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1
INTRODUCTION

1.1. DATA DRIVEN APPROACH

Historically, the design of a stabilizing controller relies on the knowledge of a
mathematical model to represent the underlying system. This model can be
derived from first principles or from measurements using a proper excitation
signal. The latter approach, called system identification, infers the model of the
system by analyzing the input/output response of the process. The collected
data are used to derive a model that will be used afterward for the design of a
stabilizing controller. This solution can be considered as an indirect data-driven
design. More recently, the necessity of identifying a model was reconsidered in
favor of a direct data driven design, where controllers are directly synthesized
from experimental data.

Various efforts have been made in this direction, and we refer the interested
reader to [1] for a survey on the topic. A direct design has the advantage that it does
not suffer from modeling errors, and the overall controller design is simplified by
removing the need for the intermediate identification step. This can be especially
appealing when dealing with nonlinear systems as deriving a reliable model is
challenging and prone to errors. Potentially complex nonlinear behaviors can be
learned from data and used to improve the performance.

One of the main open research questions on data-driven control is how to
provide provably correct conditions for stability of the closed-loop system with
the learned controller. A promising result comes from behavioral system theory,
where Willems et al. [2] have proved that a single data trajectory obtained from
one experiment can be used to represent all the input-output trajectories of a
linear time-invariant system. Since [3], which highlighted the relevance of [2]
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for the synthesis of data-enabled predictive control, several papers have found
inspiration from the paper of Willems et al.

The result has been revisited by using a classic state-space description in [4],
where a data-driven parametrization of a closed-loop system was derived and
used to learn feedback controllers for unknown systems from data. Using this
setting, several recent contributions have further explored the role of data in
synthesis problems in multiple areas of control, including: optimal and robust
control [4], [5], robust stabilization of H2 and H∞ control with noisy data [4], [6],
[7], [8], [9], dissipativity properties [10] [11], robust set-invariance [12], and the
L2-gain [13].

The design of a data-driven stabilizing controller for nonlinear systems has
been approached using various methods and for different classes of nonlinear sys-
tems: in [14] a novel data-driven control is designed relying on a model inversion
approach, the use of the Koopman operator is presented in [15] and [16] to refor-
mulate nonlinear systems in a linear framework and in [17] the Koopman operator
is combined with an MPC. Discrete-time bilinear systems are considered in [12]
and [18], [19] and [20] study nonlinear polynomial systems and formulate semi-
definite programs relaxed using sum-of-squares programming. Second-order
discrete Volterra systems are discussed in [21], [22] studies nonlinear non-affine
MIMO systems, [9] discuss how to exploit prior knowledge in a data-driven design
for linear systems with nonlinear uncertainties, noisy Lur’e systems are consid-
ered in [23], and [24] presents a data-driven robust design based on approximate
nonlinearity cancellations.

In this thesis, we will not limit our study to controllers that achieve stabiliza-
tion, but we will also consider data-driven controller design for safety. Namely, for
safety-critical systems, it is not sufficient to stabilize the process around a desired
operating point. Instead, the (data-driven) controller is also required to be able
to steer the system state away from any dangerous regions. The complement of
this dangerous set is the so-called safe set and the design of control schemes to
respect safety specifications goes by the name of safe control [25–28]. The notion
of safety is intuitively related to the notion of invariance, namely, the dynamical
propriety that the state belongs to a certain set for all subsequent times after being
initialized in there. Historically, a seminal result for invariance was Nagumo’s
theorem [29], which has been of fundamental importance in the characterization
of invariant sets for continuous-time systems. Given that almost every system in
practice is subject to some type of constraints on its states or outputs, the notion of
invariance is very relevant in control applications to include safety constraints in
the design. Indeed, problems related to safety and viability [30] can be addressed
by computing sets possessing invariance or closely-related properties.

