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Non-technical loss is a serious issue around the globe. Consumers manipulate

their smart meter (SM) data to under-report their readings for financial

benefit. Various manipulation techniques are used. This paper highlights

novel false data injection (FDIs) techniques, which are used to manipulate

the smart meter data. These techniques are introduced in comparison to

six theft cases. Furthermore, various features are engineered to analyze the

variance, complexity, and distribution of the manipulated data. The variance

and complexity are created in data distribution when FDIs and theft cases

are used to poison SM data, which is investigated through skewness and

kurtosis analysis. Furthermore, to tackle the data imbalance issue, the proximity

weighted synthetic oversampling (ProWsyn) technique is used. Moreover,

a hybrid attentionLSTMInception is introduced, which is an integration of

attention layers, LSTM, and inception blocks to tackle data dimensionality,

misclassification, and high false positive rate issues. The proposed hybrid

model outperforms the traditional theft detectors and achieves an accuracy of

Abbreviations: ADASYN, adaptive synthetic; ADASYNENN, adaptive synthetic edited nearest neighbor
neural network; AMI, advanced metering infrastructure; ANFIS, adaptive neural fuzzy inference
system; ANN, artificial neural network; AUC, area under the curve; DSN, deep siamese network;
DWMCNN, day week month convolutional neural network; ETD, electricity theft detection; FDI,
false data injection; FIS, fuzzy interface system; FPR, false positive rate; FRESH, feature extraction
and scalable hypothesis; GRU, gated recurrent unit; KNN, K-nearest neighbor; LLE, locally linear
embedded; NAN, neighborhood area network; NCA, neighborhood component analysis; NTLs,
non technical losses; PCA, principal component analysis; ProWsyn, proximity weighted synthetic
oversampling; RE, reconstruction error; RESNet, residual network; SAGAN, self attention generative
adverserial neural network; SCADA, supervisory control and data acquisition; SMs, smart meters;
SMOTE, syntheticminority oversampling technique; TPR, true positive rate; 1− DCNN, 1 dimensional
convolutional neural network.
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0.95%, precision 0.97%, recall 0.94%, F1 score 0.96%, and area under-the-curve

(AUC) score 0.98%.
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inception module, AttLSTM, false data injection, electricity theft detection, time series data

1 Introduction

Smart grids are serially interconnected networks having
resilient features of unity power factor, self-healing, system
monitoring, load balancing, and two-way communication.
The communication channel is a delicate part of the power
network. Network stability is interrupted when it is interfaced
with a wrong information flow (Rawat and Bajracharya, 2015).
Various types of cellular technologies, wireless sensor protocols,
WLAN, and WAN are used for the purpose of communication
in smart grids (Parikh et al., 2010), (Djennadi et al., 2021a).
The world is moving towards the development of smart grids
for efficient and reliable smart energy where different types
of energy-production sources are integrated for optimal and
reliable operations (Cai et al., 2017), (Djennadi et al., 2021b).
The survival of societies is based on economic growth and
an uninterrupted electrical energy supply. Losses are of two
types: technical losses (TLs) and non technical losses (NTLs)
(Jeyaraj et al., 2020), (Guo et al., 2018). An almost as large
portion of the losses in the electrical system are NTLs. TLs
are the inherent losses of the electrical power system, whereas
NTLs occur due to the problems of double tapping, by-passing
of smart meters (SMs), and tampering with SM readings,
etc., in order to under-report the consumed electrical energy
(Buzau et al., 2019), (Somefun et al., 2019). The deployment of
smart grids can easily regulate customers’ consumption behavior.
Detection of NTLs secures the smart grids against anomalies
and optimal flow of energy is managed (Rodriguez et al., 2017),
(Arqub, 2018).

Advanced metering infrastructure (AMI) is an intelligent
infrastructure to detect NTLs, however, it is a hardware-
based architecture with multiple architectural flaws. False
Data injections (FDIs) of novel nature are used to manipulate
in SMs data, which are difficult to investigate and detect
by AMI architecture. FDIs are novel techniques, which are
used to manipulate the data of SM readings to gain illegal
financial benefit. AMI collects the data with the help of a
neighborhood area network (NAN). NAN is a useful architecture
designed to manage energy in order to forecast short-term
load and to investigate the optimal energy scheduling by the
utility providers (UPs) (Depuru et al., 2011), (Arqub, 2020).
Traditional grids use supervisory control and data acquisition
(SCADA) in order to monitor grid operations and ensure
security (Yasakethu and Jiang, 2013), (Sweis et al., 2022).
Conventional machine learning techniques are used for the

detection of NTLs, however, techniques such as support vector
machine (SVM), random forest (RF), and 1D-convolutional
neural network (1D-CNN) have low detection accuracy
in classification scenarios (Glauner et al., 2016). Henceforth,
classifiers with high detection and low false positive rate (FPR)
are required to mitigate the problem of misclassification.

1.1 Motivation

Electricity theft is extant worldwide. Utility providers look
for problems in their consumers’ premises due to NTLs.
Consumers opt for various electricity theft techniques in order
to under-report their consumption. Some of these techniques
are (Rawat and Bajracharya, 2015) tampering with the data
with shunt devices (Parikh et al., 2010), double tapping of SMs,
and (Djennadi et al., 2021a) electronic faults. These traditional
approaches capture the behavior of NTLs where various hand-
drafted mechanisms are developed due to a lack of clear
mathematical formulations. Developing such solutions for each
individual theft case is very expensive and time-consuming
due to their relience on expert knowledge. In order to tackle
such issues we propose a deep-learning based architecture
that self-learns features of the observed data and automatically
detects NTLs. Such architecture is operated in less time in
order to mitigate the need for experts and excessive costs.
Moreover, false data injection techniques (FDIs) are introduced
in this paper, which can be used in real-time applications
to manipulate SM readings. These manipulating techniques
are highly intensive in nature and they can manipulate the
data accordingly to the consumer’s choice. So highlighting the
detection of such intensive techniques improves the detection
scenarios and minimizes the chances of theft. Consideration
of such FDIs in detection scenarios minimizes NTLs, and
manipulated patterns found with attributes of such theft traces
can easily be identified as theft. Moreover, an efficient model
should be used to detect and segregate fraudulent and benign
consumers in such scenarios with minimal FPR. Minimal FPR
is an effective parameter and minimizes excessive on-site costs
for verification of fraudulent consumers.

