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Chapter 1

Introduction

Nothing truly valuable can be achieved

except by the unselfish cooperation of many individuals.

Albert Einstein, 1940

We live in a modern and complex world where many of engineering systems are

strongly interconnected with their users, and the overall performance of systems

highly depend on the behavior of their users. As a result of this, relying solely on

technical qualities of engineering systems and neglecting strategic user behavior

can entail degradation of the performance and lead to undesirable outcomes.

Throughout this thesis, we refer to users as agents/players, and we are interested

in scenarios where the agents are noncooperative, i.e., they primarily aim at

taking decisions that improve their own well-being, without regards for others.

Noncooperative agents appear in a broad range of practical applications and

some examples include demand-side energy management in smart grids [1, 2, 3],

congestion control in networks [4, 5], coordinated charging of plug-in electric vehicles

[6, 7, 8], ride-sharing applications [9], and supply-chain management [10, 11], to

name a few. As the incentives of individual agents may not be aligned with

each other or with the objective of the overall system, their strategic actions can

adversely affect the resulting system behavior. Therefore, it is essential to design

suitable mechanisms that are able to coordinate noncooperative agents and achieve

a desired overall outcome. This constitutes the central theme of this thesis.



2 1. Introduction

1.1 Introduction

In his 1928 paper “Zur Theorie der Gesellschaftsspiele” [On the Theory of Games

of Strategy] [12], John von Neumann laid the foundation of modern game theory.

He analyzed a three-player zero-sum game where the players could create coalitions

between themselves, and presented a solution based on the formed coalitions. He

later extended this analysis to n-player games and published the results in his 1944

book “Theory of Games and Economic Behavior” [13], co-authored with Oskar

Morgenstern. As these games are between coalitions of players, they are referred

to as “cooperative games”, and their applications range from studying mutualism

in nature [14] to forming global cooperation for reducing greenhouse gas emissions

[15].

In contrast to cooperative games, John Nash, in 1951, proposed the theory

of “noncooperative games” based on the absence of coalitions [16]. This theory,

in particular, assumes that the rules of the game have taken all possibilities

for commitment and contract into account, and each individual player behaves

independently. Nash also developed a solution criterion for noncooperative games

which is known as the “Nash equilibrium”, whose concept traces back to 1838 work

of Antoine Augustin Cournot on competing firms [17]. A Nash equilibrium is a

point where no player can gain a higher payoff by unilaterally changing its action.

This notion of solution has appeared in a vast spectrum of applications such as

studying international conflicts [18], financial crises [19, 20], arms races [21, 22],

and environmental regulations [23].

In this thesis our focus will be on the interaction between noncooperative agents

and we will design mechanisms that provide coordination among the agents. The

aim of this coordination is to align the strategies of noncooperative agents with a

desirable outcome. The choice of a desired outcome depends on the application at

hand. In some cases it can be taken as the Nash equilibrium (NE) of an underlying

noncooperative game, whereas in other cases it can be the social optimum or a

selected aggregative behavior. Coordination of noncooperative agents emerges

in broad spectrum of applications, such as energy consumption management in

smart grids [3, 6, 7], power control in wireless systems [24, 25], congestion control

in networks [4, 26], and demand response in competitive market [27]. In these

works, various static and dynamic mechanisms are presented that generate suitable

“control signals” and steer the agents’ strategies to a desired point.

1.2 Content of the thesis

This thesis is divided into two main parts, which together serves the central theme

of the thesis, namely coordination of noncooperative agents; see Figure 1.1. In

the first part, which includes nudging (Chapter 3) and interventions (Chapter 4),
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Coordination

Nudging 
& 

Interventions

NE
Seeking

Figure 1.1: Schematic view of the content of the thesis.

noncooperative agents/players interact with a central regulator. The goal of each

agent is to maximize its payoff, whereas the regulator aims to steer the strategies

of the agents to a desired point. The second part is devoted to distributed NE

seeking algorithms (Chapter 5) where noncooperative players interact with each

other in the absence of a central regulator. The goal is then to find the NE of

the underlying noncooperative game in a distributed and private manner. A brief

overview of the aforementioned problems is provided next.

1.2.1 Nudging

In behavioral economics, nudges are defined as indirect suggestions that influence

the behavior and decisions of people. Nudge theory was popularized in the 2008

book “Nudge: Improving Decisions About Health, Wealth, and Happiness”[28] as

a method to alter people’s behavior and improve their well-being. Since nudges

are non-intrusive and preserve people’s freedom of choice, they are embraced

by politicians around the world for encouraging a particular behavior without

making it mandatory. As a result, nudge units are emerged in different coun-

tries and international institutions to apply nudge theory in their policies, e.g.,

the Behavioural Insights Network Netherlands1 and the Competence Centre on

Behavioural Insights2.

In the literature, a standard approach for coordinating noncooperative price-

taking agents is employing the price as a design signal. In this method, the price is

treated as a fully controllable signal, and a system regulator uses pricing protocols

to steer the actions of the agents to a desired behavior [4, 6, 29]. In practice,

1https://binnl.nl/. Retrieved 5 August 2022.
2https://knowledge4policy.ec.europa.eu/behavioural-insights en. Retrieved 5 August 2022.

https://binnl.nl/
https://knowledge4policy.ec.europa.eu/behavioural-insights_en
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however, the price signal could depend on different elements and may not be

determined as a function of the actions. Motivated by this, we introduce a novel

framework in Chapter 3 which incorporates the concept of nudging as a tool for

steering the aggregative behavior of noncooperative price-taking agents to a desired

behavior. In this framework, the price signal is not fully available for design, and a

regulator, instead, sends out a price prediction signal to the agents. This prediction

signal may differ from the actual price, which introduces the issue of reliability

and trust. We have incorporated this issue in our model by adding trust dynamics.

This means that the agents are aware that the prediction signal can differ from the

actual price that they will incur and they do not blindly follow it. They however

follow the price prediction based on the history of its accuracy. After providing

the model, we turn our attention to designing suitable nudge mechanisms. We

consider both stationary and temporal desired behaviors, and put forward nudge

mechanisms that (i) obtain and maintain full trust of the agents, and (ii) guarantee

convergence of their aggregative behavior to the desired behavior.

1.2.2 Interventions in games

In noncooperative games, selfish behavior of players results in deterioration of per-

formance in contrast to the circumstances where all players cooperate to maximize

the social welfare. To avoid such performance degradation, a central regulator can

intervene the game by incentivizing the players towards the solution of the social

optimum. The main challenge that arises in finding suitable interventions is that

they depend on private information of the players, which are commonly unknown to

the regulator [30]. In economics, a conventional solution to this problem is using the

Vickrey–Clarke–Groves mechanism [31, 32], where payment rules are implemented

which motivate the players to report their private information to the regulator.

Another approach for achieving the social optimum is utilizing control-theoretic

tools where instead of sharing their private information, the players’ action are

observed by the regulator. The regulator then uses interventions as a control signal

to steer the players to the social optimum [24]. As suitable control protocols rely on

private information of the players, dynamics mechanisms are presented in different

setting to solve the problem, see e.g., [4, 24, 33].

In Chapter 4, we study the intervention problem in network games with the

aim of enforcing the social optimum. Network games appear in applications where

the decisions of each player depends on the actions of the others according to an

interaction network [34, 35, 36, 37]. In our setup, a central regulator modifies the

marginal returns of the players to achieve the social optimum. We recognize the

key role of the information available to the regulator in the choice of desirable

interventions, and consider several scenarios where information of the full game,

the social optimum, the network structure, or the marginal returns is available. We
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use control-theoretic tools to adapt to each set of available information and design

suitable intervention mechanisms to achieve the social optimum. Our results are

structured into two parts, namely (i) unconstrained actions and interventions and

(ii) constrained actions and interventions.

1.2.3 NE seeking

In many scenarios involving noncooperative agents, the well-being of an individual

agent depends on the aggregate actions of all the other agents. Aggregative games

are developed as a tool for studying these scenarios [38], and their applications

range from smart grids to communication networks [2, 7, 39]. In the literature

of aggregative games, finding the NE in a distributed manner has been of great

interest. This is motivated by scalability and computational challenges as well

as the fact that in many setups, noncooperative agents are only willing to share

information with their neighboring agents, see e.g., [40, 41]. Therefore, distributed

NE seeking algorithms have been proposed that allow the players to find the NE

via peer-to-peer communications [42, 43, 44].

In practice, NE seeking algorithms need to satisfy suitable robustness and

privacy preserving properties. Robustness guarantees are crucial as players could

deviate from a fully rational behavior and implementing the precise algorithm, see

e.g., bounded rational [45] and stubborn players [46, 47]. In addition, there are

ongoing efforts to interconnect game-theoretic algorithms with physical systems

(see e.g. [48, 49]), and this motivates the need to equip game-theoretic algorithms

with robustness guarantees. Moreover, privacy guarantees are required to convince

strategic players to communicate and exchange information in a distributed NE

seeking protocol. The reason is that private information of a player can be revealed

to other players through direct communication, or leaked to curious adversaries as

a result of eavesdropping.

In Chapter 5, we address the problem of NE seeking in a distributed and private

way in aggregative games. By using the structure of these games, we present

a distributed NE seeking dynamics that guarantees convergence of the players’

actions to the NE. We further analyze robustness and privacy preserving properties

of the algorithm. For the former, we provide robustness guarantees by proving

input-to-state stability and L2-stability properties of the dynamics. For the latter,

we show that the players’ private information cannot be uniquely identified even if

all communicated variables and the structure of the algorithm are revealed to an

adversary.
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1.3 Organization of the thesis

This thesis is organized as follows. In Chapter 2, we provide notations and some

preliminary concepts that will be used throughout the thesis. Chapter 3 presents

a nudge framework for steering noncooperative agents to a desired behavior. In

Chapter 4, we study interventions in network games to achieve the social optimum.

Distributed NE seeking in aggregative games is investigated in Chapter 5. Finally,

we summarize our contributions and future research directions in Chapter 6.

1.4 List of publications

Journal articles

• Mehran Shakarami, Ashish Cherukuri, and Nima Monshizadeh. Steering

the aggregative behavior of noncooperative agents: a nudge framework.

Automatica, 136:110003, 2022. (Chapter 3)

• Mehran Shakarami, Ashish Cherukuri, and Nima Monshizadeh. Dynamic

interventions with limited knowledge in network games. Submitted to IEEE

Transactions on Control of Network Systems, 2022. Available online at

arXiv:2205.15673. (Chapter 4)

• Mehran Shakarami, Claudio De Persis, and Nima Monshizadeh. Distributed

dynamics for aggregative games: robustness and privacy guarantees. Inter-

national Journal of Robust and Nonlinear Control, 32(9):5048–5069, 2022.

(Chapter 5)

• Xiupeng Chen, Mehran Shakarami, Jacquelien M.A. Scherpen, and Nima

Monshizadeh. Aggregating distributed energy resources for grid flexibility

services: a distributed game theoretic approach. Submitted to International

Journal of Robust and Nonlinear Control, 2022.

Conference papers

• Mehran Shakarami, Ashish Cherukuri, and Nima Monshizadeh. Nudging the

aggregative behavior of noncooperative agents. In IEEE 59th Conference on

Decision and Control (CDC), pages 2579–2584. IEEE, 2020. (Chapter 3)

• Mehran Shakarami, Ashish Cherukuri, and Nima Monshizadeh. Adaptive

interventions for social welfare maximization in network games. In IEEE

60th Conference on Decision and Control (CDC), pages 942–947. IEEE, 2021.

(Chapter 4)

https://doi.org/10.48550/arXiv.2205.15673


Chapter 2

Notation and preliminaries

In this chapter, we introduce the notation that will be used in the remainder of

the thesis. We also provide a few basic notions on graph theory, convex analysis,

and projected dynamical systems.

2.1 Notation

Sets. We denote the set of natural, real, positive real, and nonnegative real numbers

by N, R, R>0, and R⩾0, respectively. We denote the boundary, the interior, and

the closure of a set X ⊆ Rn with bd(X ), int(X ), and cl(X ), respectively. A closed

ball with center x ∈ Rn and radius r > 0 is denoted by

B̄(x, r) :=
{
y ∈ Rn |

√
(x− y)⊤(x− y) ⩽ r

}
.

Vectors and matrices. We use 0 to denote a vector/matrix of all zeros, and 1n

for the vector of all ones in Rn. The identity matrix of size n is denoted by In. We

omit the subscript whenever there is no confusion regarding the dimension. For

given vectors x1, · · · , xm ∈ Rn, we use the notation col
(
(xi)i∈I

)
:=

[
x⊤1 , . . . , x

⊤
m

]⊤
where I := {1, . . . ,m}. We also use the simplified notation col(xi) := col

(
(xi)i∈I

)
whenever no confusion arises. For given matrices A ∈ Rn×m and B ∈ Rp×m,

we write col(A,B) = [A⊤, B⊤]⊤. We use diag
(
A1, . . . , AN

)
to denote the block

diagonal matrix constructed from the matrices A1, . . . , AN . The image and kernel

of a matrix A ∈ Rn×m are denoted by imA and kerA, respectively. Moreover, the

vectorization of A is denoted by vec(A). We denote the Kronecker product by ⊗.

For a given matrix A ∈ Rn×m, let A = UΣV ⊤ be its singular value decomposition.

We then denote the Moore–Penrose inverse of A by A+ := V Σ+U⊤ ∈ Rm×n,

where Σ+ is obtained by replacing every non-zero diagonal entry of Σ by its
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reciprocal and transposing the resulting matrix. We use P ≻ 0 (≺ 0) to denote

that P = P⊤ ∈ Rn×n is positive definite (negative definite). Given a vector x ∈ Rn

and a matrix P ≻ 0, the standard Euclidean norm of x and the weighted Euclidean

norm of x are respectively given by ∥x∥ :=
√
x⊤x and ∥x∥P :=

√
x⊤Px. Given

a matrix P = P⊤ ∈ Rn×n, the notation λi(P ) with i ∈ {1, . . . , n} denotes the

eigenvalues of P , and λmin(P ) and λmax(P ) are the minimum and the maximum

eigenvalues of P , respectively. We denote the spectral norm of a matrix P ∈ Rn×m

by ∥P∥ :=
√
λmax(P⊤P ), and the Frobenius norm of P is denoted by ∥P∥F :=√

Tr(P⊤P ) where Tr( · ) is the trace operator.

Functions. We say a function F : Rn → Rn is (strictly) monotone if (x −
y)⊤(F (x) − F (y)) ⩾ 0 (> 0) for all x ̸= y ∈ Rn. Moreover, the function F

is µ-hypomonotone and µ-strongly monotone, respectively, if it satisfies (x −
y)⊤(F (x)−F (y)) ⩾ µ∥x−y∥2 for all x, y ∈ Rn, with µ ⩽ 0 and µ > 0, respectively.

A function F : X → Rm is locally Lipschitz on an open set X ⊂ Rn if for any

point x ∈ X , there exist some positive scalar r and Lipschitz constant L, both

dependent on x, such that ∥F (y′) − F (y)∥ ⩽ L∥y′ − y∥ for all y′, y ∈ B̄(x, r).

The function F is Lipschitz on X if there exists a positive constant L satisfying

∥F (y′)− F (y)∥ ≤ L∥y′ − y∥ for all y′, y ∈ X . For a piecewise continuous function

x : R⩾0 → Rn, we define the L∞ and L2 norms as ∥x∥∞ := supt⩾0 ∥x(t)∥ and

∥x∥2 := (
∫∞
0

∥x(τ)∥2dτ) 1
2 , respectively. Moreover, we say x ∈ L∞ when ∥x∥∞

is finite, and x ∈ L2 when ∥x∥2 is finite. We define the extended space L2e as

L2e := {x : R⩾0 → Rn | xτ ∈ L2,∀τ ∈ R⩾0} where xτ is a truncation of x given as

follows:

xτ (t) =

{
x(t), if 0 ⩽ t ⩽ τ,

0, if t > τ.

A continuous function α : R⩾0 → R⩾0 is class K if it is strictly increasing and

α(0) = 0. In addition, it is class K∞ if α(s) → ∞ as s→ ∞.

2.2 Graph theory

Here we review notions of algebraic graph theory from [50]. Let Gc = (I, E) be an

undirected graph with I := {1, . . . , N} being the vertex set and E denoting the edge

set. Each element of E is an unordered pair {i, j} with i, j ∈ I. A path is a sequence

of vertices connected by edges. The graph is connected if there is a path between

every pair of nodes. The set of neighbors of vertex i is Ni := {j ∈ I | {i, j} ∈ E}.
The Laplacian matrix of Gc is denoted by L with Lii equal to the cardinality of

Ni, Lij = −1 if j ∈ Ni, and Lij = 0 otherwise. Note that L = L⊤. The matrix

L of an undirected graph is positive semidefinite and 1N ∈ kerL. If the graph is

connected, L has exactly one zero eigenvalue, and im1N = kerL. Moreover, the
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Figure 2.1: Normal cone and tangent cone to a convex set.

Laplacian matrix satisfies

x⊤Lx ⩾ λ2(L)x
⊤x, ∀x ∈ imΠ,

where Π := I − 1
N 1N1

⊤
N and λ2(L) is the smallest nonzero eigenvalue of L.

2.3 Convex analysis

Given a closed convex set X ⊆ Rn, we denote the projection of a point z ∈ Rn on to

the set X by projX (z) := argminy∈X ∥y− z∥. A set K ⊆ Rn is a cone if it is closed

under scalar multiplication, i.e., for any x ∈ K, αx ∈ K for every α > 0. Given a

convex cone K ⊆ Rn, the polar cone of K is K◦ := {y ∈ Rn | y⊤x ⩽ 0,∀x ∈ K}.
Next we present a theorem which plays a fundamental role throughout the thesis.

Theorem 2.1 (Moreau’s decomposition theorem [51, Thm. 3.2.5]). Let K ⊆ Rn

and K◦ ⊆ Rn be a closed convex cone and its polar cone, respectively. For z, z1, z2 ∈
Rn, the following statements are equivalent:

(i) z = z1 + z2 with z1 ∈ K, z2 ∈ K◦, and z⊤1 z2 = 0.

(ii) z1 = projK(z) and z2 = projK◦(z).

Consider a nonempty, closed and convex set X ⊆ Rn. Given a point x ∈ X ,

the set NX (x) :=
{
y ∈ Rn | y⊤(s − x) ⩽ 0,∀s ∈ X

}
is the normal cone to X at

x, and the tangent cone is denoted by TX (x) := cl (∪y∈X ∪λ>0 λ(y − x)). Figure

2.1 illustrates the normal cone and the tangent cone to a convex set X . Note that

NX (x) is a closed convex cone, and TX (x) is its polar cone. Therefore, given any

point x ∈ X , it follows from Moreau’s decomposition theorem that any vector

z ∈ Rn can be written as z = projNX (x)(z) + projTX (x)(z). Given a point z ∈ Rn,

we denote its projection on to TX (x) by ΠX (x, z) := projTX (x)(z).

Given the set X and a map F : X → Rn, the variational inequality problem
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VI(X , F ) consists of finding a point x̄ ∈ X such that (x − x̄)⊤F (x̄) ⩾ 0 for all

x ∈ X . We write SOL(X , F ) to denote the set of solutions to VI(X , F ).

2.4 Projected dynamical systems

Projected dynamical systems are a special class of discontinuous dynamical systems.

Given a nonempty closed set X ⊆ Rn and a continuous function h : Rn × [0,∞) →
Rn, the nonautonomous projected dynamical system associated to them takes the

following form:

ẋ = ΠX (x, h(x, t)) , x(0) ∈ X , (2.1)

where ΠX (x, ·) is the projection operator on to the tangent cone of X at the point

x ∈ X . Note that at any point x in the interior of X , we have ΠX (x, h(x, t))) =

h(x, t). At any boundary point of X , the projection operator restricts the flow of

h(x, t) such that any solution t 7→ x(t) of (2.1) remains in X . Therefore, the right-

hand side of this system is discontinuous on the boundary of the set X . Following [52,

Def. 2.5], we specify a notion of solution to the above projected dynamical system.

A map x : [0,∞) → X is a Carathéodory solution of the projected dynamical

system (2.1) if it is absolutely continuous and satisfies ẋ(t) = ΠX (x(t), h(x(t), t))

for almost all t ∈ [0,∞).

We use the same notion of solution for the case of autonomous projected

dynamical systems of the form

ẋ = ΠX (x, h(x)) , x(0) ∈ X .



Chapter 3

Nudging the aggregative behavior of

noncooperative agents

This chapter considers the problem of steering the aggregative behavior of a popu-

lation of noncooperative price-taking agents towards a desired behavior. Different

from conventional pricing schemes where the price is fully available for design, we

consider the scenario where a system regulator broadcasts a price prediction signal

that can be different from the actual price incurred by the agents. The resulting

reliability issues are taken into account by including trust dynamics in our model,

implying that the agents will not blindly follow the signal sent by the regulator,

but rather follow it based on the history of its accuracy, i.e, its deviation from

the actual price. We present several nudge mechanisms to generate suitable price

prediction signals that are able to steer the aggregative behavior of the agents to

stationary as well as temporal desired aggregative behaviors. We provide analytical

convergence guarantees for the resulting multi-components models. In particular,

we prove that the proposed nudge mechanisms earn and maintain full trust of the

agents, and the aggregative behavior converges to the desired one. The analytical

results are complemented by a numerical case study of coordinated charging of

plug-in electric vehicles.

3.1 Introduction

Nudging is an approach in behavioral economics that is proposed to improve

people’s health and happiness by providing “indirect suggestions” termed as nudges.

A nudge, by definition, is any characteristic of the choice structure that predictably

changes people’s behavior without restricting any options or significantly affecting

economic incentives1. Therefore nudges are different from mandates as they are

1Nudge was originally defined as the minimalist intervention in a given situation such that a
desired outcome is achieved [53]. However, the Nobel laureate Richard Thaler presented another
definition in [28] which is more popular and is used here.
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easy and cheap to avoid [28]. Due to their aspects of preserving freedom of choice

and being non-intrusive, nudge policies have become popular over the last few

years. The most notable example is the “Behavioural Insights Team” (known as the

“Nudge Unit”) that applies nudge theory in British government, and, for instance, its

most recent report concerns energy consumption analysis and the impact of smart

meters on customers’ energy consumption [54]. Another example is “informational

nudging”, defined as sending manipulated, and possibly misleading, information

about options to a decision maker for altering its choices [55]. Informational nudging

is studied recently in the context of transportation systems [56] and boundedly

rational decision makers [57].

The problem of coordinating a population of noncooperative price-taking agents

and altering their aggregative behavior appears in various applications such as

charging of plug-in electric vehicles in a coordinated way [7], residential energy

consumption scheduling [3], and congestion control in networks [4]. To address this

problem, a common approach in the literature is treating the price as a design signal.

If the system regulator has access to all information of the agents, a linear price

with respect to the actions of the agents is sufficient to achieve a desired behavior

[24]. In case such information is not available, which is often the case, dynamic

pricing algorithms are posed as a solution to overcome this lack of knowledge; see

e.g. [4, 6, 24, 26, 29]. The underlying assumption in dynamic pricing is that price

is fully controllable, which in turn facilitates the regulator’s task in steering the

behavior of the agents. However, the actual price could depend on various elements

such as fixed and variable production costs and daily market conditions; see e.g.

[58] in the context of power systems. Here, instead, we allow the signal designed by

the regulator to be different from the actual price dictating the costs incurred by

the agents. Motivated by the advantages of nudging, we propose a framework in

which the regulator alters the aggregative behavior of price-taking agents, without

directly designing the price and without fully knowing the cost/utility functions of

the agents. In our setup, the regulator transmits a price prediction signal to all

the agents. The agents choose their actions taking this prediction into account;

however, they do not blindly follow it since they are aware that the prediction

signal can differ from the actual price that they will incur. We model such behavior

by associating a trust variable to each agent, which increases/decreases depending

on the history of the accuracy of the communicated price prediction. In other

words, here the agents cross-check the validity of the communicated information.

This novel cross-checking step is a key feature of our work, and distinguishes it

from the existing informational nudging schemes [55, 56, 57]. Moreover, the trust

dynamics couple the price prediction dynamics to the actual price, consequently

the proposed nudge mechanisms do not simplify to conventional dynamic pricing

schemes.

The presented framework is referred to as a nudge since it does not directly affect
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economic incentives of the agents and respects their freedom of choice. Putting

it differently, we use price information to indirectly suggest desired behaviors to

the agents rather than enforcing mandates. For the idea of nudging through price

information in a different discipline, namely agricultural economics, we refer the

interested reader to [59].

Contributions: We present a novel framework which is able to capture the multi-

components model resulting from nudge mechanisms in conjunction with agents’

actions and trust dynamics. Within this framework, we first consider stationary

desired behaviors and design two nudge mechanisms for the regulator, termed hard

and soft nudge. We show that under these mechanisms, full trust of agents is gained

in finite time and the aggregative behavior of the agents converges asymptotically to

a desired set point. Afterwards, we extend the results to temporal desired behaviors

and present an adaptive nudge mechanism that can cope with the variations in the

desired behavior. We analytically show that this mechanism obtains and maintains

full trust of agents, and consequently the aggregative behavior converges to the

time-dependent desired behavior. Moreover, a byproduct of our analysis gives

sufficient conditions for existence of Carathéodory solutions for nonautonomous

projected dynamical systems.

The structure of this chapter is as follows. The proposed framework is introduced

in Section 3.2. Section 3.3 includes the hard and soft nudge mechanisms for

stationary desired behaviors and their convergence analysis. The adaptive nudge

mechanism for temporal desired behaviors is presented in Section 3.4. The case

study is included in Section 4.5, and finally, conclusions are drawn in Section 3.6.

Existence of solutions for nonautonomous projected dynamical systems and stability

analysis for the adaptive nudge are provided in Section 3.7.

3.2 Problem formulation and the model

We consider a set of agents I := {1, . . . , N} that interact repeatedly with a central

regulator. The agents are noncooperative, that is, each agent i is associated with a

cost function Ji that it wishes to minimize by choosing its action. In particular,

the cost function of each agent i ∈ I is given by Ji (zi, p), which determines the

total cost of action zi ∈ Rn given the price p ∈ Rn and n ∈ N. For simplicity, we

assume that Ji admits the following linear-quadratic form

Ji (zi, p) :=
1

2
(zi − ci)

⊤
Qi (zi − ci) + z⊤i p, (3.1)

where Qi = Q⊤
i ∈ Rn×n, Qi ≻ 0, and ci ∈ Rn. The cost function Ji consists of

two terms, the local penalty term 1
2 (zi − ci)

⊤
Qi (zi − ci) and the cost of action

zi
⊤p. Note that ci is the optimal action of the agent when the price is zero. The
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structure (5.1) appears in applications where zi indicates the demand of a product

that comes at price p, for instance coordinated charging of plug-in electric vehicles

[7] and scheduling of residential energy consumption [3].

Before providing further details, we give an overview of our model. The regulator

provides a prediction of the price for all the agents. This prediction is potentially

different from the actual price that determines the costs incurred by the agents. The

agents use the price prediction to choose their actions with the aim of minimizing

the cost they incur under the actual price. The actual price is determined and

revealed only after the actions are chosen.

The regulator, on the other hand, aims at steering the aggregative behavior of

the agents to a desired point using the price prediction signal. We assume that the

regulator does not know the cost functions of the agents. A common approach of

steering aggregate behavior, often referred to as dynamic pricing, is to use the price

as a control signal to regulate the system of agents [6, 24, 29]. In contrast, here

the actual price signal is not available for design and the regulator needs to rely

on the price prediction signal to manipulate the agents’ behavior. Our motivation

stems from the fact that, in reality, the actual price may not be prescribed a priori

as a dynamic function of demands/actions.

The discrepancy between the price prediction and the actual price readily brings

the issue of trust or reliability. Namely, the central regulator needs to earn and

maintain the trust of the agents in order to influence their decisions. We take this

into account by considering that the agents associate a level of trust/reliability to

the regulator’s prediction based on the history of its accuracy.

In the sequel, we aim to carefully model the above described features and design

update schemes, termed nudge mechanisms, that enable the regulator to steer the

aggregative behavior of the agents to a desired reference. We first look at the

problem from the agents’ side and put forward a model where agents use available

information to decide on their actions. The regulator’s side will be dealt with in

Section 3.3, where nudge mechanisms are proposed.

3.2.1 Agents’ actions and trust dynamics

In choosing their actions at time t ∈ [0,∞), the agents have access to a price

prediction p̂(t) ∈ Rn sent out by the regulator. Note that this value is common for

all agents. In addition, we assume that each agent i ∈ I has a local perception of

the price, denoted by λ̂i ∈ Rn, that the agent would have used in the absence of

the prediction p̂(t).

