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Objectives:Human gut microbiome has gained great attention for its proposed

roles in the development of hypertension. The fungal microbiome in the

human gut (i.e. the mycobiome) is beginning to gain recognition as a

fundamental part of our microbiome. However, the existing knowledge of

human mycobiome has never revealed the association between gut

mycobiome and hypertension. It is known that inflammation and immunity

contribute to human hypertension. Here, we sought to investigate whether gut

mycobiome could predict the development of hypertension and its association

with immunoglobulin light chains.

Methods and materials: Participants were classified into three cohorts:

prehypertension (pre-HTN), hypertension (HTN), and normal-tension (NT)

based on their blood pressure. Fresh samples were collected, and the ITS

transcribed spacer ribosomal RNA gene sequence was performed. An

immunoturbidimetric test was used to examine the serum levels of

immunological light chains.

Results: Subjects in both of the states of pre-HTN and HTN had different fungal

microbiome community compared to the NT group (FDR<0.05). Slightly higher

levels of fungal richness and diversity were observed in the groups of pre-HTN

and HTN. The relative abundance of Malassezia increased in the HTN group

compared to that in the NT group, and the relative abundance of Mortierella

enriched in the NT group. For the pre-HTN group, the relative abundance of

Malassezia was positively associated with serum the concentration of light

chain (LC) k (r=0.510, P=0.044); for the HTN group, the relative abundance of

Mortierella was positively associated with the serum concentration of LC k
(P<0.05), the relative abundance of Malassezia was positively associated with

both the serum concentrations of LC k and LC l (r>0.30, P<0.05).
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Conclusions: Our present study demonstrated that gut fungal dysbiosis

occurred in the state of prehypertension, and fungal dysbiosis can predict

the dysregulation of serum light chains in hypertension patients. Further study

on modulating gut fungal community should be focused on balancing the

immunological features in hypertension.
KEYWORDS

gut mycobiome, prehypertension, hypertension, immunoglobulin light chains, kappa,
kappa (k) FLC, lambda (l) FLC
Introduction

Estimates suggest that 31.1% of adults worldwide had

hypertension (1). Hypertension is the leading cause of

cardiovascular disease and premature death worldwide (1).

The pathogenesis of hypertension is known to involve a

diverse range of contributing factors including environmental

and inflammatory forces (2). There is mounting evidence that

humans and models of animals support the role of the gut

microbiome, a key interface between the body and the

environment (3), in the development of hypertension (4–6).

For example, the findings from Sun Set al. supported that there

were associations between hypertensive patients with gut

microbial community diversity and taxonomic composition

(5). Li J et al. demonstrated that patients with primary

hypertension and pre-hypertension had a decreased microbial

diversity and different gut enterotypes compared to healthy

controls (6).

Most studies describing the human gut microbiome in

health states have been focused on the bacterial component,

but the fungal microbiome (i.e., the mycobiome) is beginning to

gain recognition as a fundamental part of our microbiome (7).

Dysbiosis, the alterations in diversity, abundance, and

functionality in the gut mycobiome has been implicated in

several diseases. Jayasudha R and his colleague found that

dysbiosis in the gut mycobiome in people with type 2 diabetic

mellitus (T2DM) or diabetic retinopathy compared to healthy

subjects (8); Demir M et al. demonstrated that non-obese

patients with non-alcoholic-fatty-liver-disease and more

advanced disease have a different fecal mycobiome

composition to those with mild disease (9). Like the gut

microbiome, gut mycobiome is affected by food habit of fecal

sample donors, such as plant-or animal-based, phytoestrogens

enriched plant products and fat-rich diets affect the colonization

of certain fungal species in the mammalian gut (10).

Experimental studies implicate inflammation and immunity

contribute to human hypertension (11). The inflammatory

pathway is responsive to angiotensin receptor ligation and

culminates in the translocation of nuclear factor-k light chain
02
(LC) enhancer of activated B cells to the nucleus, and the

activation of B cells by angiotensin II potentiates target-organ

damage in hypertension (12).

It is demonstrated that the activation of the immune system

either directly or indirectly impacts the gut microbiome (13).

