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GENERAL SUMMARY 

With an estimated 390 million human infections every year, dengue virus (DENV) is the 

most frequently transmitted arbovirus in tropical and subtropical areas of the world [1]. 

Although the majority of human infections are clinically inapparent or manifest as an acute 

flu-like illness, approximately 500,000 to 1 million of infected individuals develop severe 

symptoms [2,3]. The severe manifestations are triggered by aberrant immune responses that 

lead to excessive inflammation and increased permeability of microvascular endothelium 

[4]. If untreated, plasma leakage and hemorrhages caused by endothelial cells (ECs) 

dysfunction, may ultimately lead to life-threatening hypovolemic shock and organ failure 

[5]. 

Innate immune cells that encounter DENV in the early stages of infection are responsible 

for infection-induced inflammation [6]. Of these, monocytes and macrophages play a dual 

role as they also represent DENV primary target cells and, thus play a critical role in the 

process of systemic inflammation and disease progression [6–8]. In this thesis, we 

characterized the mechanisms by which monocytes and macrophages sense and respond to 

DENV infection. Furthermore, we evaluated how natural, host-intrinsic 

immunomodulatory compounds such as Vitamin D (VitD3) and LL-37 influence the innate 

immune response of macrophages to DENV infection.  

In chapter 2, we dissected the mechanisms underlying TLR2-mediated activation of DENV-

infected monocytes. Using targeted blocking of various TLRs in purified monocytes, we 

demonstrated that recognition of DENV by TLR2 and its coreceptors CD14 and CD36 

induces NF-κB-dependent inflammatory and antiviral responses. This TLR2-mediated 

activation in turn activates endothelial cells (ECs) and leads to the loss of their integrity. 

Functional analysis revealed that the key function of surface-expressed TLR2 axis relies on 

its ability to facilitate DENV internalization and active infection. In addition, intracellular 

activation of TLR3, but not TLR8, was found to contribute to TLR2-initiated responses. 

These results highlight the dual role of the TLR2 axis during DENV replication in 

monocytes: on the one hand, TLR2 mediates cell activation and immune responses, and on 

the other hand, it also mediates viral entry and replication.  
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Previous work of our group demonstrated that a sustained high expression of TLR2 on 

Classical monocytes (CM) of acutely DENV-infected patients is associated with the 

subsequent development of severe disease [9]. Therefore, in chapter 2, we continued our 

research by dissecting the function of TLR2 during DENV infection in different monocyte 

subsets. Analysis of the steady state expression of TLR2 and its co-receptors on different 

monocyte subsets showed that only the expression of the co-receptors differed among 

monocyte subsets. CM and Intermediate monocytes (IM) expressed higher levels of CD14 

and CD36 than Non-classical monocytes (NM), while TLR10 expression was higher in NM. 

By infecting sorted CD16- (CM) and CD16+ (NM and IM) monocyte subsets, we found that 

CM produce significantly higher levels of infectious virus than NM and IM together. 

Furthermore, TLR2 blocking prior to DENV infection affected the virus production in CM, 

whereas it had no effect on the infection in IM and NM. Altogether, findings described in 

chapter 2 provided strong evidence for the central role of CM-expressed TLR2 axis in DENV 

infection and inflammation, and thereby shed a light on a distinct role of this receptor and 

monocyte subsets in disease pathogenesis.  

Therapeutic strategies that prevent or regulate the aberrant immune response to DENV 

infection might mitigate dengue disease burden. We and others have previously found that 

VitD3 has antiviral and immunomodulatory effect against DENV infection [10,11]. In 

chapter 3, we studied the regulation of innate immune responses to DENV infection in 

monocyte-derived macrophages (MDMs) differentiated in the presence or absence of VitD3 

(D3-MDMs). We observed that D3-MDMs expressed lower levels of several PRRs including 

RIG-I, TLR3, TLR7 and TLR9. Furthermore, in response to DENV infection, D3-MDMs 

produced lower quantities of IL-6 and TNF-α when compared to their MDMs counterpart. 

Downregulation of TLR9 in D3-MDMs was associated with a lower production of reactive 

oxygen species in response to DENV infection. Also, we found that although VitD3 

differentiation of D3-MDMs did not modulate expression of IFN-I, higher expression levels 

of PKR and OAS1 were seen during DENV infection. Importantly, the observed effects were 

independent of reduced infection, highlighting the intrinsic differences between D3-MDMs 

and MDMs Taken together, our study demonstrates that the presence of VitD3 during 

monocyte differentiation modulates the innate immune response of macrophages during 

DENV infection. 
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VitD3 is known to enhance the expression of various antimicrobial and immunomodulatory 

peptides including LL-37 [12,13]. In chapter 4, we evaluated the baseline gene expression 

and production of LL-37 in MDMs that were differentiated in the absence or presence of 

VitD3. Notably, irrespectively of DENV infection, we found very low CAMP (LL-37 gene) 

expression and no detectable production of LL-37 in MDMs. Yet, differentiation of MDMs 

in the presence of VitD3 boosted the baseline levels of CAMP expression and LL-37 

production. We further evaluated the antiviral and immunomodulatory properties of 

exogenous LL-37 in DENV-infected MDMs. We found that simultaneous exposure of 

MDMs to LL-37 and DENV inhibits viral replication and results in a reduced production of 

TNF-α and IL-6. Interestingly, addition of LL-37 2 hours after DENV infection had no effect 

on infection, yet decreased the production of IL-6, suggesting that LL-37 can directly 

modulate the immune response. Indeed, further analysis showed that LL-37 added after 

DENV infection increases expression of TLR4, TLR9, PKR, OAS1 and SOCS-1. In summary, 

the results presented in chapter 4, demonstrate that LL-37 has both antiviral and 

immunoregulatory properties in MDMs and its production can be boosted by treatment 

with VitD3 prior to DENV infection. 

