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Abstract

Mathematical models that describe the dependences of the critical temperatures 
of pitting formation of AISI 304, 08Kh18N10, AISI 321, 12Kh18N10T steels 
in model circulating waters with pH 4…8 and chloride concentrations from 350 
to 600 mg/l on their chemical composition and structure have been developed. 
They are based on linear squares regressions and a feed-forward neural network 
for reduced feature numbers. Using the developed mathematical models, it was 
found that the critical pitting temperatures of these steels increase with an increase 
in the pH of the circulating water, the number of oxides up to 3.95 μm in size, the 
average distance between titanium nitrides, the Cr content and a decrease in the 
concentration of chlorides in the circulating waters, the average distance between 
oxides and average austenite grain diameter. At the same time, it was found that 
the geometric dimensions of the steel structure most intensively affect their pitting 
resistance in circulating waters, and the effect of their chemical composition is 
minimal and is determined by the amount of Cr, which contributes to an increase in 
the pitting resistance of steels, probably increasing the solubility of nitrogen in the 
austenite solid solution. It is proposed to use the developed mathematical models 
to select the optimal heats of these steels for the production of heat exchangers and 
predict their pitting resistance during their operation in circulating waters.
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1. Introduction

Corrosion-resistant steels of the austenitic class 
are widely used in the production of heat-exchange 
equipment, given their high corrosion resistance 
in many environments [1‒4]. Currently, plate-like 
heat exchangers are widely used, because they are 
more compact than shell-and-tube heat exchang-
ers, and also have less weight and more efficient 
thermal conductivity due to a significantly small-
er thickness (0.3 ... 1.0 mm versus 1.0 ... 3.0 mm) 
of heat transfer elements. However, the latter cir-

cumstance increases the likelihood of perforation 
of plates of plate heat exchangers in the case of 
pitting corrosion in circulating waters, which are 
used to cool technological products in chemical, 
oil, and gas refining, energy, and other industries 
[5–8]. Therefore, the assessment of the pitting 
resistance of construction materials from which 
heat exchangers are made and the prediction of 
their corrosion behavior during operation is an 
actual problem. It was established in [9–11] that 
the parameters of circulating water and the struc-
tural heterogeneity of AISI 304, 12Kh18N10T, 
08Kh18N10, AISI 321 steels significantly affect 
their pitting resistance in circulating water, while 
the effect of their chemical composition is not so 
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significant and is determined only by the amount of 
Cr in their composition. To determine the role of 
chromium and the structural components of these 
steels in their pitting resistance and its prediction, 
mathematical models were built that are based on 
linear quadratic regressions and a two-layer neural 
network of direct signal propagation for a reduced 
number of input features.

2. Materials and research methods

Five industrial heats of steels of the austenitic 
class AISI 304, AISI 321, and one 12Kh18N10T 
and 08Kh18N10 were studied. Their chemical 
composition is presented in (Tables 1 and 2), and 
structural heterogeneity was determined earlier in 
[9‒10].

The data-driven approach allows building a 
model on the experimental data only without any 
expert knowledge (physical, chemical, etc. theoret-
ical models). Such a technique provides an oppor-
tunity for model building in insufficiently explored 
problems.

Mathematical models of the dependence of the 
critical pitting temperature (CPT) of steels de-
pending on their chemical composition (Tables 1 
and 2), structural heterogeneity, and parameters of 

model circulating waters (pH 4…8, chloride con-
centration CCl = 350, 400, 500, 550, 600 mg/l). 
These parameters have the greatest effect on the 
pitting resistance of steels, since the ratio of the 
concentrations of chlorides in them to other anions 
(sulfates, nitrates, etc.) does not reach a critical 
value, and the rate of recycled water outflow is 
laminar [12]. Linear quadratic equations were con-
structed using these parameters (1). We have used 
a standard feed-forward neural network, widely 
described in the literature [13]:

∑=
k

kkcwy ,

where: y – is the critical pitting temperature (CPT) 
of steels, °С; wk – the weight coefficient of the 
components (see Table 3); ck – the feature compo-
nent xi (see Table 3).