As mentioned before, different from conventional dynamic pricing, the dis-

tinction between the actual price and its prediction brings the issue of reliability,

and we incorporate this in our model by associating a level of trust/reliability to

the regulator’s prediction based on the history of its accuracy. In particular, let
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γi(t) ∈ [0, 1] be the trust variable of agent i associated with the price prediction

p̂(t). Note that γi(t) = 1 and γi(t) = 0 stand for full and no trust, respectively.

Given the amount of trust, predicted price, and the local perception, agent i adopts

a trust-adapted price perception2

λi(t) := γi(t)p̂(t) + (1− γi(t))λ̂i . (3.2)

If γi(t) is close to 1, the agent disregards its own perception of the price and

follows the price prediction communicated by the regulator. Conversely, as γi(t)

approaches 0, the agent loses trust in the price prediction p̂(t) and follows its own

price perception λ̂i when deciding on its optimal action. The agent i uses this

trust-adapted price perception to determine its optimal action as follows:

xi(t) := argmin
z∈Rn

Ji (z, λi(t)) .

By using (5.1) and (3.2), the explicit expression of the optimal action of agents is

given by

xi(t) = ci −Q−1
i

(
γi(t)p̂(t) + (1− γi(t)) λ̂i

)
. (3.3)

The actual price t 7→ p(t) is available to the agents once they have taken their

actions. If the discrepancy between the predicted and actual price is large, then

agents lose their trust in the predictions. We capture the changes of trust based

on these positive or negative experiences by providing a trust update rule. In

particular, we consider the following trust dynamics:

γ̇i(t) = ηiψi(∥p(t)− p̂(t)∥), (3.4)

where ηi > 0 and ψi : R⩾0 → [−1, 1] determines whether the agent loses or

gains trust in the price prediction. We assume that ψi( · ) satisfies the following

assumption, and an example of this function is depicted in Figure 3.1.

Assumption 3.1. The function ψi : R⩾0 → [−1, 1] is locally Lipschitz and strictly

decreasing. In addition, we have ψi(0) > 0 and ψi(δi) = 0 for some δi > 0. •

The scalar δi quantifies the tolerance of agent i towards the prediction error.

That is, if the error between the actual and the predicted price ∥p(t)−p̂(t)∥ is greater

than δi, agent i begins losing trust in the prediction with the rate ηi. Conversely,

trust increases as long as the error is within the tolerance δi. The rationale behind

2The trust-adapted protocol (3.2) can be replaced by a more general form λi(t) =
ωi(p̂(t), γi(t), t) where (p̂, γi) 7→ ωi(p̂, γi, t) is Lipschitz, t 7→ ωi(p̂, γi, t) is uniformly continu-
ous, and ωi(p̂, 1, t) = p̂ for all t ∈ [0,∞). The explicit dependence of ωi on t also allows to

accommodate a time-varying local price perception t 7→ λ̂i(t). However, we opt for the form (3.2)
in order to provide a more explicit analysis and to highlight better the underlying intuition.
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Figure 3.1: An example of the function ψi satisfying Assumption 3.1.

this dynamics is that, excluding the extreme cases of unconditional trust or distrust,

trust can be gained or lost after several positive or negative experiences [60].

Note that trust variables are defined in the interval between 0 and 1. To respect

this, we slightly revise (3.4) by adding projection operators to it, namely:

γ̇i(t) = Π[0,1] (γi(t), ηiψi(∥p(t)− p̂(t)∥)) . (3.5)

We note that the essence of the trust update rule remains the same as (3.4). The

projection operators become active only if the bounds γi = 0 or γi = 1 are hit. In

particular, if γi(t1) = 1 at some time t = t1 and ψi(∥p(t1)− p̂(t1)∥) is positive (thus
suggesting an increase in γi), the projection becomes active, and sets γ̇i(t1) to 0,

thus prohibiting the trust variable to exceed its maximum value 1. An analogous

scenario occurs for the case γi(t1) = 0.

For simplicity of presentation, we rewrite the model of agent i, consisted from

(3.3) and (3.5), as follows:

Σi :

{
γ̇i(t) = Π[0,1](γi(t), ηiψi(∥p(t)− p̂(t)∥)),
xi(t) = πi(p̂(t), γi(t)),

(3.6a)

(3.6b)

where

πi(p̂, γi) := ci −Q−1
i

(
γi p̂+ (1− γi) λ̂i

)
. (3.7)
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Note that the actual price p and the price prediction p̂ are the inputs of the model,

and the action vector xi is the output. Having introduced the model of the agents,

we next discuss the desired aggregative behavior.

3.2.2 Desired aggregative behavior

The goal of the system regulator is to coordinate the agents such that they

cumulatively behave in a desired fashion. Here, we are interested in regulating∑
i∈I xi(t), which we refer to as the aggregative behavior. Such quantity often

reflects total production or total demand depending on the application at hand.

More precisely, the regulator aims to achieve

lim
t→∞

∑
i∈I

xi(t) = x∗, (3.8)

for some desired setpoint x∗ ∈ Rn.3 To this end, we propose suitable nudge

mechanisms that can be implemented by the regulator. A mechanism is a nudge

if it influences the behavior of a group of individuals through providing indirect

suggestions. We use this concept and propose mechanisms in which the regulator

manipulates the price prediction p̂(t) to achieve its goal, namely (3.8).

Recall that the actual price is considered here as an exogenous signal. In

particular, we assume that it admits

p(t) = p0 +∆p(t) , ∀ t ∈ [0,∞) ,

where p0 is a constant base price, known to the regulator, and ∥∆p(t)∥ ≪ ∥p0∥
accounts for price fluctuations. We assume that the following condition holds

throughout the chapter:

Assumption 3.2. The actual price function p : [0,∞) → Rn is continuous, and

its fluctuations satisfies ∥∆p(t)∥ < mini∈I δi for all t ∈ [0,∞). •

Remark 3.3. Note that in the absence of the objective (3.8), the best the regulator

can do is to provide the agents with the true value of p0. In that case, the price

prediction error amounts to ∥∆p(t)∥. Therefore, the inequality constraint in

Assumption 3.2 simply means that the prediction error in such a manipulation-free

case is within the tolerances of all agents. In other words, the price fluctuations,

per se, should not lead to a loss in trust. •
The fact that the agents do not blindly follow the price prediction p̂(t) implies

that not any arbitrary aggregative behavior x∗ is achievable. Next, we identify a

set of aggregative behaviors to which the agents can be driven by applying our

nudge mechanisms.

3In Section 3.4, we allow x∗ to be a time-varying reference signal.
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Let Assumption 3.2 hold, and choose δ̄ ∈ R such that

0 < δ̄ < min
i∈I

δi − ∥∆p(t)∥, ∀ t ∈ [0,∞). (3.9)

We leverage the idea that if Assumption 3.1 holds and p̂(t) belongs to the closed

ball

B := B̄(p0, δ̄) =
{
p̂ ∈ Rn | ∥p̂− p0∥ ⩽ δ̄

}
, (3.10)

then ψi( · ) takes positive values and γi(t) increases for all i ∈ I following (3.6a). As

a result, the regulator can gain agents’ trust in the price prediction by constraining

p̂(t) to the ball B. Bearing this and the action of agents in (3.6b) in mind, we

define the set of admissible x∗ as:

X ∗ :=
{
x ∈ Rn | x =

∑
i∈I

(
ci −Q−1

i p̂
)
, p̂ ∈ B

}
. (3.11)

From (3.10), the set X ∗ can be explicitly written as

X ∗ =
{
x ∈ Rn | (x− x0)

⊤(
∑
i∈I

Q−1
i )−2(x− x0) ≤ δ̄ 2

}
, (3.12)

where x0 :=
∑

i∈I
(
ci −Q−1

i p0
)
. Thus, the regulator can alter the aggregative

behavior inside a compact set around x0. Putting it differently, X ∗ characterizes

the set of aggregative behaviors that are potentially achievable while monotonically

increasing the trust variables. Note from (3.9) and (3.12) that the bigger the agents’

tolerances δi’s are, the larger can be δ̄ and thus, the set X ∗.

For any x∗ ∈ X ∗, there exists a unique p∗ ∈ B such that

x∗ =
∑
i∈I

(
ci −Q−1

i p∗
)
, (3.13)

or equivalently

p∗ =
(∑
i∈I

Q−1
i

)−1(− x∗ +
∑
i∈I

ci
)
. (3.14)

The vector p∗ is an important quantity. If the agents fully trust the price prediction

and the regulator communicates p∗ as the prediction, then the aggregative behavior

of the agents will be x∗. However, the regulator cannot directly compute p∗

since it does not know the exact parameters defining individual cost functions.

Moreover, trust can only be gained over time. To address these issues, suitable

nudge mechanisms are designed in the next section. Each of those mechanisms can

be interconnected with the agents’ dynamics, as demonstrated in Figure 3.2, in

order to drive the price prediction p̂(t) to p∗, and consequently x(t) to x∗. The

key parameter used in the proposed mechanisms is δ̄ satisfying (3.9). The precise
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Σ1

Σ2

. . .

ΣN

1⊤
N ⊗ In

Nudge mechanism

col(xi)

∑
i∈I xip̂

p

Figure 3.2: Block diagram representation of agents interconnected with a nudge mecha-
nism.

values of the tolerances of the agents δi’s are unknown to the regulator, and the

price fluctuations ∆p(t) are not available a priori. Thus the regulator typically

needs to rely on lower estimate of mini∈I δi − ∥∆p(·)∥ to select δ̄. The less the

regulator knows about the right-hand side of (3.9), the more conservative the value

of δ̄ has to be chosen, which in turn results in a smaller ball B as well as a smaller

set of admissible desired behaviors X ∗. Learning a feasible δ̄ from experiments is

an interesting research question for future research.

3.3 Nudge mechanisms for stationary desired be-

haviors

In this section, we design two nudge mechanisms, referred to as hard and soft, that

provide suitable price prediction signals.

3.3.1 Hard nudge mechanism

The first nudge mechanism that we propose is the following projected-integral

control law
˙̂p(t) = ΠB

(
p̂(t),

∑
i∈I

xi(t)− x∗
)
, (3.15)

where B is defined as (3.10) and x∗ is the desired aggregative behavior. We note that

from [52, Lem. 2.1], the projection operator on the right-hand side can be explicitly

expressed using the definition of B. In particular, let e(t) :=
∑

i∈I xi(t)− x∗, then

we obtain:

ΠB (p̂(t), e(t)) =

{
e(t), if p̂(t) ∈ int(B),
e(t)− α(t)(p̂(t)−p0)

∥p̂(t)−p0∥2 , if p̂(t) ∈ bd(B),
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where α(t) := max{0, e(t)⊤(p̂(t)−p0)}. The intuition behind the nudge mechanism

in (3.15) is as follows: this mechanism provides a suitable integral action that

updates the price prediction such that the error between the desired behavior and

the current aggregative behavior diminishes. To gain and maintain the trust of the

agents, the price prediction is constrained to the ball B for all time, and thus we

refer to (3.15) as hard nudge.

The overall system, as shown in Figure 3.2, is obtained by interconnecting

(3.15) with agents (3.6), and the theorem below addresses its convergence.

Theorem 3.4. Consider the closed-loop system formed by agents’ model (3.6)

and the hard nudge mechanism (3.15) with x∗ ∈ X ∗. Then, for any initial

condition (p̂(0), col(γi(0))) ∈ B × [0, 1]N , there exists a Carathéodory solution

t 7→ (p̂(t), col(γi(t))) of the closed-loop system over the domain [0,∞). More-

over, any solution (p̂(t), col(γi(t))) converges to (p∗,1N ) with p∗ given by (3.14).

Consequently,
∑

i∈I xi(t) converges to x∗ as desired.

Proof. The proof is divided into two parts. Since the vector field of the overall

system is discontinuous, we show existence of Carathéodory solutions of the system

in the first part. The second part is devoted to convergence analysis.

Existence of solutions: Let ξ := (p̂, col(γi)) and Ω := B × [0, 1]N . Then, by substi-

tuting the expression of xi from (3.6b) into (3.15), we obtain the nonautonomous

projected dynamical system that represents the closed-loop system (3.6) and (3.15)

as ξ̇ = ΠΩ(ξ, h(ξ, t)), where

h(ξ, t) :=

[ ∑
i∈I

πi(p̂, γi)− x∗

col (ηiψi(∥p(t)− p̂∥))

]
.

Note that the map (p̂, t) 7→ ψi(∥p(t)− p̂∥) is measurable4 in t and locally Lipschitz

in p̂. The former follows from Assumptions 3.1 and 3.2 and the fact that every

continuous function is measurable [61, Prop. 3.3]. The latter is a consequence of

Assumption 3.1 and the fact that the norm operator is Lipschitz. Consequently,

the function (ξ, t) 7→ h(ξ, t) is locally Lipschitz in ξ and measurable in t, and

using the compactness of the set Ω, existence of solutions for any initial condition

(p̂(0), col(γi(0))) ∈ B × [0, 1]N is guaranteed by Lemma 3.13.

Convergence analysis: Our proof proceeds by showing that for any solution of the

system, there exists a finite time by which full trust of agents is achieved and

maintained. Subsequently, with full trust, we show that p̂(t) converges to p∗.

4A function f : E → R is measurable if (i) its domain E is measurable, and (ii) the set
{x ∈ E | f(x) > α} is measurable for all α ∈ R. For an in depth overview of measurable functions
see [61, Ch. 3].
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Note from (3.15) that p̂(t) ∈ B for all t ⩾ 0. Using this fact along with Assump-

tion 3.1, we obtain ψi(∥p(t) − p̂(t)∥) > 0 for all i ∈ I and t ⩾ 0. Consequently,

along any solution, the trust variable of agent i at any time t is given by

γi(t) = min
{
1, γi(0) + ηi

∫ t

0

ψi(∥p(τ)− p̂(τ)∥) dτ
}
. (3.16)

Bearing in mind that p̂(t) belongs to the ball B given by (3.10), we have ∥p(t)−
p̂(t)∥ ⩽ ρ < mini∈I δi for some ρ > 0. Hence, by Assumption 3.1, we obtain that

ψi(∥p(t)− p̂(t)∥) ⩾ ψi(ρ) > 0 for all time. Let T i := (1− γi(0))/(ηiψi(ρ)). Then,

from (3.16), we deduce that γi(t) = 1 for all t ⩾ T i. Setting T := maxi∈I T
i, we

conclude that col(γi(t)) = 1N for all t ∈ [T,∞). As a consequence, in the time

interval [T,∞), the price prediction dynamics (3.15) reduces to

˙̂p = ΠB(p̂, f (p̂)), (3.17)

where
f (p̂) :=

∑
i∈I

ci −
∑
i∈I

Q−1
i p̂− x∗. (3.18)

We next analyze the asymptotic properties of (3.17) and show that its solutions

converge asymptotically to p∗. Consider the Lyapunov candidate V (p̂) := 1
2∥p̂−

p∗∥2. Since solutions of (3.17) are absolutely continuous and V is continuously

differentiable, the time-derivative of the evolution of V along any solution of (3.17)

is equal to the inner product of the gradient of V and the right-hand side of (3.17).

This inner product is computed as

∇V (p̂)⊤ΠB (p̂, f(p̂)) = (p̂− p∗)⊤f(p̂)− (p̂− p∗)⊤ projNB(p̂) (f (p̂)) ,

where we used Moreau’s decomposition theorem (cf. Section 2.3) to obtain

the above equality and NB(p̂) is the normal cone of B at p̂. Note that −(p̂ −
p∗)⊤ projNB(p̂) (f (p̂)) ⩽ 0 since p̂, p∗ ∈ B, and we find that ∇V (p̂)⊤ΠB (p̂, f(p̂)) ⩽
(p̂− p∗)⊤f(p̂) . We use (3.18) and the expression of x∗ in (3.13) to obtain

∇V (p̂)⊤ΠB (p̂, f(p̂)) ⩽ −∥p̂− p∗∥2∑
i∈I Q−1

i

.

This implies that V decreases monotonically along every solution of (3.17). Conse-

quently, p̂ converges to p∗, and the aggregate behavior
∑

i∈I xi converges to x
∗.

■

As shown in Theorem 3.4, the hard nudge mechanism (3.15) successfully steers

the agents to the desired aggregative behavior, for any x∗ ∈ X ∗. An implicit require-

ment is that the regulator has partial knowledge on expected desired aggregative

behaviors, i.e., a subset of X ∗, to pick a feasible x∗. In case this information is not
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available and x∗ /∈ X ∗, convergence of the aggregative behavior is still guaranteed,

but to a different point, namely to x′ ∈ X ∗ that is the closest point to x∗ in a

suitable norm. This is formally stated in the following corollary.

Corollary 3.5. Consider the closed-loop system formed by agents’ model (3.6)

and the hard nudge mechanism (3.15) with x∗ /∈ X ∗. Then, for any initial

condition (p̂(0), col(γi(0))) ∈ B × [0, 1]N , there exists a Carathéodory solution

t 7→ (p̂(t), col(γi(t))) of the closed-loop system over the domain [0,∞). Moreover,∑
i∈I xi(t) converges to x′ ̸= x∗ given by

x′ = argmin
y∈X∗

1

2
∥x∗ − y∥2

(
∑

i∈I Q−1
i )

−1 .

Proof. Based on the proof of Theorem 3.4, the closed-loop system admits a

Carathéodory solution for all x∗ ∈ Rn, and thus existence of a solution t 7→
(p̂(t), col(γi(t))) is guaranteed for all t ∈ [0,∞). Next, we consider x′ and char-

acterize its corresponding price prediction, namely p′. We prove convergence of

(p̂, col(γi)) to (p′,1N ) afterwards. Subsequently, convergence of
∑

i∈I xi to x′

follows from the definition of p′.

The point x′ exists and is unique following Weierstrass’ Theorem [62, Prop.

A.8] and [62, Prop. 2.1.1], respectively. It also follows from [62, Prop. 2.1.2] that

x′ ∈ X ∗ satisfies

(x′ − x∗)
⊤
(∑

i∈I
Q−1

i

)−1

(y − x′) ⩾ 0, ∀ y ∈ X ∗.

Let p′ := (
∑

i∈I Q
−1
i )−1(−x′ +

∑
i∈I ci), then we have p′ ∈ B. Moreover, for all

y ∈ X ∗, we have(∑
i∈I

(ci −Q−1
i p′)− x∗

)⊤((∑
i∈I

Q−1
i

)−1
(y −

∑
i∈I

ci) + p′
)
⩾ 0.

Recalling the definition of X ∗ given by (3.11), we see that for any y ∈ X ∗, there

exists some s ∈ B such that the relation y =
∑

i∈I
(
ci −Q−1

i s
)
holds. Therefore,

the above inequality can be rewritten as(∑
i∈I

(
ci −Q−1

i p′
)
− x∗

)⊤
(p′ − s) ⩾ 0, ∀ s ∈ B. (3.19)

Note from (3.15) that p̂(t) ∈ B for all t ⩾ 0. Following the steps of the proof of

Theorem 3.4, there exists some finite time T ⩾ 0 such that col(γi(t)) = 1N and

the hard nudge mechanism reduces to (3.17) for all t ⩾ T . Considering again the
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Lyapunov candidate V (p̂) := 1
2∥p̂− p′∥2, its derivation along (3.17) yields

∇V (p̂)⊤ΠB (p̂, f(p̂)) ⩽ (p̂− p′)⊤f(p̂).

Now we add the left-hand side of (3.19) evaluated at s = p̂ to the right-hand side

of the foregoing inequality to get

∇V (p̂)⊤ΠB (p̂, f(p̂)) ⩽ (p̂− p′)⊤
(
f(p̂)−

∑
i∈I

(
ci −Q−1

i p′
)
+ x∗

)
= −∥p̂− p′∥2∑

i∈I Q−1
i

,

where the equality follows from the definition of f given by (3.18). We conclude

that V decreases monotonically along every solution of (3.17) and p̂ converges to

p′. ■

Remark 3.6. If Assumption 3.2 is not satisfied, one may still be able to provide

convergence guarantees under suitable conditions. In particular, let S denote the

collection of agents that violate Assumption 3.2 for all time, i.e, S := {j ∈ I |
∥∆p(t)∥ ⩾ δj , ∀t ∈ [0,∞)}. The remaining agents satisfy the assumption, namely

∥∆p(t)∥ < mini∈I\S δi for all time. We can then show that under the hard nudge

(3.15) with δ̄ ∈ R satisfying the revised inequality

0 < δ̄ < min
{

min
i∈I\S

δi − ∥∆p(t)∥, ∥∆p(t)∥ −max
j∈S

δj
}
,

for all time, the aggregative behavior of the agents in S converges to x̄ :=
∑

j∈S(cj−
Q−1

j λ̂j), whereas the aggregative behavior of the agents in I \ S converges to

x′ = argmin
y∈Y

1

2
∥x∗ − x̄− y∥2

(
∑

i∈I\S Q−1
i )−1 ,

where Y := {x ∈ Rn | x =
∑

i∈I\S
(
ci −Q−1

i p̂
)
, p̂ ∈ B}. The set Y is similar to

X ∗ in (3.11) but with the set of agents restricted to I \ S. In case x∗ − x̄ ∈ Y , we

have x′ = x∗− x̄ which implies that the aggregative behavior of all agents converges

to x′ + x̄ = x∗. •

3.3.2 Soft nudge mechanism

While using the nudge mechanism in (3.15) is effective for driving the aggrega-

tive behavior of the agents to a desired point, convergence is guaranteed only if

the price prediction is initialized in the ball B. We now present an alternative

nudge mechanism under which convergence is guaranteed globally, i.e., for all
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(p̂(0), col(γi(0))) ∈ Rn × [0, 1]N . The proposed mechanism is given by

˙̂p(t) =
∑
i∈I

xi(t)− x∗ +
1

ε

(
projB

(
p̂(t)

)
− p̂(t)

)
, (3.20)

where B is defined in (3.10) and ε > 0 is a design parameter. We note that the

explicit expression of the projection of p̂(t) on to the ball B is as follows5:

projB(p̂(t)) =

{
p̂(t), if p̂(t) ∈ B,
p0 +

δ̄(p̂(t)−p0)
∥p̂(t)−p0∥ , otherwise.

(3.21)

In the mechanism (3.20), the term
∑

i∈I xi(t)− x∗ provides a suitable integral

action as before to steer the aggregative behavior towards x∗. However, different

from (3.15), this term is outside the projection operator, and solutions of (3.20)

need not belong to the ball B at all times. To emphasize this feature, we denote

the dynamics (3.20) as soft nudge6. We note that outside the ball B, the term

projB (p̂(t))− p̂(t) is nonzero with the penalty gain ε−1, thus attracting the price

prediction p̂(t) to the ball and preventing the loss of trust. The parameter ε is

chosen sufficiently small such that trust variables increase and reach the value of

1 in finite time. Below we establish the convergence properties of the soft nudge

mechanism.

Theorem 3.7. Consider the closed-loop system formed by agents’ model (3.6)

and the soft nudge mechanism (3.20) with x∗ ∈ X ∗. Then, for any initial

condition (p̂(0), col(γi(0))) ∈ Rn × [0, 1]N , there exists a Carathéodory solution

t 7→ (p̂(t), col(γi(t))) of the closed-loop system over the domain [0,∞). Moreover,

there exists some ε∗ > 0 such that for all ε ∈ (0, ε∗], any solution (p̂(t), col(γi(t)))

converges to (p∗,1N ) with p∗ given by (3.14). Consequently,
∑

i∈I xi(t) converges

to x∗ as desired.

Proof. The proof is divided into three parts. In the first part, we show that for

any given (p̂(0), col(γi(0))) ∈ Rn × [0, 1]N , there exists a bounded Carathéodory

solution of (3.6) and (3.20). The second part argues that there exists some ε∗ > 0

such that for all ε ∈ (0, ε∗], the price prediction converges exponentially fast to

the neighborhood of the ball B. We prove convergence of the solution to the point

(p∗,1N ) in the last part.

Existence of solutions: By using (3.6) and (3.20), we write the dynamics of the

5This can be verified by [62, Prop. 2.1.3(b)].
6For related work on replacing projected dynamical systems with dynamics consisting of a

penalty term, as in (3.20), see the anti-windup approximation scheme studied in [63].
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overall closed-loop system as

˙̂p = h(p̂, col(γi)), (3.22a)

γ̇i = Π[0,1] (γi, ηiψi(∥p(t)− p̂∥)) , ∀i ∈ I, (3.22b)

where h(p̂, col(γi)) :=
∑

i∈I πi(p̂, γi)−x∗+
1
ε (projB(p̂)−p̂). Noting the nonexpansive

property of projB [62, Prop. 2.1.3(c)] and the definition of πi given by (3.7), the

map (p̂, col(γi)) 7→ h(p̂, col(γi)) is locally Lipschitz in its arguments. Also, as

discussed in the proof of Theorem 3.4, we have that (p̂, t) 7→ ψi(∥p(t) − p̂∥) is

locally Lipschitz in p̂ and measurable in t. Consequently, existence of solutions

follows by showing that the hypotheses (i)-(iii) of Lemma 3.14 are satisfied.

We use the expression of πi given by (3.7) and rewrite the dynamics (3.22a) as

follows:
˙̂p = −

(1
ε
In +

∑
i∈I

γiQ
−1
i

)(
p̂− projB (p̂)

)
+ ν, (3.23)

where

ν :=
∑
i∈I

(ci + γiQ
−1
i (λ̂i − projB(p̂)))−

∑
i∈I

Q−1
i λ̂i − x∗.

Note that the term ν is bounded for all p̂ ∈ Rn and γi ∈ [0, 1]. In particular, it

follows from projB (p̂) ∈ B that there exists a constant ν̄ > 0 such that ∥ν∥ ⩽ ν̄ for

all (p̂, col(γi)) ∈ Rn × [0, 1]N .

Now consider the Lyapunov candidate V (p̂) := 1
2∥p̂ − projB (p̂) ∥2. Since

projB (p̂) is unique at any point p̂ ∈ Rn (cf. equation (3.21)), it follows from

Danskin’s Theorem [62, Prop. B.25(a)] that V (p̂) is differentiable and ∇V (p̂) =

p̂− projB (p̂). Therefore V (p̂) is continuously differentiable and satisfies Lemma

3.14(i)-(ii). We next establish existence of solutions by analyzing the inner product

of ∇V (p̂) and the right-hand side of (3.23). Recalling that h(p̂, col(γi)) denotes the

right-hand side of (3.23) (cf. equation (3.22a)), this inner product is computed as

∇V (p̂)⊤h(p̂, col(γi)) =− ∥p̂− projB (p̂) ∥2∑
i∈I γiQ

−1
i

− 1

ε
∥p̂− projB (p̂) ∥2 + (p̂− projB (p̂))

⊤
ν.

The first term on the right-hand side of the above equation is nonpositive as

γi ∈ [0, 1] and Qi ≻ 0 for all i ∈ I. Using this fact and the bound on ν, we get

∇V (p̂)⊤h(p̂, col(γi)) ⩽− 1

2ε
∥p̂− projB (p̂) ∥2

− ∥p̂− projB (p̂) ∥
( 1

2ε
∥p̂− projB (p̂) ∥ − ν̄

)
.

(3.24)

This implies that the inner product ∇V (·)⊤h(·) is negative for all ∥p̂∥ ⩾ ∥p0∥+ δ̄+
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2εν̄ and γi ∈ [0, 1]. Therefore, hypothesis (iii) of Lemma 3.14 is satisfied, and the

closed-loop system has a bounded Carathéodory solution for all t ⩾ 0.

Convergence of p̂ to the neighborhood of B: Let a constant δ̃ > 0 satisfying

δ̄ < δ̃ < min
i∈I

δi − ∥∆p(t)∥ , ∀t ⩾ 0 . (3.25)

Note that such δ̃ exists due to the condition (3.9). Moreover, we deduce from (3.21)

that ∥p̂− projB (p̂) ∥ = δ̃ − δ̄ for all p̂ ∈ bd(B̄(p0, δ̃)). Let ε ∈ (0, ε∗] with

ε∗ :=
δ̃ − δ̄

2ν̄
. (3.26)

It then follows from (3.24) that the time-derivative of the evolution of V along any

solution of (3.22a) satisfies

V̇ ⩽ − 1

2ε
∥p̂− projB (p̂) ∥2,

for all ∥p̂− projB (p̂) ∥ ⩾ δ̃ − δ̄. Noting the definition of V , we can then write

V̇ ⩽ −1

ε
V,

whenever ∥p̂ − projB (p̂) ∥ ⩾ δ̃ − δ̄ or equivalently p̂(t) ̸∈ B̄(p0, δ̃). As a result,

for any solution t 7→ (p̂(t), col(γi(t))), we have V (t) ⩽ V (0) exp(−t/ε) as long as

p̂(t) ̸∈ B̄(p0, δ̃). Hence, if p̂ is initialized outside the ball B̄(p0, δ̃), then it converges

exponentially fast to the ball in the time interval [0, T1] with

T1 = ε ln

(
2V (0)

(δ̃ − δ̄)2

)
, (3.27)

and we have p̂(t) ∈ B̄(p0, δ̃) for all t ⩾ T1. Moreover, note that if p̂ is initialized

inside the ball B̄(p0, δ̃), then it belongs to the ball for all t ⩾ T1 = 0, since V̇ is

negative on bd(B̄(p0, δ̃)). The above given reasoning establishes convergence of

p̂(t) to the ball B̄(p0, δ̃) in finite time.

