition to self-assembly and
control of dynamic molecular systems might provide ample
opportunities in future molecular design.
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