In the control community, invariance for linear systems was extensively stud-
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ied in the 1980-1990’s, which resulted in several works surveyed in [31]. For
nonlinear systems, there has recently been a revived interest with the introduc-
tion of control Lyapunov-like functions tailored to enforce invariance, called
control barrier functions [32–35]. In this setting, the controller depends critically
on the model used for design and recent studies [36–38] focus on finding robust
safe controllers to account for possibly inaccurate models. In [39], unmodeled
dynamics are taken into account by adding a bounded disturbance on the input
to find a robust control barrier function, in an input-to-state-safety fashion.

In an effort to reduce this critical dependence from the model, in this thesis
we will present a purely data-driven solution to obtain a safe controller.

1.2. NOTATION

The notation in this thesis is as follows.

• We denote by R the set of real numbers.

• Let Z denote the set of integers and with Z≥0 we indicate the set of nonneg-
ative integers.

• Given a vector a, |a| denotes its 2-norm.

• An identity matrix is denoted by I .

• For a matrix A, ||A|| denotes its induced 2-norm, which is equivalent to the
largest singular value of A. Moreover, for a scalar a > 0, ||A|| ≤ a if and only
if A>A ¹ a2I where I is the identity matrix.

• For a matrix A, A> denotes its transpose.

• A symmetric matrix A ∈Rn×n is positive semidefinite, i.e., A º 0, if x>Ax ≥ 0
for all x ∈Rn .

• Given two matrices A and B , A º B means A−B º 0.

• For a positive semidefinite A = A>, A1/2 denotes the unique positive semidef-
inite root of A.

• For matrices M and N = N>, we sometimes abbreviate M N M> as M N M> =
M ·N [?]>.

• For symmetric matrices A and C , we sometimes abbreviate the symmetric
matrix

[
A B>
B C

]
as

[
A ?
B C

]
or

[
A B>
? C

]
.
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1.3. THESIS OUTLINE

In this thesis, we investigate direct data-driven designs of stabilizing controllers
for nonlinear systems. The first part of the thesis considers nonlinear systems
with nonlinearities that satisfy quadratic constraints. In Chapter 2 the problem of
absolute stability is introduced and the data-driven framework used is explained.
Chapter 3 continues the discussion on the absolute stabilization problem by
considering the disturbance directly in the design of the stabilizing controller.

The second part of the thesis is focused on another class of nonlinear systems
(polynomial systems) and studies how to design a controller from data that not
only allows to stabilize the system but it is also able to satisfy safety constraints.
Chapter 4 introduces sum-of-squares (SOS) programming and the setup con-
sidered. The main result in Chapter 4 is an algorithm that is able to provide a
polynomial controller and the corresponding invariance set for the closed-loop
system. Starting from these results, Chapter 5 extends the discussion by consider-
ing the case of robust invariance to arrive at a new algorithm that can provide a
controller that is guaranteed to work despite the presence of disturbances.

We briefly outline the contents of each chapter.

• In Chapter 2, we present a data-driven solution to design a state feedback
controller to guarantee absolute stability for a class of nonlinear system. In
this chapter, we consider nonlinear systems where the nonlinear compo-
nent satisfies a quadratic constraint. Moreover, we assume that the system
can be represented with an isolated nonlinear block in closed-loop with
the linear component of the dynamics and that it is possible to measure
the state of the linear and nonlinear parts of the system separately. First we
will assume that some information about the non-linearity of the system is
known to formulate our first result, then we will drop this assumption to
show how to derive a stabilizing controller without prior knowledge about
the system. To simplify the presentation for this chapter, we will neglect the
effect of noise in the data.

• In Chapter 3, starting from the results of the previous chapter, we study a
more realistic case by considering the presence of noise in the data used
for the controller design. We will show how the main results of Chapter 2
can be reformulated to account for imperfect data. To handle the noise we
will only assume that it is bounded, and we do not need to assume that a
statistical distribution for the disturbance is known.