Convergence of (p̂, col(γi)) to (p∗,1N ): For the rest of the proof we assume that

ε ∈ (0, ε∗] where ε∗ is given in (3.26). Consider any solution t 7→ (p̂(t), col(γi(t)) of

the closed-loop system. We divide the convergence analysis into three time intervals

[0, T1], [T1, T2], and [T2,∞). Here, T1 is equal to zero if p̂(0) ∈ B̄(p0, δ̃), and T1
is given by (3.27) otherwise. In other words, T1 is the time when the trajectory

t 7→ p̂(t) enters and stays in the set B̄(p0, δ̃). Recall that γi(t) ∈ [0, 1] at all times.

We will next show that full trust of all the agents is achieved in the time interval
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[T1, T2] for some finite time T2.

Noting that δ̃ satisfies (3.25) and p̂(t) ∈ B̄(p0, δ̃) in the time interval [T1,∞),

there exists some ρ̄ > 0 such that ∥p(t)− p̂(t)∥ ⩽ ρ̄ < mini∈I δi in the same time

interval. By Assumption 3.1, we deduce that ψi(∥p(t) − p̂(t)∥) ⩾ ψi(ρ̄) > 0 for

all i ∈ I. This implies that, analogous to the discussions of trust variables in

the proof of Theorem 3.4 and (3.16), we have γi(t) = 1 for all t ⩾ T i, where

T i := T1 + (1 − γi(T1))/(ηiψi(ρ̄)). Setting T2 := maxi∈I T
i, we conclude that

col(γi(t)) = 1N for all t ∈ [T2,∞), i.e., full trust of the agents is obtained in the

time interval [T1, T2].

In the time interval [T2,∞), using γi(t) = 1 for all i ∈ I, the dynamics of the

price prediction (3.23) reduces to

˙̂p = −
∑
i∈I

Q−1
i (p̂− p∗) +

1

ε
(projB (p̂)− p̂) , (3.28)

where p̂(T2) ∈ B̄(p0, δ̃) and we used the expression of x∗ in (3.13). Now, we consider

the Lyapunov candidate W (p̂) := 1
2∥p̂− p∗∥2 and analyze its evolution along the

solution of (3.28). We have

Ẇ = −∥p̂− p∗∥2∑
i∈I Q−1

i

+
1

ε
(p̂− p∗)

⊤
(projB(p̂)− p̂).

The second term on the right-hand side satisfies

(p̂− p∗)
⊤
(projB (p̂)− p̂) = (p̂− projB (p̂))

⊤
(projB (p̂)− p̂)

+ (projB (p̂)− p∗)
⊤
(projB (p̂)− p̂) ⩽ 0,

(3.29)

where we used p∗ ∈ B and [62, Prop. 2.1.3(b)] to write the inequality. Consequently,

we obtain

Ẇ ⩽ − (p̂− p∗)
⊤ ∑

i∈I
Q−1

i (p̂− p∗) .

This implies that p̂ exponentially converges to p∗ in the time interval [T2,∞), and

the aggregate behavior
∑

i∈I xi converges to x
∗. ■

Remark 3.8. While Theorem 3.7 guarantees existence of a sufficiently small ε∗

given by (3.26), computing its value requires the knowledge of bounds on agent

parameters ci, Qi, δi, and λ̂i. If such bounds are not available, one can opt for the

hard nudge mechanism (3.15) at the cost of restricting the initial condition p̂(0) to

B. •

Remark 3.9. The results of the hard and soft nudge mechanisms remain valid

for more general classes of cost functions than (5.1). In particular, let the cost

functions be of the form Ji(zi, p) := ci(zi) + z⊤i p, where ci : Rn → R is C2 and
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strongly convex. It follows that the model of the agents in (3.6) will be modified to

Σi :

γ̇i(t) = Π[0,1](γi(t), ηiψi(∥p(t)− p̂(t)∥)),

xi(t) = (∇ci)−1
(
−γi(t) p̂(t)− (1− γi(t)) λ̂i

)
.

It can be shown that for any desired behavior x∗ ∈ X ∗ with

X ∗ :=
{
x ∈ Rn | x =

∑
i∈I

(∇ci)−1(−p̂), p̂ ∈ B
}
,

both hard and soft nudges guarantee convergence of the aggregative behavior to

x∗. However, when the desired behavior is time-varying, as considered in the next

section, devising a suitable nudge mechanism becomes much more challenging.

Therefore, to unify the presentation throughout the chapter, we have provided our

results for the linear-quadratic cost function (5.1). •

3.4 A nudge mechanism for temporal desired be-

haviors

So far, we have treated the desired aggregative behavior as a fixed point. However,

this point may vary with time in practice due to changes in the market condition,

the climate, and government policies. In the context of power systems, for instance,

climate change affects the efficiency of power production as well as the energy

consumption [64]. The policies passed by the government also affect the market

substantially, see e.g. [65] regarding renewable energy. These changes entail

variations of the desired aggregative behavior over time. Building on (3.20), we

design here a nudge mechanism that steers the aggregative behavior of the agents

to a desired time-varying signal t 7→ x∗(t). The set of admissible reference signals

x∗( · ) is given by the assumption below.

Assumption 3.10. The signal t 7→ x∗(t) belongs to the set X ∗ given by (3.11)

for all t ∈ [0,∞). In addition, x∗( · ) is continuously differentiable with bounded

derivative over the domain [0,∞), that is, there exists a constant θ > 0 such that

∥ẋ∗(t)∥ ⩽ θ for all t ∈ [0,∞). •

The above assumption indicates that the desired aggregative behavior of the

agents satisfies a regularity condition in the sense that it is smooth and belongs to

the admissible set X ∗. For all t ∈ [0,∞), since x∗(t) ∈ X ∗, we obtain from (3.11)

that there exists a unique p∗(t) ∈ B such that

x∗(t) =
∑
i∈I

(
ci −Q−1

i p∗(t)
)
. (3.30)
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Rearranging the terms, p∗(t) can be written explicitly as

p∗(t) =
(∑

i∈I
Q−1

i

)−1(
− x∗(t) +

∑
i∈I

ci
)
. (3.31)

Note from Assumption 3.10 that the signal t 7→ p∗(t) is differentiable with a

bounded derivative. If the system regulator had accurate knowledge of all Qi and

ci parameters, it could have obtained the desired behavior by setting the price

prediction equal to p∗(t). However, since the cost functions of the agents are

unknown to the system designer, such a simple strategy cannot be implemented.

This asks for a more sophisticated design, and to that end, we propose the following

adaptive nudge mechanism

˙̂p(t) =
∑
i∈I

xi(t)− x∗(t) +K(t)ẋ∗(t) +
1

ε

(
projB

(
p̂(t)

)
− p̂(t)

)
, (3.32a)

K̇(t) = τ
(∑

i∈I
xi(t)− x∗(t)

)
ẋ∗(t)

⊤ − τ σs
(
∥K(t)∥F

)
K(t), (3.32b)

where B is given by (3.10), ∥K(t)∥F is the Frobenius norm of K(t), ε > 0, τ > 0,

and the function σs : R≥0 → [0, σ] is given by

σs(u) :=


0 if u < k0,

σ
(

u
k0

− 1
)

if k0 ⩽ u ⩽ 2k0,

σ if 2k0 < u .

(3.33)

In the above definition, σ > 0 and k0 > 0 are design parameters that are selected

afterwards.

Interpretation of the adaptive nudge mechanism: There are several remarks in

order concerning the adaptive nudge (3.32): (i) This mechanism simplifies to the

soft nudge mechanism (3.20) in case of a stationary desired aggregative behavior.

Namely, with ẋ∗(t) = 0, the dynamics (3.32a) reduces to (3.20) and (3.32b) can

be discarded. (ii) Compared to the soft nudge mechanism, the additional term

K(t)ẋ∗(t) is included to cope with the temporal nature of the desired aggregative

behavior by tracking the signal ṗ∗(t) given by (cf. equation (3.31))

ṗ∗(t) = K∗ẋ∗(t), K∗ := −
(∑

i∈I
Q−1

i

)−1

. (3.34)

Again since the regulator is not aware of all cost functions, a static choiceK(t) = K∗

would not be feasible and we, therefore, appeal to the adaptive law (3.32b). (iii)

The first term on the right-hand side of (3.32b) is chosen such that sign-indefinite
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terms in the time-derivative of the Lyapunov function are canceled out. The second

term provides a state-dependent damping that prevents the matrix K(t) to become

unbounded.

Selection of design parameters: In order to guarantee convergence of the adaptive

nudge algorithm, the design parameters ε, σ, and k0 should be chosen appropriately.

The treatment in Lemma 3.15 in Section 3.7.2 suggests to choose ε ∈ Iε, σ ∈ Iσ,
and k0 ∈ Ik0

with

Iε :=
(
0, θ−1(1 + λmax(

∑
i∈I

Q−1
i ))−1

]
,

Iσ :=
[
2θ(1 + λmax(

∑
i∈I

Q−1
i )),∞

)
,

Ik0
:=

[√
nλmax(

∑
i∈I

Q−1
i )/λ2min(

∑
i∈I

Q−1
i ),∞

)
.

(3.35)

Note that the design parameters can take any values within the bounds indicated

above, and therefore their selection is oblivious of the exact values of the cost

parameters.

The main result of this section is provided in the following theorem.

Theorem 3.11. Consider the closed-loop system formed by agents’ model (3.6) and

the adaptive nudge mechanism (3.32) with t 7→ x∗(t) satisfying Assumption 3.10.

Let the design parameters satisfy σ ∈ Iσ and k0 ∈ Ik0
with the intervals Iσ and Ik0

given by (3.35). Then, there exists some ε∗ ∈ Iε with Iε given by (3.35) such that for

all ε ∈ (0, ε∗] and any initial condition (p̂(0),K(0), col(γi(0))) ∈ Rn×Rn×n×[0, 1]N ,

there exists a Carathéodory solution t 7→ (p̂(t),K(t), col(γi(t))) of the closed-loop

system over the domain [0,∞). Moreover, any solution (p̂(t), col(γi(t))) converges

to (p∗(t),1N ) with p∗(t) given by (3.31). Consequently,
∑

i∈I xi(t) converges to

x∗(t) as desired.

Proof. Our proof builds on the results of Lemma 3.15. Let ε ∈ Iε, σ ∈ Iσ, and
k0 ∈ Ik0

, then it follows from Lemma 3.15 that the closed-loop system admits

a bounded Carathéodory solution over domain [0,∞). Consider any solution

t 7→ (p̂(t),K(t), col(γi(t))). Again from Lemma 3.15, there are some constants

p̄ > 0, k̄ > 0, and a finite time T ⩾ 0 such that for all t ⩾ T , we have ∥p̂(t)∥ ⩽ p̄

and ∥K(t)∥ F ⩽ k̄. Next we prove convergence of (p̂(t), col(γi(t))) to (p∗(t),1N )

by considering three time intervals [T, T1], [T1, T2], and [T2,∞). The first time

interval concerns the convergence analysis of p̂(t) to the neighborhood of B. Full
trust of the agents is achieved in the second time interval, while convergence of

p̂(t) to p∗(t) is established in the last time interval.

We analyze the interval [T, T1] by considering the price prediction dynamics

(3.32a) as a system with bounded exogenous signals. In particular, we substitute
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the expression of xi given by (3.6b) and (3.7) into (3.32a) to get:

˙̂p = −
(1
ε
In +

∑
i∈I

γi(t)Q
−1
i

)(
p̂− projB(p̂)

)
+ ν(t),

where t 7→ γi(t) and t 7→ ν(t) are treated as exogenous signals and

ν(t) :=
∑
i∈I

(ci + γi(t)Q
−1
i (λ̂i − projB(p̂)))−

∑
i∈I

Q−1
i λ̂i − x∗(t) +K(t)ẋ∗(t).

From the proof of Lemma 3.15, we see that the time instant T and the ultimate

bounds p̄ and k̄ are uniform for all ε ∈ Iε. This, in addition to projB (p̂) ∈ B,
γi(t) ∈ [0, 1], and boundedness of x∗(t) and ẋ∗(t) (cf. Assumption 3.10), imply that

ν(t) is uniformly ultimately bounded. More precisely, there exists some constant

ν̄ > 0 such that ∥ν(t)∥ ⩽ ν̄ for all t ⩾ T and all ε ∈ Iε. Next we use this

property and show that suitable selection of ε provides convergence of p̂(t) to the

neighborhood of B in finite time. Let

ε∗ := min
{ δ̃ − δ̄

2ν̄
, θ−1(1 + λmax(

∑
i∈I

Q−1
i ))−1

}
,

with δ̃ satisfying (3.25). This results in ε∗ ∈ Iε. Moreover, following the steps

of the proof of Theorem 3.7, there exists some T1 ⩾ T such that by choosing

0 < ε ⩽ ε∗, p̂(t) belongs the ball B̄(p0, δ̃) for all t ⩾ T1. We note that such selection

of ε is possible since ν̄, and hence ε∗, are independent of the choice of ε ∈ Iε.
Bearing in mind p̂(t) ∈ B̄(p0, δ̃) for all t ⩾ T1, an analogous argument to the

proof of Theorem 3.7 can be used to show that there exists a finite time T2 ⩾ T1
such that we have γi(t) = 1 for all i ∈ I and t ⩾ T2. Next we exploit γi(t) = 1 to

establish convergence of p̂ to p∗ in the time interval [T2,∞). We perform a change

of coordinates to ease the notation, namely, (p̂,K) 7→ (p̃,Φ) with p̃ = p̂− p∗ and

Φ = K −K∗ where K∗ is given by (3.34). In these coordinates, the closed-loop

system, comprised of (3.6) and (3.32), takes the form

˙̃p = −
∑
i∈I

Q−1
i p̃+Φ ẋ∗(t) +

1

ε
(projB (p̂)− p̂) ,

Φ̇ = −τ
∑
i∈I

Q−1
i p̃ ẋ∗(t)⊤ − τ σs

(
∥Φ+K∗∥F

)
(Φ +K∗)︸ ︷︷ ︸

σs(∥K∥F)K

,
(3.36)

where we have used γi(t) = 1 and the expressions of πi, x
∗(t), and ṗ∗(t), respectively

given by (3.7), (3.30), and (3.34). For the rest of the proof, we use the following
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definition for notational simplicity.

Q :=
∑
i∈I

Q−1
i . (3.37)

Consider the following Lyapunov candidate

V (p̃,Φ) :=
1

2
∥p̃∥2 + 1

2τ
Tr

(
Φ⊤Q−1Φ

)
.

The evolution of V along the solutions of (3.36) is given by

V̇ =− ∥p̃∥2Q + p̃⊤Φ ẋ∗(t) +
1

ε
p̃⊤ (projB (p̂)− p̂)

− Tr
(
ẋ∗(t) p̃⊤Φ

)
− σs

(
∥K∥F

)
Tr

(
K⊤Q−1Φ

)
.

It follows from p̃⊤Φ ẋ∗(t) = Tr
(
ẋ∗(t) p̃⊤Φ

)
and (3.29) that

V̇ ⩽ −∥p̃∥2Q − σs
(
∥K∥F

)
Tr

(
K⊤Q−1Φ

)
. (3.38)

We proceed to show that, given k0 ∈ Ik0 , the second term on the right-hand side is

nonpositive. We note that Φ = K +Q−1 due to (3.34) and (3.37). It then follows

from σs( · ) ⩾ 0 that

−σs
(
∥K∥F

)
Tr

(
K⊤Q−1Φ

)
⩽ −

σs
(
∥K∥F

)
λmax (Q)

∥K∥2F + σs
(
∥K∥F

)
∥K∥F∥Q−2∥F.

(3.39)

In the previous inequality, we used Tr
(
K⊤Q−1K

)
⩾ λmin

(
Q−1

)
∥K∥2F together

with λmin

(
Q−1

)
= 1/λmax (Q) to find the first term on the right-hand side, and

the second term is obtained using Cauchy–Schwarz inequality as |Tr(K⊤Q−2)| ⩽
∥K∥F∥Q−2∥F. In addition, notice that we have ∥Q−2∥F ⩽

√
n/λ2min(Q). It then

follows from the definition of Ik0
that ||Q−2∥F ⩽ k0/λmax(Q) for all k0 ∈ Ik0

. The

latter implication implies that (3.39) can be further bounded as

−σs
(
∥K∥F

)
Tr

(
K⊤Q−1Φ

)
⩽ −

σs
(
∥K∥F

)
λmax (Q)

∥K∥F
(
∥K∥F − k0

)
.

Bearing in mind the definition of σs( · ) ⩾ 0 given by (3.33), we find that σs
(
∥K∥F

)
(∥K∥F − k0) ⩾ 0 for allK ∈ Rn×n. Combining this with the above inequality results

in −σs
(
∥K∥F

)
Tr

(
K⊤Q−1Φ

)
⩽ 0. Consequently, the relation (3.38) provides

V̇ ⩽ −∥p̃∥2Q . (3.40)

Next, recalling that the dynamics (3.36) is a nonautonomous system, we use
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Barbalat’s lemma [66, Lem. 4.2] to conclude convergence of p̃(t) to the origin.

Let f(t) :=
∫ t

T2
∥p̃(s)∥2Qds for t ⩾ T2. From (3.36), we see that ˙̃p(t) is bounded

for all t ⩾ T2. This implies that f̈(t) is bounded too, and thus ḟ(t) is uniformly

continuous. The next step is to show that the function f(t) has a finite limit as

t→ ∞. For that, we integrate both sides of (3.40) and use the definition of f(t)

with V (t) ⩾ 0 to obtain

lim
t→∞

f(t) ⩽ V (T2).

The left-hand side of the inequality above is bounded since V (T2) is bounded. It

then follows from Barbalat’s lemma that limt→∞ ḟ(t) = 0, i.e., p̃(t) → 0 as t→ ∞.

We conclude that p̂(t) converges to p∗(t) in the time interval [T2,∞), and in turn,

the aggregative behavior
∑

i∈I xi(t) converges to x
∗(t) as desired. ■

Remark 3.12. We note that one can also devise an adaptive nudge mechanism

that is built on the hard nudge (3.15) as follows:

˙̂p(t) = ΠB

(
p̂(t),

∑
i∈I

xi(t)− x∗(t) +K(t)ẋ∗(t)
)
,

K̇(t) = τ
(∑

i∈I
xi(t)− x∗(t)

)
ẋ∗(t)

⊤ − τ σs
(
∥K(t)∥F

)
K(t),

where ∥K(t)∥F is the Frobenius norm of K(t), τ > 0, and the function σs : R⩾0 →
[0, σ] is defined in (3.33). We can then show that for any t 7→ x∗(t) satisfying

Assumption 3.10, choosing the design parameters σ > 0 and k0 ∈ Ik0 with Ik0

given by (3.35), results in convergence of the aggregative behavior to x∗(t). We

note, however, that the resulting convergence is restricted to the ball B and is thus

not global, unlike in the adaptive (soft) nudge mechanism (3.32). •

3.5 Case study

We illustrate the performance of our nudge mechanisms by considering the problem

of coordinated charging of plug-in electric vehicles [67]. In this problem, the

objective of the regulator is to control the aggregative power demand over a

charging horizon.

We consider a population of I = {1, . . . , 10} agents, where each agent i aims at

choosing its charging strategy over the charging horizon of length n = 24, namely

zi ∈ Xi ⊂ Rn, such that its cost function given below is minimized:

Ci(zi, p) := aiz
⊤
i zi + biz

⊤
i 1n + z⊤i p, (3.42)

where ai ∈ [0.004, 0.006] and bi ∈ [0.065, 0.085]. The set Xi is nonempty, compact,
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and convex, and it is defined as follows:

Xi :=
{
zi ∈ Rn | zi ∈ [0, x̄i]

n, 1⊤
n zi = di

}
,

where x̄i ∈ [8, 10](kW) is the maximum charging rate at any instant, and di ∈
[25, 35](kWh) is the total energy required by the agent.

Since agents choose their actions from the sets Xi, rather than Rn, the expression

of the optimal action (3.3) modifies to [62, Prop. 2.1.2 and 2.1.3(b)],

xi = projXi

(
− 1

2ai

(
bi1n + γip̂+ (1− γi)λ̂i

))
. (3.43)

Note that for Xi = Rn, the expression (3.43) reduces to (3.3). As for the choice

of ψi, we pick ψi(∥p − p̂∥) = − tanh(hi(∥p − p̂∥ − δi)) with hi ∈ [2, 5], which

satisfies Assumption 3.1, and we select δi ∈ [0.3, 0.5]($/kWh), ηi ∈ [3, 5], λ̂i ∈
[0.1, 0.5]n($/kWh), γi(0) ∈ [0, 0.7] to simulate the model.

Taking Assumption 3.2 regarding the actual price signal into consideration,

we pick p0 = 0.31n($/kWh) and consider price fluctuations to satisfy ∥∆p(t)∥ ⩽
0.1($/kWh) for all t ⩾ 0. Let ρ = 0.2, then ρ is less than or equal to the expression

on the right hand side of (3.9). Consequently, the open ball B(p0, ρ) = {p̂ ∈ Rn |
∥p̂− p0∥ < ρ} is a feasible set for the price prediction such that the regulator can

gain agents’ trust. We also define the ball B by choosing δ̄ = 0.15. Therefore the

condition (3.9) is satisfied noting that δ̄ < ρ.

3.5.1 Stationary desired behavior

Here we demonstrate convergence of the aggregative behavior to a desired behavior

x∗ shown in Figure 3.3, under both hard and soft nudge mechanisms. The desired

aggregative behavior specifies the goal of the system regulator in nudging the

vehicles to charge their batteries in a specific interval.

We choose p̂(0) = p0 ∈ B for the hard nudge, whereas we set ε = 10−3 and

p̂(0) = p0 + 0.061n /∈ B for the soft nudge to demonstrate convergence for an

initialization outside the ball B. Figure 3.4 shows the distance of the mechanisms’

price predictions to p0 and the average of the trust variables. We observe that for

the hard nudge, the price prediction belongs to the ball B for all times, and as a

result, the trust variables converge to one. The latter is deduced from convergence

of the average of the trust variables to one and γi ∈ [0, 1]. For the soft nudge, the

price prediction converges to a positive invariant set inside the open ball B(p0, ρ),

which in turn increases the agents’ trust on p̂. After gaining full trust of the

agents, the price predictions of both mechanisms converge to p∗ ∈ B. Therefore,
the aggregative behavior of the agents, namely the aggregative power demand,

converges to x∗ as demonstrated in Figure 3.5.
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Figure 3.3: Desired stationary aggregative power demand over the charging horizon.

Figure 3.4: Distance of hard and soft nudges’ price predictions to p0 and the average of
the trust variables.
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Figure 3.5: Aggregative power demands due to hard and soft nudges and their distance
to the desired stationary power demand.

3.5.2 Temporal desired behavior

Next, we consider the case where the desired aggregative behavior varies with time,

and employ the adaptive nudge protocol to steer the aggregative behavior towards

such behavior. We choose the desired behavior as x∗(t) = 1+cos(3t)
2 m+ 1−cos(3t)

2 s

with m and s shown in Figure 3.6.

Recalling the structure of the cost function Ci as (3.42), we observe that its

minimization is equivalent to minimization of Ji given by (5.1) with Qi = 2aiIn
and ci = − bi

2ai
1n. Therefore, the matrix K∗ in (3.34) and thus the matrix K

in (3.32) becomes a scalar matrix, i.e., K = kIn, and the adaptive nudge (3.32)

reduces to

˙̂p =
∑
i∈I

xi − x∗(t) + k ẋ∗(t) +
1

ε

(
projB

(
p̂
)
− p̂

)
,

k̇ = τ
(∑

i∈I
xi − x∗(t)

)⊤
ẋ∗(t)− τ σs

(
|k|

)
k.

For the design parameters of the mechanism, we set ε = 2× 10−5, σ = 105, and

k0 = 10. Noting the bounds of ai’s, i.e., 0.004 ⩽ ai ⩽ 0.006, the chosen parameters

belong to the intervals defined in (3.35). Figure 3.7 presents the simulation results

for τ = 1, p̂(0) = p0 + 0.061n /∈ B, and k(0) = 0. The results demonstrate that the
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Figure 3.6: Evolution of the desired temporal aggregative power demand x∗(t) =
1+cos(3t)

2
m+ 1−cos(3t)

2
s.

price prediction enters the ball B(p0, ρ) and the trust variables converge to one.

Subsequently, the price prediction converges to p∗(t), and as a consequence, the

aggregative behavior converges to the desired one as depicted in Figure 3.8.

3.6 Conclusions

We have presented a nudge framework where a regulator can steer the aggregative

behavior of a set of price-taking agents to a desired behavior by sending a suitable

price prediction signal. Due to the discrepancy between the signal sent out by the

regulator and the actual price, we have incorporated trust dynamics in the agents’

model, where the trust variables get updated based on the history of the accuracy

of the price prediction signal. Nudge mechanisms have been proposed to steer

the aggregative behavior of the agents to desired stationary as well as temporal

behaviors. Analytical convergence guarantees have been provided for the proposed

nudge mechanisms and the results are demonstrated on a numerical case study.
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Figure 3.7: Distance of adaptive nudge’s price prediction to p0, the average of the trust
variables, and evolution of the adaptive gain k.

Figure 3.8: Aggregative power demands due to adaptive nudge and its distance to the
desired temporal power demand.
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3.7 Appendix

3.7.1 Existence of solutions for nonautonomous projected

dynamical systems

Lemma 3.13. Consider a nonempty compact set X ⊂ Rn and a vector field

h : Rn × [0,∞) → Rn that is locally Lipschitz in the first argument and measurable

in the second. Then, for any initial condition x(0) ∈ X , there exists a Carathéodory

solution t 7→ x(t) of the nonautonomous projected dynamical system

ẋ = ΠX (x, h(x, t))

satisfying x(t) ∈ X for all t ∈ [0,∞).

Proof. The proof involves demonstrating the existence of Krasovskii solutions

for (3.13) and then establishing the equivalence of the set of Krasovskii and

Carathéodory solutions. Since X is a compact set, we have the function (x, t) 7→
h(x, t) is Lipschitz on the set X [68, Ex. 3.19] and measurable in t. Consequently,

by [69, Thm. 2], the system admits Krasovskii solutions. Note that in the referred

results, the map h is required to be Lipschitz everywhere in the domain. However,

the implication holds even when h is Lipschitz only on the set X , that is, the set

where the solutions are restricted to. The proof concludes by using [70, Thm. 6.3]

which shows that the set of Krasovskii and Carathéodory solutions are equivalent for

autonomous projected dynamical system. The result extends to the nonautonomous

case using the same reasoning. ■

Lemma 3.14. Consider a nonempty compact set Y ⊂ Rm and two vector fields

h : Rn × Rm × [0,∞) → Rn and g : Rn × Rm × [0,∞) → Rm that are locally

Lipschitz in the first two arguments and measurable in the third one. Consider the

nonautonomous projected dynamical system

ẋ = h(x, y, t),

ẏ = ΠY (y, g(x, y, t)) .
(3.44)

Moreover, assume that there exists a continuously differentiable function V : Rn →
R satisfying:

(i) V (x) ⩾ 0 for all x ∈ Rn,

(ii) V (x) → ∞ as ∥x∥ → ∞,

(iii) there exists a constant µ > 0 such that the following holds for all y ∈ Y,
t ∈ [0,∞), and ∥x∥ ⩾ µ,

∇V (x)⊤h(x, y, t) ⩽ 0.
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Then, for any initial condition (x(0), y(0)) ∈ Rn × Y, there exists a Carathéodory

solution t 7→ (x(t), y(t)) of the system (3.44) over the domain [0,∞). Moreover,

this solution is bounded.

Proof. Our proof proceeds in two steps. First, for each initial condition, we design

a nonautonomous projected dynamical system that admits a solution starting from

the said initial point. Second, we show that this solution is also a solution of (3.44).

Consider the continuous and increasing function α(s) := sup∥x∥⩽s V (x) for

s ⩾ 0. Then, from condition (i) imposed on V , we have

0 ⩽ V (x) ⩽ α(∥x∥), ∀x ∈ Rn. (3.45)

Let (x0, y0) ∈ Rn × Y be any initial condition. Define X0 := {x ∈ Rn | V (x) ⩽ c}
where c > max{V (x0), α(µ)}. Then x0 ∈ int(X0) and the closed ball B̄(0, µ) is

in the interior of X0 as a consequence of (3.45). The former fact follows from

V (x0) < c, and we show the latter by contradiction. Assume that B̄(0, µ) is

not in the interior of X0, then there exists some point z0 ∈ B̄(0, µ) such that

V (z0) = c. Since α(·) is an increasing function, it follows from z0 ∈ B̄(0, µ)
that α(∥z0∥) ⩽ α(µ). Bearing this and V (z0) = c > α(µ) in mind, we have

V (z0) > α(∥z0∥) which is in contradiction to (3.45). Note that (ii) implies that X0

is compact. Having defined this set, we now consider a compact set X such that

X0 ⊂ int(X ) and introduce the following projected dynamical system

ẋ = ΠX (x, h(x, y, t)) ,

ẏ = ΠY (y, g(x, y, t)) .
(3.46)

From Lemma 3.13, this system admits a bounded Carathéodory solution t 7→
(x̂(t), ŷ(t)) over the domain [0,∞) starting from the chosen initial condition (x0, y0).