Altogether, the studies presented in this thesis can be summarized in two key messages. 

First, TLR2 on CM plays an important role in DENV pathogenesis. Second, VitD3 and LL-

37 show both antiviral and immunomodulatory effects against DENV infection in human 

primary cells and show potential as therapeutic candidates. Below I will discuss the 

relevance of these findings. In part I, I will focus on the implications of TLR2 function in 

DENV pathogenesis. In part II, I will debate the feasibility of exploiting VitD3 and LL-37 as 

therapeutic strategies to prevent and/or mitigate the development of severe dengue.  

 

PART I: Key role of TLR2 in monocytes in shaping innate immune responses to DENV 

infection 

1. Role of TLR2 in DENV infection    

A number of viruses have been shown to activate TLR2 including yellow fever vaccine YF-

17D virus [14] measles virus [15], human cytomegalovirus (CMV) [16], varicella zoster virus 

[17], hepatitis C virus (HCV) [18] human immunodeficiency virus 1 (HIV-1) [19] herpes 
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simplex virus (HSV) [20], vaccinia virus (VV) [21], and recently, SARS-CoV-2 [22] and 

DENV [9]. In addition, we showed in chapter 2, that recognition of DENV by TLR2 mediates 

activation of NF-κB and production of inflammatory and antiviral interferons that affects 

ECs barrier function. 

Activation of TLR2 during viral infections has proven both advantageous and 

disadvantageous to the host. For example, TLR2 activation by VV and CMV induce the 

production of IFN-β [23], which restricts viral replication in an auto- and paracrine manner 

[24]. In addition, TLR2 activation in NK cells is important for cell activation and control of 

murine CMV and VV infections [25,26]. Furthermore, previous studies have shown that 

TLR2 activation is important for the development and shaping of adaptive immunity. In an 

in vitro model of bacterial infection, stimulation of MoDC with a TLR2 agonist promoted 

Th2/Th17 T cell differentiation [27]. Similarly, activation of TLR2 in CD8 T cells by VV 

promotes survival and clonal expansion of these cells [28]. 

In contrast with an advantageous effect of TLR2 activation for the host, other studies have 

shown that this contributes to the pathogenesis of certain viral infections. For example, TLR2 

activation by HSV-1 mediates an inflammatory cytokine response in murine DCs, thereby 

contributing to encephalitis [29,30]. Likewise, in patients with chronic hepatitis caused by 

HCV infection, an increased expression of TLR2 in PBMCs correlated with increased levels 

of proinflammatory cytokines and alanine aminotransferase in serum [31,32]. Furthermore, 

in PBMCs, TLR2 has been shown to sense SARS-CoV-2 envelope protein thereby 

contributing to COVID-19 disease severity [33]. Therefore, it appears that function of a 

protective or detrimental role of TLR2 on viral infections may depend on the cell type it is 

expressed and the biology of the pathogen. 

In chapter 2, we also disclosed a dual role for TLR2 on CM during DENV infection and its 

contribution to disease pathogenesis (Figure 1). The TLR2 axis was found to facilitate 

binding of DENV particles and internalization into CM thereby promoting viral replication 

and release of infectious particles. On the other hand, TLR2 activated NF-κB and induced 

the production of proinflammatory cytokines, which in turn induced ECs dysfunction. 

Additionally, activation of TLR2 in the course of infection triggered the production of IFN-

I/III by monocytes during DENV infection, which suggests that TLR2-mediated signaling 
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may contribute to an antiviral state. Whether TLR2-induced antiviral interferons contribute 

to containment of DENV replication and viremia remains to be studied, for instance using 

humanized mice [34].  

 

Figure 1. Dual role of TLR2 during DENV infection in monocytes 

DENV particles are recognized by TLR2 with the cooperation of CD14 and CD36 co-receptors. 1. On 
one hand, TLR2 mediates internalization and entry of viral particles into the cell promoting DENV 
replication and production of newly synthesized infectious particles. 2. On the other hand, TLR2 
activation induced by DENV particles, induces activation of signaling pathways involving NF-κB and 
possibly IRFs, leading to the expression of inflammatory cytokines and antiviral interferons. 
Production of inflammatory mediators are responsible for the subsequent induction of endothelial 
dysfunction. Figure designed with Biorender.  

 

In line with our results, other studies have also shown that TLR2 contributes to DENV 

pathogenesis. Interestingly, TLR2 expressed on neutrophils and macrophages together with 

CLEC5A have been shown to underly the release of inflammatory mediators in response to 

extracellular vesicles produced by DENV-infected platelets [35]. Furthermore, the 



 
Chapter 5 

155 
 

simultaneous blockade of TLR2 and CLEC5A in STAT1KO mice reduced inflammation and 

mitigated DV-induced systemic vascular permeability and lethality [35]. Also, an in vivo 

study using BL/6 mice revealed that TLR2 activation by DENV in DCs promoted Th2 

polarized humoral responses, which increased infectivity of secondary DENV infection via 

antibody-dependent enhancement (ADE) [36].  

Future studies will be needed to demonstrate how TLR2 on human immune cells 

contributes to the pathogenesis of primary and secondary dengue infections. However, the 

currently available body of evidence suggests that TLR2-mediated recognition of DENV, by 

either mediating infection and/or modulating innate and adaptive immunity represents a 

trojan horse for the host defense and thereby may contribute to severe disease development. 