However, there was no evidence in the current study that the gut

mycobiome dysregulated in hypertension.

It is known that T2DM and fatty liver disease are related to

impaired metabolic homeostasis and can be regarded as a

metabolic disorder (14, 15). Like T2DM and fatty liver disease,

hypertension is also associated with metabolism disorders (16).

As patients with T2DM and fatty liver disease have a distinct

mycobiome in the gut, we questioned whether the mycobiome

profile in patients with hypertension is different from healthy

population. To contribute the exiting knowledge of the human

mycobiome, we investigated the gut mycobiome of populations

with pre-hypertension and hypertension.
Methods and materials

Study cohort and
participants recruitment

Participants were classified into three groups according to

their blood pressure (BP), namely, pre-HTN (n=38), HTN

(n=46), and NT (n=34). The presence of HTN was confirmed

as a systolic blood pressure (SBP) ≥140 mmHg or a diastolic

blood pressure (DBP) ≥90 mmHg and/or use of antihypertensive

medication; pre-HTN was defined as an SBP of 120–139 mmHg

or a DBP of 80–89 mmHg without the use of antihypertensive

medication; Normal-tension BP (NT) was defined as an SBP ≤

120 mmHg or a DBP ≤80 mmHg (17). According to patients

baseline SBP and DBP, the patients in the HTN group were

categorized into different phenotypes. To be specific, isolated

systolic hypertension (ISH; SBP≥140 and DBP<90mmHg),

isolated diastolic hypertension (IDH; SBP<140 and

DBP≥90mmHg), systolic-diastolic hypertension (SDH;

SBP>140 and DBP≥90mmHg) (18). BP was measured in a
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sitting position by nurses. Three readings were recorded at 5-

min intervals with a random-zero mercury column

sphygmomanometer, and the average was taken as the final

measurement (6). Exclusion criteria for participants were as

follows: acute intercurrent disease and infections, cancer, stroke,

peripheral artery disease, heart failure, renal failure, kidney

damage, diabetes, pregnancy, breastfeeding, elevated body

temperature or white blood cell count, and those who used

antibiotics, probiotic or immunosuppressive drugs within 60

days before enrollment were excluded from the present study.

The ethics committee of the Affiliated Xinchang Hospital

approved this study. Informed consent was provided by all

subjects before their inclusion in the study.
Sample collection and procession

The participants were instructed to collect their fecal

samples to a sterile container and pick approximately 30mg of

feces to a sterile bottle which contained 1000mL lysis buffer

composed of Tris 0.1mol/L (pH 8.0), 2 mM EDTA, and 2%SDS

(Guhe Health. com., Hangzhou, China), and stored at −80°C

until further processing.

The blood samples for detecting immunological LC were

collected on the day of fecal samples collection. An

immunoturbidimetric test was used to assess serum levels of

immunological features on the day of sample collection

(AU5400; Beckman Coulter, USA). Information on clinical

manifestations, concurrent diseases, and blood parameters

were assessed by reviewing clinical records, medical interviews

and face to face interview. In addition, the nutrient intake was

assessed using a Chinese Food Frequency Questionnaire (19).
Fungal DNA extraction

DNeasy PowerSoil Pro Kit was used to isolate fungal

genomic DNA from fecal samples according to the

manufacturer’s instructions in a biological safety cabinet

(QIAGEN, Germany), with additional glass-bead beating steps

performed using a Mini-Beadbeater (FastPrep; Thermo

Electron, Boston, MA, United States). The amount of DNA

was determined using a NanoDrop ND-1000 spectrophotometer

(Thermo Electron). The integrity and size of DNA were verified

by electrophoresis on a 1.0% agarose gel containing 0.5 mg/ml

ethidium bromide. All DNA samples were stored at −20°C prior

to further analysis.