2 Literature review

This section provides an overview of the existing literature
related to electricity theft detection (ETD) in smart grids.
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In (Takiddin et al., 2020), an ensemble detector is proposed,
which is a combination of deep auto encoders with attention-
gated recurrent units (GRU) and feed-forward neural networks.
Similarly, (Kocaman and Tümen, 2020) proposes an LSTM
classifier for the detection ofmalicious customers. Data selection,
normalization, and weights updating mechanisms are used as
preprocessing mechanisms in both of the proposed solutions.
Architectures of the LSTM classifier contain LSTM cells, dropout
layers, relu activation function, and softmax classifier. Precision,
accuracy, and recall matrix is used to evaluate the performance
of the proposed models.

Study in (Li et al., 2019) uses a convolutional neural network
and random forest (CNN-RF) as a novel hybrid classifier
for the detection of NTLs. CNN is used as a down-sampler
to extract key features of the time series data. The featured
data is inputted to RF for further classification in order to
identify anomalous consumers. Similarly (Javaid et al., 2021a),
uses adaptive synthesis (ADASYN) for the provision of balanced
data. A hybrid module of CNN and LSTM is proposed to
detect ill-intent within consumers’ profiles. CNN is used to
extract abstract features from weekly time series data, however,
LSTM is trained on the inputted data of the CNN. Integration
of CNN-LSTM is named deep siamese network (DSN), which
segregates honest and thieving customers. In (Pereira and
Saraiva, 2021), data augmentation techniques are analysed to
evaluate the performance of various minority over-sampler
techniques. A pool of data augmentation techniques enlisting
cost-sensitive learning, random over-sampling, K-medoids over-
sampling, cluster-based over-sampling, and synthetic minority
over-sampling technique (SMOTE) are used to balance the
imbalanced data. The balance data is inputted to CNN.
The performance of CNN is evaluated on each of the data
augmentation techniques, respectively. Furthermore, CNN is
used as a binary classifier for data classification, and area under
the curve (AUC) is used as a performance matrix to evaluate
the classifier’s performance. Literature in (Blazakis et al., 2020)
uses an adaptive neural fuzzy inference system (ANFIS), which
is a combination of artificial neural network (ANN) and fuzzy
set theory in order to investigate NTLs. ANFIS utilizes back
propagation learning of ANN and sugeno fuzzy inference
system (FIS) to detect maliciousness in time series data of
SMs. To maximize the efficiency of the classifier, neighborhood
component analysis (NCA) is used to select the optimal ranking
of the important features such as mean, medium, entropy, and
load factor. Furthermore, accuracy, precision, F1 score, and AUC
score are used to evaluate the performance of the classifier.

Similarly, in (Himeur et al., 2021) an ensemble model based
on genetic optimization is developed to detect anomaly. SMOTE,
a data over-sampling technique, is used to balance the data
distribution. Afterward, features of the anomalous consumers are
extracted using principal component analysis (PCA) along with
the data dimensionality reduction. The abstract information of

customers’ behavior is extracted using AdaBoost technique and
architectural optimization of the deep neural network is analysed
through genetic algorithms. Moreover (Hussain et al., 2021),
presents a novel supervised learning solution, which is an
integration of catboost and SMOTETOMEK algorithms. Data
preprocessing is tackled by K-nearest neighbor (KNN) in order
to fill missing values, while data augmentation is carried out
using SMOTETOMEK in order to mitigate biasness towards
a majority class. Furthermore, to extract key features of
highly dense time series data feature extraction and scalable
hypothesis (FRESH) is used. The extracted data is inputted into
catboost classifier for classification and a tree-SHAP algorithm
is used as a decision-maker for theft identification. Study in
(Cheng et al., 2021) proposes RF based classifier for the detection
of an anomaly in a time series data. To reduce heavily dense
time series data K-means method is used, whereas, a neural
network of day, week, and month convolutional neural network
(DWMCNN) is used to analyse the SMs’ consumption data and
to extract key features. To evaluate the performance AUC score
is used as a performance metric. In order to segregate the honest
and fraudulent consumers (Javaid et al., 2021b) proposes two
supervised learning models. One of the models is an integration
of self-attention generative adversarial network (SAGAN) and
CNN. Important features of the time series data are extracted
using the locally linear embedding technique (LLE) technique
and to tackle the class imbalance issue adaptive synthetic edited
nearest neighbor (ADASYNENN) is utilized. Furthermore, an
ensemble model ERNET is developed, which consists of an
efficient net residual network (ResNet) and gated recurrent unit
(GRU). ResNet and GRU hybrid model is used as a second
classifier to detectNTLs. Robust learning rate anddata imbalance
issues are tackledwith rootmean square propagation (RMSProP)
and SMOTE edited the nearest neighbor, respectively.