That is, here (x̂(0), ŷ(0)) = (x0, y0). We next show that this solution (x̂(·), ŷ(·)) is
also a solution of the system (3.44). Since (x0, y0) ∈ Rn × Y is chosen arbitrary,

this concludes the proof.

Noting that x0 ∈ int(X0), the solution x̂(·) is continuous, and X0 is compact,

there exists some finite time T > 0 such that x̂(t) ∈ X0 for all t ∈ [0, T ]. In

this time interval, the projection in the x-component of (3.46) is not active since

X0 ⊂ int(X ), that is, we have ΠX (x, h(x, y, t)) = h(x, y, t). Bearing this in mind

together with (iii) and B̄(0, µ) ⊂ int(X0), we deduce that x̂(t) ∈ X0 for all t ∈ [0,∞)

since V̇ (x) ⩽ 0 on the boundary of X0. This implies that the projection operator

ΠX (x, ·) is inactive for all times because x̂(t) is in the interior of X . Thus, we

conclude that t 7→ (x̂(t), ŷ(t)) is also a solution of the system (3.44). ■
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3.7.2 Existence of solutions for adaptive nudge

Lemma 3.15. Consider the closed-loop system formed by agents’ model (3.6)

and the adaptive nudge mechanism (3.32) with t 7→ x∗(t) satisfying Assump-

tion 3.10. Let the design parameters satisfy σ ∈ Iσ, k0 ∈ Ik0
, and ε ∈ Iε with

the intervals Iσ, Ik0 , and Iε given by (3.35). Then, for any initial condition

(p̂(0),K(0), col(γi(0))) ∈ Rn ×Rn×n × [0, 1]N , there exists a Carathéodory solution

t 7→ (p̂(t),K(t), col(γi(t))) of the closed-loop system over the domain [0,∞). More-

over, there exist some constants p̄ > 0, k̄ > 0, and a finite time T ⩾ 0 such that we

have ∥p̂(t)∥ ⩽ p̄ and ∥K(t)∥F ⩽ k̄ for all t ∈ [T,∞).

Proof. The proof is divided in two parts. The first part focuses on establishing

existence of Carathéodory solutions and the second part shows their ultimate

boundedness.

Existence of solutions: We use the expression of xi given by (3.6b) and (3.7) to

rewrite the adaptive nudge mechanism (3.32) as follows:

˙̂p = −
(1
ε
In +

∑
i∈I

γiQ
−1
i

)
d(p̂) +Kẋ∗(t) + ν(t),

K̇ = τ
(
−
∑
i∈I

γiQ
−1
i d(p̂) + ν(t)

)
ẋ∗⊤(t)− τσs

(
∥K∥F

)
K,

(3.47)

where d(p̂) := p̂− projB(p̂) and

ν(t) :=
∑
i∈I

(ci + γiQ
−1
i (λ̂i − projB(p̂)))−

∑
i∈I

Q−1
i λ̂i − x∗(t).

Note that the term ν(t) is bounded for all p̂ ∈ Rn, γi ∈ [0, 1], and t ⩾ 0. More

precisely, using projB (p̂) ∈ B and boundedness of x∗(t), there exist some finite

ν̄ > 0 such that we have ∥ν(t)∥ ⩽ ν̄ for all (p̂, col(γi)) ∈ Rn × [0, 1]N and t ⩾ 0.

Next, we rewrite the dynamics of the overall closed-loop system in a suitable

form to argue existence of solutions. Let φ := vec(K) and ξ := col(p̂, φ), then the

closed-loop system, made of (3.6) and (3.47), becomes

ξ̇ = h(ξ, col(γi), t),

γ̇i = Π[0,1] (γi, ηiψi(∥p(t)− p̂∥)) , ∀i ∈ I,
(3.48)

where h defines the right-hand side of (3.47). Note that the map t 7→ h(ξ, col(γi), t)

is measurable as a consequence of Assumption 3.10. Further, using the fact that

σs is Lipschitz and following arguments analogous to those provided in the proof

of Theorem 3.7, we deduce that the map (ξ, col(γi), t) 7→ h(ξ, col(γi), t) is locally

Lipschitz in (ξ, col(γi)). Also, the map (p̂, t) 7→ ψi(∥p(t)− p̂∥) is locally Lipschitz in
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p̂ and measurable in t. Hence, the existence of bounded solutions over the domain

[0,∞) follows from verifying that the hypotheses (i)-(iii) of Lemma 3.14 hold. The

rest of the proof achieves this.

Consider the following Lyapunov candidate V (ξ) := 1
2∥d(p̂)∥

2 + 1
2τ ∥φ∥

2. Analo-

gous to the proof of Theorem 3.7, we deduce from Danskin’s Theorem that ∥d(p̂)∥2
is differentiable and ∇∥d(p̂)∥2 = 2 d(p̂). Thus, the function V satisfies the hypothe-

ses (i) and (ii) of Lemma 3.14. Our next step is to analyze the inner product of

∇V and the function h given by (3.48). Hence we define

H(ξ, col(γi), t) := ∇V (ξ)⊤h(ξ, col(γi), t).

In the following discussion, we show existence of some µ > 0 such that

H(ξ, col(γi), t) ⩽ 0, ∀∥ξ∥ ⩾ µ, (3.49)

for all col(γi) ∈ [0, 1]N and t ⩾ 0. This verifies that Lemma 3.14(iii) holds and

establishes existence.

For simplicity of presentation, we computeH in the coordinates of (p̂,K, col(γi)).

Note that in this coordinates, the Lyapunov candidate becomes V (p̂,K) = 1
2∥d(p̂)∥

2+
1
2τ ∥K∥2F. This allows us to find the relation of H as follows

H(p̂,K, col(γi), t) = Tr

([
˙̂p K̇

] [d(p̂)⊤
1
τK

⊤

])
,

where
[
˙̂p K̇

]
stands for the right-hand side of (3.47). Expanding on the expression,

we get

H =− ∥d(p̂)∥2∑
i∈I γiQ

−1
i

− 1

ε
∥d(p̂)∥2

+ d(p̂)⊤Kẋ∗(t) + d(p̂)⊤ν(t) +
1

τ
Tr

(
K̇K⊤

)
,

(3.50)

where
1

τ
Tr

(
K̇K⊤

)
=− d(p̂)⊤

∑
i∈I

γiQ
−1
i Kẋ∗(t)

+ ν(t)⊤Kẋ∗(t)− σs
(
∥K∥F

)
∥K∥2F.

In (3.50), we have dropped the arguments of H for simplicity. Since γi ∈ [0, 1] and

Qi ≻ 0 for all i ∈ I, the first term on the right-hand side of (3.50) is nonpositive.
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Hence, we have

H ⩽− 1

ε
∥d(p̂)∥2 + d(p̂)⊤

(
In −

∑
i∈I

γiQ
−1
i

)
Kẋ∗(t)

+ d(p̂)⊤ν(t) + ν(t)⊤Kẋ∗(t)− σs
(
∥K∥F

)
∥K∥2F .

Further, one can show that ∥In−
∑

i∈I γiQ
−1
i ∥ ⩽ 1+λmax(

∑
i∈I Q

−1
i ). This yields

d(p̂)⊤
(
In −

∑
i∈I

γiQ
−1
i

)
Kẋ∗(t) ⩽

θ

2

(
1 + λmax(

∑
i∈I

Q−1
i )

) (
∥d(p̂)∥2 + ∥K∥2F

)
,

where we used ∥ẋ∗(t)∥ ⩽ θ (cf. Assumption 3.10), ∥K∥ ⩽ ∥K∥F and Young’s in-

equality 2∥d(p̂)∥∥K∥F ⩽ ∥d(p̂)∥2+∥K∥2F. Consequently, using the above inequality

and the bounds on ν(t) and ẋ∗(t), we deduce that

H ⩽− 1

ε
∥d(p̂)∥2 + θ

2

(
1 + λmax(

∑
i∈I

Q−1
i )

) (
∥d(p̂)∥2 + ∥K∥2F

)
+ ν̄∥d(p̂)∥+ ν̄θ∥K∥F − σs

(
∥K∥F

)
∥K∥2F.

(3.51)

We proceed the proof by showing that, by selecting the design parameters carefully,

there exists a compact set such that the right-hand side of the foregoing equation

is negative outside of this set. Toward this end, we make use of the definition of

σs( · ) and deduce that, for any σ > 0 and k0 > 0, the last term on the right-hand

side of (3.51) satisfies −σs
(
∥K∥F

)
∥K∥2F ⩽ −σ

2 ∥K∥2F + σ
2 k

2
0 . This implies that

H ⩽− 1

ε
∥d(p̂)∥2 − σ

2
∥K∥2F +

θ

2

(
1 + λmax(

∑
i∈I

Q−1
i )

) (
∥d(p̂)∥2 + ∥K∥2F

)
+ ν̄∥d(p̂)∥+ ν̄θ∥K∥F +

σ

2
k20.

Let ε ∈ Iε and σ ∈ Iσ with Iε and Iσ given by (3.35). Then we get

H ⩽ − 1

2ε
∥d(p̂)∥2 − σ

4
∥K∥2F + ν̄∥d(p̂)∥+ ν̄θ∥K∥F +

σ

2
k20

= − 1

4ε
∥d(p̂)∥2 − σ

8
∥K∥2F − 1

4ε
(∥d(p̂)∥ − 2εν̄)2 − σ

8
(∥K∥F − 4

σ
ν̄θ)2 + c,

(3.52)

where c := 2
σ ν̄

2θ2 + εν̄2 + σ
2 k

2
0. Note that the third and forth terms on the right-

hand side of the equality are nonpositive. Consequently, bearing the definition

of ξ in mind, we obtain (3.49) with µ = max{δ̄ + ∥p0∥ + 2
√
εc ,

√
8σ−1c}. Thus,

existence of the solutions for all t ⩾ 0 is guaranteed.

Deriving ultimate bounds: Noting ε ∈ Iε and σ ∈ Iσ, we deduce from (3.52) that
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the time-derivative of the evolution of V along any solution of (3.47) satisfies

V̇ ⩽ −βV + b with

β =
θ(1 + λmax(

∑
i∈I Q

−1
i ))

2max{1, τ−1}
,

b =
2

σ
ν̄2θ2 + ν̄2θ−1(1 + λmax(

∑
i∈I

Q−1
i ))−1 +

σ

2
k20 .

This implies that V̇ ⩽ −β
2V whenever V ⩾ 2b

β . Thus, along the solution, we have

V (t) ⩽ exp(−β
2 t)V (0) whenever V (t) ⩾ 2b

β . It follows that for a solution starting

outside of the compact set Ω := {(p̂,K) ∈ Rn×Rn×n | V (p̂,K) ⩽ 2b
β }, it converges

exponentially fast to Ω in the time interval [0, T ] with T = 2
β ln(βV (0)

2b ), and remains

there afterwards. In addition, for a solution starting in Ω, the inequality V (t) ⩽ 2b
β

is satisfied for all t ⩾ T = 0 since V̇ is negative on bd(Ω). We conclude from

this argument that (p̂(t),K(t)) belongs to the set {(p̂,K) ∈ Rn × Rn×n | ∥p̂∥ ⩽
p̄, ∥K∥F ⩽ k̄} for all t ⩾ T , where

p̄ := ∥p0∥+ δ̄ + 2
√
β−1b,

k̄ := 2
√
τβ−1b .

(3.53)

■



Chapter 4

Dynamic interventions with limited

knowledge in network games

This chapter studies the problem of intervention design for steering the actions of

noncooperative players in quadratic network games to the social optimum. The

players choose their actions with the aim of maximizing their individual payoff

functions, while a central regulator uses interventions to modify their marginal

returns and maximize the social welfare function. This work builds on the key

observation that the solution to the steering problem depends on the knowledge of

the regulator on the players’ parameters and the underlying network. We, therefore,

consider different scenarios based on limited knowledge as well as constraints on

actions and interventions. For these cases, we propose suitable static, dynamic

and adaptive intervention protocols, and we formally prove convergence to the

social optimum under the proposed mechanisms. We demonstrate our theoretical

findings on a case study of Cournot competition with differentiated goods.

4.1 Introduction

Network games have emerged as a powerful tool for studying the scenarios where

the well-being of individuals depends on their own decisions as well as the actions

of their neighbors in an interaction network. These games have a broad spectrum

of applications such as studying crime networks [34], pricing in social networks

[35, 36], public good provision [71], firm competition [37], and telecommunication

[72]. We refer to [73] for a systematic analysis of the outcome of network games

via the use of variational inequalities. In economics, the problem of influencing the

outcome of network games by interventions has been of great interest, and this

has led to various works typically studying the effects of the network topology on

optimal policies, see, e.g., [34, 74, 75, 76].

Generally speaking, noncooperative games involve players who are self-interested/

selfish and pursue their own well-being. Such selfish behavior of the players entails
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degradation of performance in comparison to the scenarios where the players would

cooperate to maximize the social welfare. The deterioration in performance has led

to the definitions of two performance metrics termed the price of anarchy [77] and

the price of stability [78], and their quantification is extensively studied in different

applications such as resource allocation [79], congestion games [80, 81], and supply

chains [82].

An active line of research concerns improving the performance of noncooperative

games and realigning the preferences of the players with the social optimum through

interventions. To this end, a central regulator provides incentives to coordinate the

players and alter their strategies towards the social optimum. The main challenge,

however, is that optimal incentives depend on private information of the players,

generally unknown to the regulator [30]. The celebrated Vickrey–Clarke–Groves

(VCG) mechanism [31] is adopted in different disciplines, and especially in economics,

to address this problem. In this setup, the mechanism generates a payment rule

with the aim of incentivizing the players to announce their private information to

the regulator. This information is then used to reach to the social optimum, see

[32] for more details on the topic.

Another methodology for enhancing the performance and achieving the social

optimum in noncooperative games is to exploit control-theoretic tools. In this

case, the players do not report their private information, but their actions are

observed over time by the regulator. The problem is then regarded as a feedback

control problem where the desired outcome is the social optimum and the control

effort is implemented through interventions [24]. Devising suitable control laws is

straightforward when the regulator has perfect information on the game and the

payoffs of the players, whereas it becomes much more intricate when some of the

players’ private information and/or network level parameters are unknown. To

overcome this lack of information, dynamical protocols are proposed in [4, 24, 33].

In [24], a dynamic pricing mechanism is devised that solves the problem for players

with separable utility functions. When the utility functions are non-separable, side

information is used in [33] for convergence to the social optimum. In particular, the

pricing mechanism employs the utility functions evaluated at the Nash equilibrium.

In the context of congestion control, the mechanism presented in [4] guarantees

convergence assuming that the network manager knows the aggregate flow on each

link as well as the delay-cost experienced by the users. These mechanisms are

not generally applicable to network games since the players’ payoff functions are

non-separable and the information available to the regulator is limited.

In this chapter, we address the problem of steering the actions of noncooperative

players in quadratic network games to the solution of the social welfare maximization

problem. We consider selfish players who maximize their individual payoff functions

by following pseudo-gradient dynamics. The regulator, on the other hand, is aimed

at steering the players towards the social optimum, and to do this, she modifies the
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marginal returns of the players through interventions. Essential to our results is the

observation that the choice of interventions structurally depend on the information

available to the regulator. To better clarify the concept, we first restrict our

attention on the case of unconstrained actions and intervention, and address

different cases concerning the knowledge available to the regulator: full game

information, the network structure or an estimate of social optimum. Unavailability

of such information gives rise to a fourth scenario where an adaptive control scheme

is proposed to achieve the social optimum. We then extend our mechanisms to the

case of constrained actions and interventions. We provide analytical convergence

guarantees for all the proposed protocols, and accompany our findings with a

numerical case study of Cournot competition with differentiated goods.

The structure of the chapter is as follows. Section 4.2 discusses the network game

model and characterizes the optimization problem faced by the regulator. Section

4.3 includes the intervention protocols for unconstrained actions and interventions

and presents their convergence guarantees to the social optimum. The intervention

mechanisms are extended to constrained actions and interventions in Section 4.4.

The case study is provided in Section 4.5, and concluding remarks are stated in

Section 4.6. Existence of a unique social optimum and boundedness analysis of the

adaptive mechanism are presented in Section 4.7.

4.2 Problem formulation

We consider a game with the population of I := {1, . . . , n} players/agents that

interact repeatedly with a central regulator as well as with each other according to

an underlying interaction network. We denote the adjacency matrix of this network

by P ∈ Rn×n where Pij ∈ [0, 1] denotes the influence of player j’s strategy/action

on the utility function of player i. We assume that the network has no self loop,

thus Pii = 0 for all i ∈ I, and the set of neighbors of player i is denoted by

Ni = {j ∈ I | Pij > 0}.
Each player i ∈ I is associated with a payoff function Ui(xi, zi(x), ui) that

depends on her own action xi ∈ Xi ⊆ R, the aggregate of her neighbors’ actions

zi(x) :=
∑
j∈Ni

Pijxj (4.1)

with x = col(xi), and a scalar intervention ui which will be determined by the

central regulator. We restrict our attention to linear quadratic payoff functions of

the form

Ui

(
xi, zi(x), ui

)
=Wi

(
xi, zi(x)

)
+ xiui (4.2)
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with

Wi

(
xi, zi(x)

)
:= −1

2
x2i + xi

(
azi(x) + bi

)
, (4.3)

where a ∈ R \ {0} captures the impact of neighbors aggregate actions zi(x) and

bi ∈ R is the standalone marginal return. The payoff function Wi is used in the

literature to model peer effects in social and economic processes, see e.g., [34, 83, 84].

The term xiui is included to capture the intervention of the central regulator in

modifying the standalone marginal return bi to bi + ui [74, 76].

In our setup, the interventions u = col(ui) take values from a set U ⊆ Rn. The

action and intervention constraint sets satisfy the following assumption.

Assumption 4.1. The constraint sets Xi ⊆ R and U ⊆ Rn are nonempty, closed

and convex. Moreover, the set U contains the origin. •

Remark 4.2. We note that while the constraints on the action sets are local,

namely xi ∈ Xi, the interventions constraint set U allows both local, e.g., U = Rn
⩾0,

and coupled constraints, e.g., U = {u ∈ Rn | ∥u∥ ⩽ c} for some c > 0. Another

notable example is given by U = {u ∈ Rn | ui ∈ R, ∀i ∈ I and ui = 0, ∀i ∈ I \ I}
which can accommodate the case where the regulator applies the intervention to a

subset of players only. •

Problem overview. The players are noncooperative and merely interested in max-

imizing their individual payoff functions by choosing their actions. This selfish

behavior causes loss of efficiency with respect to the situation in which the players

would cooperate to maximize the total payoff. The central regulator, on the other

hand, is aimed at coordinating the players and avoiding the efficiency loss. To

this end, she changes the players’ standalone marginal returns through suitable

interventions.

In the next two subsections, we discuss the dynamic model capturing the

strategies of the players, and characterize the optimization problem faced by the

regulator.

4.2.1 Players’ strategy

Each player aims at maximizing her individual payoff function given the aggregated

actions of her neighbors and the current value of the intervention signal. To capture

this, we consider that the action of each player i ∈ I evolves over time according

to the following pseudo-gradient dynamics1:

ẋi(t) = ΠXi

(
xi(t),

∂Ui

∂xi

(
xi(t), zi

(
x(t)

)
, ui(t)

))
,

1See [85, 86] for further applications of continuous pseudo-gradient dynamics in the context of
distributed Nash equilibrium seeking for noncooperative games.
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where ui(t) is the intervention designed by the regulator. Noting the definition of

zi(x) given by (4.1) and the fact that Pii = 0, we can rewrite the dynamics above

as

ẋi(t) = ΠXi

(
xi(t),−xi(t) + a

∑
j∈I

Pijxj(t) + bi + ui(t)
)
. (4.4)

Note that in the case of no intervention, i.e., ui(t) ≡ 0, the equilibrium of

(4.4) coincides with the Nash equilibrium of the game, namely the action profile

xNE = col(xNE
i ) satisfying

xNE
i ∈ argmax

yi∈Xi

Wi

(
yi, zi(x

NE)
)
, ∀i ∈ I,

where Wi is given by (4.3). The Nash equilibrium xNE can also be expressed

as a solution of the variational inequality VI(X , F ) where X =
∏

i∈I Xi and

F (x) := (I − aP )x− b.2 That is,

xNE ∈ SOL(X , F ), (4.5)

where SOL(X , F ) denotes the set of solutions to VI(X , F ).
Next we look at the problem from the regulator’s side.

4.2.2 Regulator’s objective

The central regulator aims to implement suitable interventions to coordinate the

players and maximize the total payoff. More precisely, she aims at designing the

intervention signal col(ui(t)) such that the actions of the players converge to a social

optimum xopt, defined as a solution of the social welfare maximization problem:

xopt ∈ argmax
y∈X

∑
i∈I

Wi

(
yi, zi(y)

)
, (4.6)

where y = col(yi) and Wi is given by (4.3). Any social optimum xopt is also a

solution to the following variational inequality problem [62, Prop. 2.1.2]:

xopt ∈ SOL(X , H), (4.7)

where H(x) =
(
I − a(P + P⊤)

)
x− b. Note that −H is the gradient of the social

welfare function
∑

i∈I Wi

(
xi, zi(x)

)
.

Observe that xopt differs from the Nash equilibrium in (4.5). The regulator,

therefore, aims to designing intervention mechanisms that solve the following

problem:

2Existence of a Nash equilibrium follows from analogous arguments to the proof of [87, Cor.
4.2], and the relation in (4.5) is satisfied using [88, Prop. 1.4.2].
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Problem formulation. Design intervention mechanisms u ∈ U that asymptotically

steer the action profile x of the players in (4.4) to the social optimum xopt given

by (4.7).

4.3 Intervention protocols: unconstrained case

To elaborate the idea and avoid technicality, we first focus on the case of uncon-

strained actions and interventions, i.e., Xi = R and U = Rn. In this case, the social

welfare maximization problem (4.6) becomes

xopt ∈ argmax
y∈Rn

∑
i∈I

Wi

(
yi, zi(y)

)
. (4.8)

The necessary and sufficient condition for existence of a unique social optimum

xopt is given below:

Lemma 4.3. The social welfare maximization problem (4.8) has a unique solution

if and only if

max
i∈I

a λi(P + P⊤) < 1. (4.9)

Proof. See Section 4.7.1. ■

Motivated by Lemma 4.3, we impose the following assumption throughout the

section.

Assumption 4.4. The adjacency matrix P ∈ Rn×n and the parameter a ∈ R
satisfy maxi∈I a λi(P + P⊤) < 1. •

Remark 4.5. The matrix P + P⊤ is symmetric with the diagonal elements equal

to zero. This implies that the matrix P + P⊤ has only real eigenvalues and their

sum is zero. Hence,

λmin(P + P⊤) < 0 < λmax(P + P⊤).

It follows from the above inequalities that Assumption 4.4 is satisfied if and only if

either (i) a > 0 and a λmax(P + P⊤) < 1 or (ii) a < 0 and a λmin(P + P⊤) < 1. •
As a consequence of Assumption 4.4, the social welfare function on the right

hand side of (4.8) is strictly concave and thus admits a unique maximizer given by

[62, Prop. 1.1.2]

xopt =
(
I − a(P + P⊤)

)−1
b. (4.10)

Having established the uniqueness of the social optimum xopt, we shift our

attention to the role of information in solving the problem formulated at the end

of the previous section.
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Noting (4.4) and Xi = R, we recall that the action profile evolves according to

the following pseudo-gradient dynamics:

ẋ(t) = (−I + aP )x(t) + b+ u(t). (4.11)

The role of limited knowledge. Note that the matrix −I + aP is Hurwitz since we

have −2I + a(P +P⊤) ≺ 0 (cf. Assumption 4.4). Therefore, under the assumption

that the regulator has full access to the game information, namely the pair (aP, b), a

simple static open-loop intervention u(t) ≡ (I−aP )xopt− b suffices for convergence

to xopt. In the sequel, we look into the scenarios where such perfect information is

not available to the regulator, hence more elaborate interventions are required.

We emphasize that Assumption 4.4 is assumed to hold throughout this section.

4.3.1 Static feedback intervention

When the regulator has complete knowledge about the network and the impact

of the players on each other, i.e., aP , a static state feedback intervention can be

adopted to ensure convergence to the social optimum. This is formalized in the

following proposition.

Proposition 4.6. Consider the pseudo-gradient dynamics (4.11). Then, under

the static feedback intervention

u(t) = aP⊤x(t), (4.12)

the action profile x(t) exponentially converges to the social optimum xopt.

Proof. The proof directly follows from the expression of xopt in (4.10) and the

fact that the matrix −I + a(P + P⊤) is negative definite (cf. Assumption 4.4). ■

Remark 4.7. It is worth mentioning that modifying the standalone marginal

returns in (4.2) by setting ui = a
∑

j∈I Pjixj , transforms the network game into

a “potential game” 3 with the potential function being the social welfare, namely∑
i∈I Wi

(
xi, zi(x)

)
. In fact, bearing in mind that Pji reflects the influence of player

i on player j, the aforementioned modification balances the game such that the

mutual effects between any pair of players become identical. The protocol (4.12)

provides a dynamic counterpart of this marginal returns modification. •

3A game G = (I, (Ui)i∈I , (Xi)i∈I) is an (exact) potential game if there exists a potential
function Φ : X → R such that Ui(xi, x−i)−Ui(yi, x−i) = Φ(xi, x−i)−Φ(yi, x−i) for all xi, yi ∈ Xi,
x−i ∈

∏
j ̸=i Xj , and i ∈ I [89].
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4.3.2 Dynamic intervention with estimated social optimum

Next we consider the scenario where the regulator is not aware of the game

information (aP, b), but instead has a reliable estimate of the social optimum xopt,

namely xs ∈ Rn. In this case, the regulator can resort to an integral control-based

intervention to steer the action profile to xs. We present such intervention and its

convergence guarantees in the following proposition:

Proposition 4.8. Consider the pseudo-gradient dynamics (4.11). Then, under

the dynamic intervention

u̇(t) = −
(
x(t)− xs

)
, (4.13)

the action profile x(t) exponentially converges to xs.

Proof. Let us := (I − aP )xs − b, and consider the change of coordinates (x, u) 7→
(x̃, ũ) with x̃ = x− xs and ũ = u− us. In these coordinates, the overall closed-loop

dynamics, consisting of (4.11) and (4.13), takes the form col( ˙̃x, ˙̃u) = A col(x̃, ũ)

where

A =

[
−I + aP I

−I 0

]
.

We prove stability by finding a matrix M = M⊤ ≻ 0 such that the Lyapunov

inequality A⊤M +MA ≺ 0 holds. Given some κ > 0, we define

M :=

[
I −κI

−κI I

]
.

Note that M ≻ 0 for any κ ∈ (0, 1). In addition, we have the following:

A⊤M +MA =

[
−2(1− κ)I + a(P + P⊤) κ(I − aP⊤)

κ(I − aP ) −2κI

]
.

We use the Schur complement to deduce that the above matrix is negative definite

if and only if

κ > 0, −2(1− κ)I + a(P + P⊤) +
1

2
κ(I − aP⊤)(I − aP ) ≺ 0.

It then follows from −I + a(P + P⊤) ≺ 0 (cf. Assumption 4.4) that there exists

a sufficiently small κ > 0 such that the above inequality holds. As a result,

the Lyapunov inequality is satisfied, and the dynamics col( ˙̃x, ˙̃u) = A col(x̃, ũ) is

exponentially stable. This means that the solution (x(t), u(t)) converges to (xs, us)

exponentially fast, which concludes the proof. ■
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4.3.3 Adaptive intervention with known standalone marginal

returns

Recall that in case the regulator knows aP or the social optimum xopt, she can

steer the players to the social optimum by implementing the previously discussed

interventions. Here, we shift our focus to the case where both aP and xopt are

unknown to the regulator, and she merely has knowledge about the individual

standalone marginal returns of the players b. It turns out that such limited

knowledge substantially complicates the problem faced by the regulator. To

partially tame this complexity, we restrict our attention in this subsection to the

case of undirected networks, i.e. P = P⊤.