The ITS regions were amplified using ITS1F (5 ’-

CTTGGTCATTTAGAGGAAGTAA-3’) and ITS2 (2043R; 5’-

GCTGCGTTCTTCATCGATGC-3’) primers (20). All PCR

reactions were performed using Phusion High-Fidelity PCR

Master Mix (Thermo Scientific Inc., Waltham, MA, USA)

according to the manufacturer’s protocol and approximately
Frontiers in Immunology 03
50 ng extracted DNA per reaction. Thermocycling conditions

were set at 98°C for 15 sec for 1 cycle, then 98°C for 15 sec, 58°C

for 15 sec, then 72°C for 15 sec for 30 cycles, followed by a final

extension at 72°C for 60 sec for 1 min. Negative DNA extraction

samples (lysis buffer and kit reagents only) were amplified and

sequenced as contamination controls. Amplified products were

purified using Agencourt AMPure XP beads (1 volume;

Beckman Coulter, Pasadena, CA) and samples were run on a

1% agarose gel in order to size-select gel slices around 430 bp.

The amount of DNA was determined using a Qubit 2.0

Fluorometer (Life Technologies, Carlsbad, California, US).

Sequencing was performed with 2×150bp on a Novaseq 6000

platform ((Illumina Inc., San Diego, CA, USA).
Bioinformatic analysis

The ITS sequence dataset was merged and demultiplexed

into per-sample data using QIIME (V1.9.1) with default

parameters (21). Raw sequencing reads with exact matches to

the barcodes were assigned to respective samples and identified

as valid sequences. The low-quality sequences were filtered

through the following criteria: sequences of specified length of

<150bp, sequences of an average Phred scores of <20, sequences

of ambiguous bases, and sequences of mononucleotide repeats of

>8 bp. Paired-end reads were assembled using Vsearch (V2.4.4;

-fastq_mergepairs -fastq_minovlen 0). Operational taxonomic

unit (OTU) picking included Dereplication (-derep_full length),

cluster (-cluster_fast, -id 0.97), detection of chimeras

(-uchime_ref). A representative sequence was selected from

each OTU using default parameters. OTU taxonomic

classification was conducted by Vsearch searching the

representative sequences set against the UNITE 12_11 (https://

unite.ut.ee) database (22).

An OTU table was further generated to record the

abundance of each OTU in each sample and the taxonomy of

the OTUs. A minimum library size was chosen to rarefy the

OTUs in our present study, as it is critical to normalize the

OTU table to eliminate any bias due to differences in the

sampling sequencing depth. And total sum scaling (TSS) was

applied to transform the OTU table into relative abundance by

dividing the number of total reads of each sample. OTUs

containing less than 0.01% of total sequences across all

samples were discarded.

Sequence data analysis was performed using QIIME and R

package (V3.2.0). OTU-level alpha richness and diversity

indices, including Chao 1, Shannon and Simpson, were

calculated using the OTU table. Beta diversity analysis was

performed to investigate the structural variation of

fungal communities across samples using Bray-Curtis metrics

and visualized via principal coordinate analysis (PCoA)

based on permutational multivariate analysis of variance

[PERMANOVA] calculated by ‘adonis’ function.
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Statistical analysis

Pearson’s Chi-square or Fisher’s exact tests were used with

categorical variables; Student’s t test and ANOVA were used on

normalized continuous variables and Wilcoxon rank-sum test on

non-normal continuous variables. The P-value was adjusted for

multiple comparisons using the Benjamini–Hochberg (BH) false

discovery rate (FDR). Pearson correlation analysis was performed

on the abundant bacterial genera (>1% relative abundances) and

LC k, LC l and k/l ratio that differed between groups.
Frontiers in Immunology 04
Results

We collected fecal samples from 38 subjects with pre-HTN,

46 with HTN and 34 gender-age-BMI matched NT (Table 1).

Compared to the NT group, both of the groups of pre-HTN and

HTN had higher SBP, as well as higher DBP (P<0.05; Table 1). In

addition, the groups of Pre-HTN and HTN had higher rates of

type 2 diabetic mellitus (T2DM) and coronary heart disease than

those in the NT group (P<0.05). When the LCs were assessed,

the groups of pre-HTN and HTN had higher levels of k/l ratio,
TABLE 1 Demographic and clinical characteristics of the study population.