Various proposed solutions have been presented in the
literature, however, slow computations in RNN, the need for
bulk training data in the case of CNN, performance declination
in AFNIS due to the provision of less training data, and
non-availability of intrinsic evaluation metric for SAGAN, we
propose the AttentionLSTMInception model to overcome all
these issues. Moreover, the Attention layer memorizes the large
sequence of data. LSTM has more additional units which can
hold information longer. An additional number of parameters
such as learning rate, input and output biases, updating of
weights, and backpropagationmake themodelmore flexible.The
inceptionmodule is added for better utilization of the computing
resources in order to avoid excessive computational load.
These are deeper networks, which are used for dimensionality
reduction with stacked convolutions. Furthermore, the proposed
hybrid model utilizes the attributes of long-term memorization
of information and backpropagation of LSTM, data filtering
for dimensionality reduction of CNN, and cognitive attention
towards the prominent features of the attention layers, we
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are integrating them to introduce a novel hybrid model
AttenLSTMInception for the detection of NTLs. The proposed
hybrid model tackles issues of long-termmemory dependencies,
vanishing grading, under-fitting, over-fitting, and high FPR.

2.1 Paper organization

The rest of the paper is organized as follows. Section 3
provides a list of contributions and their mapped solutions.
Section 4 determines the importance of feature engineering.
Section 5 and Section 6 provide a detailed study of the system
model and its workings, respectively. Section 7 highlights
performance evaluation and section 8 is simulations results.
Finally, a conclusion is drawn in section 9.

3 List of contributions

The contributions of the study are enlisted as follows.

• Diversity and dense variability in data distribution confuse
the classification scenario and require special filtering
mechanisms, which are tackled in this paper.
• Novel false data injection techniques (FDIs) are investigated,
whichmanipulate the SMs data extremely and remained still
undetectable in literature.
• A problem of high FPR due to extensive misclassification is
tackled, which causes financial overburdens.
• To tackle data reductionality issues, inception, attention,
and filtering mechanisms are introduced to hybridize the
existing classifying architectures.
• In order to retain long-term memorization, the inputted
data is overlapped through segmented attributes of sliding
windows to adopt cognitive learning of the data.
• Data synthesizing through ineffective balancing techniques
mimic resembled, overlapped, and replicated data, which is
tackled by introducing a novel proximity-weighted synthetic
oversampling (ProWsyn) technique.

3.1 Dataset

SMs installed on consumer premises record the electricity
consumption for the consumed energy. Consumed energy is
recorded in the form of time series data. In this paper, a
realistic dataset, named as state grid corporation of China
(SGCC) is used which contains 42,372 consumers. We are
considering 6 months of data from 1500 benign consumers
only for data classification and manipulation due to the limited
resources of our machine (Punmiya and Choe, 2019). Our
machine specifications are intel(R) core (TM) M-5y10c, CPU@

0.80 GHz 1.00GHz, RAM 4 GB. Moreover, the simulator is
google CoLab. The dataset contains a few missing readings,
which are due to the mal-operation and malfunctioning of the
sensors deployed over the installed SMs. Such erroneous readings
create ambiguity over the classification scenario and ultimately
result in a low detection rate. A straightforward approach to
eliminating such readings disrupts the time series data’s sequence
and integrity. Considering optimal data filling techniques and
operating such techniques over the perspective rows provide
refined and complete consumption data of each consumer. A
24-h time series data for every consumer is recorded by an
SM. A unique consumer ID is assigned to each consumer. A
label is indexed for the identification of honest and fraudulent
consumption. A binary representation of 0 and 1 is used where
0 represents benign class data and 1 represents fraudulent class
data. Due to the rarity of theft class data, we are proposing
false data injection techniques (FDIs) to manipulate the benign
class data in order to synthesize fraudulent class data. FDIs are
proposed in comparison to theft cases (Sha et al., 2022), which
are shown in Eqs. 1, 2. Moreover, the dataset is online available
at: https://github.com/henryRDlab/ElectricityTheftDetection.

3.2 Data preprocessing

Electricity consumption time series data is a series of
numeric values, which is monitored by the installed SMs on
the consumers’ premises. Such time series data contain missing
values and outliers due to the mal-operation andmalfunctioning
of the deployed SMs. Filling in the missing values and removing
the outliers are necessary steps. A simple Imputer technique is
used to fill in the missing values and to remove the outliers.
To fill in the missing values, a mean-based strategy is operated
row-wise. Furthermore, data normalization is carried out to
normalize the data into a specific range. The normalized data is
the input data, which is then transformed and scaled to carry out
further operations.

3.3 Data augmentation

The problem of skewness towards the majority class by the
classifier is a serious issue, which needs proper attention. To
tackle the data imbalance issue, synthetic data is synthesized
by oversampling minority class data. Weight value-based
approaches transform the data into equal distribution, however,
most of the techniques synthesize inappropriate data, which
ultimately results in a poor distribution of the classes. To
overcome such problems, this paper proposes a proximity-
weighted synthetic oversampling technique (ProWsyn) (Islam
and Belhaouari, 2022). ProWsyn targets the minority class
samples to balance the data. The proximity information of
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TABLE 1 Mapping of limitations and proposed solutions.

Sr Limitation Identified Solution Number Proposed Solution Validations

L1 Misclassification due to the dense variability of the
distributed data

S1 Addition of Inception module for filtering abstract
features

V1: Table 2

L2 Lack of theft class data samples S2 Synthesizing through novel FDIs V2: Eq.1
L3 High FPR S3 Hybrid model architecture to tackle extensive

misclassification
V3: Figure 6

L4 Problem of short term information memorization S4 Data segmentation and overlapping V4: Figure 1
L5 Imbalance data and model’s skewness towards the

majority class
S5 ProWsyn data resampling technique V5: Algorithm 2

each sample is measured based on the distance from the
decision boundary. Distance-based proximity helps to generate
the effective weights for theminority class samples. Such effective
weights of the minority samples normalize the data distribution,
which mitigates the skewness of the model towards the majority
class samples. The data is balanced and synthetic samples are
generated. ProWsyn is a clustering-based technique, which
operates in two steps.