 

2. Distinct role of monocyte subsets during DENV infection 

 

2.1. Different susceptibility of monocytes subsets to DENV infection 

The distinctive transcriptomic programs of monocyte subsets are likely to underly 

differences in susceptibility and permissiveness for viral infections [37]. Indeed, CD16+ 

monocytes (IM and NM) are more susceptible to HIV-1 infection than their CD16- 

counterpart (CM) [38]. Also, Michlmayr et al. reported IM to be the main target of infection 

for the closely related to DENV, Zika virus (ZIKV) [39]. On the other hand, the observations 

made in chapter 2 suggest that CM are the primary contributors to DENV viremia. This may 

indicate that ZIKV and DENV differentially infect different monocyte subsets. Importantly 

however, Michlmayr et al. did not assess the relative permissiveness of monocyte subsets 

like it has been done for HIV-1 [38] or DENV (chapter 2). It is thus possible that the reported 

preferential targeting of IM by ZIKV is a result of the ability of DENV-infected CM to 

differentiate into IM, as explained above. Consistent with this concept, both DENV and 

ZIKV infections are associated with simultaneous decrease of CM and increase in IM 

numbers [9,39,40]. Moreover, DENV NS3 is found predominantly in CM and IM, with no 

marginal detection in NM [9]. Therefore, we propose that CM subset, which accounts for 

approximately 90% of all monocytes prior to infection, represents the most frequent and 

most susceptible/permissive subset to DENV infection, but during infection it differentiates 

into IM subset.  In the study presented in chapter 2, we couldn’t separate enough IM and 



Summarizing discussion 

156 
 

NM to assess their individual susceptibility and permissiveness. However, we did learn that 

together IM and NM produce less infectious virions than CM, and that their infection does 

not rely on TLR2 axis. Future studies will be needed to establish individual susceptibility 

and permissiveness of IM and NM to DENV infection and elucidate what host factors 

facilitate or impede DENV infection in these cells. This knowledge will allow to design 

specific interventions targeted at ameliorate viral load and disease pathogenesis 

2.2. Distribution of monocyte subsets during DENV infection 

Upon DENV infection the distribution of monocyte subsets changes considerably. We and 

others have consistently shown that frequencies of IM are higher in DENV-infected patients 

compared to healthy controls, while frequencies of CM are decreased [8,9,40,41]. Also, IM 

and NM show increased expression of activation markers and increased production of 

proinflammatory cytokines during DENV infection [8,40]. Whether and how this altered 

distribution and activation of monocyte subsets is linked to disease pathogenesis is subject 

of investigation. In a collaborative study with Institute Pasteur in Cambodia, our group has 

recently found that CM frequency in acute DENV-infected children correlates with disease 

progression. Additionally, a sustained high TLR2 expression on CM of these patients, was 

associated with severe dengue [9], suggesting that CM play a key role in DENV 

pathogenesis. In chapter 2 we elaborated on these findings and found that CM are more 

susceptible/permissive to DENV infection and produced a higher inflammatory response 

when compared to IM and NM, highlighting a differential role of monocyte subsets in 

DENV pathogenesis.   

Changes in monocyte subsets during DENV infection could be explained by the role of CM 

as the main target for viral infection. Lower numbers of CM may be a result of increased cell 

death of this subset caused by viral replication. Supporting this hypothesis, it has been 

found that lifespan of CM is shorter than IM and NM (1 day vs 4 and 7 days) [42], suggesting 

that CM are more prone to cell death. More studies are needed to explore test this 

hypothesis. Conversely, expansion of IM may be the consequence of CM differentiation into 

IM after DENV infection mediated by TLR2 (Figure 2). Indeed, Patel et al. showed that CM 

have the potential to give rise to IM and NM by analyzing monocytes of healthy volunteers 

grafted into humanized mice [42]. Also, Fenutria et al. showed that in vitro infection of 

PBMCs with ZIKV or DENV increases the proportion of IM and NM [43]. However, in our 
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PBMC infection model, DENV did not lead to increased IM proportions but rather of NM 

[9]. Nevertheless, active DENV infection upregulated the expression of CD16 in a TLR2-

dependent manner, suggesting that TLR2 plays a key role in CM differentiation to other 

monocyte subsets. Further studies are needed to study the mechanisms of cell death and 

differentiation of monocyte subsets during DENV infection, that would provide evidence 

for explaining the variation of monocyte subsets frequencies in infected patients 

 

Figure 2. Model of the role of monocyte in DENV pathogenesis 

Classical (CM) monocytes sense DENV via TLR2 complex (TLR2, CD14 and CD36) leading to 
increased viral replication in these subsets and increased production of inflammatory mediators. 
Activation of CM by TLR2 may be mediating their differentiation into IM, explaining the expansion 
of this subset in DENV patient´s blood. DENV infection in intermediate (IM) and non-classical 
monocytes (NM) is mediated by other type of receptors, leading to lower levels of replication and 
inflammatory response compared to other subsets. Inflammatory mediators produced by monocytes 
together with inter alia viral NS1, may mediate activation and increased permeability of ECs. Further, 
NM patrol and interact with ECs via CD54, CD11b and CX3CR1 expression, which are overexpressed 
in NM of DENV-infected patients [40]. Whether interaction of DENV-infected NM with ECs 
contribute to endothelial permeability remains to be explored. Figure designed with Biorender 
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2.3. Role of monocyte subsets in DENV-induced inflammation and endothelial 

permeability 

Induction of endothelial permeability, the hallmark of severe disease development is likely 

to involve multiple mechanisms. To date, multiple host cell-derived mediators and viral 

NS1 protein have been suggested to either directly or indirectly affect ECs barrier function 

in an acute phase of disease (Figure 2) [44–46]. Within blood cells, monocyte-derived 

responses to DENV are well known to drive EC dysfunction [7,47]. However, the individual 

contributions of each monocyte subset to EC activation and/or permeability in the course 

of infection remain poorly understood. 