Valuables Value for corhort (na)b or statistic

pre-HTN (n=38) HTN
(n=46)

NT
(n=34)

p valuec

Gender

Male [no. (%)] 19 (50.00) 23 (50.00) 17 (50.00) 1.000

Female [no. (%)] 19 (50.00) 23 (50.00) 17 (50.00) 1.000

Married status [no. (%)] 36 (94.74) 43 (93.48) 30 (88.24) 0.566

Age 56.68 ± 16.60 57.24 ± 17.40 62.18 ± 16.67 0.328

Body mass index (kg/m2) 27.25 ± 7.29 74.63 ± 36.14 24.26 ± 3.41 0.492

History of drinking 2 (5.26) 4 (8.70) 2 (5.88) 0.802

History of smoking 1 (2.63) 2 (4.35) 0 (0.00) 0.324

Vegetarian 1 (2.63) 2 (4.35) 0 (0.00) 0.474

Duration of HTN (years) /

Less than 1 year [no. (%)] / 5 (10.87) /

1-3 years [no. (%)] / 12 (26.09) /

3-5 years [no. (%)] / 11 (23.91) /

More than 5 years [no. (%)] / 10 (21.74) /

Systolic blood pressure (mmHg) 120.92 ± 7.98d 157.09 ± 19.25e 87.27 ± 22.14 <0.05

Diastolic blood pressure (mmHg) 86.58 ± 8.14d 96.2 ± 10.99e 70.73 ± 10.09 <0.05

Estimated glomerular filtration rate (mL/min/1.73m2) 92.06 ± 35.48d 90.01 ± 25.26e 116.23 ± 56.41 0.510

Currently taking anti-hypertension agent / 30 (65.21) / /

Comorbidities

Type 2 diabetic mellitus [no. (%)] 8 (21.05)d 15 (32.61)e 0 <0.05

Coronary heart disease [no. (%)] 5 (13.16)d 7 (15.22)e 0 <0.05

0k/l ratio 1.82 ± 0.31d 1.94 ± 0.48e 1.53 ± 0.34 <0.05

LCk 8.29 ± 6.05d 7.43 ± 3.03e 2.98 ± 0.46 <0.05

0LCl 4.37 ± 2.73d 3.95 ± 1.62e 1.67 ± 0.42 <0.05

an, no. of subjects.
bMean ± SD or no. (%).
cFisher’s exact test was used for categorical variables and one-way analysis of variance was used to compare continuous variables.
dStatistically significant difference was found between groups of Pre-HTN and NT.
eStatistically significant difference was found between groups of HTN and NT.
HTN, hypertension; NT, normotension; pre-HTN, pre-hypertension.
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as well as LC k and LC l compared to the NT group (P<0.05;

Table 1). When the nutrient intake was compared among the

groups of pre-HTN, HTN and NT, we did not observe

significant difference (P>0.05; Table S1).

When comparing to the NT group, we found that the fecal

mycobiome of both pre-HTN and HNT groups differed

(PERMANOVA, R2 = 0.032, FDR=0.036 and R2 = 0.025,

FDR<0.037, respectively; Figure 1A). Anti-hypertension agent

was not a confounding variable in explaining the difference

between HNT and NT groups, as fecal mycobiome of the

med i c a t i on u s e r s and non -u s e r s d i d no t d i ff e r

(PERMANOVA, R2 = 0.023, FDR=0.414; Figure S1). The

mycobiome of pre-HTN group did not differ from that in

HTN (PERMANOVA, R²=0.013 FDR=0.304; Figure 1A). The

fecal mycobiomes of pre-HTN and HTN subjects were slightly

richer and more diverse than those of their respective NT

subjects (Wilcoxon rank-sum test, FDR>0.05; Figure 1B).

When we categorized the HNT patients based on their blood

pressure phenotypes, no differences were found among the sub-

phenotypes of ISH, IDH and SDH (PERMANOVA, R²=0.059

FDR=0.051; Figure S2).

When the bacterial phyla were assessed Figure 1C,

Ascomycota dominated in groups of pre-HTN, HTN and NT,
Frontiers in Immunology 05
it was accounted for 54.68%, 58.90%, and 64.94%, respectively.