In particular, the output feature of the model (1) 
is the CPT of steels AISI 304, 08Kh18N10, AISI 
321, 12Kh18N10T in model circulating waters, 
and the variable features xi are the indicators of 
model circulating waters (pH(x1); chloride content 
(x2), mg/l); components of the steel structure (x3 
– the volume of oxides, rot.%; x4 – the amount of 
oxides up to 1.98 µm in size per 100 microscope 

Table 1 
Chemical composition of steels AISI 304 and 08Kh18N10

# of heat Content of chemical elements, mass%
C Mn Si Cr Ni N Ti S P

1 0.071 1.23 0.22 17.96 9.34 0.048 - 0.001 0.027
2 0.067 1.74 0.50 18.22 8.09 0.046 - 0.001 0.028
3 0.075 1.65 0.43 18.25 8.09 0.055 - 0.004 0.024
4 0.050 1.70 0.41 18.30 8.10 0.044 - 0.002 0.028
5 0.030 1.81 0.39 18.10 8.20 0.039 - 0.001 0.034

08Kh18N10 0.060 1.34 0.32 17.44 9.77 – – 0.006 0.035

Table 2 
Chemical composition of steels AISI 321 and 12Kh18N10T

# of heat Content of chemical elements, mass%
C Mn Si Cr Ni N Ti S P

1 0.035 1.66 0.54 17.10 9.10 0.012 0.32 0.001 0.026
2 0.060 1.59 0.66 16.43 9.14 0.011 0.34 0.002 0.027
3 0.064 1.22 0.52 17.43 9.70 0.012 0.41 0.001 0.026
4 0.030 1.62 0.41 17.41 9.24 0.013 0.31 0.002 0.028
5 0.040 1.70 0.49 17.70 9.10 0.013 0.35 0.001 0.026

12Kh18N10T 0.070 1.70 0.49 17.97 10.46 – 0.46 0.007 0.027

(1)
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fields (×320), units; x5 – the amount of oxides with 
sizes from 1.98 to 3.95 µm per 100 fields of view 
of a microscope, units; x6 is the average distance 
between oxides, µm; x7 is the average austenite 
grain diameter, µm; x8 is the volume of δ-ferrite, 
rot.%; x19 is the volume of titanium nitrides, rot.%; 
x20 is the average distance between them, µm) and 
their chemical composition (x9 – carbon content, 
wt.%; x10 – manganese; x11 – silicon; x12 – chro-
mium; x13 – nickel; x14 – nitrogen; x15 – titanium; 
x16 – sulfur; x17 – phosphorus) and x18 – specific 
magnetic susceptibility, m3/kg [12].

A neural network model based on a two-layer 
feed-forward neural network for a reduced num-
ber of input features (x1, x2, x6, x10 and x12) is de-
scribed by formula (2) [14]. To simulate and train 
the neural network we have used online scripts of 
MATLAB. The training has been provided using 
Levenberg-Marquardt algorithm. We have used all 
the data as training and validation, because of the 
small data set size. We understand that to assess 
the suitability of the model, it is advisable to test 
it on data that was not used for training. Howev-
er, due to the limited sample size, the observations 
were forced to use the entire sample. The resulting 
error estimate may be underestimated to the data 
that were not used in the construction of the model. 
This value is given as a guideline.

 15 7
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where                         – activation function of 

the i-th neuron of the first layer of the network,

       – weight coefficient of the j-th input of the 

i-th neuron of the network’s first layer,

        – weight coefficient of the i-th input of the 

single neuron of the network’s second layer.

The values of the weight coefficients           and

      are presented in (Table 4).

The weight coefficients of the regression model 
(1) were determined by the least squares method, 
and the quality of mathematical models was evalu-
ated by the sum of squares of instantaneous errors:
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where:     – calculated value of the output fea-
ture for the s-th instance of observations (CPT); 
– ys the value of the output feature for the S-th in-
stance of observations (CPT) determined experi-
mentally [12]. 