• In Chapter 4, we introduce the concept of safety as an additional require-
ment that the controller must guarantees besides closed-loop stability.
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Safety requirements are express as a list of state constraints that must never
be violated. We do not differentiate between soft and hard safety constraints
and all specifications are considered as hard constraints. For the design
of a safe controller, we consider polynomial systems. We will not assume
to know the degree of the system polynomials, but as we will discuss, it
is possible to include prior-knowledge about the system to improve noise
robustness. The main result presented in this chapter is a data-driven
design procedure that uses a sum of squares relaxation to solve a single
semi-definite problem to obtain not only a safe state-feedback controller
but also the corresponding expression of the invariant set where the system
state is guaranteed to be contained.

• In Chapter 5, we continue the study of safe controllers for polynomial
systems by considering the presence of noise during the execution of the
control task and not only in the open-loop data collected from the system.
The main difference from the formulation of the previous chapter is in the
definition of invariant set used to derive the main result. So we will start by
defining the concept of robustly invariant set to account for the presence
of the noise during the execution of the control task to reformulate a safe
controller design with guaranteed noise robustness. We will show with a
numerical example that the performance obtained from the robust safe
controller is similar to the one obtained with the safe controller design of
Chapter 4.

• In Chapter 6, we summarize the main results presented in this thesis and
discuss interesting directions for future work.

The detailed contributions of each chapter will be presented therein.

1.4. PUBLICATIONS DURING PHD

Journal Papers

• Luppi, A., De Persis, C., & Tesi, P. "On data-driven stabilization of systems
with nonlinearities satisfying quadratic constraints." Systems & Control
Letters 163 (2022): 105206.

• Luppi, A., Bisoffi, A., De Persis, C., & Tesi, P. "Data-driven design of safe
control for polynomial systems.", submitted, available at arXiv preprint
arXiv:2112.12664 (2021).





2
STABILIZATION OF SYSTEMS WITH

NONLINEARITIES SATISFYING

QUADRATIC CONSTRAINTS

ABSTRACT

In this chapter, we directly design a state feedback controller that stabilizes a class of
uncertain nonlinear systems solely based on input-state data collected from a finite-
length experiment. Necessary and sufficient conditions are derived to guarantee
that the system is absolutely stabilizable and a controller is designed. Results
derived under some relaxed prior information about the system, strengthened
data assumptions are also discussed. All the results are based on semi-definite
programs that depend on input-state data only, which – once solved – directly
return controllers. As such they represent end-to-end solutions to the problem of
learning control from data for an important class of nonlinear systems. Numerical
examples illustrate the method with different levels of prior information.

This chapter has been published in "On data-driven stabilization of systems with nonlinearities
satisfying quadratic constraints."Luppi, Alessandro, Claudio De Persis, and Pietro Tesi; Systems &
Control Letters 163 (2022): 105206.
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2.1. INTRODUCTION

In this chapter, we focus on finding a data-driven solution to the problem of
absolute stabilizability. Absolute stabilizability is the problem of enforcing the
stability of the origin via feedback for a class of systems comprising a linear part
and nonlinearities that satisfy a given condition. In our work, we impose quadratic
restrictions on the nonlinearities. The absolute stability problem was originally
formulated by A.I. Lurie in [40] and solved with a Lyapunov based approach. Later
in [41] V.M. Popov proposed a solution in the frequency domain. These two ap-
proaches were later connected by the Kalman-Yakubovich-Popov Lemma [42] that
relates an analytic property of a square transfer matrix in the frequency domain
to a set of algebraic equations involving parameters of a minimal realization in
time domain.

To solve the absolute stabilizability problem in the case in which the system
is unknown, we start from the data driven parametrization in [4] for a closed-
loop system with the addition of a nonlinear term. Then we propose a data-
dependent Lyapunov-based control design assuming that a finite number of
samples measuring the nonlinear term are available. One of the advantages of our
formulation, compared to a model based one, is that it holds for both continuous-
time and discrete-time systems providing a unified analysis and design framework
for both classes of systems. We also discuss how our results can be viewed in a
frequency domain stability analysis where our main result can be interpreted
as a data-dependent feedback Kalman-Yakubovitch Popov Lemma [43, Section
2.7.4]. Finally, we discuss how to deal with different levels of prior knowledge by
strengthening the assumption on the collected data. The design of controllers
using data perturbed by disturbances will be discussed in Chapter 3.