In general, monocyte subsets vary in their ability to secrete the highly inflammatory 

cytokines IL-6, IL-1β and TNF- . For example, most studies have shown that after LPS 

stimulation IM and NM are the main producers of IL-6, IL-1β and TNF-α, while CM are the 

highest producers of chemokines like IL-8, CCL-2, CCL-3 and the anti-inflammatory IL-10 

[37,48–50]. This inflammatory potential is also seen in some diseases like sepsis and lupus 

[50]. Therefore, IM and NM are usually referred as "inflammatory monocytes" in literature. 

In line with these observations, in chapter 2, we found a profound difference in the 

responsiveness of monocyte subsets to DENV and TLR2 agonist, PAM3CSK4. The TLR2 

agonist triggered inflammatory response primarily in CD16+ monocytes (IM and NM) 

evidenced by increased production of IL-6, IL-8, IL-1β, TNF- , IFN- , IFN-β, IFN-λ1 and 

IFN-λ2/3 compared to CD16- monocytes (CM). In contrast, DENV infection prompted TLR2 

(and TLR3) dependent inflammatory responses predominantly in CM (Figure 2). 

Altogether, our results evidence that the inflammatory response of CM during DENV 

infection is dependent of TLR2 axis and plays a key role in the pathogenesis of severe 

disease.  

Notably, our results in chapter 2 showed that the levels of proinflammatory cytokines 

released by individual monocytes subsets did not necessarily translate to a lack of their 

ability to induce inflammation in ECs. In depth analysis of individually in vitro infected 

CD16- and CD16+ monocytes indicated that responses of both subsets induce ECs 

permeability. Nonetheless, they do so via TLR2-dependent and TLR2-independent 
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mechanisms and to a lower extent than DENV-infected (unsorted) monocyte cultures. Based 

on these results, we propose a monocyte crosstalk model in which a TLR2-indepenent 

mechanism in CD16+ monocytes trigger production of inflammatory mediators that exert 

enhancing or additive effect on TLR2-mediated activation of CM. This crosstalk would 

ultimately drive ECs activation and permeability (Figure 2), similar to that reported by Pan 

et al, which showed NS1-mediated recruitment of MMP-9 close to ECs and facilitated its 

enzymatic activity [51]. More studies will be needed to elucidate the role of other cytokines, 

DAMPS and cell contact mediated crosstalk between the individual subsets during DENV 

infection and ECs permeability. 

2.4. Future perspectives on the function of monocyte subsets in DENV pathogenesis 

Monocyte subsets appear to have different roles in DENV pathogenesis. Unfortunately, in 

chapter 2 we did not manage to distinguish between the contribution of IM and NM in 

infection and immune responses, due to the low number of these subsets in peripheral 

blood. Fortunately, multidimensional single cell techniques have recently been developed 

and can be used to delineate function of each of the subsets in the course of DENV infection, 

even under the low numbers of IM and NM observed in humans in steady state and in 

disease. In fact, latest insights from single-cell RNA sequencing (scRNAseq) and mass 

cytometry (CyTOF) data have underscored differences in expression and functionality 

among subsets [37,52,53]. For example, Villani et al. suggested that within IM, there are two 

set of different expressed genes that would suggest further heterogenicity [52]. Furthermore, 

analysis of additional markers such as the carbohydrate residue 6-sulfo LacNAc (SLAN), 

has also improve distinction between IM and NM, in a better way than only based in CD14 

and CD16 expression [54].  

To date only a few and relatively small number of studies have used single cell omic 

techniques for ex vivo analysis of immune signature of PBMCs isolated from dengue 

patients. One of the largest ex vivo studies reported an association of CD163 upregulation 

on the surface of IM with progression to severe dengue [55]. Others noted that genes 

involved in inflammatory response and mitochondrial function are upregulated in 

monocytes of acutely infected DENV-1 patients [56]. CyTOF, on the other hand, has been 

used to study the innate immune profile in PBMCs infected in vitro with DENV and ZIKV, 

showing differences in expression of CD86, CD38, CXCL8 and CXCL10 expression among 
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monocyte subsets [43]. It will be interesting to learn from larger deep phenotyping studies 

in different patient cohorts how different immune signatures correlate with disease severity. 

In addition, mechanistic studies will be necessary to assess monocyte subsets function in the 

course of dengue disease. I believe, that combining detection of immune and virus-specific 

markers antigens under different infection conditions will allow to achieve this goal and 

elucidate responses in infected vs bystander cells. Taken together, recently developed 

strategies can be used to increase our understanding of the monocyte subsets function 

during DENV infection, and therefore placing the foundations for the development of new 

therapeutic strategies. 

 

3. Contribution of other TLRs to TLR2-initiated immune responses 

In contrast to TLR specific ligands, microbes represent complex PAMPs that can be sensed 

by different PRRs expressed in a host cell. For instance, HSV-1 activates TLR2 and TLR9 in 

DCs in a sequential fashion and this combined activation increased the production of INF-

α [29]. In a similar fashion, we observed in chapter 2 that in addition to TLR2, a TLR3 block 

also reduced production of inflammatory cytokines (IL-1β, IL-8) and antiviral IFNs (IFN-α2, 

IFN-β, IFN-λ1) in DENV-infected monocytes. Since TLR2 inhibition abrogated not only 

immune responses but also DENV infection, we concluded that sequential activation of 

TLR2 and TLR3 occurs in infected cells. Although in our monocyte-based model blocking 