The S is the number of instances (observations) 
in a sample. We use the all data for model building. 
We have used online scripts of MATLAB for all 
model building. This software uses a least-squares 
method for regression models.

3. Research results and discussion

Analysis of the Ck constituent of the developed 
linear squares regression model (1), taking into ac-
count the established weight coefficients Wk (Ta-
ble 3), showed that the CPT of the studied AISI 
304, 08Kh18N10, AISI 321 and 12Kh18N10T 
steels increases by 54.2 °С with increasing pH(x1) 
of model circulating water from 4 to 8 (see item 1 
of Table 3) and decreases by 12.0 °С with an in-
crease in the concentration of chlorides in it from 
350 to 600 mg/l. This trend is harmonized with 
well-known literature data [15‒18]. At the same 
time, it should be noted that the square of the con-
stituent       (Table 3, item 6), taking into account 
its weight coefficient. wk = -1.67·10-5 the increase 
in the concentration of chlorides x2(СCl) within the 
above-mentioned limits has practically no effect 
on the value of y(CPT) of the steels under study. At 
the same time, for the constituent       (pH), an in-
crease in pH(x1) of model circulating waters from 
4 to 8 contributes to a decrease in y(CPT) of steels 
by 47.3 °С (Table 3, p. 5). At the same time, taking 
into account that for the constituent x1 (Table 3, 
item 1) an increase in its value within the above 
limits contributes to an increase in y(CPT) of steels 
by 54.2 °С, and for a decrease by 47.3 °С, the total 
the well-known tendency to increase the CPT of 
steels in chloride-containing media is not violated. 
Therefore, we can state the fact that y(CPT) of the 
studied steels increases on average by 6.9 °С with 
an increase in pH(x1) of model circulating waters 
from 4 to 8. This value is harmonized with experi-
mental data [19, 20].

In the AISI 304 and 08Kh18N10 steels under 
study, titanium nitrides are absent, because, unlike 
AISI 321 and 12Kh18N10T steels, they are not sta-
bilized by titanium (Tables 1 and 2). At the same 
time, in AISI 321 and 12Kh18N10T steels, the ti-
tanium content varied from 0.32 mass% (heat 1) to 
0.46 mass% (steel 12Kh18N10T), and the volume 
of titanium nitrides ‒ from 0.2336 rot.% (heat 4) 

 *sy
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up to 0.4745 rot.% (heat 1). Thus, taking into ac-
count the data (Table 2) on the content of nitrogen 
and titanium in AISI 321 and 12Kh18N10T steels, 
it can be noted that the volume of titanium nitrides 
(x19) in these steels does not depend on the content 
of these chemical elements in them. In addition, 
according to (Table 3; p. 4, 15), a change in the 
volume of titanium nitrides in these steels from 0 
rot.% in steel AISI 304 and 08Kh18N10 to 0.4745 
rot.% heat 1 of AISI 321 steel does not affect their 
y(CPT) in model circulating waters. In this case, 
according to (Table 3, p. 16) and the data of [21], 
an increase in the average distance between titani-
um nitrides from 66 μm in heat 5 of AISI 321 steel 
to 91 μm in heat 2 promotes an increase in their 
y(CPT) by 99 °C. Thus, it turns out that the greater 
the average distance between titanium nitrides in 
these steels, the smaller their size and the high-
er y(CPT), which characterizes pitting resistance. 
These results are harmonized with the data of [22] 
in terms of the critical size of inclusions at which 
stable pits can form and develop near them.