Our main contributions are necessary and sufficient conditions for which a
solution to the data-driven absolute stabilization problem exists. The proposed
conditions can be verified directly from data by means of efficient linear programs.
These conditions provide a new data based solution to the problem of absolute
stabilizability for a class of uncertain nonlinear systems.

This chapter is organized as follows. The notation and problem setup is
presented in Section 2.2. In Section 2.3, we present necessary and sufficient con-
ditions under which the data-driven absolute stabilizability problem is solvable
and provide the explicit expression for the controller. Finally, in Section 2.4, we
relax some prior knowledge about the system and derive new conditions for the
problem solution. All the main results are also illustrated with practical examples.
Concluding remarks are given in Section 2.5.
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x+ = Ax +Bu +Lv
z = H x

v = f (t , z)

u z

v

+

Figure 2.1 | Schematic diagram of system (2.2). Data containing the measurements of the state x,
input u and signal v are used to design a feedback controller u = K x for the system.

2.2. FRAMEWORK AND PROBLEM FORMULATION

We study the stabilization problem of a nonlinear system of the form

x+ = Ax +Bu + f̂ (t , x) (2.1)

where x ∈Rn is the state, u ∈Rm is the control input, and where f̂ (t , x) :R×Rn →
Rn is a memoryless, possibly time-varying nonlinearity. The matrices A,B and
the map f̂ are unknown. If some prior information is available regarding f̂ , we
will model it in the form f̂ (t , x) = Lv , v = f (t , H x), with L and H known matrices
and f :R×Rp →Rq . The system then becomes (see Figure 2.1)

x+ = Ax +Bu +Lv

z = H x

v = f (t , z).

(2.2)

We will consider certain constraints on the admissible nonlinearities. Specifically,
we will assume that the inequality[

z
f (t , z)

]>[
Q̂ Ŝ
Ŝ> R̂

][
z

f (t , z)

]
≥ 0 (2.3)

holds for all the pairs (t , z) ∈R×Rp with z ∈ im H , where Q̂ = Q̂> ∈Rp×p , Ŝ ∈Rp×q

and R̂ ≺ 0 ∈ Rq×q are known matrices (definite matrices are implicitly defined
as symmetric matrices). Since R̂ ≺ 0 the inequality (2.3) implies f (t ,0) = 0 for
all t ∈ R. In the remainder, we will sometimes ask a constraint of the form (2.3)
to be regular, by which we mean that there exists a pair (z, f (t , z)) such that the
inequality (2.3) evaluated at (z, f (t , z)) strictly holds.

For this class of systems, a notion of stability widely studied in the literature is
the so-called absolute stability which is now introduced (cf. [44, Definition 7.1]).
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Definition 1 System (2.2) is said to be absolutely stabilizable via linear state-
feedback u = K x if there exists a matrix K such that the origin of the closed-loop
system

x+ = (A+BK )x +Lv

z = H x

v = f (t , z)

(2.4)

is globally uniformly asymptotically stable for any function f that satisfies the
inequality (2.3). ■

This framework covers a notable class of nonlinear systems that has appeared
in several studies. In the following, we report few notable examples:

1. (Lipschitz or norm bounded nonlinearities) These are nonlinearities that
satisfy

f (t , z)> f (t , z) ≤ `2z>z,

where ` is a bound on the Lipschitz constant, which are considered in LMI-
based robust stabilization of nonlinear systems [45]. In the absolute stability
theory literature, e.g. [46, Section 3], these nonlinearities are referred to as
norm-bounded nonlinearities. In this case, (2.3) holds with Q̂ = `2Ip , Ŝ = 0
and R̂ =−Iq .