• In the first step, the distance between the residing position of
the sample and the decision boundary is monitored for each
of the minority samples. All the samples are partitioned (P)
upon the splitting.
• In the second step, the partitioned data samples are assigned
a proximity level (L).

The proximity level is directly proportional to the distance.
A smaller proximity level gives more important samples,
whereas, a greater proximity level gives less important samples.
Algorithm 2 shows the operating mechanism of the ProWsyn
technique.

In step 1 of Algorithm 2, input parameters are defined.
Step 2 considers new sampling based on EU. New samples are
synthesized and considered if EU of the corresponding sample is
less than the corresponding cluster and weight of the sample is
updated accordingly. However, if the EU is greater it is ignored.
Finally, in step 3, the number of honest consumers and fraudulent
consumers is balanced.

{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{
{

FDI1 =
mean (E)*random (0.1− 0.9)

E
whereE > 1 ≤ mean

FDI2 = √(mean(E)) * random (0.1− 0.9)

FDI3 = √(E) * random (0.1− 0.9)
FDI4 =mean (E) − (γ)
where γ is a constant consumption and
γ ≤ mean
FDI5 = E− γi
where i = 0,…,Emax
FDI6 = E (t− d) = 0 i f t < d and 1 i f t ≥ d
where t,d is time and di f ference, respectively.

(1)

1 Step 1: Defining fraudulent and honest

consumers:

2 Input: Honest Consumers HEc,

Fradulent Consumers FEc Sample Si, Euclidean

distance EU, Decision Boundary $DB$,

Weight W

3 Step 2: Introducing FDIs:

4 FEc > HEc ;

5 Si if EU is geater ignore Si;

6 update W;

7 consider Si if EU is less;

8 skip: and go to next sample

9 Step 3: Balancing :

10 FEc = HEc

11 STOP

12 Output:Target (Proximity Si having EU >),

Skip (Proximity Si having EU <)

Algorithm 1. Data Augmentation using proWsyn Technique.

{{{{{{{
{{{{{{{
{

T1(Et) = Et * random (0.1,0.9)
T2(Et) = Et * Et (Et = random (0.1,0.9))
T3(Et) = Et * random [0,1]
T4(Et) =mean(Et) * random (0.1,1.0)
T5(Et) =mean(Et)

(2)

4 Feature engineering

The data distribution analysis is presented in Table 2.
Effective classification is based on the data’s nature. Complex
data is very difficult to be learned and classified by weak
models. Such complexity is based on the variance among the
data samples that need special attention before deploying any
model to tackle the classification problem. Various types of
features are engineered, which include min, max, standard
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TABLE 2 Data distribution analysis.

Data Manipulation Scheme Kurtosis Skewness

FDIs 6 46
Theft Cases 1 10

deviation,mean, rootmean square error, skew, kurtosis, quantile,
and rolling mean. Mean, min, max and standard deviation
are basically the stochastical features, whereas, root mean
square error, skew, kurtosis, quantile, and rolling mean are the
static features based on the dynamics of the time series data.
Stochastical features show the randomness and variations in the
data, which helps to know the complexity of the distributed data.
Whereas, the root mean square responds to the provision of the
actual information of variations and distribution in the data.
Skewness factor (Sk) judges the symmetry and resemblance of
the data. In literature, it is represented as three-point plotting.
One point is a central point and the other two lies on the left
and the right of the central point, respectively. A symmetric
distribution is the same to the left and right of the central point.
Mathematically it can be represented as:

{
{
{

Sk =
∑M

j=1
(Wj−W−)3/(M)

q3
, (3)

The kurtosis parameter helps to investigate the problems
associated with the outliers and the data’s distribution. It shows
the difference between each and every point within the data
whether it is symmetric or un-symmetric. Mathematically, it can
be represented as:

{
{
{

Kurtosis =
∑M

j=1
(Wj−W−)4/(M)

q4
− 3, (4)

Where W− is the mean, q is the standard deviation and M
is the number of data samples. Positive kurtosis represents
a heavy-tailed distribution, whereas, negative kurtosis is a
light tailed distribution. Normal data distribution has a zero
kurtosis. Quantile concludes the shape of the distribution.
It distributes the observations in the same number of
samples based on the probability distribution.Rolling mean
(Rm) is a computing window, which computes the mean
on a piece of the data slab. The rolling window rolls on
continuous time series data and computes for a subset. The
computed subset is the rolling average for that specific slab
of the data. It basically accesses the stability within the data
distribution. Mathematically, it is represented as (Blanca et al., 
2013):

{ Rm =
Et +Et−1 +Et−2 +⋯+Et−n + 1

M
, (5)

4.1 Data manipulation

Novel FDI techniques are proposed in comparison to six theft
cases for data manipulation (Pamir et al., 2022a).