TLR3 did not affect DENV infection, sequential activation of TLR2 and TLR3 may be 

important for defense against DENV replication, as it has been described for HSV-1 infection 

in DCs [29]. Other studies have also shown that TLR3 is a key PRR for limiting DENV 

replication. For instance, pre-treatment of hepatoma cells with TLR3 agonist impairs DENV 

replication through induction of IFN-β and IFN-λ2/3 [57]; and silencing of TLR3 in mouse 

macrophages made the cells more susceptible to DENV replication [58]. Overall, these data 

show the pivotal role of TLR3 activation for the production of inflammatory and antiviral 

mediators during DENV infection. However, the importance of TLR3 activation should be 

further studied using in vivo experiments or directly in DENV-infected patients 

TLR7/8 also appears to be important for controlling flavivirus replication. Studies have 

shown that administration of TLR7/8 agonist in rhesus macaques was found to reduce 
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DENV replication [59], that knock-out of TLR7 in mice results in increased viral load of 

Japanese encephalitis virus (JEV) in the brain [60], and that TLR7 and TLR8 recognize DENV 

infection in HEK cells [61]. In chapter 2, we focused on the study of TLR8 using the specific 

inhibitor CU-CPT9a and found that TLR8 does not mediate immune responses of monocytes 

during DENV infection. Furthermore, in chapter 3, we observed that TLR8 mRNA 

expression was not regulated in macrophages during DENV infection, suggesting that TLR8 

is not activated by the virus. Our findings appear to be different from previous reports. 

However, most studies so far have evaluated the role of TLR7 and TLR8 in sensing DENV 

using agonists that activate both receptors simultaneously. Therefore, it is reasonable to 

conclude that differences between previous studies and our data, are due to the difficulty 

of evaluating TLR7 and TLR8 activation individually. In fact, recent crystallographic studies 

have showed that successive uridine-containing ssRNAs have high affinity to TLR7 [62,63], 

whereas uridine and guanosine-rich ssRNAs have high affinity for TLR8 [64], suggesting 

that these receptors sense different types of agonists. On the other hand, TLRs recognition 

and signaling is redundant, and the dispensable function of TLR8 that we observed in 

DENV-infected monocytes and macrophages may be explained by a functional TLR7. 

Indeed, Awais et al. found that JEV infection in TLR7-/- mice resulted in upregulation of 

TLR8 expression, which was concluded by the authors as a compensatory role [60]. In 

conclusion, most studies show that TLR7 is important for DENV sensing and induced 

immune responses, but whether TLR8 is not functional or serves as a compensatory TLR 

during DENV infection remains to be studied. Also, it will be important to evaluate the 

expression of TLR7 and TLR8 in human monocyte subsets using specific, non-cross-reactive 

antibodies.  

In summary, activation of TLRs during DENV infection of monocytes/macrophages shape 

immune responses during DENV infection (Figure 3). Unfortunately, the role of other types 

of PRRs could not be tested in our experimental model due to technical difficulties. For 

example, RIG-I inhibitor MTR did not show any inhibitory effect. In other types of cells 

including hepatocytes, RIG-I and MDA5 are important for DENV control [58]. It is probable 

that in monocytes RLRs also contribute to TLR2-initiated immune responses, but this should 

be evaluated in future studies. 
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Figure 3. Activation of TLRs during DENV infection of monocytes/macrophages 

CM sense DENV via TLR2 receptor, which mediates viral infection and induces the activation of NF-
κB and IRF3/7 transcription factors. Conversely, mannose receptor, CLEC5A and heparan-sulfate 
receptors mediates extracellular sensing and infection of DENV in macrophages. Activation of NF-
κB and IRF3/7 transcription factors induced by TLR2 activation leads to the expression of 
inflammatory cytokines and type I/III interferons. Also, DENV replication leads to the production 
of RNA intermediates that are recognized by TLR3, TLR7 and TLR8 within endosomes. dsRNA and 
ssRNA are sensed by TLR3 and TLR7 respectively, inducing the expression of inflammatory 
cytokines and type I/III interferons. Whether TLR8 is functional in monocytes and macrophages 
during DENV infection, or whether TLR8 is a compensatory TLR in case TLR7 is inhibited, remains 
to be studied. TLR4 expressed in PBMCs and endothelial cells senses viral NS1, leading to the 
expression of proinflammatory cytokines. Figure designed with Biorender. 

 

4. Blocking TLR2 as a therapy to mitigate DENV pathogenesis  

So far, we have shown that TLR2 has a key role in DENV sensing and subsequent 

inflammatory response. Further our study done in chapter 2 evidenced that TLR2 activation 
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in monocytes drives endothelial activation and increased permeability thereby contributing 

to pathogenesis. Collectively, prevention of TLR2 activation during DENV infection could 

be a promising strategy for fighting dengue disease.  

As specified in chapter 1, TLRs have a vital role in sensing microbes and are key 

intermediaries in the generation of the inflammatory response. A dysregulated activation of 

TLRs can lead to a harmful inflammatory response for the host. In consequence, TLRs are 

attractive targets of the innate immune system for modulation in favor of patients suffering 

for inflammatory diseases, such as dengue. Currently, several drug formulations are being 

evaluated against all TLRs [65]. Recently developed TLR2 antagonists such as OPN-305 is 

being evaluated in phase 2 clinical trials for treatment of Myelodysplastic syndrome, 

pancreas tumor and other oncogenic diseases [66,67]. OPN-305 is a humanized IgG4 

monoclonal antibody against TLR2 that can block its activation in human monocytes from 

14 to 90 days in vivo [67]. Data of these studies suggest that the use of OPN-305 is a promising 

strategy for prevention of DENV replication in classical monocytes and at the same time for 

modulation of the inflammatory response mediated by TLR2 activation. Future studies 

should evaluate the effect of blocking TLR2 with OPN-305 in DENV pathogenesis using 

humanized mice model [68]. Nevertheless, is important to note that TLR2 plays an essential 

role in the activation of innate and shaping the adaptive immunity in various microbial 

infections. In addition, it is expressed on monocytes, macrophages and neutrophils in many 

tissues. Consequently, dose, timing, and specificity for TLR2 targeting on CM should be 

considered with caution. 