A natural approach to tackle this problem is to resort to adaptive control

techniques which potentially allow to compensate for lack of complete knowledge

on the system dynamics. However, there are certain obstacles that hinder an

application of standard adaptive control schemes. First, a control design based on

the regulation error x(t) − xopt is not feasible since xopt is unknown. A second

attempt would be to try to estimate xopt by using a reference model such as

ẋm(t) = (−I + 2aP )xm(t) + b. However, while xm(t) converges to xopt (see

Proposition 4.6 with P = PT ), the reference model is not implementable as the

network matrix aP is unknown.

To overcome these challenges, we propose the adaptive feedback intervention

protocol

u(t) = K(t)x(t) (4.14)

with an adaptive gain matrix K(t) determined by the following extended nonlinear

dynamics:

ż(t) = −z(t) +K(t)x(t) + b+ u(t), (4.15a)

ẇ(t) = −w(t) + e(t)x⊤(t)x(t), (4.15b)

K̇(t) = e(t)x⊤(t), (4.15c)

where

e(t) := x(t)− z(t)− w(t).

Note that the intervention only uses information on b, and no knowledge on aP or

xopt is required. The first dynamics (4.15a) aims to replicate the pseudo-gradient

dynamics (4.11) and generate z(t) such that it tracks the action profile x(t). The

second dynamics (4.15b) is included for technical reasons and is needed to guarantee

boundedness of all solutions. The last dynamics (4.15c) is chosen such that sign-

indefinite terms in the time-derivative of the Lyapunov function are canceled out.

As a result, all solutions of the closed-loop system are bounded as stated in the
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following lemma.

Lemma 4.9. Consider the pseudo-gradient dynamics (4.11) and let P = P⊤.

Then, under the adaptive feedback intervention given by (4.14) and (4.15), all

solutions of the closed-loop system are bounded.

Proof. See Section 4.7.1. ■

The next result establishes convergence to the social optimum xopt.

Theorem 4.10. Let P = P⊤ and consider the pseudo-gradient dynamics (4.11)

interconnected with the adaptive feedback intervention given by (4.14) and (4.15).

Then, the action profile x(t) converges to the social optimum xopt.

Proof. Let ξ := (x, e,Ψ) with Ψ = K − aP . Then, bearing in mind (4.11), (4.14)

and (4.15), ξ admits the following dynamics

ẋ = (−I + 2aP )x+ b+Ψx, (4.16a)

ė = −e−Ψx− ex⊤x, (4.16b)

Ψ̇ = ex⊤. (4.16c)

We proceed by following similar arguments as in the proof of the LaSalle’s invariance

principle [68, Thm. 4.4], but the proof is tailored for a single (yet arbitrary)

trajectory. Let ξ0 := (x0, e0,Ψ0) with some x0, e0 ∈ Rn and Ψ0 ∈ Rn×n, and ξ(t)

be a solution starting from the initial condition ξ(0) = ξ0. It follows from Lemma

4.9 that this solution is bounded. Thus, there exists a compact set D such that

ξ(t) ∈ D for all t ⩾ 0. It also follows from [68, Lem. 4.1] that the positive limit set

Ω of ξ(t) is nonempty, compact, and invariant. Moreover, ξ(t) approaches Ω as t

tends to infinity.

We now consider the function

V (ξ) :=
1

2
∥e∥2 + 1

2
∥Ψ∥2F,

where we recall that ∥Ψ∥F is the Frobenius norm. The derivative of V along the

solutions of (4.16) is

V̇ = −∥e∥2 − e⊤Ψx− ∥e∥2∥x∥2 +Tr(Ψ⊤ex⊤)

= −∥e∥2 − ∥e∥2∥x∥2,
(4.17)

where the last equality is obtained using e⊤Ψx = Tr(Ψ⊤ex⊤). Therefore, we

have V ⩾ 0 and V̇ ⩽ 0 which implies that V (ξ(t)) has a limit V∞ ⩾ 0 as

t → ∞. Pick any point ξ′ ∈ Ω, then there is a sequence {tn}, with tn → ∞
as n → ∞, such that ξ(tn) → ξ′ as n → ∞. We obtain from continuity of V

that V (ξ′) = limn→∞ V (ξ(tn)) = V∞. Therefore, since ξ′ is chosen arbitrary, we
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deduce that V (ξ) = V∞ for all ξ ∈ Ω, which means that on the invariant set Ω,

the function V is constant. Moreover, we have V̇ (ξ(t)) = 0 for all ξ(t) ∈ Ω. Let

E := {ξ ∈ D | V̇ (ξ) = 0}, then we have Ω ⊂ E. Now let M be the largest invariant

set inside E, subsequently we have the following relations

Ω ⊂M ⊂ E ⊂ D.

Noting that ξ(t) approaches Ω as t → ∞, we obtain that ξ(t) approaches M as

t→ ∞.

The last step is to find the set M . Note from the definition of E and (4.17)

that E = {ξ ∈ D | e = 0}. Thus, on the invariant set M , the dynamics of (4.16)

reads as

ẋ = (−I + 2aP )x+ b,

0 = −Ψx,

Ψ̇ = 0.

Noting that −I + 2aP is Hurwitz as a consequence of Assumption 4.4, the largest

invariant set in E is given by

M =
{
ξ ∈ D | x = xopt, e = 0, Ψxopt = 0

}
.

Consequently, we conclude that x(t) converges to xopt as desired. ■

4.4 Intervention protocols: constrained case

Here we generalize the results of the previous section to the case of constrained

actions and interventions, i.e., Xi ⊆ R and U ⊆ Rn satisfying Assumption 4.1.

Before proceeding with the intervention protocols, we discuss existence of a unique

social optimum and comment on the feasibility of the formulated problem.

Lemma 4.11. Let Assumption 4.1 hold. Then the social welfare maximization

problem (4.6) has a unique solution if

max
i∈I

a λi(P + P⊤) < 1. (4.18)

Proof. See Section 4.7.1. ■

Note that the sufficient condition (4.18) is in general necessary if one looks at

arbitrary constraint set Xi satisfying Assumption 4.1 (cf. Lemma 4.3 for Xi = R).
Therefore, we assume that Assumption 4.4 also holds throughout this section.

Consequently, the social welfare function on the right-hand side of (4.6) is strongly



56 4. Dynamic interventions with limited knowledge in network games

concave and thus admits a unique maximizer that is also the solution of (4.7),

namely

xopt = SOL(X , H), (4.19)

with H(x) =
(
I − a(P + P⊤)

)
x− b.

After establishing the uniqueness of the social optimum xopt, we next focus on

the feasibility of the intervention design problem.

Noting (4.4), we recall that the action profile evolves according to the following

projected pseudo-gradient dynamics:

ẋ(t) = ΠX
(
x(t),−F

(
x(t)

)
+ u(t)

)
, (4.20)

where u ∈ U and

F (x) = (I − aP )x− b. (4.21)

The dynamics (4.20) at steady-state reads as 0 = ΠX
(
x̄,−F (x̄) + ū

)
for constant

action-intervention pairs (x̄, ū) ∈ X × U . We thus deduce from Moreau’s decompo-

sition theorem (cf. Section 2.3) that 0 = −F (x̄) + ū− projNX (x̄)

(
− F (x̄) + ū

)
, or

equivalently −F (x̄) + ū ∈ NX (x̄). By [90, Ex. 6.13], the pair (x̄, ū) satisfies the

latter inclusion only if x̄ belongs to the set below:4

S :=
{
x̄ ∈ X | ∃ū ∈ U such that x̄ = SOL

(
X , F − ū

)}
. (4.22)

The set S contains all assignable equilibria (action profile) of (4.20), which necessi-

tates the following assumption on xopt.

Assumption 4.12. The social optimum xopt given by (4.19) belongs to the set S
in (4.22). •

In what follows, we provide several intervention protocols that are able to steer

the action profile towards the social welfare xopt. Again, key to our results is

the observation that the suitable intervention depends on the knowledge of the

regulator on the underlying game parameters.

We emphasize that Assumptions 4.1, 4.4, and 4.12 are assumed to hold through-

out this section.

4.4.1 Static open-loop intervention

The first case that we consider is where the regulator has full access to the

game information, i.e., (aP, b) and Xi’s. The regulator, therefore, can use this

knowledge to compute xopt and its corresponding intervention uopt ∈ U , with
SOL(X , F − uopt) = xopt. Note that such uopt exists by Assumption 4.12. The

4Note that in (4.22), the variational inequality problem VI
(
X , F − ū

)
has a unique solution

since F is strongly monotone (see (4.24) and [88, Thm. 2.3.3]).
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regulator can then implement the protocol u(t) ≡ uopt to steer the action profile

to xopt. This is formalized in the following proposition.

Proposition 4.13. Consider the pseudo-gradient dynamics (4.20). Let uopt ∈ U
be such that SOL(X , F − uopt) = xopt. Then, for any initial condition x(0) ∈ X ,

the static open-loop intervention u(t) ≡ uopt steers the action profile x(t) to the

social optimum xopt. Moreover, uopt satisfies

uopt = (I − aP )xopt − b+ v, (4.23)

for some v ∈ NX (xopt).

Proof. We first use the relation xopt = SOL(X , F −uopt) to show that uopt admits

the form (4.23). To see this, note that

(y − xopt)
⊤(F (xopt)− uopt

)
⩾ 0, ∀y ∈ X .

This implies that v := −F (xopt) + uopt ∈ NX (xopt). The latter yields uopt =

F (xopt) + v, which together with (4.21) establishes (4.23).

Next we prove that the dynamics (4.20) under the input (4.23), has a unique

solution x(t) that convergences to the social optimum. In this regard, we rewrite

the overall dynamics as follows:

ẋ = ΠX
(
x,−T (x)

)
,

where T (x) := F (x)− F (xopt)− v. We note that for the mapping F , the following

holds:

(x− y)⊤(F (x)− F (y)) = ∥x− y∥2(I− 1
2a(P+P⊤))

⩾
1

2
∥x− y∥2, ∀x, y ∈ Rn,

(4.24)

where we have used Assumption 4.4 to obtain the inequality. This means that F

is strongly monotone, and in turn, the mapping T is also strongly monotone. In

addition, the set X is closed and convex. It then follows from [91, Thm. 1] that,

for any initial condition x(0) ∈ X , the above dynamics has a unique solution x(t)

for all t ⩾ 0.5

Next consider the Lyapunov candidate V (x) = 1
2∥x̃∥

2 with x̃ = x− xopt. The

time-derivative of the evolution of V along the solution of the system satisfies

∇V (x)⊤ΠX
(
x,−T (x)

)
=− x̃⊤T (x)− x̃⊤ projNX (x)

(
− T (x)

)
,

5A map x : [0,∞) → X is a (Carathéodory) solution of the projected dynamical system
ẋ = ΠX

(
x,−T (x)

)
if it is absolutely continuous and satisfies ẋ(t) = ΠX

(
x(t),−T (x(t))

)
for

almost all t ⩾ 0.
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where we used Moreau’s decomposition theorem. Note that −x̃⊤ projNX (x)

(
−

T (x)
)
⩽ 0 as x, xopt ∈ X . It then follows from the definition of T that

∇V (x)⊤ΠX
(
x,−T (x)

)
⩽ −x̃⊤

(
F (x)− F (xopt)

)
+ x̃⊤v.

Recalling that v ∈ NX (xopt), we have x̃⊤v ⩽ 0, and in turn, we obtain

∇V (x)⊤ΠX
(
x,−T (x)

)
⩽ −1

2
∥x̃∥2,

where we have used (4.24). The above inequality implies that V decreases mono-

tonically along the solution of the closed-loop dynamics and the action profile x(t)

converges to xopt. ■

4.4.2 Static feedback intervention

We next consider the case where the regulator has only access to aP , but neither b

nor Xi’s. This means that the regulator has complete knowledge about the network

topology and the impact of the actions of the players on each other. Leveraging

this information, we show that under a weak coupling condition, the regulator

can steer the players to the social optimum by employing a static state feedback

protocol.

Proposition 4.14. Consider the pseudo-gradient dynamics (4.20). Assume that

aP⊤xopt ∈ U and

∥aP∥ < 1

2
. (4.25)

Then, for any initial condition x(0) ∈ X , the static feedback intervention

u(t) = projU
(
aP⊤x(t)

)
, (4.26)

steers the action profile x(t) to the social optimum xopt.

Proof. The closed-loop dynamics of (4.20) and (4.26) is

ẋ = ΠX
(
x,−T (x)

)
, (4.27)

with T (x) = F (x)− projU (aP
⊤x). For the map T , we have

(x− y)⊤
(
T (x)− T (y)

)
= ∥x− y∥2(I− 1

2a(P+P⊤))

− (x− y)⊤
(
projU (aP

⊤x)− projU (aP
⊤y)

)
, (4.28)

for all x, y ∈ Rn. Note that the projection operator is nonexpansive [62, Prop.

2.1.3], we thus deduce that the second term on the right-hand side of the above
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relation satisfies

(x− y)⊤
(
projU (aP

⊤x)− projU (aP
⊤y)

)
⩽ ∥aP∥∥x− y∥2.

As a result, it follows from (4.28) that

(x− y)⊤
(
T (x)− T (y)

)
⩾ (1− 2∥aP∥)∥x− y∥2, ∀x, y ∈ Rn. (4.29)

This means that T is hypomonotone, hence the dynamics (4.27) has a unique

solution x(t) for all t ⩾ 0 [91, Thm. 1].

Let x̃ := x− xopt, and consider the Lyapunov candidate V (x̃) = 1
2∥x̃∥

2. The

time-derivative of the evolution of V along the solution of (4.27) satisfies

∇V (x̃)⊤ΠX
(
x,−T (x)

)
= −x̃⊤T (x)− x̃⊤ projNX (x)

(
− T (x)

)
,

where we have used Moreau’s decomposition theorem. Recall that−x̃⊤ projNX (x)

(
−

T (x)
)
⩽ 0 since x, xopt ∈ X . We therefore have

∇V (x̃)⊤ΠX
(
x,−T (x)

)
⩽ −x̃⊤T (x). (4.30)

Note from (4.19) that (y − xopt)
⊤H(xopt) ⩾ 0 for all y ∈ X . Adding the left-hand

side of the this inequality evaluated at y = x to the right-hand side of (4.30) yields

∇V (x̃)⊤ΠX
(
x,−T (x)

)
⩽ −∥x̃∥2(I− 1

2a(P+P⊤))

+ x̃⊤
(
projU (aP

⊤x)− aP⊤xopt
)
, (4.31)

where the definitions of T and H are used. The relation aP⊤xopt ∈ U implies

that aP⊤xopt = projU (aP
⊤xopt). This together with (4.28) evaluated at y = xopt

means that the right-hand side of (4.31) is equal to −x̃⊤(T (x) − T (xopt)). We

therefore deduce from (4.29) that

∇V (x̃)⊤ΠX
(
x,−T (x)

)
⩽ −(1− 2∥aP∥)∥x̃∥2.

It then follows from (4.25) that V decreases monotonically along the solution of

the closed-loop dynamics and the action profile x(t) converges to xopt. ■

Based on Proposition 4.14, the static feedback intervention (4.26) steers the

actions of the players to the social optimum under the condition (4.25). Interestingly,

this condition can be dropped in the case where the constraint set U is sufficiently

“large”, namely if aP⊤x̄ ∈ U for all x̄ ∈ X ; a trivial example is given by U = Rn.

The following corollary summarizes this argument.

Corollary 4.15. Consider the pseudo-gradient dynamics (4.20), and assume for

all x̄ ∈ X , we have aP⊤x̄ ∈ U . Then, for any initial condition x(0) ∈ X , the static
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feedback intervention

u(t) = aP⊤x(t), (4.32)

steers the action profile x(t) to the social optimum xopt.

Proof. Note that the state feedback intervention (4.26) is equivalent to (4.32) as

aP⊤x ∈ U , that is projU (aP
⊤x) = aP⊤x. We therefore deduce from the proof

of Proposition 4.14 that the closed-loop system has a unique solution x(t) for all

t ⩾ 0. Moreover, given the Lyapunov candidate V (x̃) = 1
2∥x̃∥

2 with x̃ = x− xopt,

its time-derivative along x(t) satisfies (4.31). Next we use projU (aP
⊤x) = aP⊤x

and rewrite (4.31) as follows:

∇V (x̃)⊤ΠX
(
x,−T (x)

)
⩽ −∥x̃∥2(I−a(P+P⊤)).

We conclude from I − a(P + P⊤) ≻ 0 (cf. Assumption 4.4) that V decreases

monotonically along the solution of the closed-loop dynamics and x(t) converges

to xopt. ■

4.4.3 Dynamic intervention with estimated social optimum

Lastly, we consider the case where the regulator does not have knowledge about

(aP, b) and Xi’s. She, however, has access to an estimate of the social optimum

xopt, namely xs ∈ S. The regulator can then steer the actions of the players to xs
by implementing a projected integral protocol.

Proposition 4.16. Consider the pseudo-gradient dynamics (4.20). Let xs ∈ S
and consider the dynamic intervention

u̇(t) = ΠU
(
u(t), xs − x(t)

)
. (4.33)

Then, for any initial condition x(0) ∈ X , the above intervention protocol steers the

action profile x(t) to the point xs.

Proof. By using (4.20) and (4.33), the dynamics of the overall closed-loop system

is given by

ξ̇ = ΠΛ

(
ξ,−T (ξ)

)
, (4.34)

where ξ = col(x, u), Λ = X × U and

T (ξ) =

[
F (x)− u

x− xs

]
.

We deduce from strong monotonicity of F (see equation (4.24)) that the above

mapping is monotone, and the set Λ is closed and convex. We then obtain from
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[91, Thm. 1] that, for any initial condition ξ(0) ∈ Λ, the dynamics (4.34) admits a

unique solution ξ(t) for all t ⩾ 0.

It follows form xs ∈ S that there exists a us ∈ U such that

(y − xs)
⊤(F (xs)− us

)
⩾ 0, ∀y ∈ X . (4.35)

Next we use the inequality above and prove that (x(t), u(t)) converges to (xs, us).

To this end, consider the Lyapunov candidate V (ξ) = 1
2∥x̃∥

2+ 1
2∥ũ∥

2 with x̃ = x−xs
and ũ = u− us. The time-derivative of the evolution of V along the solution of

(4.34) satisfies

∇V (ξ)⊤ΠΛ

(
ξ,−T (ξ)

)
= x̃⊤

(
− F (x) + u

)
− ũ⊤x̃

− x̃⊤ projNX (x)

(
− F (x) + u

)
− ũ⊤ projNU (u)(−x̃),

where we have used the Moreau’s decomposition theorem. Since x, xs ∈ X and

u, us ∈ U , we have −x̃⊤ projNX (x)

(
− F (x) + u

)
⩽ 0 and −ũ⊤ projNU (u)(−x̃) ⩽ 0,

respectively. We then obtain that

∇V (ξ)⊤ΠΛ

(
ξ,−T (ξ)

)
⩽ x̃⊤

(
− F (x) + u

)
− ũ⊤x̃.

Now we add the left-hand side of (4.35) evaluated at y = x to the right-hand side

of the foregoing inequality to get

∇V (ξ)⊤ΠΛ

(
ξ,−T (ξ)

)
⩽ −x̃⊤

(
F (x)− F (xs)

)
= −∥x̃∥2(I− 1

2a(P+P⊤)),

where the equality follows from the definition of F given by (4.21). Note that

I − 1
2a(P + P⊤) ⪰ 1

2I as a consequence of Assumption 4.4, hence we deduce that

∇V (ξ)⊤ΠΛ

(
ξ,−T (ξ)

)
⩽ −1

2
∥x̃∥2.

Let ξ0 ∈ Λ, and ξ(t) be a solution starting from the initial condition ξ(0) = ξ0.

Moreover, let δ := V (ξ0) and define the set Ω := {ξ ∈ Λ | V (ξ) ⩽ δ}. Note

that ξ(0) ∈ Ω, and Ω is compact since V (ξ) → ∞ as ∥ξ∥ → ∞. It also follows

from the inequality above that the solution ξ(t) remains in Ω. We then use the

invariance principle for discontinuous systems [92, Prop. 2.1] to conclude that the

solution of the closed-loop system converges to the largest invariant set contained

in {ξ ∈ Ω | ∇V (ξ)⊤ΠΛ

(
ξ,−T (ξ)

)
= 0}. This together with the inequality above

imply that ξ(t) also converges to the largest invariant set in {ξ ∈ Ω | x̃ = 0}. We

therefore conclude that for any initial condition ξ(0) ∈ Λ, the action profile x(t)

converges to xs, and this completes the proof. ■
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4.5 Case study

We consider a Cournot competition where a set of I = {1, . . . , 10} firms produce

differentiated goods [83]. For each firm i, we denote the amount of good by

xi ∈ Xi, and its corresponding price is obtained from the inverse demand function

pi(x) = αi − 1
2

(
xi + 2β

∑
j ̸=i Pijxj

)
. In this equation, αi > 0 is the maximum

price that consumers would pay for the good, βPij ⩾ 0 is the degree of product

substitutability, where Pij ∈ (0, 1] if the product of firm j is a substitute for firm i

and Pij = 0 otherwise.6 The payoff function of firm i, therefore, can be written in

the form of (4.2), (4.3) as follows

Ui(xi, x, ui) = xipi(x)− xidi + xiui

= −1

2
x2i + xi

(
a
∑
j ̸=i

Pijxj + bi

)
+ xiui,

where a = −β and bi = αi − di with di > 0 being the marginal cost and ui reflects

taxes or subsidies provided by the regulator.

Next we present the simulation results under our interventions and illustrate

convergence of the players’ actions to the social optimum.

4.5.1 Open-loop, static feedback, and dynamic interventions

Here, we consider a competition where xi ∈ Xi = R⩾0, β = 0.2, and the products

of the firms are substitutable according to the weighted directed graph depicted in

Figure 4.1. In this graph, the weight of each link from firm j to firm i denotes the

weight Pij , and the number next to each node i indicates its standalone marginal

return, namely αi − di.

The social optimum of this game is

xopt = col(2.19, 0.01, 0.99, 0.49, 1.34, 3.4, 0, 0, 0.99, 0.04).

The regulator incentivizes the firms to the social optimum by applying bounded

taxes u ∈ U where U = [−2, 0]10. Next we use intervention mechanisms to obtain

suitable taxes.

Open-loop intervention: Having full information of the game, the regulator can find

the social optimum given above as well as NX (xopt). It then follows from (4.23)

that

uopt = − col(0.001, 0.96, 0.003, 0.09, 0.08, 0.11, 0, 0.01, 0.29, 0).

The simulation results under the intervention u(t) ≡ uopt with the pseudo-gradient

6This is slightly different from [83] which considers Pij = Pji ∈ {0, 1}.
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Figure 4.1: The directed network illustrating asymmetrical product substitutability.
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Figure 4.2: Actions of the players and their distance to social optimum under static
open-loop intervention.

dynamics (4.20) and initialized arbitrarily are shown in Figure 4.2, which demon-

strates convergence of the players’ actions to the social optimum.

Static feedback intervention: Under the assumption that the regulator knows aP ,

she can implement (4.26). The regulator can, therefore, steer the actions of the

players to the social optimum as shown in Figure 4.3.

Dynamic intervention: We assume that the regulator only knows the value of the
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Figure 4.3: Actions of the players and their distance to social optimum under static
feedback intervention.

social optimum, she can then implement (4.33) with xs = xopt. As a result, the

players’ action profile converges to xopt as desired, and this is illustrated in Figure

4.4.

4.5.2 Adaptive intervention

In order to demonstrate performance of the adaptive intervention, we consider

the case Xi = R and assume that product substitutability is represented by the

undirected graph in Figure 4.5, where the weight of a link between firms j and

i denotes the value Pij = Pji. The actions of the firms are obtained from the

pseudo-gradient dynamics (4.11) with arbitrary initial conditions.

For this game, we obtain

xopt = col(2.31,−0.79, 1.41, 0.68, 1.50, 3.73,−0.57,−0.26, 1.10, 0.006).

To steer the players to this point, the regulator applies the adaptive intervention

(4.14). Note that here u ∈ Rn, which represents taxes and subsidies. Figure

4.6 shows the actions of the players under this intervention and demonstrates

convergence to the social optimum.
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Figure 4.4: Actions of the players and their distance to social optimum under dynamic
intervention.
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Figure 4.5: The undirected network illustrating symmetrical product substitutability.

4.6 Conclusions

We have proposed intervention protocols that are able to alter the outcome of

noncooperative network games toward the social optimum. We investigated the

cases where actions and interventions were either unconstrained or constrained, and

studied different sets of information available to the regulator. We then proposed

intervention mechanisms tailored to each case, and convergence to the maximizer
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Figure 4.6: Actions of the players and their distance to social optimum under adaptive
intervention.

of the social welfare function is analytically shown for all the proposed mechanisms.

Finally, the efficiency of the proposed protocols is demonstrated on a numerical

case study of Cournot competition with differentiated goods.

4.7 Appendix

4.7.1 Proofs of the lemmas

Proof of Lemma 4.3. If part: The inequality (4.9) implies that −I+a(P+P⊤) ≺
0, and thus the map x 7→

∑
i∈I Wi

(
xi, zi(x)

)
is strictly concave and so admits a

unique maximizer [62, Prop. 1.1.2].

Only if part: Suppose (4.9) does not hold. Then, the maximum eigenvalue of the

symmetric matrix −I + a(P + P⊤), denoted by µ, is nonnegative. Let v ∈ Rn be

a corresponding eigenvector, and consider the social welfare function along the

direction of v, namely the map

α 7→
∑
i∈I

Wi

(
(αv)i, zi(αv)

)
=

1

2
µα2∥v∥2 + αv⊤b,

where (αv)i is the ith element of αv. Clearly, if µ > 0, then the function grows

unbounded as α increases to infinity and thus, the optimizer does not exist. When
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µ = 0, then the matrix −I + a(P + P⊤) is not invertible. This implies that the

gradient of the social welfare function vanishes at infinitely many points, and thus

(4.8) does not admit a unique maximizer. ■

Proof of Lemma 4.9. We divide the proof into three parts, that include 1)

proving that certain signals of the overall closed-loop system are L∞ and L2; 2)

upper bounding all the closed-loop state variables by a common signal, denoted by

ℓ(t); and 3) showing that ℓ(t) and thus all the state-variables are bounded.

Step 1 (L∞ and L2 analysis): We start our proof by analyzing evolution of (e,Ψ),

where Ψ := K − aP . It follows from (4.11), (4.14), and (4.15) that

ė = −e−Ψx− ex⊤x, (4.36a)

Ψ̇ = ex⊤. (4.36b)

Consider the Lyapunov candidate

V (e,Ψ) :=
1

2
∥e∥2 + 1

2
∥Ψ∥2F, (4.37)

where we recall that ∥Ψ∥F is the Frobenius norm. The derivative of V along the

solutions of (4.36) is

V̇ = −∥e∥2 − e⊤Ψx− ∥e∥2∥x∥2 +Tr(Ψ⊤ex⊤)

= −∥e∥2 − ∥e∥2∥x∥2,
(4.38)

where the last equality is obtained using e⊤Ψx = Tr(Ψ⊤ex⊤). Therefore, we have

V ⩾ 0 and V̇ ⩽ 0 which results in

V∞ := lim
t→∞

V
(
e(t),Ψ(t)

)
⩽ V

(
e(0),Ψ(0)

)
. (4.39)

Thus, we obtain e,Ψ ∈ L∞. We proceed to show that the closed-loop signals Ψ̇, e,

e∥x∥ belong to L2, for any x. Note from (4.38) that

V̇ ⩽ −∥e∥2.

We integrate both sides of the inequality above and use (4.39) to get∫ ∞

0

∥e(τ)∥2dτ ⩽ V
(
e(0),Ψ(0)

)
− V∞ <∞.

Consequently, we have e ∈ L2. Moreover, we deduce from an analogous analysis

for e∥x∥ in (4.38) that e∥x∥ ∈ L2. Now we rewrite the dynamics of Ψ given in
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(4.36b) as follows

Ψ̇ = e(1 + ∥x∥) x⊤

1 + ∥x∥
. (4.40)

Note that for any x, we have x/(1 + ∥x∥) ∈ L∞, and e(1 + ∥x∥) ∈ L2 since

e, e∥x∥ ∈ L2. Thus we derive from (4.40) that Ψ̇ ∈ L2. We record below our

findings in Step 1 of the proof for a later use:

• Ψ, e ∈ L∞,

• Ψ̇, e, e∥x∥ ∈ L2.

Step 2 (Determining a common upper bound): Consider a solution (x(t), z(t), w(t),

K(t)) of the closed-loop system, made of (4.11), (4.14), and (4.15), starting at an

arbitrary initial condition. Note that K(t) is bounded as Ψ(t) ∈ L∞. Next, we

find a common upper bound for the closed-loop signals (x(t), z(t), w(t)) using the

properties established in the previous step. This will allow us to prove boundedness

of the all the closed-loop signals in Step 3.