• FDI 1 under-reports the consumption by manipulating the
SM’s data as shown in Figure 1A. The total consumption is
aggregated into a mean. A random number is multiplied by
the aggregated mean, which ranges between (0.1–0.9). The
product is divided by a number greater than 1 and less than
a number equal to the aggregated mean, which vanishes the
consumed energy reading and limits it to a zero reading.
• FDI2 targets the mean and a random number’s product,
which is squarely rooted in order to inject false reading by
manipulating SM’s consumption data.This data subjectively
minimizes the consumption of energy almost by 1/2 of the
total consumed energy as shown in Figure 1B.
• FDI3 is the periodic bulk manipulation of the total
consumed energy over monthly and weekly based. It is
a specific defined time period manipulation. The square-
rooted consumption is multiplied by a random number
ranging between (0.1–0.9) in order to get more financial
benefits as shown in Figure 2A.
• FDI4 is a two-phase manipulation. One is mean-based
manipulation and the second one is a constant numeric
number subtraction-based manipulation. The mutual
difference between both strategies the SM’s consumption
data under-reports the original consumption as shown in
Figure 2B.
• FDI5 is the manipulation of the SM’s data during off-
peak and off-peak hours. A γ factor is a difference-based
manipulation variable, which is represented by a simple
numeric number. The variable is subtracted from the
recorded readings to under-report the consumed energy as
shown in Figure 3A.
• FDI6 is a unit-step function-based manipulation at the
consumer’s end. It manipulates the consumption with a
choice to operate it at any time stamp or periodically. It can
steal 100% of the consumed energy in the extreme.However,
in the case of equilibrium, a 50% of the theft is expected.
During such modes of manipulation, the consumption is
limited to 0 or 1 where 1 shows the original consumption
and 0 shows the manipulated consumption as shown in
Figure 3B.

4.2 Model’s architecture

The input data is segmented into various data subsets in
form of slabs through a dynamic sliding window. The dynamic
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FIGURE 1
(A) Theft Case 1 vs. FDI 1. (B) Theft Case 2 vs. FDI 2.

FIGURE 2
(A) Theft Case 3 vs. FDI 3. (B) Theft Case 4 vs. FDI 4.

sliding widow overlaps the input data by 50%. Data’s subsets
contain resizing strategy over k = 20 where 10 previous and 10
next records are buffered. Every next sliding slab selects the data
starting from the data point residing on the 10th index of the
previous slab.The data is resized in similar fashion until the very
end of the array is reached. The same phenomenon is repeated
consecutively for the oncoming next slab. The 50% overlapping
of the data is a linear traversal of the data, which minimizes
the complexity of the dense time series data and finds an
optimized data resizing strategy for the input data.Thedeveloped
hybrid model is a delicately structured architecture, which is
a multivariate model and inspired by the long-term short-
term memory and fully convolutional network (LSTM-FCN).
In order to retain recurrent information of the time series data

the modules are integrated in parallel where the LSTM module
is connected to an inception time network with additional
layers of attention (Abbasimehr and Paki, 2022). Novel FDI
techniques are proposed in comparison to six theft cases for data
manipulation (Dua et al., 2022). AttenLSTMInception model is
a multivariate resolution feature of the time series data. The
ultimate goal is to capture and analyse the variance between
the classes’ data. In order to retain the information LSTM-
Inception model contains two residual blocks. Information
propagation between the residual blocks is initiated by an
ultimate short linear connection where inputs are added to the
next block. Such schematics mitigate the vanishing gradient
problem due to the direct flow of the gradient. Stacking the
inception modules, the first inception component is named
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FIGURE 3
(A) Theft Case 5 vs. FDI 5. (B) Theft case 6 vs. FDI 6.

FIGURE 4
The proposed system model.

the bottleneck layer, which performs sliding operation over the
data. Such layers reduce the data’s dimensionality due to the
sliding operation of the filters. Integrating networks in such
scenarios mitigate the over-fitting issue, model’s complexity,
and complex dimensionality. It is necessary to mention that
the bottleneck technique maximizes filter length in terms of

pulling, which helps in reducing the computational complexity.
The max-pooling generates sequential attributed data, which
is concatenated with the inception modules’ output. The
hierarchical latent features are extracted via stacking and
backpropagation mechanisms. The global pooled output of the
inceptionmodule andAttenLSTMblock are concatenated, which
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FIGURE 5
Working of flowchart.

is connected to the inception layer and classification operator
function.

5 Proposed system model

The limitations with the proposed solutions are presented
in Table 1. While the system model in Figure 4 represents
our proposed solution for the aforementioned limitations. It
is divided into five sections (1) Data preprocessing (2) Data
manipulation (3)Data augmentation (4) Feature engineering and
(5) Classification. The data distribution analysis is presented in
Table 2.

• Initially in section (1), data is preprocessed where the
missing values and outliers are filled and removed by
the simple Imputer technique, respectively. A row-wise
operation is carried out on the data to tackle such issues.
• In data manipulation section (2), consumers are defined
based on their provided SM’s readings, which are labeled
with a binary representation of 0 and 1, where 0 stands

1 Step 1: Defining fraudulent and honest

consumers:

2 Input: Honest Consumers HEc, Fradulent

Consumers FEc

3 Step 2: Introducing FDIs:

4 FDI1=
mean(E)*random(0.1−0.9)

E
;

5 FDI2=√(mean(Ec))*random(0.1−0.9));

6 FDI3=√(Ec)*random(0.1−0.9);

7 FDI4=mean(E) − (γ);

8 FDI5 = E− γi;

9 FDI6 = E(t−d) = 0 if t < d and 1 if t >= c;

10 Step 3: Data Augmentation and

Concatenation:

11 Concat( FFDI1 + FDI2 + FDI3 + FDI4

12 + FDI5 + FDI6 )

13 FEc = FDIi + ... +FDIn: where i = 1, ...,6.

14 ECT = HEc + FEc

15 Step 4: Data Equilibrium:

16 HEc = FEc ;

17 FEc > HEc ; apply proWsyn to HEc .

18 HEc = FEc .

19 Step 5: Feature Engineering:

20 ECT = HEc + FEc

21 skewness(mean(ECT))

22 kurtosis(mean(ECT))

23 Step 6: Classification

24 Output:Ec ε FXc ;

25 Ec ε HXc

Algorithm2. AttenLSTMInception based Electricity Theft Detection Scheme.

for honest consumers and 1 for fraudulent consumers.
Honest consumer data is manipulated in order to synthesize
fraudulent consumers’ data by applying FDI techniques.
Data is synthesized due to the rare availability of the theft
class data. Synthesized data by such FDI techniques show
fraudulent consumers’ data. The defined FDI techniques
result in six variants for each benign sample.