In chapter 2 we described that TLR2 is particularly important for DENV replication and 

subsequent inflammatory response in CM subset. Specific delivery of TLR2 inhibitors to CM 

could improve the effect of TLR2 blockage. In recent years nanoparticle-based technology 

has been developed for improving the targeting of specific cells in certain types of 

treatments. For example, nanoparticle medicine that target macrophages present 

specifically in atherosclerotic plaques is currently under research [69]. This strategy can 

suppress pro-atherogenic activity of macrophages and thus modulate the inflammation and 

development of atherosclerotic plaques [69]. Nanoparticle medicine could be a useful tool 

for targeting TLR2 inhibitors specifically in CM during DENV infection.  
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PART II: Vitamin D and LL-37 as therapeutic alternatives for mitigating DENV 

pathogenesis  

 

1. General remarks of current therapies for DENV infection 

Currently, a specific antiviral treatment for patients suffering of dengue disease is not 

available [70]. Furthermore, a fully protective vaccine is still awaited, as Dengvaxia, the only 

approved vaccine for use in humans, is recommended only for adults and children above 9 

years old living in countries where DENV is endemic [71,72]. Therefore, there is a need for 

new therapies that can prevent severe dengue either by limiting viral replication and/or 

regulating the inflammatory response.  

An optimal nutritional status is essential for both shaping the immune response and 

restoring the numbers of cells involved in innate and adaptive defense [73]. Among these 

nutrients, VitD3 status has emerged as a risk factor for severe forms of various infectious 

diseases [74]. For example, VitD3 deficiency among COVID-19 patients has been associated 

with development of acute respiratory failure and ICU treatment [75–77]. Whether low 

levels of VitD3 prior to or during DENV infection contribute to the development of severe 

disease remains elusive. In the next sections, I will discuss the associations of VitD3 levels 

with progression to severe dengue and how our studies contributed to the current 

knowledge on the mechanisms of VitD3 that shape innate immune responses during DENV 

infection.    

 

2. Possible mechanisms by which Vitamin D shapes immune responses during DENV 

infection 

Apart from its function in calcium metabolism, VitD3 has wide immunoregulatory effects 

[74] (summarized in Figure 5 of chapter 1). We and others have previously shown that VitD3 

can down-regulate the inflammatory response of cells infected with DENV by decreasing 

the production of some cytokines and the expression of some PRRs [11,78–81]. However, 

VitD3 also decreases DENV infection by downregulating the expression of the viral receptor 

MR [11]. Hence, it was unclear whether the reduction of inflammatory responses was due 
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to its immunoregulatory functions or due to a lower DENV replication in treated cells. In 

chapter 3 we addressed this issue and demonstrated that differential expression of various 

TLRs, PKR, OAS1 and SOCS-1 between MDMs and D3-MDMs during DENV infection, was 

due to intrinsic differences between these two types of macrophages rather than the level of 

infection in these cells. As discussed in detail in chapter 3, VitD3 decreased production of 

ROS which was associated with a downregulation of TLR9 expression (Figure 4). Overall, 

these results highlight the antiviral and immunomodulatory effect of VitD3 during DENV 

infection and support the idea of using VitD3 supplementation as a therapy in patients 

suffering from dengue. 

 

Figure 4. Effects of VitD3 in macrophages during DENV infection 

Macrophages can respond to VitD3 via its inactive form 25(OH)D2 (calcidiol) which is converted to 
its active form 1,25(OH)2D3 (calcitriol) by the action of cellular CYP7B1. VitD3 interacts with the 
Vitamin D receptor (VDR) which associates with the retinoid X receptor (RXR). Together they act as 
a transcription factor that binds to vitamin D response elements (VDRE) inducing the expression or 
repression of several genes [82,83]. Genomic effects during DENV infection included decreased 
expression of IL-6, TNF-α, RIG-I, TLR3, TLR7, TLR9 and decreased production of ROS. As a non-
genomic effect, VitD3 binds to VDR that is initially bound to STAT1 [84], and indirectly enhance the 
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activity of JAK-STAT signaling pathway, thus increasing expression of PKR and OAS1. Finally, VitD3 
boosts the expression of CAMP and production of LL-37 during DENV infection. Figure designed 
with Biorender. 

 

In addition to its immunomodulatory effect, VitD3 has been shown to increase the 

expression of antimicrobial peptides (AMPs), including induction of CAMP expression and 

LL-37 production [12,13], which has potent antiviral properties. For example, VitD3 has 

been shown to restrict Rhinovirus replication in primary bronchial epithelial cells, by 

increasing LL-37 expression [85,86]. LL-37 has also been shown to restrict DENV infection 

in human keratynocytes (HaCaT) and in DC-SIGN expressing U937 cells [87,88]. In chapter 

4 we demonstrated that differentiation of macrophages in the presence of VitD3 boosted the 

baseline expression levels of CAMP and production of LL-37 peptide in mock and DENV-

infected cells. Additionally, exogenous LL-37 showed antiviral activity against DENV, 

highlighting the role of LL-37 during innate immune defense against DENV infection. These 

results show the potential use of VitD3 in therapeutics as it also increases the expression of 

LL-37 peptide during DENV infection.  

Interestingly, treatment of MDMs with LL-37 after the initial 2 hours of infection (chapter 

4), did not influence DENV infection, providing some initial insights that LL-37 may be 

exerting its antiviral effect in the first steps of viral replication. In fact, Alagarasu et al. 

proposed an interaction between LL-37 and DENV E protein by bioinformatic modeling (in-

silico docking) [89]. However, the precise mechanism by which LL-37 inhibits DENV 

replication remained unanswered. Future studies including time-of addition experiments 

are needed to delineate the mechanisms involved in the antiviral activity of LL-37.  