The volume of oxides (x3) in the studied steels 
varies in the range from 0.0027 rot.% for steel 
12Kh18N10T to 0.0324 rot.% for heat 4 of AISI 
304 steel, therefore, according to (Table 3; #7 ), 
the influence of this parameter on y(CPT) is prac-
tically absent. Similarly to titanium nitrides and 
oxides, a change in the volume of δ-ferrite in these 
steels (x8) in the range from 0.0138 rot.% heat 3 
steel AISI 304 to 0.372 rot.% steel 12Kh18N10T  
practically does not affect their y(CPT) in model 
circulating waters (Table 3, # 3, 12). Such results 
are consistent with the data of works [9] for steel 
AISI 321 and [10, 23] for AISI 304. At the same 
time, according to the data (Table 3, items 8, 9), 
1 and 54 °С with an increase in the amount of ox-
ides in them up to 1.98 microns in size (x4) from 
12 units steel 12Kh18N10T to 425 heat 1 steel 
AISI 304 and from 1.98 to 3.95 microns (x5) from 
2 units steel 12X18H10T up to 280 units steel 
08Kh18N10, respectively. Such dependencies are 
due to the fact that stable pittings are formed near 
inclusions that are larger than the critical size [23, 
24], for austenitic steels, about 5 μm [25]. Ac-
cordingly, in oxides up to 3.95 μm in size, meta-
stable pits were formed, which were repassivated 
with time. At the same time, it is known [26] that 
the more metastable pits on the steel surface, the 
lower the probability of their transition to a stable 
state. At the same time, it should be noted that sta-
ble pittings can form near inclusions much smaller 
than 5 µm if they are located at the boundaries of 

austenite grains. It is obvious that the larger the 
average austenite grain diameter, the lower the 
probability of inclusions intersecting with grain 
boundaries and, accordingly, the lower the prob-
ability of pitting corrosion and the higher the CPT 
of the steels at which it develops.

Analysis of the data (Table 3, # 11) of the mod-
el (1) is harmonized with this statement because 
it was found that y(CPT) of the steels under study 
decreases by conditional 135.5 °С with an increase 
in the average austenite grain diameter from 23 to 
312 μm because the larger the average grain diam-
eter, the higher the degree of the incoherence of 
adjacent grains and the higher the defectiveness 
of their boundaries. In addition, it should be not-
ed that the theory of the formation of stable pits 
at the intersection of austenite grain boundaries 
in steels with small inclusions is harmonized with 
the results of analysis (Table 3, item 10) of the 
model (1), because it was found that y(CPT) of 
the steels under study decreases by the conditional 
167.8 °С with an increase in the average distance 
between oxides from 150 to 794 μm [27]. Since 
it is obvious that the greater the average distance 
between inclusions in steels, the smaller their size 
and the greater the number. It turns out that the 

Table 3 
Feature constituents xi and their weighting coefficients

# Additive component ck Weight coefficient wk

1 x1 13.54

2 x2 -0.0481

3 x8 0.0153

4 x19 -0.0493

5 -0.9845

6 -1.67×10-5

7 -8.34×10-4

8 1.22×10-4

9 6.9×10-4

10 -2.76×10-4

11 -0.0014

12 5.46×10-6

13 -0.0076

14 0.1735

15 1.02×10-5

16 0.0254

 2
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greater the amount of oxides in the studied steels, 
the higher the probability of their intersection with 
the boundaries of austenite grains and the higher 
the probability of pitting corrosion. Summarizing 
the above, it can be noted that the risk of pitting 
corrosion of the steels under study decreases with 
an increase in the amount of oxides up to 3.95 μm 
in size, located in the austenite solid solution, due 
to the redistribution of the anode current densi-
ty between a large number of metastable pittings 
that located near these oxides, at a decrease in the 
degree of incoherence between adjacent austenite 
grains due to a decrease in their average diameter, 
as well as a change in the amount of small oxides 
due to a decrease in the average distance between 
them.