We proceed the analysis by introducing the following normalizing signal

ℓ(t) :=
√
1 + ∥x(t)∥22δ, (4.41)

where ∥x(t)∥2δ is the exponentially weighted L2 norm of x defined as

∥x(t)∥2δ :=
(∫ t

0

exp
(
− δ(t− τ)

)
x⊤(τ)x(τ)dτ

) 1
2

for a given δ ⩾ 0. Next we show that the closed-loop signals (x, z, w) can be

bounded from above by an affine function of ℓ. Noting u = Kx and Ψ = K − aP ,

we rewrite (4.11) as

ẋ = (−I + 2aP )x+ b+Ψx. (4.42)

Note that (−I + 2aP ) is Hurwitz as a consequence of Assumption 4.4, thus there

exist constants k0, α0 > 0 that satisfy∥∥ exp ((−I + 2aP )(t− τ)
)∥∥ ⩽ k0 exp

(
− α0(t− τ)

)
, (4.43)

for all τ ∈ [0, t]. It then follows from (4.42), the established property Ψ ∈ L∞,

and [93, Lem. 3.3.3(i)] that for any given δ ∈ [0, 2α0), there exist constants

c0, c1 > 0 such that ∥x∥ ⩽ c0 + c1∥x∥2δ. Similarly, we obtain from (4.15a) that

for any δ ∈ [0, 2), we have ∥z∥ ⩽ c2 + c3∥x∥2δ for some c2, c3 > 0. Regarding

w, we employ e ∈ L∞ together with the definition of e and the upper bounds

on ∥x∥ and ∥z∥ to deduce that for any δ ∈ [0, 2min{1, α0}), there are c4, c5 > 0
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such that ∥w∥ ⩽ c4 + c5∥x∥2δ. Therefore, we can use ∥x∥2δ and bound from

above x, z, w. Note from the definition of ℓ that ∥x∥2δ ⩽ ℓ. Consequently, for any

δ ∈ [0, 2min{1, α0}), the followings hold:

∥x∥ ⩽ c0 + c1 ℓ, ∥z∥ ⩽ c2 + c3 ℓ, ∥w∥ ⩽ c4 + c5 ℓ. (4.44)

We see from the above relations that the signal ℓ provides a common upper bound

for all the closed-loop signals, thus these signals are bounded provided that ℓ is

bounded.

Step 3 (Boundedness analysis): Here, we address boundedness analysis of ℓ using

the fact that some of the signals belong to L2. We perform the analysis in two

steps. First, we find an implicit upper bound of ℓ which includes the L2 signals.

We then use Bellman-Gronwall Lemma to find an explicit upper bound of ℓ and

conclude its boundedness.

In this part of the proof, we ease the notation by using c > 0 to denote all

positive constants whose actual values do not affect stability of the system. In

other words, the forthcoming analysis is oblivious to the exact value of c, and c is

used merely for simplicity of the presentation. We remark that such notational

convention is used in the classical textbook [94].

Bearing in mind the definition of ℓ given by (4.41), we use (4.42) and [93, Lem.

3.3.3(ii)] to infer that for any δ ∈ [0, 2α0), we have

∥x∥2δ ⩽ c+ c∥Ψx∥2δ,

where α0 is defined in (4.43). Thus we obtain from (4.41) that

ℓ2 ⩽ c+ c∥Ψx∥22δ. (4.45)

It follows from the inequality above that the signal ℓ is bounded from above by the

norm of Ψx. As a result, we proceed by analyzing Ψx, and for that, we introduce

the following dynamics:

ṗ = −βp+ Ψ̇x+Ψẋ, p(0) = Ψ(0)x(0),

q̇ = −βq + βΨx, q(0) = 0,
(4.46)

where β > 0. It is then straightforward to verify that Ψx = p+ q.7 Moreover, note

from (4.36a) that Ψx = −ė − e − ex⊤x. This, together with the dynamics of q,

7Let Φ := Ψx− p− q, it then follows from (4.46) that Φ̇ = −βΦ and Φ(0) = 0, which means
that Φ(t) ≡ 0.
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allow us to write q = q1 + q2 − βe where

q̇1 = −βq1 − β(1− β)e, q1(0) = βe(0),

q̇2 = −βq2 − βex⊤x, q2(0) = 0.
(4.47)

As a result, we have obtained Ψx = p+ q1 + q2 − βe. We next use this relation

to find an upper bound of ∥Ψx∥2δ which explicitly depends on β and includes the

L2 signals. Consequently, this provides us an upper bound for ℓ. Towards this

end, we consider the introduced dynamics (4.46) and (4.47) and obtain from [93,

Lem. 3.3.3(ii)] that for any δ ∈ [0, δ1) where δ1 ∈ (0, 2β) is arbitrary, the following

relations hold:

∥p∥2δ ⩽ c+ h(β) ∥Ψ̇x+Ψẋ∥2δ,
∥q1∥2δ ⩽ c+ h(β)β|1− β|∥e∥2δ,
∥q2∥2δ ⩽ h(β)β∥ex⊤x∥2δ,

where

h(β) :=
1√

(δ1 − δ)(2β − δ1)
.

The upper bound of ∥q2∥2δ does not have an additive constant term c as we have

q2(0) = 0. Let β > 1 and δ1 = 1, we then deduce that for any given δ ∈ [0, 1), the

succeeding inequalities are satisfied for all β > 1:

∥p∥2δ ⩽ c+ cβ− 1
2 (∥Ψ̇x∥2δ + ∥Ψẋ∥2δ),

∥q1∥2δ ⩽ c+ cβ
3
2 ∥e∥2δ,

∥q2∥2δ ⩽ cβ
1
2 ∥ex⊤x∥2δ,

where we have used the triangular inequality to get the first relation. Note that c

does not depend on β, this property will be useful later in establishing boundedness

of ℓ. We now employ the above inequalities in the relation Ψx = p+ q1 + q2 + βe

to obtain

∥Ψx∥2δ ⩽c+ cβ− 1
2 (∥Ψ̇x∥2δ + ∥Ψẋ∥2δ)

+ cβ
3
2 ∥e∥2δ + cβ

1
2 ∥ex⊤x∥2δ + β∥e∥2δ.

(4.48)

Next, we further bound the right-hand side of the inequality above by the L2

signals e∥x∥, Ψ̇ and the normalizing signal ℓ. For the term β− 1
2 ∥Ψ̇x∥2δ, we use the
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definition of the exponentially weighted L2 norm to get

β−1∥Ψ̇x∥22δ ⩽ β−1

∫ t

0

exp
(
− δ(t− τ)

)
∥Ψ̇(τ)∥2∥x(τ)∥2dτ

⩽ β−1

∫ t

0

exp
(
− δ(t− τ)

)
∥Ψ̇(τ)∥2

(
c+ cℓ(τ)

)2
dτ

⩽ c+ cβ−1
∥∥∥Ψ̇∥ ℓ

∥∥2
2δ
,

(4.49)

where we used (4.44) to find the second inequality, and the last inequality follows

from Ψ̇ ∈ L2 and β > 1. Similarly, we analyze the term β− 1
2 ∥Ψẋ∥2δ on the

right-hand side of (4.48). First, note from the pseudo-gradient dynamics (4.42),

the upper bound on ∥x∥ in (4.44), and Ψ ∈ L∞ that ∥ẋ∥ ⩽ c+ c ℓ. Therefore, we
obtain

β−1∥Ψẋ∥22δ ⩽ β−1

∫ t

0

exp
(
− δ(t− τ)

)
∥Ψ(τ)∥2∥ẋ(τ)∥2dτ

⩽ β−1

∫ t

0

exp
(
− δ(t− τ)

)
∥Ψ(τ)∥2

(
c+ cℓ(τ)

)2
dτ

⩽ c+ cβ−1
∥∥ℓ∥∥2

2δ
,

(4.50)

where the last relation follows from Ψ ∈ L∞ and β > 1. We now consider the term

β
1
2 ∥ex⊤x∥2δ. Following similar steps to ∥Ψ̇x∥2δ, we use e∥x∥ ∈ L2 to obtain

β∥ex⊤x∥22δ ⩽ cβ + cβ
∥∥∥e∥∥x∥ ℓ∥∥2

2δ
. (4.51)

Lastly, we have ∥e∥2δ ⩽ c since e ∈ L2.

Having found the relations (4.49), (4.50), (4.51), and ∥e∥2δ ⩽ c, we conclude

from (4.48) and (4.45) that for any δ ∈ [0,min{1, 2α0}), the following implication

holds for all β > 1:

ℓ2 ⩽ cβ3 + cβ−1(
∥∥∥Ψ̇∥ ℓ

∥∥2
2δ

+ ∥ℓ∥22δ) + cβ
∥∥∥e∥∥x∥ ℓ∥∥2

2δ
.

The above inequality provides an implicit upper bound of ℓ which includes the

L2 signals Ψ̇, e∥x∥. Next, we obtain an explicit upper bound of ℓ to conclude its

boundedness. For that, we use the definition of the exponentially weighted L2

norm to deduce that

ℓ2(t) ⩽ cβ3 + c

∫ t

0

exp
(
− δ(t− τ)

)
k(τ)ℓ2(τ)dτ, ∀t ⩾ 0,
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where

k(τ) := β−1∥Ψ̇(τ)∥2 + β−1 + β∥e(τ)∥2∥x(τ)∥2. (4.52)

It then follows from Bellman-Gronwall Lemma [93, Lem. 3.3.9] that

ℓ2(t) ⩽ cβ3Φ(t, 0) + cβ3δ

∫ t

0

Φ(t, τ)dτ, ∀t ⩾ 0, (4.53)

where

Φ(t, τ) := exp
(
− δ(t− τ) + c

∫ t

τ

k(s)ds
)
.

Since Ψ̇, e∥x∥ ∈ L2, we obtain from (4.52) that

c

∫ t

τ

k(s)ds ⩽ c(β−1 + β) + cβ−1(t− τ),

and this implies that

Φ(t, τ) ⩽ c(β
−1+β) exp

(
− (δ − cβ−1)(t− τ)

)
.

Now select δ > 0 in the interval (0,min{1, 2α0}). Also note that β > 1 can be

selected independent of δ and c is oblivious of β. Thus, we choose β sufficiently

large such that δ − cβ−1 > 0. It then follows from the inequality above and (4.53)

that ℓ ∈ L∞. Therefore, bearing (4.44) in mind, we conclude that all signals of the

closed-loop system are uniformly bounded. ■

Proof of Lemma 4.11. The inequality (4.18) is equivalent to the matrix inequality

−I + a(P +P⊤) ≺ 0 and thus to strong concavity of x 7→
∑

i∈I Wi

(
xi, zi(x)

)
. The

latter map admits at most one maximizer over the closed convex set X [62, Prop.

2.1.1]. To show the existence of such unique maximizer, pick a point p ∈ X and

define the following set:

Y :=

{
y ∈ X |

∑
i∈I

Wi

(
pi, zi(p)

)
⩽

∑
i∈I

Wi

(
yi, zi(y)

)}
.

The set Y is compact as a result of strong concavity of the social welfare function,

and the maximization problem (4.6) is equivalent to

xopt ∈ argmax
y∈Y

∑
i∈I

Wi

(
yi, zi(y)

)
.

The existence of xopt then follows from Weierstrass’ Theorem [62, Prop. A.8], and

this concludes the proof. ■



Chapter 5

Distributed dynamics for aggregative

games

This chapter considers the problem of Nash equilibrium (NE) seeking in aggregative

games, where the cost function of each player depends on an aggregate of all players’

actions. We present a distributed continuous-time algorithm such that the actions

of the players converge to NE by communicating to each other through a connected

network. As agents may deviate from their optimal strategies dictated by the

NE seeking protocol, we investigate robustness of the proposed algorithm against

time-varying disturbances. In particular, we provide rigorous robustness guarantees

by proving input-to-state stability (ISS) and L2-stability properties of the NE

seeking dynamics. A major concern in communicative schemes among strategic

agents is that their private information may be revealed to other agents or to a

curious third party who can eavesdrop the communications. Motivated by this,

we investigate privacy properties of the algorithm and identify to what extent

privacy is preserved when all communicated variables are compromised. Finally, we

demonstrate practical applications of our theoretical findings on two case studies;

namely, on an energy consumption game and a coordinated charging of electric

vehicles.

5.1 Introduction

Game theory is the standard tool for studying the interaction behavior of self-

interested agents/players and has attracted considerable attention due to its broad

applications and technical challenges. An active research topic in this area concerns

aggregative games that model a set of noncooperative agents aiming at minimizing

their cost functions, while the action of each individual player is influenced by an

aggregation of the actions of all the other players [38]. These games have appeared

in a broad range of applications such as networked control systems [48], demand-

side management in smart grids [2], charging control of plug-in electric vehicles [7],
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and flow control of communication networks [39]. The common characteristic is

that if noncooperative agents are left uncoordinated, their aggregate actions can

negatively affect the shared architecture.

In the context of noncooperative games, existence of a solution, Nash equilibrium

(NE), and its computation have been extensively studied in the literature [87].

Earlier works considered the case where each agent has full access to the actions of

all other agents, i.e., all-to-all interactions [87, 88]. However, recent works have

attempted to relax this assumption due to computational and scalability issues.

In this regard, the authors in [86, 95, 96, 97] presented distributed NE seeking

algorithms where each player computes an estimation of the actions of all the

other players by communicating to its neighbors. Although those algorithms are

applicable to aggregative games, they are inefficient as they require that each player

estimate the actions of all other players. In aggregative games, on the other hand,

it is sufficient that each player estimates the aggregation term. This has led to

various algorithms tailored for aggregative games, which can be classified as gather

and broadcast [26, 98, 99] and distributed algorithms [42, 43, 44, 100, 101]. The

former is based on the exchange of information with a central aggregator, whereas

the latter relies on a peer-to-peer communication. This chapter falls into the second

category and presents a fully distributed NE seeking algorithm for aggregative

games.

From a different perspective, distributed NE seeking algorithms for aggregative

games can be divided into discrete-time [42, 43, 44, 102, 103] and continuous-time

[46, 100, 101, 104]. The discrete-time algorithms are based on gradient dynamics

(synchronous algorithm in [42]), gossip technique (asynchronous algorithm in [42]),

double-layer iterations [43, 102], forward-backward iteration [44], and optimal

response [103]. Tuning of the step sizes in these algorithms, however, is generally

a hard task or it may require global information shared among all players. More

specifically, diminishing step sizes are used in [42], which typically slow down

the convergence speed, and [43, 44, 102] employ fixed step sizes, where global

information is needed for selection of the step sizes. The continuous-time gradient-

based algorithms in [46, 100, 101, 104], on the other hand, employ some tuning

parameters shared among all players. In comparison to those works, we present a

fully distributed NE seeking algorithm where the players need not to share any

design parameters or their actions, and more importantly, equip our algorithm

with rigorous robustness guarantees and study its privacy preserving properties as

discussed below.

The players are not always rational in a game and deviation of their actions from

a fully rational behavior is possible. Some examples are “stubborn players” [46, 47]

who do not fully obey the NE seeking dynamics, or “almost” rational players whose

decisions are determined by their “bounded rationality” [45]. Therefore, it is crucial

that an NE seeking algorithm has suitable robustness properties. Additionally,
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having a robust algorithm is required when there exists uncertainty in a game.

Robustness of an NE seeking algorithm with respect to slowly-varying channel gain

in code division multiple access systems is studied in [105]. We refer the reader to

[106, 107, 108] for studies on robustness of gradient systems, saddle-point dynamics,

and frequency regulation of power networks, respectively.

To investigate robustness, we add bounded time-varying disturbances to the

dynamics of the algorithm, and show that the proposed distributed NE seeking

algorithm is robust against such perturbations. We use input-to-state stability

(ISS) as a notion of robustness, which examines whether the state trajectories of

the system are bounded by a function of the perturbation [109]. In our robustness

analysis, the main technical challenge is the existence of undamped communicating

variables in the algorithm. We address this by including a sufficiently small cross-

term in the ISS Lyapunov function. In addition to establishing ISS, we exploit

L2-stability and explicitly analyze the effect of disturbances on convergence error

to the NE of the game.

Generally speaking, NE seeking algorithms rely on communication either with a

central aggregator [98] or among neighboring agents [42]. In the former, it is often

assumed that the aggregator is trustworthy, whereas, in reality, private information

can still be leaked by an aggregator either willingly or unwillingly. In the latter,

private information can be revealed to other players through direct communication,

or leaked to curious adversaries as a result of eavesdropping. More generally,

for convincing strategic players to participate in any cooperative policy, privacy

guarantees need to be put in place.

Motivated by the above concerns, we investigate the proposed distributed NE

seeking algorithm from the viewpoint of privacy. Roughly speaking, privacy is

preserved if private variables of the players cannot be uniquely reconstructed based

on the available information on the structure of the algorithm, the class of cost

functions, and communicated variables. To make sure this is the case, we will

show that there are replicas of private quantities that are indistinguishable from

the original ones in view of the available information. An alternative approach

would be to use data perturbation techniques and rely on differential privacy

[110, 111, 112]. The idea behind this technique is to add noise with appropriate

statistical properties to the process under investigation in order to limit the ability

of a curious party in estimating the private quantities of the system. Differential

privacy is recently exploited in [113], and a distributed NE seeking algorithm is

proposed that preserves privacy of the player’s objective function. A drawback of

adding noise, however, is that the solution of the algorithm asymptotically diverges

from the NE of the game. Our approach, on the contrary, uses an “observability”

or “identifiability” principle, i.e. private variables/quantities cannot be inferred

from the information accessible to the curious adversary. We perform a worst-case

privacy analysis by considering the scenario where the structure of the algorithm
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and all communicated variables are available to the adversary.

Contributions: The main contribution of the chapter is threefold. First, we

present a fully distributed algorithm in continuous-time that obtains the NE in

aggregative games. The algorithm does not require the players to share their actions

or any design parameters; and we provide sufficient conditions for its convergence,

which can be verified in a distributed manner. As the second contribution, by

using ISS and L2-stability, we show that the algorithm is robust against bounded

time-varying disturbances. Third, we demonstrate that the proposed algorithm

preserves privacy of the players’ private information against adversaries with full

knowledge on all communicated variables and the structure of the algorithm. All

features combined, this chapter delivers a fully distributed NE seeking algorithm

with formal robustness and privacy guarantees.

The rest of the chapter is organized as follows: Section 5.2 includes the problem

formulation. In Section 5.3, a distributed NE seeking algorithm is proposed and

its convergence analysis is provided. Robustness and privacy guarantees of the

algorithm are established in Section 5.4. The rate of convergence and the L2-gain

of the system are analytically provided. Two detailed case studies of an energy

consumption game and coordinated charging of electric vehicles are provided in

Section 5.5. The chapter closes with conclusions in Section 5.6 and appendices in

Section 5.7.

5.2 Problem formulation

We consider a set of players I = {1, . . . , N} where each player i ∈ I aims at

minimizing a cost function Ji : Rn × Rn → R by choosing its action variable xi in

a set Xi ⊆ Rn. The value of the cost function depends on xi and an aggregation of

all the other action variables. In particular, each player i ∈ I attempts to solve

the following minimization problem

min
xi∈Xi

Ji(xi, s(x)),

s(x) :=
1

N

∑
j∈I

xj =
1

N
(1⊤

N ⊗ In)x,
(5.1)

where x := col(x1, . . . , xN ) and s(x) is the aggregation term. We use the compact

notation Gagg =
(
I, (Ji)i∈I , (Xi)i∈I

)
to denote the aggregative game in (5.1). By

definition, a point x∗ := col(x∗1, . . . , x
∗
N ) is a Nash equilibrium (NE) of the game if

x∗i ∈ argmin
y∈Xi

Ji(y,
1

N
y +

1

N

∑
j ̸=i

x∗j ), ∀ i ∈ I.
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This means that at the NE, there is no player that can decrease its cost by

unilaterally changing its action. We note that x∗i depends on the optimal actions of

all the other players, and therefore several coupled optimization problems need to

be solved to obtain x∗. Consequently, standard distributed optimization techniques

cannot be used for solving this problem. In the next section, we derive local

sufficient conditions for existence and uniqueness of NE and present a distributed

algorithm that asymptotically converges to this point.

5.3 Distributed NE seeking dynamics

First, we discuss some auxiliary results that are instrumental to prove convergence

properties of the NE seeking algorithm proposed later in the section.

Assumption 5.1 ([86, Asm. 2(ii)]). For all i ∈ I, the action set Xi ⊂ Rn is

nonempty, convex, and compact, and the cost function Ji is C1 in all its arguments.

•

Let σi ∈ Rn be a local variable associated to each player i ∈ I, with the cost

function written as Ji(xi, σi), and define

fi(xi, σi) :=
∂

∂xi
Ji(xi, σi) +

1

N

∂

∂σi
Ji(xi, σi). (5.2)

It is easy to see that ∂
∂xi

Ji(xi, s(x)) = fi(xi, s(x)). To proceed further, we need

the following assumption:

Assumption 5.2. For all i ∈ I, the mapping xi 7→ fi(xi, σi) is µi-strongly

monotone, and the mapping σi 7→ fi(xi, σi) is ℓi-Lipschitz continuous with µi > ℓi.

•

The assumption above is a decentralized version of [98, Asm. 1], and its

conditions can be replaced by less conservative, yet more implicit, conditions; see

Remark 5.6.

In game theory, the pesudo-gradient mapping defined as col
(
(fi(xi, s(x)))i∈I

)
plays a fundamental role in designing NE seeking algorithms, see e.g., [86, 114].

Motivated by this and the fact that the players may not have access to s(x), we

introduce the following mapping:

F (x,σ) :=

[
K col

(
(fi(xi, σi))i∈I

)
σ − x

]
, (5.3)

where K := diag(k1In, . . . , kNIn) with design parameters ki > 0, and σ :=

col(σ1, . . . , σN ). In the literature [44], the term col
(
(fi(xi, σi))i∈I

)
is referred

to as “the extended pesudo-gradient mapping” where each player uses its local
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variable σi instead of the aggregation s(x). The matrix K is added for additional

flexibility and motivated by privacy reasons; see Remark 5.4. This mapping is

further extended in (5.3) with the term σ−x to construct an augmented map that

is strongly monotone with respect to (x,σ). The latter property is instrumental in

proving convergence of the algorithm (see Theorems 5.8 and 5.10). The following

lemma summarizes some properties of (5.3).

Lemma 5.3. Let Assumption 5.2 hold and choose ki such that

ki ∈
((√µi −

√
µi − ℓi

)2
ℓ2i

,

(√
µi +

√
µi − ℓi

)2
ℓ2i

)
(5.4)

is satisfied for each i ∈ I. Then,

(i) the map F in (5.3) is ϵ-strongly monotone.

(ii) the map K col
(
(fi(xi, s(x)))i∈I

)
is ϵ-strongly monotone.

Proof. See Section 5.7.1. ■

Remark 5.4. The condition in (5.4) can be equivalently expressed as 4kiµi−(kiℓi+

1)2 > 0. Therefore, setting ki = 1, for each i, returns the inequality
√
µi > (ℓi+1)/2

which is a more restrictive condition than the one in Assumption 5.2, i.e, µi > ℓi.

Introducing the gain ki yields a milder assumption and, as we will see later,

contributes to the privacy of the proposed algorithm. •

We note that the results of the preceding lemma are sufficient for the existence

and uniqueness of the NE. This is formally stated next.

Lemma 5.5. Let Assumptions 5.1 and 5.2 be satisfied, then the aggregative game

Gagg =
(
I, (Ji)i∈I , (Xi)i∈I

)
with the cost function (5.1) has a unique NE x∗ ∈ X

which is the solution of the variational inequality VI(X ,K col
(
(fi(xi, s(x)))i∈I

)
)

with X :=
∏

i∈I Xi, the function fi(·) defined as (5.2), and ki selected as (5.4).

Proof. See Section 5.7.1. ■

Remark 5.6. To guarantee existence and uniqueness of the NE, it suffices that the

pseudo-gradient mapping col
(
(fi(xi, s(x)))i∈I

)
is strongly monotone [115, Thm.

3(d)]. Assumption 5.2, on the other hand, provides a decentralized condition that

simultaneously guarantees existence of a unique NE and assists us later in proving

convergence of our algorithm to the NE. We also note from the proof of Lemma 5.5

that Assumption 5.2 can be relaxed to any cost function Ji(xi, s(x)) that is strictly

convex in xi for all x−i ∈ X−i [86, Asm. 2(ii)]and results in strong monotonicity

of the mapping col(kifi(xi, σi), σi − xi) for some ki > 0. We will show how to use

such a relaxation in the case studies discussed in Section 5.5. •
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Having established existence and uniqueness of the NE, next we propose

continuous-time distributed dynamics that converges to this points at the steady

state. Motivated by privacy considerations, we assume that the players do not

communicate their action variables xi’s, neither to the other players nor to a cen-

tral unit. Instead, auxiliary variables will be communicated through a connected

communication graph Gc. This motivates the following distributed NE seeking

policy:
ẋi(t) = ΠXi

(
xi(t),−kifi

(
xi(t), σi(t)

))
,

σ̇i(t) = −σi(t) + xi(t)−
∑

j∈Ni

(
ψi(t)− ψj(t)

)
,

ψ̇i(t) =
∑

j∈Ni

(
σi(t)− σj(t)

)
,

(5.5)

where i ∈ I, Ni denotes the set of neighbors of player i, and ΠXi
(xi, ·) is the

projection operator on to the tangent cone of Xi at the point xi ∈ Xi. We note

that ΠXi
(xi,−kifi(xi, σi)) = −kifi(xi, σi) at any point xi in the interior of Xi. At

any boundary point of Xi, the projection operator restricts the flow of −kifi(xi, σi)
such that any solution xi(t) of (5.5) remains in Xi. It is worth mentioning that,

at any point xi, the value of the projection ΠXi(xi, ·) can be computed using

[52, Lem. 2.1].1 Notice that the players only use the local parameter ki, and

communicate the variables σi and ψi. The variable σi is, in fact, a local estimation

of s(x), and the state components ψi’s are defined to enforce consensus on σi’s.

Let ψ := col(ψ1, . . . , ψN ) and L be the Laplacian matrix of the graph Gc. Then,

the algorithm can be written in vector form as

ẋ(t) = ΠX

(
x,−K col

((
fi(xi(t), σi(t))

)
i∈I

))
,

σ̇(t) = −σ(t) + x(t)− (L⊗ In)ψ(t),

ψ̇(t) = (L⊗ In)σ(t).

(5.6)

Note that (5.6) is a discontinuous dynamical algorithm due to the projection

operator. Therefore, we briefly discuss existence and uniqueness of solutions for

this system. Consider the collective projected-vector form of the algorithm as

follows

col(ẋ, σ̇, ψ̇) = ΠX×RnN×RnN

(
col(x,σ,ψ),−Fext(x,σ,ψ)

)
,

where

Fext(x,σ,ψ) :=

[
F (x,σ) +Gψ

−(L⊗ In)σ

]
,

with F (x,σ) given by (5.3) and G := col(0, L⊗ In). Using Assumption 5.1 and

1Finding a closed-form expression of ΠXi
(xi, ·) can be challenging in certain cases depending on

the structure of the set Xi. In Section 5.5.2, we present a reformulation of (5.5) that circumvents
this challenge in the context of coordinated charging of electric vehicles.
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the fact that RnN is a clopen set (closed-open set), the set X × RnN × RnN is

closed and convex. It also follows from Lemma 5.3 that Fext is continuous and

monotone. Therefore, from [91, Thm. 1], we conclude that for any initial condition

(x(0),σ(0),ψ(0)) ∈ X ×RnN ×RnN , the system (5.6) has a unique solution which

belongs to X × RnN × RnN on the time interval [0,∞).

We now characterize the equilibria of (5.6) and then proceed with the results

concerning convergence. For clarity, note that Assumptions 5.1 and 5.2 are treated

as standing assumptions and ki’s are selected as (5.4).

Proposition 5.7. Let x∗ be the NE of the game Gagg. Then, any equilibrium point

of (5.6) is given by (x̄, σ̄, ψ̄) = (x∗,1N ⊗ s(x∗), ψ̄) where ψ̄ ∈ Ψ with

Ψ :=
{
ψ̄ ∈ RnN | ψ̄ = (L+ ⊗ In)x

∗ + 1N ⊗ ζ, ζ ∈ Rn
}
, (5.7)

and L+ is the Moore–Penrose inverse of L.

Proof. At any equilibrium point (x̄, σ̄, ψ̄), we have

0 = ΠX
(
x̄,−K col

(
(fi(x̄i, σ̄i))i∈I

))
, (5.8a)

0 = −σ̄ + x̄− (L⊗ In)ψ̄, (5.8b)

0 = (L⊗ In)σ̄. (5.8c)

As the graph is connected, from (5.8c), we have σ̄ = 1N ⊗ γ for some γ ∈ Rn.

Therefore, (5.8b) becomes

0 = −(1N ⊗ γ) + x̄− (L⊗ In)ψ̄.