2. (Bounds on partial gradients) Large Lipschitz constants might result in
unfeasible conditions, and for this reason much literature is devoted to
deriving less conservative Lipschitz characterizations ([47] and references
therein). Here, we recall a result from [48] that considers the nonlinear time-
invariant term f̂ (x) instead of L f (t , z). Under continuous differentiability of
f̂ , and assuming that bounds f

i j
, f i j on the partial derivatives are known,

namely

f
i j
≤ ∂ f̂i

∂x j
≤ f i j

it holds that f̂ (x) = L f (z), where L = In⊗1>
n , H = In and (2.3) holds with the

matrices Q̂, Ŝ and R̂ depending on the vectors of bounds f , f . For instance,
in the case n = 2, the matrix in (2.3) takes the form

2∑
i=1

(c i 1 − ci 1) 0 c11 0 c21 0

0
2∑

i=1
(c i 2 − ci 2) 0 c12 0 c22

? ? −1 0 0 0
? ? 0 −1 0 0
? ? 0 0 −1 0
? ? 0 0 0 −1


(2.5)
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where ci j = ( f i j + f
i j

)/2 and c i j = ( f i j − f
i j

)/2. For additional degree of

freedom, one can introduce a vector λ of non-negative multipliers, see [48]
for details.

3. (Strongly convex functions with Lipschitz gradient) Let f̂ (x) =∇g (x), with
f̂ (0) = 0 and g :Rn →R a continuously differentiable strongly convex func-
tion with parameter m and having Lipschitz gradient with parameter `,
with 0 < m < `. Then condition (2.3) holds with Q̂ =−2m`In , Ŝ = (`+m)In

and R̂ =−2In , see [49, Proposition 5, (3.13d)].

4. (Sector bounded nonlinearities) Another notable case is when the nonlinear
function f satisfy the sector condition ( f (t , z)−K1z)>(K2z − f (t , z)) ≥ 0
for (t , z) ∈ R×Rp , with K = K2 −K1 Â 0 [44, Definition 6.2]. In this case,
inequality (2.3) holds with Q̂ =−K >

2 K1 −K >
1 K2, Ŝ = K >

1 +K >
2 and R̂ =−2In .

5. (Fully recurrent neural network (RNN)) Recurrent neural networks are spe-
cialized in the analysis of sequence of data and they differ from traditional
neural network by their "memory". While traditional deep neural networks
assume that inputs and outputs are independent of each other, the output
of recurrent neural networks depend on the prior elements within the se-
quence. Systems like (2.2) with B = 0 are also used to represent RNN, in
which case f (z) = ( f (z1) . . . f (zp ))>, f : R→ R is a continuously differen-
tiable monotone nonlinear function whose derivative f ′ is bounded from
above on the domain R, e.g. f (zi ) = tanh(zi ), and zi = H>

i x +bi , where H>
i

is the row i of the matrix of weights H and bi is the entry i of the vector of
biases b. It can be shown [50, Section IV] that when b = 0 (for the case b 6= 0
see [50, Section V]) the condition (2.3) holds with Q̂ = 0, Ŝ = Γ, R̂ = −2Γ,
where Γ is any symmetric matrix such that for any i = 1,2, . . . , p, γi j < 0 for
every j 6= i and

∑p
j=1γi j > 0 for any i . Hence, without loss of generality,

R̂ ≺ 0.

6. (Norm-bound linear difference inclusion) System (2.2) falls into the class of
the so-called norm-bound linear difference inclusion [51, Chapter 5].

2.2.1. PROBLEM FORMULATION

The problem of interest is to design a control law ensuring absolute stability for
the closed-loop system in the event that information about the system is in the
form of data samples. In this respect, we assume to collect data of the system
through open-loop offline experiments. We use the notation U0, X0, X1 and F0 to
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denote the data matrices

U0 := [
u(0) u(1) · · · u(T −1)

]
(2.6a)

X0 := [
x(0) x(1) · · · x(T −1)

]
(2.6b)

X1 := [
x(1) x(2) · · · x(T )

]
(2.6c)

F0 := [
f (0, z(0)) f (1, z(1)) · · · f (T −1, z(T −1))

]
. (2.6d)

We consider the following assumptions:

Assumption 1 The matrices U0, X0, X1 and F0 are known. ■

Assumption 2 The matrix

W0 :=
[

U0

X0

]
(2.7)

is full row-rank. ■

Before proceeding, we make some remarks.
Assumption 1 means that we can collect input-state samples of the system. We

note in particular that F0 can be measured when the nonlinear block f (t , H x) is
physically detached from the dynamical block x+ = Ax +Bu+Lv , as schematized
in Figure 2.1. Besides that, assuming that F0 is known permits us to establish a
clean data-based analogue of absolute stability, as well as a data-based analogue
of some related results available for model-based control including the circle
criterion and the feedback Kalman-Yakubovitch-Popov Lemma.

Assumption 2 deals instead with the question of richness of data. As discussed
next, when this assumption holds then it is possible to express the behavior of (2.2)
under a control law u = K x, with K arbitrary, purely in terms of the data matrices
in (2.6). It is known that for linear controllable systems this assumption actually
reduces to a design condition that can be enforced by suitably choosing U0, see
[2]. The question of how to design experiments so as to enforce this condition
for nonlinear systems has been recently addressed in [52]. Ways to relax this
assumption will be discussed in Section 2.4.

2.3. LEARNING CONTROL FROM DATA

In this section, we derive data-based conditions for absolute stability. The first
step is to provide a data-based representation of the closed-loop system. Under
Assumption 2, for any matrix K ∈Rm×n there exists a matrix G ∈RT×n satisfying[

K
In

]
=W0G (2.8)
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Accordingly, the behavior of (2.2) under a control law u = K x can be equivalently
expressed as

x+ = (X1 −LF0)Gx +Lv

z = H x

v = f (t , z)

(2.9)

which follows from the chain of equalities

A+BK = [
B A

][
K
In

]
= [

B A
]

W0G = [
B A

][
U0

X0

]
G (2.10)

and from X1 = AX0 +BU0 +LF0. In the following, we will use a shorter notation
by defining XL := X1 −LF0.

We address the absolute stabilizability problem considering quadratic Lya-
punov functions V (x) = x>P x, in which case the problem becomes the one of
finding two matrices G and P Â 0 such that[

x
v

]>[
G>X >

L P XLG −P G>X >
L PL

? L>PL

][
x
v

]
< 0 (2.11)

holds for all x 6= 0 and for all v = f (t , z) that satisfy[
x
v

]>[
Q S
S> R

][
x
v

]
≥ 0 (2.12)

having defined [
Q S
S> R

]
:=

[
H 0
0 I

]>[
Q̂ Ŝ
Ŝ> R̂

][
H 0
0 I

]
(2.13)

The following result then holds.

Theorem 1 (Data-driven absolute stabilizability)
Consider the nonlinear system (2.2) and let the constraint (2.12) be regular. Suppose
that Assumption 1 and 2 hold.

Then, there exist two matrices G and P Â 0 such that (2.11) holds for all (x, v) 6=
0 that satisfy (2.12)

1. (Q º 0) if and only if there exists a T ×n matrix Y such that the matrix
inequality 

−X0Y X0Y S Y >X >
L X0Y Q1/2

? R L> 0
? ? −X0Y 0
? ? ? −I

≺ 0 (2.14)

holds;
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2. (Q = 0) if and only if there exists a T ×n matrix Y such that the matrix
inequality −X0Y X0Y S Y >X >

L
? R L>

? ? −X0Y

≺ 0 (2.15)

holds;

3. (Q ¹ 0) if there exists a T ×n matrix Y such that the matrix inequality (2.15)
holds. In this case, the regularity of (2.12) is not needed.

In all the three cases, a state-feedback matrix K that ensures absolute stability for
the closed-loop system can be computed as K =U0Y (X0Y )−1.

Proof.