Studies of the pitting resistance of AISI 304  
and AISI 321 steels showed that it mainly depends 
on the parameters of model circulating waters (xi, 
x2), the structural heterogeneity of these steels (x6, 
x7), and to a lesser extent, on the content in them Cr 
within the standard. At the same time, the results of 
the analysis (Table 3, # 13, 14) of the mathematical 
model (1) are harmonized with the data of works 
[9, 10, 26], because it was found that y(CPT) of the 
steels under study practically does not change with 
increasing Mn content from 1.22 to 1.81 mass% 
(Tables 1 and 2). At the same time, it increases by 
7.4 °C with an increase in the Cr content in steels 
from 17.1 to 18.3 mass% (Table 1). The pitting 
resistance of steels and alloys alloyed with Cr is 
associated with oxide films formed by Cr with O 
[28–30]. In addition, this element affects the sol-
id-phase diffusion of Cr, Ni, and Fe atoms to the 
surface of metastable pits and promotes their re-
passivation [25, 26]. At the same time, there is 
evidence that Cr [31] and, especially, manganese 
increase the solubility of nitrogen in corrosion-re-
sistant steels, and, consequently, their pitting re-
sistance. The resistance of austenitic steels alloyed 
with nitrogen to pitting corrosion is associated 
with an increase in the stability of the oxide film. 
Mechanisms for improving the passive stability of 
nitrogen alloyed steel films include:

– formation of ammonium ions or nitrate (ni-
trite) ions ;

– segregation of nitrogen on the surface during 
anodic dissolution ;

– formation on the surface bonds of Cr-Ni ;
– complex formation of ammonia or NO and 

ammonium salts.
In addition, it is considered that the positive ef-

fect of nitrogen is due to the inhibitory effect on 

the anodic dissolution of steel. In particular, there 
is evidence that nitrate ions stabilize the passive 
film, preventing the adsorption of chlorides and 
increasing the resistance of austenitic steels to 
pitting corrosion in chloride-containing media. It 
should be noted that the proposed mechanisms for 
increasing the pitting resistance of steels when al-
loyed with nitrogen involve the action of nitrogen 
dissolved in the solid solution of steel austenite. 
At the same time, the results of the analysis of the 
mathematical model (1) (Table 3) showed that N 
in the amount of 0.011 ... 0.013 mass% in heat of 
AISI 321 steel and 0.032...0.055 mass%. affects 
their y(CPT), i.e. pitting resistance in model cir-
culating waters. This is due to its low solubility 
in the solid solution of steel austenite. However, 
as mentioned above, Cr increases its solubility 
in solid solution. Thus, nitrogen dissolved in the 
solid solution of austenite, by one or more of the 
above mechanisms, protects austenitic steels from 
pitting corrosion. Thus, summarizing the above 
data, it can be noted that the pitting resistance of 
austenitic steels AISI 304, 08Kh18N10, AISI 321, 
12Kh18N10T, is determined by the parameters of 
recycled waters (pH (x1), СCl-(x2)), which make up 
the structure (x4, x5 – the number of oxides sizes up 
to 1.98 and 1.98…3.95 µm, respectively; x7 is the 
austenite grain diameter; x6, x20 is the average dis-
tance between oxides and nitrides of titanium, re-
spectively) of steels and their Cr content. For other 
chemical elements in the studied steels (Tables 1 
and 2), the volume of titanium oxides and nitrides 
do not affect their y(CPT) and, accordingly, pitting 
resistance.

At the same time, it should be noted that the 
root-mean-square error of determining y(CPT) of 
the studied steels using the mathematical mod-
el (1) (Table 3) is 3820.4 and the mean error is 
0.0028. Thus, this mathematical model can be rec-
ommended to the industry for predicting the pitting 
resistance of heat exchange equipment using water 
circulation systems, as well as for selecting heats 
of these steels with optimal pitting resistance, de-
pending on the operating conditions of this system. 
In addition, the developed mathematical model can 
be useful in the development of new steel grades 
proof to pitting corrosion.