The antiviral effect of LL-37 against DENV infection suggest that AMPs may have an 

important role during DENV infection, especially in cells present at the first site of infection 

such as keratinocytes, macrophages and DCs. Yet, in chapter 4 we found that macrophages 

differentiated with FBS (with depreciable levels of VitD3) produce insignificant levels of 

HBD2, HBD3 and LL-37 in response to DENV infection. Furthermore, DENV infection 

appeared to reduce CAMP expression in macrophages. These results contrast with findings 

observed in different human cell types like HaCaT, THP1 and neutrophils, which produce 

several AMPs including HBD-1, HBD-3 and LL-37 in response to DENV infection [90,91]. 
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The reason behind these differences may be rooted in the cell-type dependent expression or 

cell-type specific signaling pathways necessary for AMPs induction. Indeed, keratinocytes 

and neutrophils show higher basal levels of LL37 expression compared to macrophages [92]. 

Importantly, the lack of LL-37 production was specific to DENV infection as LPS treatment 

induced a significant production of LL-37, as also reported by Duits et al [93]. This finding 

together with the observed decreased CAMP expression following DENV infection, suggest 

that viral replication may actively antagonize LL-37 expression. Interestingly, a similar 

observation has recently been made for human metapneumovirus (hMPV), which causes 

common respiratory tract infections in young children [94]. hMPV suppressed basal and 

VitD3 induced CAMP expression in MDMs through downregulation of C/EBPα, a 

transcription factor critical for CAMP expression [94]. Whether a similar mechanism is 

triggered by DENV infection and at which step of viral replication the antagonism is 

activated remains to be studied. Here, assessment of the expression of LL-37 after 

stimulation with inactivated DENV, and evaluation of LL-37 expression in infected vs 

bystander non-infected MDMs will provide valuable first clues for the mechanism of LL-37 

regulation during DENV infection. Altogether, the currently available data signify the 

multifold advantageous function of VitD3 in the course of DENV infection, as it has 

immunomodulatory properties and induce LL-37 expression.  

 

3. Levels of Vitamin D in DENV-infected patients and its correlation with disease 

severity 

Despite the rather clear-cut antiviral and immunomodulatory role of VitD3 in DENV 

infection in vitro, its role during in vivo infection remains elusive. Observational studies done 

in India, Colombia and Ecuador have shown that patients with dengue or severe dengue 

have higher levels of VitD3 compared to healthy controls [95–97]. Statistical analysis done 

in these studies suggested that elevated levels of VitD3 predict increased odds for 

developing severe dengue. Importantly, however, and as discussed by authors of one of 

these studies, these results may have been biased since hemoconcentration often found in 

dengue patients increases the serum concentrations of VitD3 and possibly other molecules 

such as ferritin [97]. Evidence of a protective role of VitD3 came from clinical studies done 

in Pakistan [98] and Mexico [99] that showed that VitD3 supplementation during acute 
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DENV infection improved the patients’ clinical condition by increasing the platelet count 

and ultimately prevented the development to severe dengue. It is important to note, that 

these clinical trials were not controlled, and nutritional status or VitD3 levels before and 

after supplementation were not assessed. Therefore, there is a lack of knowledge regarding 

the clinical effect of VitD3 supplementation in the protection or improvement of dengue 

disease. I would recommend follow-up studies in which VitD3 serostatus can be 

determined, and thus associate clinical improvement with VitD3 levels. In conclusion, 

preliminary results from clinical studies are optimistic and suggest that VitD3 could be an 

effective therapy for preventing the development of severe dengue. Yet large and controlled 

clinical trials are needed to may confirm this notion. 

 

4. Supplementing VitD3 in DENV-infected patients: matters to solve 

In order to design controlled clinical trial few matters need to be solved first. It remains 

elusive if a potential VitD3 treatment should be administered either as a treatment or as a 

prophylaxis. For discussing this issue, the stages of dengue disease must be taken into 

account. After an incubation period of 3 up to 7 days, dengue patients develop an initial 

acute febrile phase [100], which can last up to 7 days. However, a small proportion of 

patients develop a critical phase and if not treated properly will eventually lead to death 

[101,102]. Currently, there is no biomarker that predicts the development of severe disease. 

Therefore, the best window for VitD3 supplementation in DENV-infected patients should 

be in the febrile phase, and practically at the moment of hospital admission. Also, several 

studies have shown that high doses of VitD can increase serum levels of calcitriol within 24 

hours and return to physiological range by 72 hours [103,104]. This indicates that oral 

supplementation with VitD could have a rapid effect in DENV-infected patients.    

In addition to solve the issue of timing of VitD3 supplementation, the right dose of VitD3 

needs to be considered. The bioactive VitD3 (calcitriol) serostatus of an individual is 

generally measured by the quantification of the serum levels of its inactive and transported 

form VitD2 (also known as calcidiol). According to the Endocrine Society, sufficient levels 

of VitD2 include concentrations above 30 ng/ml, levels go from 21 to 29 ng/ml are 

considered insufficient, while values below 20 ng/ml are considered as vitamin D 
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deficiency [105,106]. Physiological levels of bioactive VitD3 vary between 0.1 to 0.5 nM 

[107,108]. Based on data from several studies, we are currently in a global pandemic of VitD2 

deficiency in the general population, that is largely owed to our behavior including limited 

sunlight exposure and improper diet [105,106]. For fighting this VitD2 deficiency, clinicians 

usually recommend Vitamin D oral supplementation with 1000 to 5000 international units 

(IU) of inactive precursors such as cholecalciferol or ergocalciferol (VitD), which can surge 

VitD3 serum levels to 0.25-0.75nM [109]. We observed in chapter 3 that physiological 

concentrations of VitD3 (0.1nM) had antiviral and immunoregulatory functions during 

DENV infection in vitro. Thus, conventional therapy directed to reach physiological levels 

of VitD3 may be sufficient for treating DENV-infected patients. In conclusion, future 

research is required to investigate if conventional treatment with VitD either as a 

prophylaxis or in DENV-infected patients could potentially shape the inflammatory 

response and prevent the development of severe dengue.  