• In section (3), data balancing is required in order tomitigate
the Model’s biasness and skewness towards a majority class.
Dense skewness poisons the model’s classification, which
tends to increase the false positive rate (FPR). A data
augmentation technique is required to mitigate such issues
(Ullah et al., 2021), (Asif et al., 2021a), (Asif et al., 2021b),
(Kabir et al., 2021). ProWsyn based data augmentation
strategy is applied in the proposed work to balance
fraudulent and benign class samples.
• In section (4), the balanced data is observed by the feature
engineeringmodule where the data’s nature and distribution
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FIGURE 6
(A) Performance analysis of the benchmark and proposed model (B) Performance comparison.

are studied. Stochastical features, which contain mean,
min, max, and standard deviation are generated to study
the data’s distribution. In addition, the skewness factors,
kurtosis, quantile, root mean square and rolling features
are engineered, which shows the distribution symmetry and
its deviation. Such investigating factors result in deciding
the model’s complexity and deepness for the classification
scenario. Highly skewed, defused and un-symmetric data
needs a heavily featured classifying model for effective class
segregation and classification.
• In section (5), to classify the samples effectively
a hybrid model AttLSTM-FCNInception model is
adopted, which is an integration of attention layers
(Pustokhin et al., 2020), LSTMmodule (Yu et al., 2019) and
Inception (Yang et al., 2019). Two of the Inception modules
and attention layers are integrated into LSTM. The model
is fed with the affine preprocessed data, which is suitable
to tackle complex and un-symmetric data. Algorithm 1
defines a summary of the whole system model.

6 Working of the system model

Theworking of the whole classification scenario is defined in
Figure 5.

• Initially in step 1, the SMs’ time series data is analyzed and
benign samples are considered only due to non-availability
of the theft class samples.
• In step 2, the benign class data is manipulated by six FDIs,
and six new variants are synthesized for a single benign
sample. Such variants for a single benign sample disrupt
the data balancing, which requires balancing techniques to
balance the data.

• In step 3, a ProWsynminority class oversampling technique
is opted to balance the data. Each sample is considered
on a proximity basis where EU distance is measured by
assigning weights to the samples. The nearest sample of
the cluster to the decision boundary is weighted greater,
whereas, the sample with a large EU distance from the
perspective cluster is weighted less. The assigned weights
help to mitigate the issues of misclassification and high
FPR.
• In step 4, various features are engineered in order to
investigate the complexity and distribution of the data.
Two major mean-based synthesized features are targeted
to investigate the complexity and distribution of the data.
Kurtosis and skewness are the mean-based engineered
features, which visualize the data’s symmetry and far-tailed
numeric outliers.
• In step 5, in order to enhance the data memorization,
a sliding window segments the data with a 50%
overlap, which carries the previous and next step
information segments of the input data. Such translation
of the available information flows back and forth,
which increases the memorization capability of the
model.
• In step 6, the segmented data is fed to a hybrid
AttenLSTMInception model for classification. The fed data
is classified and fraudulent consumers are detected with a
low FPR, effectively.

7 Performance evaluation

ETD is a binary classification problem where benign and
fraudulent classes are represented as positive and negative,
respectively. In a binary classification scenario, the positive class
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TABLE 3 Performance comparison of the proposed and existingmodels.

Classifier Accuracy Precision Recall F1 Score AUC Score

Proposed AttLSTMInception 0.95 0.97 0.94 0.96 0.98
LSTMCNN 0.59 0.59 0.80 0.68 0.70
SVM 0.65 0.65 0.76 0.70 0.65
RF 0.72 0.72 0.65 0.71 0.72
DT 0.47 0.47 0.48 0.49 0.47

is labeled as 0 and the negative is labeled as 1. Precision,
detection rate (DR), accuracy, AUC, and F1 score are used to
evaluate the performance of the model. AUC is the area under
the curve with two distinguishing parameters, TPR and FPR.
TPR is the detection sensitivity of the model and FPR is the
specificity. A comparative investigation between the accurate
identification of true positive samples and true negative samples
constructs AUC. Four parametric attributes are collectively
mapped to measure the sensitivity and specificity of the model.
Sensitivity is DR and specificity is the FPR of the model.
Mathematically, it can be represented as (Jones and Athanasiou., 
2005):

DR = TP
TP+ FN

, (6)

FPR = TN
TN+ FN

, (7)

Where TP, TN, FP, and FN represent true positive, true negative,
false positive, and false negative, respectively. TP, TN, FP, and
FN are the confusion matrix attributes, which investigate binary
classification.

8 Simulation results

In order to compare the proposed AttLSTMInception
model with the existing models DT, RF, SVM, and LSTMCNN,
a comparative analysis is shown in Figure 6A, Figure 6B.
Accuracy, precision, recall, F1 score, and AUC are the
performance parameters, which are considered to investigate the
performance of the models. The results in Table 3 show that the
proposedmodel outperforms the rest of themodels.The effective
performance of the proposed model is due to the attention and
inception modules. The attention module mimics cognitive
attention, which focuses on the prominent and important
features rather than non-useful data. The inception module
adds the properties of efficient computations and dimensionality
reduction by using multiple data filtering sizes. The addition
of the inception module tackles the problem of over-fitting
and computational complexity. RF (Nguyen and Phan, 2021),
SVM (Lin et al., 2021), DT, and LSTMCNN (Hasan et al., 2019)
perform very badly. They cannot perform on complex time
series data and cause overfitting issues. Furthermore, the
performance of the proposed model is enhanced by using