Basidiomycota was also dominated in groups of pre-HTN, HTN

and NT, it was accounted for 44.58%, 40.12%, and 31.38%,

respectively. At the bacterial genus level Figure 1D, the pre-HTN

group was dominated by Candida (29.97%), Malassezia

(17.78%), Aspergillus (14.46%), Cladosporium (12.79%), and a

member of the bacterial family of Malasseziaceae (11.20%). The

dominated bacteria genus in the HTN group were somewhat

different from those in the pre-HTN group, such as Malassezia

was accounted for 28.45%, followed by Candida (18.26%),

Cladosporium (14.30%), Aspergi l lus (12.13%), and

Saccharomyces (8.46%). The NT group was dominated by

Candida (21.80%), Aspergillus (19.88%), Cladosporium

(19.77%), Wallemia (12.71%), and Malassezia (9.31%).

The classified species from the dominated fungal genera in

the pre-HTN, HTN and NT groups were examined (Table S2),

we observed that both of two species Parapsilosis and Tropicalis

from Candia were predominated in the samples of NT group

(accounted 5.90% and 2.26%, respectively).

Next, we compared the relative abundances of bacterial

phylum and the bacterial genus with above 1% of the total

abundance among the three groups of pre-HTN, HTN and NT.

We found that Mortierellomycota significantly increased in the
A B

DC

FIGURE 1

Bacterial composition, Venn, bacterial diversity, and phylum and genus composition in the urine from subjects of pre-HTN, HTN and NT.
(A) PCoA based on Bray-Curtis distances ASV level was performed to compare microbial community among groups of pre-HTN, HTN and NT.
The 95% confidence ellipse is drawn for each group. Permutational multivariate analysis of variance (PERMANOVA) was performed for statistical
comparisons of samples in the two groups. P value was adjusted by the Benjamini and Hochberg false discovery rate (FDR). (B) Bacterial
richness and diversity measured by Chao 1 and Shannon index were calculated at ASV level. Wilcoxon rank-sum test was performed and
adjusted by Benjamini and Hochberg false discovery rate (FDR). (C, D) Fungal profile at the phylum and genus level. Only the top 10 most
abundant genus are shown. HTN, hypertension; NT, normotension; pre-HTN, pre-hypertension.
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NT group compared to the pre-HTN group (Wilcoxon rank-sum

test, FDR<0.05; Figure 2A). Figure 2B displayed several fungal

genera showing significant difference among the three groups

(Wilcoxon rank-sum test, FDR<0.05). For example, the HTN

group had higher abundance of a member of the family of

Debaryomycetaceae than that in the groups of pre-HTN and NT.

Hanseniaspora increased in pre-HTN group compared to HTN

group. Although Malassezia increased with BP, the difference

was only observed between HTN and NT groups. Among the

three groups, the NT group had the highest abundances of

Mortierella and a member of the bacteria order of Hypocreales.

It is known that immune cells play a role in hypertension

and a previous study evidenced that there was a relationship

between white blood cells and blood pressure in hypertension

population (23–25). Thus, the three fungal genera differed in

HTN group compared to NT group were selected to perform
Frontiers in Immunology 06
Pearson correlation analysis with the white blood cell types to

see the gut mycobiome associations immune cells. However, no

significant associations were found (P>0.05; Table S3).

BMI, age and eGFR are factors influencing blood pressure in

hypertension patients (26–28), thus we assessed their associations

with gut mycobiome in HTN patients. Pearson correlation analysis

was performed between the differed fungal genera in HTN group

and patient’s BMI, age, eGFR, hypertension duration, and we did

not notice any significant associations (P>0.05; Table S4).