Left-multiplying both sides by 1⊤
N ⊗In gives γ = 1

N (1⊤
N ⊗In)x̄ = s(x̄). This means

that σ̄ = 1N ⊗ s(x̄) and in turn, σ̄i = s(x̄). Now, we use (5.8a) and Moreau’s

decomposition theorem to get

0 = ΠX
(
x̄,−K col

(
(fi(x̄i, s(x̄)))i∈I

))
= −K col

(
(fi(x̄i, s(x̄)))i∈I

)
− projNX (x̄)

(
−K col

(
(fi(x̄i, s(x̄)))i∈I

))
,

where NX (x̄) is the normal cone of X at x̄ ∈ X . Thus, we have

−K col
(
(fi(x̄i, s(x̄)))i∈I

)
∈ NX (x̄).

In other words, x̄ is the solution of VI(X ,K col
(
(fi(xi, s(x)))i∈I

)
), and from

Lemma 5.5, we conclude that x̄ = x∗ and σ̄ = 1N ⊗ s(x∗). In addition, by

substituting the obtained values and using (5.40), equality (5.8b) yields

(L⊗ In)ψ̄ = x∗ − 1N ⊗ s(x∗) = (Π⊗ In)x
∗.
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Noting that Π = LL+ = L+L, we conclude that ψ̄ belongs to the set Ψ given by

(5.7). ■

Proposition 5.7, shows that equilibria of (5.6) are crafted as desired, namely x̄

and σ̄ return the NE of the game and the aggregation value s(x∗), respectively.

The next theorem establishes convergence of the solution of (5.6) to such an

equilibrium.2

Theorem 5.8. Consider the NE seeking algorithm (5.6). Then, for any initial

condition (x(0),σ(0),ψ(0)) ∈ X ×RnN ×RnN , the solution (x,σ,ψ) converges to

the equilibrium point (x̄, σ̄, ψ̄) = (x∗,1N ⊗ s(x∗),ψ∗) where x∗ is the unique NE

of the aggregative game Gagg and

ψ∗ = (L+ ⊗ In)x
∗ +

1

N
(1N1

⊤
N ⊗ In)ψ(0). (5.9)

Proof. Let ξ := col(x,σ), Λ := X × RnN , G := col(0, L⊗ In), and with a little

abuse of the notation F (ξ) := F (x,σ). Then, we can rewrite (5.6) as follows

ξ̇ = ΠΛ

(
ξ,−F (ξ)−Gψ

)
,

ψ̇ = G⊤ξ.
(5.10)

Let ξ̃ := ξ − ξ̄ and ψ̃ := ψ − ψ̄ where col(ξ̄, ψ̄) is an equilibrium point of (5.10).

Note that ξ̄ = col(x̄, σ̄), and by Proposition 5.7, we have x̄ = x∗, σ̄ = 1N ⊗ s(x∗),

and ψ̄ ∈ Ψ with Ψ given by (5.7). Considering the Lyapunov candidate V (ξ̃, ψ̃) :=
1
2∥ col(ξ̃, ψ̃)∥

2, we have

V̇ : = ∇V (ξ̃, ψ̃)⊤ col(ξ̇, ψ̇)

= ξ̃⊤ΠΛ

(
ξ,−F (ξ)−Gψ

)
+ ψ̃⊤G⊤ξ,

where col(ξ̇, ψ̇) stands for the right hand side of (5.10). By Moreau’s decomposition

theorem, we find that

ξ̃⊤ΠΛ

(
ξ,−F (ξ)−Gψ

)
= ξ̃⊤

(
− F (ξ)−Gψ − projNΛ(ξ)

(
− F (ξ)−Gψ

))
.

Noting ξ, ξ̄ ∈ Λ, we have −ξ̃⊤projNΛ(ξ)(−F (ξ) − Gψ) ⩽ 0, and V̇ admits the

following inequality

V̇ ⩽ −ξ̃⊤F (ξ)− ξ̃⊤Gψ + ψ̃⊤G⊤ξ. (5.11)

2Note that the system (5.6) has no isolated equilibrium (see equation (5.7)); nevertheless,
convergence to a point within the set of equilibria can be guaranteed as stated in the theorem.
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Moreover, from (5.8) and Moreau’s decomposition theorem we get

0 = ξ̃⊤ΠΛ

(
ξ̄,−F (ξ̄)−Gψ̄

)
= ξ̃⊤

(
− F (ξ̄)−Gψ̄ − projNΛ(ξ̄)

(
− F (ξ̄)−Gψ̄

))
.

Since −ξ̃⊤projNΛ(ξ̄)(−F (ξ̄) − Gψ̄) ⩾ 0, we conclude that ξ̃⊤(F (ξ̄) + Gψ̄) ⩾ 0.

Consequently, we use (5.8c) and the ϵ-strongly monotonicity of F (ξ) (Lemma 5.3(i))

to rewrite (5.11) as

V̇ ⩽ −ξ̃⊤
(
F (ξ)− F (ξ̄)

)
− ξ̃⊤Gψ̃ + ψ̃⊤G⊤ξ ⩽ −ϵ∥ξ̃∥2,

It then follows from the invariance principle for discontinuous systems [92, Prop.

2.1] that (x,σ,ψ) converges to Ω = {(x,σ,ψ) | x = x̄, σ = σ̄,ψ ∈ Ψ} where

Ψ is given by (5.7). Note that (1⊤ ⊗ In)ψ(t) is a conserved quantity of the

system and 1⊤L+ = 0. Then, by (5.7), we find that the vector ψ converges to

ψ∗ = (L+ ⊗ In)x
∗ + 1

N (1N1
⊤
N ⊗ In)ψ(0), which completes the proof. ■

Remark 5.9. The NE seeking algorithm (5.6) can be extended to strongly con-

nected 3 directed communication graphs as follows:

ẋ(t) = ΠX

(
x,−K col

((
fi(xi(t), σi(t))

)
i∈I

))
,

σ̇(t) = −σ(t) + x(t)− (B ⊗ In)ψ(t),

ψ̇(t) = (B⊤ ⊗ In)σ(t),

where the matrix B is the incidence matrix of the graph. Convergence of the above

algorithm to the NE follows from arguments analogous to those used for Theorem

5.8. We note, however, that the extension is at the expense of assuming that each

player i has access to the aggregated information of its neighboring edges. This is

due to the presence of the term (B ⊗ In)ψ(t) in the modified dynamics. •

5.4 Robustness and privacy analysis

In this section, we investigate robustness of the proposed algorithm with respect

to additive time-varying disturbances and carry out privacy analysis. Throughout

this section, we consider the case where Xi = Rn and the cost function Ji is C2 in

all its arguments for all i ∈ I, and Assumption 5.2 holds.

3A directed graph is strongly connected if there is a path between every pair of nodes.
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Then, the NE seeking dynamics (5.6) become smooth as follows

ẋ(t) = −K col
(
(fi(xi(t), σi(t)))i∈I

)
,

σ̇(t) = −σ(t) + x(t)− (L⊗ In)ψ(t),

ψ̇(t) = (L⊗ In)σ(t).

(5.12)

This enables us to provide robustness guarantees using the notions of input-to-state

stability (ISS) and L2-stability. Moreover, we remark that to our best knowledge,

there is no theory for ISS of projected dynamical systems, which led us to work

with Rn rather than Xi.

5.4.1 Robustness analysis

We analyze robustness of the dynamical algorithm (5.12) against additive pertur-

bations. The perturbations can capture possible deviation of the players from a

fully rational behavior or a deliberate addition of noise to improve privacy.

Let ξ := col(x,σ), G := col(0, L ⊗ In), and with some abuse of the notation

F (ξ) := F (x,σ) with F (x,σ) given by (5.3). Then, we can compactly rewrite

(5.12) with the disturbance ν : R⩾0 →∈ R2nN as follows

ξ̇(t) = −F
(
ξ(t)

)
−Gψ(t) + ν(t),

ψ̇(t) = G⊤ξ(t).
(5.13)

To analyze performance of the above algorithm, we resort to the notion of input-

to-state stability (ISS) [116]. The next theorem presents our main results in this

regard.

Theorem 5.10. Consider the NE seeking algorithm (5.13) with initial condi-

tion (ξ(0),ψ(0)) ∈ R2nN × RnN . Suppose the disturbance t 7→ ν(t) is piecewise

continuous and bounded for all t ∈ [0,∞), and assume that there exists some

positive constant γi such that ∥∇fi(xi, σi)∥ ⩽ γi for all xi, σi ∈ Rn and i ∈ I.
Let ξ∗ := col(x∗,1N ⊗ s(x∗)) and ψ∗ be given by (5.9). Then, the corresponding

solution of (5.13) satisfies

∥ col(ξ̃(t), ψ̃(t))∥ ⩽ β0e
−λt∥ col(ξ̃(0), ψ̃(0))∥+ β1 sup

0⩽τ⩽t
∥ν(τ)∥, ∀t ⩾ 0, (5.14)

where ξ̃ = ξ − ξ∗, ψ̃ = ψ −ψ∗, and β0, β1, λ ∈ R>0.

Proof. Note that ψ∗ ∈ Ψ with Ψ given by (5.7), thus it follows from Proposition
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5.7 that the pair (ξ∗,ψ∗) satisfies

0 = −F (ξ∗)−Gψ∗, (5.15a)

0 = G⊤ξ∗. (5.15b)

Consider the solution (ξ(t),ψ(t)) of (5.13) initialized at (ξ(0),ψ(0)). Using the

above equalities, we notice that this solution satisfies

˙̃
ξ = −(F (ξ)− F (ξ∗))−Gψ̃ + ν,

˙̃
ψ = G⊤ξ̃,

(5.16)

where ξ̃ and ψ̃ are given in the statement of the theorem. Define Π := Π ⊗ In
where Π = I − 1

N 1N1
⊤
N . We next show that ψ̃(t) ∈ imΠ for all t ⩾ 0. Recall

the definition of ψ∗ given by (5.9), it then follows from ψ̃(0) = ψ(0) − ψ∗ that

(1⊤
N ⊗ In)ψ̃(0) = 0. Thus, bearing in mind that (1⊤

N ⊗ In)ψ̃(t) is a conserved

quantity of the dynamics (5.16), we obtain 1N ⊗ (1⊤
N ⊗ In)ψ̃(t) = 0 for all t ⩾ 0.

The latter can be written as (1N1
⊤
N ⊗ In)ψ̃(t) = 0, which results in Πψ̃(t) = ψ̃(t),

i.e., ψ̃(t) ∈ imΠ.

In view of the ISS result of [68, Thm. 4.19], while bearing in mind that

(ξ̃(t), ψ̃(t)) ∈ R2nN × imΠ for all t ⩾ 0, it suffices to find a Lyapunov function

satisfying a suitable dissipation inequality. Namely, to find a continuously differen-

tiable function V : R2nN × imΠ → R, for which there exist class K∞ functions α1,

α2, a class K function ρ, and a continuous positive definite function W (ξ̃, ψ̃) such

that

α1(∥ col(ξ̃, ψ̃)∥) ⩽ V (ξ̃, ψ̃) ⩽ α2(∥ col(ξ̃, ψ̃)∥), (5.17)

∂V

∂ξ̃

⊤
˙̃
ξ +

∂V

∂ψ̃

⊤
˙̃
ψ ⩽ −W (ξ̃, ψ̃), ∀ ∥ col(ξ̃, ψ̃)∥ ⩾ ρ(∥ν∥) > 0, (5.18)

for all (ξ̃, ψ̃) ∈ R2nN × imΠ and ν ∈ R2nN . Choose the Lyapunov candidate

V (ξ̃, ψ̃) := 1
2 col(ξ̃, ψ̃)

⊤P0 col(ξ̃, ψ̃) where

P0 :=

[
I κG

κG⊤ I

]
, κ > 0 .

By considering α1(∥ col(ξ̃, ψ̃)∥) = α1∥ col(ξ̃, ψ̃)∥2 with some α1 > 0, the first

inequality of (5.17) is satisfied if and only if P0 − 2α1I ⪰ 0 which is equivalent to

1− 2α1 > 0, (1− 2α1)
2I − κ2GG⊤ ⪰ 0 .

Let κ1 := 1/λmax(L) where λmax(L) is the maximum eigenvalue of L, then the
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above inequalities are satisfied for κ ∈ (0, κ1) and α1 = (1 − κλmax(L))/2. For

the second inequality of (5.17), an analogous argument can be used to obtain

α2(∥ col(ξ̃, ψ̃)∥) = α2∥ col(ξ̃, ψ̃)∥2 with α2 = (1 + κλmax(L))/2.

We take the derivative of V along (5.16) and use the ϵ-strong monotonicity of

F (ξ) to obtain

∂V

∂ξ̃

⊤
˙̃
ξ +

∂V

∂ψ̃

⊤
˙̃
ψ ⩽− ϵ∥ξ̃∥2 + κ∥G⊤ξ̃∥2 − κψ̃⊤G⊤(F (ξ)− F (ξ∗))

− κ∥Gψ̃∥2 + (ξ̃ + κGψ̃)⊤ν.

(5.19)

Define U(ξ, ξ∗) :=
∫ 1

0
∇F (ξ∗ + h(ξ − ξ∗)) dh. Then, by the fundamental theorem

of calculus, we have F (ξ)− F (ξ∗) = U(ξ, ξ∗)ξ̃. Consequently, the equation (5.19)

becomes

∂V

∂ξ̃

⊤
˙̃
ξ +

∂V

∂ψ̃

⊤
˙̃
ψ ⩽− ϵ

2
∥ξ̃∥2 − κ

2
∥Gψ̃∥2 − col(ξ̃, Gψ̃)⊤P (ξ, ξ∗) col(ξ̃, Gψ̃)

+ col(ξ̃, ψ̃)⊤R ν ,

(5.20)

where

P (ξ, ξ∗) :=
1

2

[
ϵI − 2κGG⊤ κU(ξ, ξ∗)⊤

κU(ξ, ξ∗) κI

]
, R :=

[
I

κG⊤

]
.

Clearly, the matrix P is positive definite if and only if

κ > 0, ϵI − 2κGG⊤ − κU(ξ, ξ∗)⊤U(ξ, ξ∗) ≻ 0,

for all ξ ∈ R2nN . By using ∥∇fi(xi, σi)∥ ⩽ γi, it is straightforward to investigate

that ∥U(·, ·)∥2 ⩽ γ̄2 + 2 where γ̄ := maxi∈I(γiki). We then conclude that P ≻ 0
if κ ∈ (0, κ2) with κ2 := ϵ/(γ̄2 + 2 + 2λmax(L)

2). Moreover, note that for all

ψ̃ ∈ imΠ, we have

∥Gψ̃∥ ⩾ λ2(L)∥ψ̃∥,

where λ2(L) is the smallest nonzero eigenvalue of L. Thus, we deduce from (5.20)

that for any κ ∈ (0, κ2) and all (ξ̃, ψ̃) ∈ R2nN × imΠ, the following inequalities

hold:

∂V

∂ξ̃

⊤
˙̃
ξ +

∂V

∂ψ̃

⊤
˙̃
ψ ⩽ − ϵ

2
∥ξ̃∥2 − κ

2
λ2(L)

2∥ψ̃∥2 + col(ξ̃, ψ̃)⊤R ν

⩽ −κ
2
λ2(L)

2∥ col(ξ̃, ψ̃)∥2 + ∥R∥∥ col(ξ̃, ψ̃)∥∥ν∥,

where ∥R∥ =
√
1 + κ2λmax(L)2. Hence, (5.18) is obtained by setting W (ξ̃, ψ̃) =

α3∥ col(ξ̃, ψ̃)∥2 and ρ(∥ν∥) = α4∥ν∥ with α3 = κ
4λ2(L)

2 and α4 = 4
κλ2(L)2 ∥R∥.
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Consequently, (5.17) and (5.18) are satisfied for any 0 < κ < min{κ1, κ2}, and it

follows from [68, Thm. 4.19] that the inequality (5.14) is satisfied with

β0 =

√
α2

α1
, λ =

α3

2α2
, β1 = α4

√
α2

α1
. (5.21)

■

Remark 5.11. In the disturbance-free case, i.e, ν(·) = 0, the treatment in

Theorem 5.10 proves exponential convergence of the proposed algorithm with the

rate of convergence given by (5.21). Similarly, in the case of general games and by

considering suitable assumptions on the pesudo-gradient mapping, the presented

NE seeking algorithm in [86] is exponentially stable (see [86, Thm. 1] and [86, Thm.

2]). Therefore, it is also ISS with respect to additive time-varying disturbances

as a result of [68, Lem. 4.6]. However, that algorithm is fundamentally different

than ours, which makes the analysis dissimilar. Specifically, the consensus term

in [86] appears as damping on the relative state variables, which contributes to

the exponential convergence property. For our presented algorithm, the consensus

action appears as cross terms, resulting in the presence of undamped communicating

variables ψ in (5.13). To overcome this technical difficulty, we included a sufficiently

small cross-term in the ISS Lyapunov function. •

Remark 5.12. The assumption of the boundedness of ∥∇fi(xi, σi)∥ can be relaxed

at the expense of establishing ISS in a local sense. In particular, let ∥∇fi(xi, σi)∥ <
γi for all (xi, σi) that belong to a compact set ∥ col(xi − x∗i , σi − s(x∗))∥ < ri
with some ri > 0. Then, analogous to the proof of Theorem 5.10, the matrix P

in (5.20) is positive definite for any κ ∈ (0, κ2) and ∥ξ̃∥ < r with r := mini∈I ri.

Therefore, (5.17) and (5.18) are satisfied for any 0 < κ < min{κ1, κ2} and for all

∥ col(ξ̃, ϕ̃)∥ < r. By using [68, Thm. 4.18] and [68, Ex. 4.60],we conclude that (5.14)

is satisfied for ∥ col(ξ̃(0), ψ̃(0))∥ < r
√
α1/α2 and supt⩾0 ∥ν(t)∥ < (r/α4)

√
α1/α2.

•

The established ISS property provides stability guarantees for all state variables

in the presence of disturbance. As the objective of considering algorithm (5.13) is

NE computation, it is advantageous to explicitly analyze the effect of disturbance

on ξ = col(x,σ). We pursue this by using the notion of L2-stability [68, Def. 5.1].

Let the performance output y be defined as

y := ξ − ξ∗, (5.22)

where ξ∗ := col(x∗,1N ⊗ s(x∗)). Then, the dynamics (5.13) is L2-stable from

input ν to output y with the L2-gain less than or equal to δ ∈ R>0 if for any
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(ξ(0),ψ(0)) ∈ R2nN × RnN , there exists some constant β ⩾ 0 such that

∥yτ∥2 ⩽ δ∥ντ∥2 + β ,

for all ν ∈ L2e and τ ∈ R⩾0 (see Section 2.1 for related definitions).

Theorem 5.13. Let the disturbance signal t 7→ ν(t) belong to the extended space

L2e. Then, the dynamics (5.13) with the performance output y given by (5.22) is

L2-stable from input ν to output y with its L2-gain satisfying

L2-gain ⩽
1

mini∈I ϵi
, (5.23)

where ϵi =
1
2

(
kiµi + 1−

√
(kiµi − 1)2 + (kiℓi + 1)2

)
.

Proof. Consider the error dynamics (5.16), and let V (ξ̃, ψ̃) := 1
2∥ col(ξ̃, ψ̃)∥

2.

Then, we obtain

V̇ = −ξ̃⊤(F (ξ)− F (ξ∗)) + ξ̃⊤ν ⩽ −ϵ∥ξ̃∥2 + ξ̃⊤ν ,

where the inequality follows from the ϵ-strong monotonicity of F (ξ). Noting y = ξ̃,

the above inequality yields

V̇ ⩽ y⊤ν − ϵy⊤y .

By adding and subtracting 1
2ϵν

⊤ν + ϵ
2y

⊤y from the right hand side, we obtain

V̇ ⩽ − 1

2ϵ
(ν − ϵy)⊤(ν − ϵy) +

1

2ϵ
ν⊤ν − ϵ

2
y⊤y

⩽
1

2ϵ
ν⊤ν − ϵ

2
y⊤y =

ϵ

2

( 1

ϵ2
ν⊤ν − y⊤y

)
.

Hence, the storage function 1
ϵV certifies L2-stability of the system with L2-gain ⩽ 1

ϵ

(see [117, Ch. 8]). Bearing in mind (5.38) in the proof of Lemma 5.3, the parameter

ϵ can be explicitly chosen as ϵ = mini∈I ϵi where ϵi is the smallest eigenvalue of

the matrix [
kiµi − (kiℓi+1)

2

− (kiℓi+1)
2 1

]
.

The proof concludes by computing this minimum eigenvalue. ■

Theorem 5.13 characterizes the L2-stability of the algorithm in terms of the

design parameters ki’s and the parameters of the individual cost functions. Aiming

at minimizing the effect of noise on the performance output y = ξ, one can view

the right hand side of (5.23) as a function of ki’s satisfying (5.4), and seek for its
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minimizer. By direct computation, this minimizer is obtained as

k∗i :=
µ2
i − ℓ2i + 2µiℓi
ℓi(µ2

i + ℓ2i )
.

5.4.2 Privacy analysis

Here, we turn our attention to privacy properties of the presented NE seeking

algorithm. The general idea is that privacy is preserved if a curious party cannot

uniquely reconstruct the actual private variables/quantities of a player. A curious

party can be one of the players or an external adversary. The adversary model is

honest-but-curious meaning that it does not interfere with the implementation of

the algorithm but rather tries to infer the private quantities of interest based on

available information and/or eavesdropping.

In order to estimate the privacy-sensitive quantities of the players, a curious

adversary generally needs to employ the accessible information and implement a

reverse engineering or an identification mechanism. The adversary is consequently

more likely to succeed when the cost functions of the players and the game dynamics

are less complex. Motivated by this fact and to provide more explicit results, we

perform a “worst-case” privacy analysis by considering cost functions that result

in linear NE seeking dynamics. Note that parameter identification is much more

probable for the adversary when the dynamics are linear. As such, we restrict our

attention to cost functions given by

Ji(xi, s(x)) := x⊤i Qixi + (Di s(x) + di)
⊤xi,

where Qi = Q⊤
i ∈ Rn×n, Qi ≻ 0, Di ∈ Rn×n, and di ∈ Rn. Note that in this case,

Assumption 5.2 reduces to

λmin

(
2Qi +

1

2N
(Di +D⊤

i )
)
> ∥Di∥. (5.24)

Let

A := diag(2Qi +
1

N
D⊤

i ), D := diag(Di),

d := col(di), ∀i ∈ I.
(5.25)

Then, (5.12) reduces to

ż(t) = Aqz(t) +Dq, (5.26)
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where

Aq : =

−KA −KD 0
I −I −(L⊗ In)

0 (L⊗ In) 0

 ,
z : = col(x,σ,ψ), Dq := col(−Kd,0,0),

(5.27)

The cost parameters Qi, Di, and di associated to each player i will be treated

as private information. Note that the design parameter ki and the action of

each player xi(t) are not readily accessible to the other players. On the contrary,

both σi(t) and ψi(t) are communicated to other agents. Therefore, the latter

information is accessible to other players due to direct communication, or to an

adversary as a result of eavesdropping. To pursue a worst-case privacy analysis, we

consider the scenario where all communicated variables (σ(t),ψ(t)) are subject to

eavesdropping and the Laplacian matrix L is completely known to the adversary as

side knowledge. Moreover, the goal and structure of the algorithm are considered

public, i.e, accessible to any curious party. Now, we consider the following definition:

Definition 5.14. Privacy of a player i ∈ I is preserved if its private information,

namely the triple (Qi, Di, di), is not uniquely identifiable from the available infor-

mation to the adversary. In addition, we say that an algorithm preserves privacy if

privacy is preserved for all players. •

Note that the privacy property in Definition 5.14 is valid even if N − 1 players

collude to obtain private information of one specific player. The following result

establishes the privacy preservation property of the presented algorithm.

Theorem 5.15. The NE seeking algorithm (5.26) preserves privacy in the sense

of Definition 5.14.4

Proof. Recall that the structure of the algorithm and the Laplacian matrix L is

known to the adversary. Such knowledge can be embedded in the following replica

of (5.26):

ż′(t) = A′
qz

′(t) +D′
q,

A′
q : =

−K ′A′ −K ′D′ 0
I −I −(L⊗ In)

0 (L⊗ In) 0

 ,
z′ : = col(x′,σ′,ψ′), D′

q := col(−K ′d′,0,0),

(5.28)

where the vectors and matrices with “prime” are defined analogously to the ones

without in (5.27). On top of that the adversary has access to (σ(t),ψ(t)) via

eavesdropping. To establish the proof, we need to show that there exists a triple

4The information available to the adversary is provided in the paragraph preceding Definition
5.14.
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(Q′
i, D

′
i, d

′
i) ̸= (Qi, Di, di) which is consistent with the replica dynamics (5.28) as

well as the eavesdropped information (σ(t),ψ(t)) = (σ′(t),ψ′(t)). This would show

that (Qi, Di, di) is not uniquely identifiable from the knowledge of the adversary.

We proceed with the proof by defining y := col(σ,ψ), thus we have

y(t) = Cqz(t), Cq :=

[
0 I 0
0 0 I

]
.

It also follows that the condition (σ′(t),ψ′(t)) = (σ(t),ψ(t)) becomes

y(t) = Cqz(t) = Cqz
′(t), ∀t ⩾ 0. (5.29)

Since (5.26) and (5.28) are linear dynamics under constant inputs, it follows form

analogous arguments to [118, Prop. 1] that the condition (5.29) is satisfied if and

only if there exists z′(0) such that

CqA
k
qz(0) = CqA

′k
q z

′(0),

CqA
k
qDq = CqA

′k
q D

′
q,

∀k ∈ N ∪ {0}. (5.30)

Verifying (5.30) for k = 0 results in

σ(0) = σ′(0), ψ(0) = ψ′(0),

as expected. For k = 1, we use the above equations and obtain

x(0) = x′(0), Kd =K ′d′.

By continuing this process, we see that the condition (5.30) becomes

(σ(0),ψ(0)) = (σ′(0),ψ′(0)),

(KA)kx(0) = (K ′A′)kx′(0),

(KA)kKD = (K ′A′)kK ′D′,

(KA)kKd = (K ′A′)kK ′d′,

for all k ∈ N ∪ {0}. This implies that

z(0) = z′(0),

KA =K ′A′,

KD =K ′D′,

Kd =K ′d′.

We further deduce from the definitions given by (5.25) that

kiQi = k′iQ
′
i, kiDi = k′iD

′
i, kidi = k′id

′
i, ∀i ∈ I. (5.31)

Consequently, since ki is unknown to an adversary, it cannot uniquely recon-

struct the privacy-sensitive triple (Qi, Di, di) of player i. Namely, there exists
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(Q′
i, D

′
i, d

′
i) ̸= (Qi, Di, di) that is indistinguishable from (Qi, Di, di) based on the

knowledge accessible to the adversary. This completes the proof. ■

Remark 5.16. The proof above highlights the fact that the design parameter ki
plays the role of a “secret”, and privacy of player i is preserved against strong

adversaries with access to the algorithm structure, network topology (Laplacian

matrix), as well as all communicated variables. However, we see from (5.31) that

the ratios between the cost parameters Qi, Di, and di, i.e., Q
−1
i Di and Q

−1
i di, can

be reconstructed by such a strong adversary. To avoid reconstruction of such ratios,

we can leverage the ISS property of the algorithm, established in Theorem 5.10,

and modify (5.26) as follows:

ż(t) = Aqz(t) +Dq + u(t), (5.32)

where u(t) = col(ν(t),0) with t 7→ ν(t) being piecewise continuous and bounded

for all t ∈ [0,∞). Thanks to the established ISS property, the NE of the game

can be exactly computed as long as limt→∞ ν(t) = 0. The added value in terms of

privacy is that parameter identification cannot be pursued in transient time by the

adversary due to the presence of ν(t) which acts as a deterministic noise. We note,

however, that addition of ν(t) degrades the transient performance and convergence

rate of the algorithm. We also remark that the following relation among the privacy

sensitive parameters (Qi, Di, di) would still be revealed at steady-state as ν(t)

vanishes5:

0 = (2Qi +
1

N
D⊤

i )x
∗
i +Dis(x

∗) + di. (5.33)

For similar ideas in the context of preserving privacy in average consensus see

[119, 120]. •

5.5 Case studies

In this section, we consider two illustrative case studies that are formulated as

aggregative games.