dropout regularization and adam optimization. Figure 6 shows
the AUC of various models against the proposed model. The
proposed model outperforms the rest of the models. Initially,
the proposed model classifies the time series data of the honest
and fraudulent consumers with zero FPR, however, at an AUC
score of 0.92 a minimal FPR is reported. The slight change
in reporting FPR is due to the increased data complexity.
LSTMCNN performs efficiently with a slight FPR, however,
it reduces its performance over the increased complexity of
the data. Figures 6A,B shows that the low FPR is achieved
by the proposed model as compared to other models, which
means that the fraudulent and honest consumers are accurately
classified. Similarly, the AUC score of the conventional machine
learning techniques SVM (Pamir et al., 2022b), RF, and DT
(Munawar et al., 2021) is very bad and reports high FPR.
Figure 6 shows the accuracy, precision, recall, F1 scores, and
AUC scores of themodels. It can be seen that the proposedmodel
outperforms the rest of the models in each of the performance
parameters.

9 Conclusion and future work

In this paper, novel FDIs techniques are proposed in
comparison to theft cases. The proposed FDIs manipulate the
data severely as compared to the theft cases. The variations and
complexity in data distribution caused by the proposed FDIs and
theft cases are investigated through data distribution techniques.
The analysis shows that the proposed FDIs are severe in nature
while manipulating data of SMs’ as compared to theft cases. FDIs
observe minimal skewness and complexity in data distribution
as compared to the theft cases data. Furthermore, six variants
are synthesized for each of the honest consumers. A novel
data balancing technique, ProWsyn is used to balance the data.
Moreover, the attLSTMInception model is proposed, which is an
integration of LSTM, attention layers, and inception modules.
The proposed model outperforms the rest of the existing models
and achieves an accuracy of 0.95%, precision 0.97%, recall 0.94%,
F1 score 0.96%, and AUC score 0.98%. In future work, we will
investigate the extraction of abstract features for dimensionality
reduction and the addition of more memory modules for
long-term dependencies of the data in our proposed model to
reduce FPR furthermore.

Frontiers in Energy Research 11 frontiersin.org

https://doi.org/10.3389/fenrg.2022.1043593
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Munawar et al. 10.3389/fenrg.2022.1043593

Data availability statement

The original contributions presented in the study are
included in the article/Supplementary Materials, further
inquiries can be directed to the corresponding author.

Author contributions

Conceptualization, SM and NJ; methodology, SM; software,
SM; validation, NJ; writing—original draft preparation, SM;
writing—review and editing, NJ, ZK, NC, and MR; supervision,
ZK and NC; project administration, MR, AM, and AA; funding
acquisition, AM and AA. All authors have read and agreed to the
published version of the manuscript.

Funding

The Deanship of Scientific Research (DSR) at King
Abdulaziz University (KAU), Jeddah, Saudi Arabia has

funded this project, under grant no. (KEP-MSc: 122-135-
1443).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The handling editor, KM declared a past co-authorship with
the author(s), NC and AM.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Abbasimehr, H., and Paki, R. (2022). Improving time series forecasting using
LSTM and attention models. J. Ambient. Intell. Humaniz. Comput. 13 (1), 673–691.
doi:10.1007/s12652-020-02761-x

Arqub, O. A. (2020). Numerical simulation of time-fractional partial
differential equations arising in fluid flows via reproducing Kernel method. Int.
J. Numer. Methods Heat. Fluid Flow. 30, 4711–4733. doi:10.1108/hff-10-2017-
0394

Arqub, O. A. (2018). Numerical solutions for the Robin time-fractional partial
differential equations of heat and fluid flows based on the reproducing kernel
algorithm. Int. J. Numer. Methods Heat. Fluid Flow. 28, 828–856. doi:10.1108/hff-
07-2016-0278

Asif, M., Kabir, B., Ullah, A., Munawar, S., and Javaid, N. (2021). “Towards
energy efficient smart grids: Data augmentation through BiWGAN, feature
extraction and classification using hybrid 2DCNN and BiLSTM,” in International
conference on innovative mobile and internet services in ubiquitous computing
(Cham: Springer), 108–119.

Asif, M., Ullah, A., Munawar, S., Kabir, B., Khan, A., and Javaid, N. (2021).
“Alexnet-AdaBoost-ABCbased hybrid neural network for electricity theft detection
in smart grids,” in Conference on complex, intelligent, and software intensive systems
(Cham: Springer), 249–258.

Blanca, M. J., Arnau, J., Lopez-Montiel, D., and Bendayan, R. (2013). Skewness
and kurtosis in real data samples.Methodol. (Gott). 9 (2), 78–84. doi:10.1027/1614-
2241/a000057

Blazakis, K. V., Kapetanakis, T. N., and Stavrakakis, G. S. (2020). Effective
electricity theft detection in power distribution grids using an adaptive neuro fuzzy
inference system. Energies 13 (12), 3110. doi:10.3390/en13123110

Buzau, M. M., Tejedor-Aguilera, J., Cruz-Romero, P., and Gómez-Expósito,
A. (2019). Hybrid deep neural networks for detection of non-technical
losses in electricity smart meters. IEEE Trans. Power Syst. 35 (2), 1254–1263.
doi:10.1109/tpwrs.2019.2943115

Cai, Y., Li, Y., Cao, Y., Li, W., and Zeng, X. (2017). Modeling and impact analysis
of interdependent characteristics on cascading failures in smart grids. Int. J. Electr.
Power & Energy Syst. 89, 106–114. doi:10.1016/j.ijepes.2017.01.010

Cheng, G., Zhang, Z., Li, Q., Li, Y., and Jin, W. (2021). Energy theft detection
in an edge data center using deep learning. Math. Problems Eng. 2021, 1–12.
doi:10.1155/2021/9938475