As serum immunoglobulin light chains, including serum

concentrations of LC k, LC l and their ratio of k/l sharply

increased in the groups of pre-HTN and HTN than those in the

NT group, we used Pearson correlation analysis to determine

whether any of the significantly different taxa were associated with

any immunoglobulin light chains and their ratio. For both pre-

HTN and HTN groups, multiple associations were observed. For
A

B

FIGURE 2

Fungal phyum and genus that were differentially abundant among groups of pre-HTN, HTN and NT. (A) Bacterial phylum significantly different
among groups of pre-HTN, HTN and NT. (B) Bacterial genera significantly significantly different among groups of pre-HTN, HTN and NT. P value
was calculated using Wilcoxon rank-sum test and adjusted by Benjamini and Hochberg FDR. *FDR < 0.05; and **FDR<0.01.
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example, the relative abundance of Malassezia was positively

associated with serum concentration of LC k in the pre-HTN

group (r=0.510, P=0.044; Figure 3A). More associations were

observed in the HTN group than those in the pre-HTN group,

such as the relative abundance of Mortierella was positively

associated with serum concentration of LC k (r=0.420, P=0.026;

Figure 3B); the relative abundance of Malassezia was positively

associated with both serum concentration of LC k and LC l
(r=0.439, P=0.019 and r=0.473, P=0.011 respectively; Figure 3B);

the relative abundance of a member of bacterial family of

Debaryomycetaceae was positively associated with the ratio of

k/l (r=0.483, P=0.009; Figure 3B).
Discussion

Like the gut microbiome, our present study firstly identified

that gut mycobiome composition and fungal profiles are

associated with hypertension in human, as well as the gut

mycobiome in patients with hypertension is shown to be an

important determinant of the disordered serum light chains.
Frontiers in Immunology 07
As a previous researcher claimed that there was an

association of bacterial dysbiosis in the gut in patients with

pre-HTN or HTN (6), we also noticed that fungal dysbiosis was

lined to the participants with pre-HTN or HTN. However, no

difference was found in the fungal community between the

groups of pre-HTN and HTN. In their study, Li J et al. found

that bacterial composition in human pre-HTN subjects was very

similar to that of the HTN patients (6). These findings of the

bacterial community in Li J study and the fungal community in

our present study suggest that changes of both gut microbiome

and gut mycobiome precede the onset of HTN.

Loss of gut bacterial diversity is associated with unhealthy

states (29), including individuals with hypertension (6, 30).

Inconsistent with the bacterial diversity in the gut in

hypertension (6, 30), our present study demonstrated that the

fungal richness and diversity tended to increase in patients with

pre-HTN or HTN compared to controls, which has been

evidenced by a recent study on patients with chronic kidney

disease (CKD) (31). In another study, Liguori G et al. found that

less bacterial operational taxonomic units (OTUs) in Crohn’s

disease patients compared to healthy subjects, whereas larger
A

B

FIGURE 3

Mycobiome was associated with participants’ immunoglobulin light chains. (A) The heatmap depicted the association between the bacterial
genera and immunoglobulin light chains showing differed in pre-HTN compared to NT. (B) The heatmap depicted the association between the
bacterial genera and immunoglobulin light chains showing differed in HTN compared to NT. Pearson correlation analysis was performed. The
correlation of two variables with values of |r|>0.3 and P < 0.05 are displayed. *P < 0.05; and **P < 0.01.
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fungal load was found in Crohn’s disease patients (32). As

both of studies of Liguori G and ours were with small sample

size, which might reduce the power of the studies and

render the study meaningless, the inconsistent alterations of

fungal diversity and bacterial diversity should be re-confirmed

using studies with large sample size population from

multiple locations.

Recently, Hu et al. reported that the dysbiosis of gut

mycobiome accompanying by an increased bacterial diversity

in patients with CKD (31). In their study, 65.22% CKD patients

were diagnosed with hypertension (31). However, although the

participants in the groups of pre-HTN and HTN in our present

study with normal kidney function, the gut dysbiosis of

mycobiome occurred in the states of pre-HTN and HTN. It is

known that hypertension is a leading cause of CKD (20), and the

occurrence of gut mycobiome in the states of pre-HTN and

HTN suggests that modulation of gut mycobiome in the states of

raised blood pressure may be effective in relieving the

kidney damage.