5.5.1 Energy consumption game

This case study considers the energy consumption problem of consumers equipped

with heating ventilation air conditioning (HVAC) systems in smart grids. As

proposed in [29], this problem can be formulated into a noncooperative game

where each consumer i chooses its energy consumption such that the following cost

5This coincides with the fact that the NE satisfies the relation ∂
∂xi

Ji(x
∗
i , s(x

∗)) = 0, which in

the case of unconstrained linear-quadratic games takes the form in (5.33).
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function is minimized

Ji(xi, s(x)) = θγ2(xi − x̂i)
2 + (aNs(x) + b)xi,

where θ, γ, a ∈ R>0 are respectively the cost, thermal, and price-elasticity coeffi-

cients, xi ∈ Xi is the energy consumption and b ∈ R>0 is its corresponding basic

price, x̂i ∈ Xi is the required energy consumption for maintaining the target indoor

temperature, and Ns(x) =
∑

j∈I xj is the total energy consumption. The action

set Xi ⊂ R is defined as

Xi := {xi ∈ R | xi ∈ [xi, x̄i]} ,

where xi, x̄i ∈ R>0 are the minimum and maximum acceptable energy consumption,

respectively, with xi < x̄i. In this game, Assumption 5.2 is satisfied if a <

2θγ2/(N − 1) for N > 1. Using Remark 5.6, this condition can be further relaxed

by finding some ki > 0 such that the mapping col(kifi(xi, σi), σi − xi) with

fi(xi, σi) = (2θγ2 + a)xi + aNσi − 2θγ2x̂i + b is strongly monotone. By performing

the calculations, we obtain that for all a > 0 and N ⩾ 1, the mapping is strongly

monotone if

ki ∈
((√µi −

√
µi + aN

)2
(aN)2

,

(√
µi +

√
µi + aN

)2
(aN)2

)
, (5.34)

where µ = 2θγ2 + a. Therefore, we guarantee convergence to the NE without any

restrictions on the cost parameters.

We considerN = 5 players in this game, i.e., I = {1, . . . , 5}, with θγ2 normalized

to one, a = 0.04, b = 5($/(kWh)), col((x̂i)i∈I) = col(50, 55, 60, 65, 70)(kWh),

col((x̄i)i∈I) = col(60, 66, 72, 78, 84)(kWh), and col((xi)i∈I) = col(40, 44, 46, 52, 56)

(kWh) [46]. For this set of values, the unique NE of the game is computed as

x∗ = col(41.5, 46.4, 51.3, 56.2, 61.1)(kWh) [46, Sec. VI-C].

To implement the NE seeking algorithm, the players are assumed to com-

municate through the connected undirected graph depicted in Figure 5.1. Each

player i arbitrarily chooses the design parameter ki in the interval (5.34) as

col((ki)i∈I) = col(6.2, 0.8, 7.2, 3.5, 0.7). The initial conditions σi(0) and ψi(0) are

chosen randomly, and xi(0) ∈ Xi is selected as xi(0) = 0.5(x̄i + xi). Figure 5.2 de-

picts the resulting action variables of the players and demonstrates their convergence

to the NE of the game.

Next, we consider the case where the action set is Xi = R and illustrate privacy

and robustness properties of the dynamics.

Privacy: Here, we demonstrate that an external adversary cannot uniquely re-

construct the private information of the players. Analogous to (5.28), we con-
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Figure 5.1: Communication graph in energy consumption game.
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Figure 5.2: Action variables of consumers equipped with HVAC systems.

sider a replica of the NE seeking algorithm with the parameters θ′γ′2 = 0.25,

a′ = 0.01, b′ = 7($/(kWh)), col((x̂′i)i∈I) = col(61.5, 66.5, 71.5, 76.5, 81.5)(kWh),

and col((k′i)i∈I) = col(25.1, 3.1, 28.9, 14.2, 2.8).6 Note that these parameters are

different from the true cost parameters of the players. We can see from Figure 5.3

that the eavesdropped information by the adversary (σ(t),ψ(t)) is consistent with

(σ′(t),ψ′(t)) for all times. This means that the private information of the players

is not identifiable and the NE seeking algorithm preserves privacy.

Robustness: We illustrate robustness of the algorithm by adding bounded distur-

6There exist infinite number of parameters satisfying (5.31) and these values are chosen solely
for the sake of presentation.
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Figure 5.3: Eavesdropped information (σ,ψ) and its corresponding replica (σ′,ψ′).

bances to the dynamics. The disturbance vector ν : R⩾0 → R10 is added according

to (5.13), and it prevents an adversary from using parameter identification tech-

niques during transient time. We consider limt→∞ ν(t) = 0 to maintain the NE of

the game in the steady state (see Remark 5.16). Specifically, five elements of ν(t)

are considered as vanishing uniformly distributed random numbers in the interval

[−20, 20] with sampling time 0.1(s). The other five elements are sinusoidal signals

with frequencies between 5 to 25(rad/s), and their time-varying amplitudes start

from 10 and 20 and converge to zero. As can be seen from Figure 5.4, the action

variables remain bounded and converge to the NE of the game, which is consistent

with our analysis. Note that the presence of disturbances decreases the convergence

rate and degrades the transient performance of the algorithm.

5.5.2 Coordinated charging of electric vehicles

Here, we consider the problem of coordinated charging for a population I =

{1, . . . , N} of plug-in electric vehicles (PEVs) over a charging horizon T =

{1, . . . , n} [7, 67]. Let xi = col
(
(xki )k∈T

)
where xki ∈ R is the charging con-

trol of player i ∈ I at time k ∈ T . Then, each player i is aimed at choosing xi ∈ Xi

and minimizing its cost function

Ji(xi, s(x)) =
∑
k∈T

(
a(dk +Ns(xk)) + b

)
xki +

∑
k∈T

(
qi(x

k
i )

2 + cix
k
i

)
,
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Figure 5.4: Action variables of consumers equipped with HVAC systems in the presence
of disturbances.

where a, b ∈ R>0 respectively are the price-elasticity coefficient and the basic price,

dk and Ns(xk) =
∑

j∈I x
k
j respectively are the total non-PEV demand and the

total PEV demand at time k, and qi, ci ∈ R>0. In the cost function, the first term is

the electricity bill of player i, and the quadratic term models its battery degradation

cost [67]. For each vehicle, the charging rate xdi is bounded as 0 ⩽ xdi ⩽ x̄i and

its summation for all k ∈ T should be equal to the required energy of the agent

defined as γi. Therefore, the constraint set of xi is Xi = X 1
i ∩ X 2

i where7

X 1
i : =

{
xi ∈ Rn | xki ∈ [0, x̄i],∀k ∈ T

}
,

X 2
i : =

{
xi ∈ Rn |

∑
k∈T

xki = γi

}
.

(5.35)

In practice, it is assumed that nx̄i ⩾ γi to grantee that Xi is non-empty. The goal

is compute the NE and schedule charging strategies for the entire horizon, and in

this regard, a gather and broadcast algorithm is presented in [67] which guarantees

convergence when qi > aN [67, Thm. 3.1].

Note that fi(xi, σi) = (2qi+a)xi+aNσi+ad+(b+ci)1n with d = col
(
(dk)k∈T

)
;

7The constraint set X 1
i in (5.35) implies that the PEVs charge their batteries over the entire

horizon T . In case a PEV, say i, would like to charge during a shorter horizon Ti ⊆ T , the set
X 1

i modifies to X̄ 1
i :=

{
xi ∈ Rn | xk

i ∈ [0, x̄i], ∀k ∈ Ti and xk
i = 0,∀k ∈ T \ Ti

}
.
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therefore, the mapping col(kifi(xi, σi), σi−xi) is strongly monotone when ki satisfies

ki ∈
((√µi −

√
µi + aN

)2
(aN)2

,

(√
µi +

√
µi + aN

)2
(aN)2

)
,

where µi = 2qi + a. Thus convergence to the NE is guaranteed without requiring

qi > aN .

To compute the NE, each player i can implement (5.5); however, since Xi is the

intersection of two sets, namely, X 1
i and X 2

i , it is not easy to find a closed-form

expression for the projection operator ΠXi (xi, ·). To overcome this challenge, we

use the fact that the solution xi(t) of the NE dynamics does not need to belong to

Xi for all t ⩾ 0, yet it should converge to the NE inside this set. This allows us to

treat xi ∈ X 2
i as a “soft constraint” and modify (5.6) as follows:

ẋi = ΠX 1
i

(
xi,−kifi

(
xi, σi

)
− 1nλi

)
,

σ̇i = −σi + xi −
∑

j∈Ni

(
ψi − ψj

)
,

ψ̇i =
∑

j∈Ni

(
σi − σj

)
,

λ̇i = 1⊤
n xi − γi,

(5.36)

where λi ∈ R is the Lagrangian multiplier. Note that the projection in the xi-

component is solely based on X 1
i , thus its closed-form expression can be obtained

from [52, Lem. 2.1]. The variable λi is included for convergence to the set X 2
i . A

supplementary discussion on the convergence of the above algorithm to the NE is

provided in Section 5.7.2.

A population of N = 100 players, that can communicate by a connected

undirected graph, are considered in this game. The charging horizon is from 12:00

a.m. on one day to 12:00 a.m. on the next day. In order to generate the numerical

parameters, we consider some nominal values and randomize them similar to [26].

In the price function, a = 3.8× 10−3 and b = 0.06($/(kWh)) are considered. The

parameters of the quadratic functions are uniformly distributed random numbers as

qi ∼ {0.004}+[−0.001, 0.001] and ci ∼ {0.075}+[−0.01, 0.01]. In order to generate

γi’s, inspired by [67], we assume that the battery capacity sizes of the PEVs are

Φi ∼ {30} + [−5, 5](kWh), also their initial states of charge (SOCi0) satisfy a

Gaussian distribution with the mean 0.5 and the variance 0.1, and the final states

of charge (SOCif ) are equal to 0.95; thus, γi = Φi(SOCif − SOCi0). In addition,

the maximum admissible charging controls are set to x̄i ∼ {10}+ [−2, 2](kWh).

For each player i ∈ I, the design parameter of the algorithm is ki = (2(2qi +

a) + aN)/(aN)2, the initial condition of the action variable is chosen as xi(0) =

(γi/n)1n ∈ Xi, and σi(0), ψi(0), and λi(0) are selected randomly. Figure 5.5

illustrates the total non-PEV demand d over the charging horizon as well as the
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Figure 5.5: Total non-PEV demand d and its summation with total-PEV demand at
the equilibrium d+

∑
i∈I x

∗
i .

total demand at the equilibrium d+
∑

i∈I x
∗
i . As can be seen, the PEVs shifted

their charging intervals to the nighttime, which minimizes their effects on the grid,

and as explained in [7], the NE has the desired “valley filling” property.

5.6 Conclusions

By employing the structure of aggregative games, we presented a distributed NE

seeking algorithm and provided sufficient conditions for convergence to the NE.

Raised by practical concerns about deviation from the NE seeking dynamics due

to irrationality of the players, we proved robustness of the proposed algorithm

against disturbances in the sense of ISS and L2-stability. Moreover, we have studied

privacy guarantees of the algorithm by showing that private information of the

players cannot be uniquely reconstructed even if all communicated variables are

accessed by an adversary.
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5.7 Appendix

5.7.1 Proofs of the lemmas

Proof of Lemma 5.3. (i) The mapping F is ϵ-strongly monotone if

col
(
x− x′,σ − σ′)⊤(F (x,σ)− F (x′,σ′)

)
⩾ ϵ∥x− x′∥2 + ϵ∥σ − σ′∥2 (5.37)

for all x,x′,σ,σ′ ∈ RnN . By adding and subtracting (x−x′)⊤K col
(
(fi(x

′
i, σi))i∈I

)
from the left hand side and using (5.3) and Assumption 5.2, we have

col
(
x− x′,σ − σ′)⊤(F (x,σ)− F (x′,σ′)

)
⩾∑

i∈I
kiµi∥xi − x′i∥2 −

∑
i∈I

(kiℓi + 1)∥xi − x′i∥∥σi − σ′
i∥+

∑
i∈I

∥σi − σ′
i∥2.

As a result, to establish the inequality in (5.37), it is sufficient to define ϵ :=

mini∈I ϵi where ϵi > 0 satisfies

kiµi∥xi−x′i∥2−(kiℓi+1)∥xi−x′i∥∥σi−σ′
i∥+∥σi−σ′

i∥2 ⩾ ϵi∥xi−x′i∥2+ϵi∥σi−σ′
i∥2.

Clearly, such ϵi exists providing that8[
kiµi − (kiℓi+1)

2

− (kiℓi+1)
2 1

]
≻ 0. (5.38)

This conditions holds if and only if ki > 0 satisfies 4kiµi − (kiℓi + 1)2 > 0, which is

equivalent to (5.4).

(ii) Let σ = 1N ⊗ s(x) and σ′ = 1N ⊗ s(x′). By using the definition of s(x) we

get σ−σ′ = 1N ⊗ s(x−x′). Hence, inequality (5.37), proven in part (i), becomes

(x− x′)⊤K col
(
(fi(xi, s(x))− fi(x

′
i, s(x

′)))i∈I
)

+(1N ⊗ s(x− x′))⊤
(
(1N ⊗ s(x− x′))− (x− x′)

)
⩾ ϵ∥x− x′∥2 + ϵ∥1N ⊗ s(x− x′)∥2,

(5.39)

where we used the definition of F given by (5.3). Let

Π := I − 1

N
1N1

⊤
N . (5.40)

8In fact ϵi can be taken as the smallest eigenvalue of (5.38).
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Then, we employ 1N ⊗ s(x− x′) = 1
N (1N1

⊤
N ⊗ In)(x− x′) to obtain

(1N ⊗ s(x− x′))− (x− x′) = −(Π⊗ In)(x− x′),

Therefore, the second term on the left hand side of (5.39) is zero as 1⊤
NΠ = 0, and

the proof is complete. ■

Proof of Lemma 5.5. Under Assumption 5.1, it follows from [87, Thm. 4.3]

that the game admits an NE if Ji(xi, s(x)) is strictly convex in xi for all x−i ∈
X−i :=

∏
j ̸=i Xj where x−i := col

(
x1, . . . , xi−1, xi+1, . . . , xN

)
. For this, it suffices

fi(xi, s(x)) to be ηi-strongly monotone in xi, i.e.,

(xi − x′i)
⊤(fi(xi, 1

N
xi +

1

N

∑
j ̸=i

xj)− fi(x
′
i,

1

N
x′i +

1

N

∑
j ̸=i

xj)
)
⩾ ηi∥xi − x′i∥2,

for all xi, x
′
i ∈ Xi, x−i ∈ X−i, and some ηi > 0. By adding and subtracting

(xi − x′i)
⊤fi(x

′
i, s(x)) from the left hand side and using Assumption 5.2, it is

straightforward to show that the above inequity is satisfied with ηi := µi − ℓi
N .

Hence, the game has an NE, namely x̄ ∈ X , that is a solution of the varia-

tional inequality VI(X , col
(
(fi(xi, s(x)))i∈I

)
) [88, Prop. 1.4.2]. Moreover, since

K col
(
(fi(xi, s(x)))i∈I

)
is strongly monotone (Lemma 5.3(ii)) and X is closed

and convex, the variational inequality VI(X ,K col
(
(fi(xi, s(x)))i∈I

)
) has a unique

solution x′ ∈ X [88, Thm. 2.3.3]. Lastly, we need to show that x̄ is unique and

equal to x′.

Clearly, we have

(x− x̄)⊤ col
(
(fi(x̄i, s(x̄)))i∈I

)
⩾ 0, x ∈ X ,

which can be rewritten as∑
i∈I

(xi − x̄i)
⊤fi(x̄i, s(x̄)) ⩾ 0, x ∈ X .

For a given j ∈ I, set xi = x̄i for all i ∈ I \ {j}. Then, by using kj > 0, the above

inequality yields

kj(xj − x̄j)
⊤fj(x̄j , s(x̄)) ⩾ 0, ∀xj ∈ Xj .

By performing the same procedure for the other components of x̄ and rewriting

all obtained inequalities into the vector form, we can see that x̄ is the solution of

VI(X ,K col
(
(fi(xi, s(x)))i∈I

)
), i.e., x̄ = x′. Consequently, since x̄ is an arbitrary

solution and x′ is unique, both variational inequality problems have an identical

solution, which concludes the proof. ■
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5.7.2 On convergence of the modified algorithm (5.36)

Consider the algorithm (5.36) in vector form as follows:

ẋ = ΠX 1

(
x,−K col

(
(fi(xi, σi))i∈I

)
− (IN ⊗ 1n)λ

)
,

σ̇ = −σ + x− (L⊗ In)ψ,

ψ̇ = (L⊗ In)σ,

λ̇ = (IN ⊗ 1⊤
n )x− γ,

(5.41)

where λ = col((λi)i∈I), γ = col((γi)i∈I), and X 1 =
∏

i∈I X 1
i with X 1

i de-

fined in (5.35). Similar to (5.6), we can guarantee that for any initial condition

(x(0),σ(0),ψ(0),λ(0)) ∈ X 1 × RnN × RnN × RN , the solution of (5.41) is unique

and belongs to X 1 × RnN × RnN × RN for all t ⩾ 0. We claim that such a

solution converges to an equilibrium corresponding to the NE of the game. To

prove this, consider an equilibrium point (x̄, σ̄, ψ̄, λ̄), then we have σ̄ = 1N ⊗ s(x̄),

(L⊗ In)ψ̄ = (Π⊗ In)x̄, and

0 = ΠX 1

(
x̄,−K col

(
(fi(x̄i, s(x̄)))i∈I

)
− (IN ⊗ 1n)λ̄

)
, (5.42)

0 = (IN ⊗ 1⊤
n )x̄− γ. (5.43)

The second equality implies that x̄ ∈ X 2 =
∏

i∈I X 2
i . Employing Moreau’s decom-

position theorem and (5.42), we can perform an analogous analysis to the proof of

Proposition 5.7 and conclude that x̄ is the solution of VI(X 1,K col
(
(fi(xi, s(x)))i∈I

)
+

(IN ⊗ 1n)λ̄). This means that x̄ is also the solution of the following optimization

problem (see [88, Eq. 1.2.1]):

min
y∈X 1

y⊤(K col
(
(fi(x̄i, s(x̄)))i∈I

)
+ (IN ⊗ 1n)λ̄).

Next we use the definition of X 1 and write the KKT conditions corresponding to this

optimization problem. Let gki (x) := col(xki − x̄i,−xki ), gi(x) := col
(
(gki (x))k∈T

)
,

and g(x) := col
(
(gi(x))i∈I

)
; then we see that g(x) ⩽ 0 represents the set X 1.

Therefore, there exists µ ∈ R2nN such that the following KKT conditions hold

0 =K col
(
(fi(x̄i, s(x̄)))i∈I

)
+ (IN ⊗ 1n)λ̄+

∂g

∂x
(x̄)⊤µ,

0 ⩽ µ ⊥ g(x) ⩽ 0.

Considering the above equations together with (5.43), we conclude from [88, Prop.

1.3.4(b)] that x̄ is the solution of VI(X ,K col
(
(fi(xi, s(x)))i∈I

)
), and in turn, it

is the NE of the game (Lemma 5.5). Convergence analysis of the algorithm follows

from analogous steps to the proof of Theorem 5.8.



Chapter 6

Conclusions

Uncoordinated interaction among noncooperative users of modern engineering

systems can negatively influence overall performance of these systems. To address

this problem, we focused on the problem of designing suitable interventions for

coordination of noncooperative agents/players. We proposed several mechanisms

that can align the strategies of noncooperative agents with a specified outcome,

which can be a desired set of strategies, the social optimum, or the NE of the

noncooperative game. In this chapter we give a summary of the main contributions

of this thesis and provide possible future directions for extending the work of the

thesis.

6.1 Contributions

Here we highlight and outline the main contributions of the thesis:

• We introduced a novel framework, termed as nudge, where a central reg-

ulator uses price prediction signals and alters the aggregative behavior of

noncooperative price-taking agents towards a desired behavior. We modeled

the decision making process of the agents by taking into account that the

agents update their trust on the prediction signal based on the history of its

accuracy. We then considered the problem of nudge mechanism design for

two types of desired behaviors: stationary and temporal. We proposed two

nudge mechanisms, termed as hard and soft, to achieve stationary desired

behaviors, and developed a third nudge mechanism, termed adaptive, to

guarantee a temporal desired behavior. We proved that under any of the

presented mechanisms, full trust of the agents is achieved and the aggregative

behavior of the agents converges to the desired one. A byproduct of our

analysis was sufficient conditions for existence of Carathéodory solutions for

nonautonomous projected dynamical systems.
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• For noncooperative network games, we developed intervention mechanisms

that allow a central regulator to steer the actions of selfish players to the

social optimum. In this framework, the selfish players follow pseudo-gradient

dynamics to maximize their individual payoff functions, whereas the regulator

uses interventions to modify the players’ actions towards the social optimum.

Suitable mechanisms for this problem are subject to the side game information

available to the regulator. We included this in our analysis by considering

several cases based on whether the actions and interventions are restricted to

constraint sets, and what game information is available to the regulator. We

then provided suitable static, dynamic, and adaptive intervention mechanisms.

For each case, we analytically proved stability of the overall closed-loop system

and convergence of the players’ actions to the social optimum.

• We studied the problem of finding the NE of noncooperative aggregative games

and presented a distributed NE seeking algorithm. Our algorithm allows the

players to converge to the NE by communicating some auxiliary variables

to their neighboring players, but they do not need to share their actions or

any design parameters. Noting that in practice, the actions of players may

deviate from the NE seeking protocol, we performed ISS and L2-stability

analyses and demonstrated robustness of the proposed dynamics. Finally,

we performed privacy analysis on the algorithm and established its privacy

preserving properties. In particular, we proved that private information of

the players cannot be reconstructed even if an adversary has access to all

communicated variables and the structure of the algorithm.

6.2 Future works

The following recommendations can be followed as future research directions:

• For the proposed nudge framework, it is an interesting line of research to

investigate extensions to practical applications such as transportation as well

as power networks. In transportation, drivers are not aware of traffic status

before choosing a path to their destinations, instead they can observe the

traffic information on navigation apps. This is an ideal setup for applying

the nudge framework where a traffic regulator broadcasts strategic traffic

information to control the traffic flow. Similarly, in power networks with

hourly pricing, energy price is not available a priori. To schedule their energy

consumption throughout the day, consumers have access to day-ahead prices

which are indications of possible hourly market prices for the current or

following day. The energy provider, therefore, can use nudging and provide

suitable day-ahead prices to shift the consumption pattern of consumers to

off-peak hours.
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• While we designed suitable intervention mechanisms that achieve the social

optimum in network games, the proposed protocols were not designed to

satisfy any optimality criterion during the transient time. It is of interest

to investigate the design of interventions that provide optimal evolution of

the action profile as well as convergence to the social optimal. From another

preservative, our analysis was restricted to quadratic network games. It

would be worthwhile to extend the results to network games with general

payoff functions to capture broader range of applications. Another interesting

direction is to develop mechanisms for the case where the actions of the

players share coupled constraints. Such constraints appear in applications

where resources are shared among players, see e.g., [26, 121]. Finally, it could

be interesting to design interventions that are applied to an optimal subset

of the players, see e.g., [122] in the context of super-modular games.

• A natural generalization of the distributed NE seeking algorithm is the

extension to aggregative games with coupling constraints as well as time-

varying communication graphs. Another research question within this theme

is using aggregative game dynamics as controllers to steer a physical system.

Examples of the latter in Cournot and Bertrand competitions can be found

in [48] and [49], respectively. Lastly, it is of interest to explore resource

allocation in networked systems via the use of the proposed NE protocol. An

early attempt in this direction is carried out in [123], where we have proposed

a hierarchical energy management scheme for aggregating distributed energy

resources for grid flexibility services.
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Summary

Due to the strong interconnection between modern engineering systems and their

users, performance of these systems heavily rely on the user behavior. As a result,

uncoordinated user behavior can deteriorate the overall performance and entail

undesired outcomes. To address this problem, this thesis studies the problem of

designing suitable interventions that provide coordination among noncooperative

agents/players. We investigate the development of suitable interventions in several

setups and propose mechanisms that achieve a desired outcome. More specifically,

we present protocols that align the strategies of noncooperative agents with a

specific outcome such as a desired set of strategies, the social optimum, or the

Nash equilibrium of a noncooperative game. Below we summarize the problems

that are studied in this thesis.

In the first part of the thesis, we consider the problem of altering the aggregative

behavior of noncooperative price-taking agents towards a desired stationary or

temporal behavior. We address this problem by introducing a nudge framework,

where a system regulator modifies the behavior of the agents by providing a price

prediction signal. The actual price signal can be different from the prediction signal,

and this introduces reliability issues. To model the fact that the agents do not

thoughtlessly follow the prediction signal, we accommodate the model of the agents

with trust dynamics. We then propose several nudge mechanisms that generate

suitable prediction signals and guarantee convergence to the desired behavior.

In the second part of the thesis, we focus on designing intervention mechanisms

that steer the actions of noncooperative players in network games to the social

optimum. Noting that achieving the social optimum depends on the available game

information, we investigate different cases based on the knowledge of the system

regulator on the game as well as constraints on the actions and interventions. For

each case, we propose an intervention mechanism that allows the system regulator to

suitably modify the marginal returns of the players and obtain the social optimum.

Lastly, in the third part, we turn our attention to the problem of Nash equilib-

rium (NE) seeking in aggregative games. We develop a distributed algorithm where

the players communicate to their neighboring players, determined according to a

communication network. We then show that the actions of the players’ converge

to the NE under the proposed algorithm. Afterwards, we analyze input-to-state
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stability and L2-stability properties of the algorithm and establish its robustness

properties. Finally, we investigate privacy preserving properties of the algorithm

against adversaries with full knowledge on the structure of the algorithm and all

communicated variables. Despite having access to this information, we show that

such strong adversaries cannot reconstruct private information of the players, hence

proving that the algorithm preserves privacy of the players.



Samenvatting

Door de sterke verwevenheid tussen moderne technische systemen en hun gebruikers

zijn de prestaties van deze systemen sterk afhankelijk van het gebruikersgedrag.

Daardoor kan ongecoördineerd gebruikersgedrag de algemene prestaties verslechte-

ren en ongewenste resultaten met zich meebrengen. Om dit probleem aan te pakken,

bestudeert dit proefschrift het probleem van het ontwerpen van geschikte inter-

venties die zorgen voor coördinatie tussen niet-coöperatieve agenten/spelers. We

onderzoeken de ontwikkeling van geschikte interventies in verschillende opstellingen

en stellen mechanismen voor die een gewenst resultaat bereiken. Specifieker stellen

we protocollen voor die de strategieën van niet-coöperatieve agenten afstemmen

op een specifieke uitkomst, zoals een gewenste verzameling strategieën, het sociale

optimum, of het Nash-evenwicht van een niet-coöperatief spel. Hieronder volgt een

samenvatting van de problemen die in dit proefschrift worden bestudeerd.

In het eerste deel van het proefschrift beschouwen we het probleem van het

veranderen van het aggregatieve gedrag van niet-coöperatieve prijsnemende agenten

naar een gewenst stationair of tijdelijk gedrag. Wij pakken dit probleem aan

door een nudge-kader te introduceren, waarbij een systeemregulator het gedrag

van de agenten wijzigt door een prijsvoorspellingssignaal te geven. Het werke-

lijke prijssignaal kan verschillen van het voorspellingssignaal, en dit introduceert

betrouwbaarheidsproblemen. Om het feit te modelleren dat de agenten het voor-

spellingssignaal niet gedachteloos volgen, passen wij het model van de agenten aan

met vertrouwensdynamiek. Vervolgens stellen wij verschillende nudge-mechanismen

voor die geschikte voorspellingssignalen genereren en convergentie naar het gewenste

gedrag garanderen.

In het tweede deel van het proefschrift richten we ons op het ontwerpen van

interventiemechanismen die de acties van niet-coöperatieve spelers in netwerkspellen

naar het sociale optimum sturen. Aangezien het bereiken van het sociaal optimum

afhangt van de beschikbare spelinformatie, onderzoeken wij verschillende gevallen

op basis van de kennis van de systeemregulator over het spel en de beperkingen op

de acties en interventies. Voor elk geval stellen wij een interventiemechanisme voor

dat de systeemregulator in staat stelt de marginale opbrengsten van de spelers aan

te passen en het sociale optimum te bereiken.

Tenslotte richten wij onze aandacht in het derde deel op het probleem van
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het zoeken naar Nash-evenwicht (NE) in aggregatieve spelen. Wij ontwikkelen

een gedistribueerd algoritme waarbij de spelers communiceren met hun naburige

spelers, bepaald volgens een communicatienetwerk. Vervolgens tonen wij aan dat

de acties van de spelers naar het NE convergeren onder het voorgestelde algoritme.

Daarna analyseren we de input-naar-toestandstabiliteit en de L2-stabiliteit van

het algoritme en stellen we de robuustheid ervan vast. Tenslotte onderzoeken

we de privacybeschermende eigenschappen van het algoritme tegen tegenstanders

met volledige kennis over de structuur van het algoritme en alle gecommuniceerde

variabelen. Ondanks de toegang tot deze informatie tonen wij aan dat dergelijke

sterke tegenstanders de privé-informatie van de spelers niet kunnen reconstrueren,

daarmee is bewezen dat het algoritme de privacy van de spelers beschermt.
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