Depuru, S., Reddy, S. S., Wang, L., and Devabhaktuni, V. (2011). Electricity
theft: Overview, issues, prevention and a smart meter based approach to
control theft. Energy policy 39 (2), 1007–1015. doi:10.1016/j.enpol.2010.
11.037

Djennadi, S., Shawagfeh, N., and Arqub, O. A. (2021). A fractional Tikhonov
regularization method for an inverse backward and source problems in the
time-space fractional diffusion equations. Chaos, Solit. Fractals 150, 111127.
doi:10.1016/j.chaos.2021.111127

Djennadi, S., Shawagfeh, N., Osman, M. S., Gómez-Aguilar, J. F., Arqub, O. A.,
and Abu Arqub, O. (2021). The Tikhonov regularization method for the inverse
source problem of time fractional heat equation in the view of ABC-fractional
technique. Phys. Scr. 96 (9), 094006. doi:10.1088/1402-4896/ac0867

Dua, N., Singh, S. N., Vijay, B. S., Kumar Challa, S., and Challa, S. K. (2022).
Inception inspired CNN-GRU hybrid network for human activity recognition.
Multimed. Tools Appl., 1–35. doi:10.1007/s11042-021-11885-x

Glauner, P., Augusto Meira, J., Valtchev, P., Radu, S., and Franck, B. (2016).The
challenge of non-technical loss detection using artificial intelligence: A survey. arXiv
preprint arXiv:1606.00626.

Guo, Y., Yang, Z., Feng, S., and Hu, J. (2018). “Complex power system
status monitoring and evaluation using big data platform and machine learning
algorithms: A review and a case study,” in Complexity 2018.

Hasan, M., Toma, R. N., Nahid, A-A., Islam, M. M., and Kim, J-M. (2019).
Electricity theft detection in smart grid systems: A CNN-LSTM based approach.
Energies 1217, 3310. doi:10.3390/en12173310

Himeur, Y., Ghanem, K., Abdullah, A., Bensaali, F., and Amira, A. (2021).
Artificial intelligence based anomaly detection of energy consumption in buildings:
A review, current trends and new perspectives. Appl. Energy 287 (2021), 116601.
doi:10.1016/j.apenergy.2021.116601

Hussain, S., Mustafa, M. W., Jumani, T. A., Khan Baloch, S., Alotaibi, H., Khan,
I., et al. (2021). A novel feature engineered-CatBoost-based supervised machine
learning framework for electricity theft detection. Energy Rep. 7 (2021), 4425–4436.
doi:10.1016/j.egyr.2021.07.008

Islam, A., and Belhaouari, S. B. (2022). Atiq ur rahman, and halima bensmail. “K
nearest neighbor OveRsampling approach: An open source python package for data
augmentation. Software Impacts, 100272.

Frontiers in Energy Research 12 frontiersin.org

https://doi.org/10.3389/fenrg.2022.1043593
https://doi.org/10.1007/s12652-020-02761-x
https://doi.org/10.1108/hff-10-2017-0394
https://doi.org/10.1108/hff-10-2017-0394
https://doi.org/10.1108/hff-07-2016-0278
https://doi.org/10.1108/hff-07-2016-0278
https://doi.org/10.1027/1614-2241/a000057
https://doi.org/10.1027/1614-2241/a000057
https://doi.org/10.3390/en13123110
https://doi.org/10.1109/tpwrs.2019.2943115
https://doi.org/10.1016/j.ijepes.2017.01.010
https://doi.org/10.1155/2021/9938475
https://doi.org/10.1016/j.enpol.2010.11.037
https://doi.org/10.1016/j.enpol.2010.11.037
https://doi.org/10.1016/j.chaos.2021.111127
https://doi.org/10.1088/1402-4896/ac0867
https://doi.org/10.1007/s11042-021-11885-x
https://doi.org/10.3390/en12173310
https://doi.org/10.1016/j.apenergy.2021.116601
https://doi.org/10.1016/j.egyr.2021.07.008
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Munawar et al. 10.3389/fenrg.2022.1043593

Javaid, N., Gul, H., Baig, S., Shehzad, F., Xia, C., Guan, L., et al. (2021). Using
GANCNN and ERNET for detection of non technical losses to secure smart grids.
IEEE Access 9 (2021), 98679–98700. doi:10.1109/access.2021.3092645

Javaid, N., Jan, N., and Umar Javed, M. (2021). An adaptive synthesis
to handle imbalanced big data with deep siamese network for electricity
theft detection in smart grids. J. Parallel Distributed Comput. 153, 44–52.
doi:10.1016/j.jpdc.2021.03.002

Jeyaraj, P. R., Edward, P. R. S. N., Kathiresan, A. C., and Siva, P. A. (2020). Smart
grid security enhancement by detection and classification of non-technical losses
employing deep learning algorithm. Int. Trans. Electr. Energ. Syst. 30 (9), e12521.
doi:10.1002/2050-7038.12521

Jones, C. M., and Athanasiou., T. (2005). Summary receiver operating
characteristic curve analysis techniques in the evaluation of diagnostic tests. Ann.
Thorac. Surg. 79 (1), 16–20. doi:10.1016/j.athoracsur.2004.09.040

Kabir, B., Ullah, A., Munawar, S., Asif, M., and Javaid, N. (2021). “Detection
of non-technical losses using MLP-GRU based neural network to secure smart
grids,” in Conference on complex, intelligent, and software intensive systems (Cham:
Springer), 383–394.

Kocaman, B. T., and Tümen, V. (2020). Detection of electricity theft using
data processing and LSTM method in distribution systems. Sādhanā 451, 286–10.
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