Our findings suggest that Malassezia is a potential

biomarker relating to the development of hypertension, as it

was not only enriched in the states of pre-HTN and HTN, but

also positively responsible for the increase of LC k in both

subjects with pre-HTN and HTN, and positively responsible for

the increase of LC l in HTN patients. It is reported that

increased levels of LCs have been detected in various

inflammatory disease (21, 22, 33). Recent studies have shown

that LCs can bind to mast cells and, using their ability to bind

antigen, facilitate activation of these mast cells and dorsal root

ganglia and neutrophils. These activations can result in the

release of various pro-inflammatory mediators which are

believed to contribute to the development of the inflammatory

disease (34–36), and inflammation plays a significant role in the

pathogenesis of hypertension (11). Malassezia species manifest

multiple proinflammatory biological properties (37), and can

promote the development of inflammatory associated diseases,

such as Crohn disease (38), and pancreatic cancer (39),

inflammatory bowel disease (40), and skin disease (41). Thus,

Malassezia is considered an important emerging pathogen. Our

observations of the enrichment ofMalassezia in the states of Pre-

HTN and HTN and its positive connection to LCs remind us

that Malassezia is a potential pathological fungus in

hypertension. Further study involving animal models and fecal

microbiome transfer from the donors of hypertension is needed

to define the function of Malassezia.

We noticed that Mortierella depleted in the states of Pre-

HNT and HTN compared to healthy controls. In their study,

Jayasudha R and his group found that Mortierella was not

observed in patients with T2DM or diabetic retinopathy,

whereas it was present in the healthy subjects (8). Similarly,

Wu N and his colleagues found that healthy subjects had an

increased Mortierella than that in patients with gestational

diabetes mellitus (42), and they also found that Mortierella
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represented a modulating effect on blood glucose level (42).

From the findings in the abovementioned previous studies and

our present study, we conclude that Mortierella might play a

probiotic role in hypertension. However, it is hard to understand

its positive association with LC l in the group of HTN. Further

study is necessary to investigate whether this is a protective

immunological response in hypertension.

Our study has limitations. Firstly, pre-HTN and HTN

patients and controls were not individually matched, there

may exist additional confounders. Secondly, a single

institution enrolled our local participants in our study, and it

is not comparable to a multiple-center study which can

appropriately powered the fungal profiles. Thirdly, although

no differences were found in the nutrient intake among the

three groups of pre-HTN, HTN and NT, other factors, such as

physical activity (43), should be investigated and assessed their

confounding effects on the gut mycobiome.

In summary, our present study firstly demonstrates the gut

mycobiome profiles among patients with pre-HTN and HTN.

We show that the dysbiosis of gut mycobiome occurred in the

state of prehypertension, which suggest that the modulation

therapy towards gut mycobiome should not only be targeted at

hypertension patients, but also at the subjects in the state of

prehypertension, which might prevent further elevations in their

blood pressure. In addition, we noticed that the disordered

immunological profiles were associated with the dysbiosis of

gut mycobiome when subjects with increasing blood pressure.

Microbial sensing, metabolic signalling and immune response

pathways ensure the survival of gut microbiome in a microbially

dominated world, and the interaction between gut microbiome

and host immunity homeostasis provides essential health

benefits to the host (44). Thus, further study should target the

differing mycobiome community to modulate host

immunity homeostasis.
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SUPPLEMENTARY FIGURE 1

Medication usages on fecal mycobiome. Comparison of fecal mycobiome

between antihypertensive agent users and non-users. Permutational

multivariate analysis of variance (PERMANOVA) was performed for
statistical comparisons of samples in the two groups. P value was

adjusted by the Benjamini and Hochberg false discovery rate (FDR).

SUPPLEMENTARY FIGURE 2

Hypertension phenotypes on fecal mycobiome. Comparison of fecal

mycobiome among hypertension phenotypes. Permutational

multivariate analysis of variance (PERMANOVA) was performed for
statistical comparisons of samples in the two groups. P value was

adjusted by the Benjamini and Hochberg false discovery rate (FDR).
Abbreviations: IDH: isolated diastolic hypertension; ISH, isolated systolic

hypertension; SDH: systolic-diastolic hypertension.
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