 

5. Is it possible to treat directly with LL-37 rather than VitD3?  

As detailed in chapter 1, due to its mode of action LL-37 displays broad spectrum 

antimicrobial/antiviral properties including towards DENV. Furthermore, by showing 

striking inhibitory activity against in vitro formation and development of biofilms caused 

by many clinically important bacteria [110–114], LL-37 has emerged as a novel alternative 

therapeutic strategy to combat antibiotic bacterial resistance. However, testing applicability 

of LL-37 has proven difficulty, due to high costs of treatments, susceptibility to proteolytic 

degradation and high toxicity in human cells [112]. Accordingly, to our knowledge, only 

two studies have evaluated the clinical potential of LL-37 treatment. One first study assessed 

the effect of LL-37 on the clearance of venous leg ulcers (VLU) in 34 patients. The authors 

observed that topical treatment with 0.5 and 1.6 mg/ml of LL-37 was well tolerated and 

resulted in increased healing rates of the VLU compared to placebo [115]. However, a 

second trial that assessed the effect of intra-tumoral LL-37 treatment in melanoma patients 

reported side-effect dermatological toxicity in a 63-year old woman [116]. Notably, a recent 

study demonstrated that the limitations of using LL-37 as a therapeutic can be circumvented 

by an engineering and shorter LL-37, with improved biostability and ultimately enhanced 

antiviral activity against Ebola virus infection, compared to the native LL-37 [117]. Whether 
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engineered or native LL-37 represent a feasible treatment alternative for fighting viral 

infections and more specifically DENV infection, remains unanswered. These data warrant 

future in vitro and in vivo which assess the potential and safety of LL-37 peptide against viral 

infections.  

Alternatively, VitD3 treatment appears to be a solution for increasing LL-37 levels. I am 

certain that the increase of LL-37 during DENV infection in humans can be easily achieved 

with conventional supplementation of VitD3. For example, 400,000 IU of cholecalciferol 

increased 30% of the baseline levels of LL-37 peptide production in a Placebo-Controlled 

clinical Trial with sepsis patients [118]. Also, supplementation with 500,000 IU of VitD3 in 

critically ill ventilator-dependent adults increased mRNA expression of LL-37 and serum 

levels of LL-37 that correlated with increased phagocytosis of alveolar macrophages [119]. 

Based on our in vitro data of chapter 4, differentiation of MDMs in the presence of VitD3 

increased expression LL-37 levels by 5-fold during DENV infection (590ng/ml in MDMs vs 

3200ng/ml in D3-MDMs). Importantly, with the IC50 of LL-37 at the level of 2,246 ng/ml, 

the concentration of LL-37 induced by VitD3 in our model could potentially restrict DENV 

replication. Whether the levels of LL-37 expression obtained with VitD3 treatment during 

in vitro DENV infection can be achieved in a clinical setting with VitD3 supplementation 

remains to be explored. Taken together, boosting the levels of LL-37 in serum and tissues 

through either direct administration of modified LL-37 peptide or by VitD3 

supplementation, could be useful strategies to inhibit DENV replication and regulate the 

inflammatory response in patients after early onset of symptoms (Figure 5).  

 

CONCLUDING REMARKS   

The studies presented in this thesis underscore the importance of innate immune responses 

in control and pathogenesis of DENV infection. Activation of monocytes/macrophages can 

ultimately lead to ECs dysfunction, underlying the development of severe dengue. Our 

novel data disclosed the specific role of TLR2 in CM facilitating DENV infection and 

induction of inflammatory responses, which were associated with vascular dysfunction and 

severe disease pathogenesis. In future studies, I would focus on single cell omics 

technologies combined with immunophenotyping in order to scrutinize the TLR2-driven 



 
Chapter 5 

171 
 

immune responses in infected and bystander monocyte subsets of DENV-infected patients. 

Hence, the identification of intrinsic mechanisms differentiating TLR2 function in CM, IM 

and NM would be possible, and may allow the development of new therapies targeted 

directly to specific monocyte subsets. To that end, in vitro and ex vivo studies in PBMCs 

isolated from dengue patients should be considered fundamental. In addition, the use of 

humanized mouse models will be indispensable for assessing the potential of specific TLR2 

inhibition in limiting DENV replication and/or mitigating disease pathogenesis.  

 

 

Figure 5. Potential effects of VitD treatment in DENV-infected patients 

Conventional treatment with VitD aimed to induce sufficient levels of VitD2 in humans, could 
potentially induce various antiviral and immunoregulatory effects in macrophages during DENV 
infection. Furthermore, increased production of LL-37 by macrophages with high levels of VitD3 
could potentially restrict DENV replication, either by directly disturbing the viral particles or by 
inhibiting viral entry into bystander target cells like monocytes and macrophages. Figure designed 
with Biorender. 
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In addition, our studies detailed the immunomodulatory properties of VitD3, including the 

regulation of innate immune response and the induction of LL-37 expression in 

macrophages. These findings warrant future investigations for dissecting the effects of 

VitD3 insufficiency and deficiency in disease pathogenesis, and for assessing the possibility 

of VitD or LL-37 supplementation in DENV-infected patients. Supplementation of VitD 

during DENV infection could be a useful tool for ameliorating the symptoms caused by the 

inflammatory response and for preventing the development of severe dengue. Finally, I am 

certain that detailed knowledge of the innate immune mechanisms driving pathological 

inflammation in the course of DENV infection would open the floodgates for the 

development of specific therapeutics preventing the development of severe dengue. 
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