The developed neural network model based on 
a two-layer neural network of forward propaga-
tion for a reduced number of input features (x1, 
x2, x6, x10 and x12) (2) makes it possible to obtain 
much more accurate calculated values of y(CPT) 
for the steels under study, depending on the pa-
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rameters of circulating water (x1, x2), their struc-
tural element (x6) and chemical elements (x10, x12) 
than the mathematical model (1). Since the total 
squares error for model (2) is 1.7994 (3), and the 
average ǀуex-уcalcǀ – 0.0026. In this case, the error in 
determining the CPT of the studied steels during 
the experiment is ±0.5 °С. The disadvantage of 
the mathematical model (2) is the inability to es-
timate the quantitative effect of the parameters of 
the model circulating water, structural heterogene-
ity and chemical composition of the steels under 
study on their y(CPT). The values of the weight 
coefficient (wj

(1, i)) of the j-th input of the i-th neu-
ron of the network’s first layer and the weight co-
efficient of the i-th input of the single neuron of 
the network’s second layer (wi

(2, 1)) are presented 
in (Table 4).

It should be noted that in the mathematical 
model (1) based on linear squares regressions, the 
following xi variables are significant: (x1, x2 are the 
pH of the model circulating waters and the concen-
tration of chlorides in them); x4, x5 – the amount of 
oxides in the studied steels up to 1.98 µm in size 
and from 1.98 to 3.95 µm; x6, x20 – the average dis-
tance between oxides and nitrides; x7 is the average 
austenite grain diameter and x12 is the chromium 
content in steels. And in a neural network model 
based on a neural network of direct signal propaga-
tion for reduced numbers of features (2): (x1, x2, x6, 
x10 and x12). Moreover, these features are common 
to both mathematical models. Thus, it turns out that 
these features are the most important in terms of 
their influence on the pitting resistance of the steels 
under study. In this case, the proposed mechanisms 
of the effect of these features on y(CPT) of steels 
AISI 304, 08Kh18N10, AISI 321, 12Kh18N10T 
are described above.

Table 4 
Values of the weight coefficients (wj

(1, i)) of the j-th 
input of the i-th neuron of the network’s first layer and 

the i-th input of the single neuron of the network’s 
second layer (wi

(2, 1))

wj
(1, i) i 1 2 3 4

j

0 -2.5702 -0.0005 0.0019 4.9133
1 (x1) -1.8387 0.1347 0.2015 -1.9649
2 (x2) 0.7325 0.2347 -0.2193 0.065
6 (x6) -3.5582 11.3589 0.2667 1.5316

10 (x10) -20.461 12.6135 0.1583 0.0165
12 (x12) -20.6655 5.4093 0.1532 -0.2049

i 0 1 2 3 4
wi

(2, 1) -2.3433 17.5420 -1.0258 0.0047 8.3758

4. Conclusions 

Two mathematical models have been developed, 
which are based on linear squares regressions and a 
feed-forward neural network for reduced numbers 
of features. They are proposed to be used to select 
the optimal heats of AISI 304, 08Kh18N10, AISI 
321, 12Kh18N10T steels and predict the pitting 
resistance of plate heat exchangers from them in 
circulating water. 

It has been established that their pitting resis-
tance increases with an increase in the pH of the 
circulating water, the amount of oxides up to 3.98 
μm in size, the average distance between titanium 
nitrides, the Cr content and a decrease in the con-
centration of chlorides in the circulating water, the 
average distance between the oxides and the aver-
age diameter of the austenite grain. 

Based on the dependencies obtained and based 
on well-known literature data, the mechanisms of 
the influence of the parameters of circulating wa-
ter, structural elements and the chemical composi-
tion of the studied steels on their pitting resistance 
in circulating water are proposed. In particular, 
metastable pittings are formed in a solid solution 
of steel austenite near oxides (1.98–3.95 µm) and 
repassivate without reaching a critical size of about 
5 µm, which contributes to an increase in their pit-
ting resistance. 

The smallest oxides (up to ~ 1 μm) at the in-
tersection with the boundaries of austenite grains 
contribute to the formation of stable pits, due to 
the highest degree of the incoherence of adjacent 
grains, which grows with an increase in the average 
diameter of austenite grains. Chromium promotes 
an increase in the solubility of nitrogen in the aus-
tenite solid solution and repassivation of pits under 
the action of anions of nitrogen compounds.
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