1. We want [
x
v

]>[
G>X >

L P XLG −P G>X >
L PL

? L>PL

][
x
v

]
< 0

to hold for all (x, v) 6= 0 satisfying condition (2.12), and G must additionally
obey X0G = In . We start by focusing on the relation between (2.11) and
(2.12). Note that v = f (t , z) with z = H x, so v depends on x. However,
this dependence can be neglected and we can equivalently ask that (2.11)
holds for all nonzero (x, v) ∈Rn×Rq satisfying (2.12), where now v is viewed
as a free vector. This is because, as noted in [53, Section 2.1.2], for any
vector v satisfying (2.12) there is a function f (t , z) that satisfies (2.12) and
passes through that point. Thus, we arrived at a stability condition for
which the lossless S-procedure applies. In particular, by [53, Theorem 2.19]
a necessary and sufficient condition to have (2.11) fulfilled for all nonzero
(x, v) satisfying (2.12) is that there exists a scalar τ≥ 0 such that[

G>X >
L P XLG −P +τQ G>XLPL+τS

? L>PL+τR

]
≺ 0 (2.16)

holds for some G and P Â 0, where G must additionally obey X0G = In .
Without loss of generality1, let τ> 0, normalize the matrix P (P/τ→ P ), and
obtain [

G>X >
L P XLG −P +Q G>X >

L PL+S
? L>PL+R

]
≺ 0 (2.17)

1If τ= 0 the matrix inequality (2.11) never holds since L>PL º 0.
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By Schur complement, the latter is equivalent to−P +Q S G>X >
L

S> R L>

XLG L −P−1

≺ 0 (2.18)

To prevent the simultaneous presence of P and P−1, we factorize Q =
Q1/2Q1/2, apply the Schur complement another time, left- and right-multiply
by block.diag(P−1, I , I , I ), so as to obtain (2.14), where Y = GP−1. Note in
particular that, in view of this change of variable, the constraint X0G = In

has become X0Y = P−1. In turn, this implies that we can substitute P−1

with X0Y , which is the reason why the LMI (2.14) only depends on Y .

Finally, the relation K =U0G gives K =U0Y P =U0Y (X0Y )−1.

2. The previous arguments continue to hold until the matrix inequality (2.18),
which now holds without the matrix Q (since Q = 0). This allows us to
directly arrive at the matrix inequality of reduced order (2.15).

3. Since Q ¹ 0, it is straightforward to realize that (2.18) is implied by −P S G>X >
L

S> R L>

XLG L −P−1

≺ 0 (2.19)

Hence, (2.15) is a sufficient condition for (2.11) to hold for all (x, v) 6= 0 that
satisfy (2.12).

■

The matrix inequalities (2.14) or (2.15), are actually linear matrix inequalities
(LMI) in the decision variable Y . In fact, all the conditions of this chapter are
given in terms of linear matrix inequalities and equalities, which are semi-definite
programs. These can be solved by standard numerical solvers, such as cvx [54].

Remark 1 (Relaxing Assumption 2)
Theorem 1 rests on the assumption that the matrix W0 is full row rank. It is immedi-
ate to see that having X0 full row rank is actually necessary since, otherwise, (2.14)
cannot have a solution because X0Y cannot be positive definite. In contrast, (2.14)
might have a solution even when U0 is not full row rank, in line with what has
been shown in [55] for linear systems. This happens when there exists a controller
K ensuring absolute stability that lies in the column space of U0. In this sense,
Assumption 2 guarantees that all possible controllers are evaluated. ■
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2.3.1. DISCUSSION

A few points worth of discussion are in order:

Regularity of (2.3) for sector bounded nonlinearities.
The regularity of the constraint (2.3) is satisfied in some notable cases. In
case the nonlinearity f (t , z) is decoupled, namely,

f (t , z) = col( f1(t , z1), . . . , fp (t , zp ))

and each component satisfy a sector bound constraint, then K1,K2 are
diagonal matrices and regularity of (2.3) is guaranteed by the condition
K2 −K1 Â 0, that is the interior of the sectors is non empty.

Exponential stabilizability.
To guarantee exponential convergence of the state to the origin with decay
rate 0 < ρ < 1, it is enough to replace (2.14) with a weak matrix inequality
in which the block (1,1) of the matrix on the left-hand side is replaced by
−ρX0Y . In this case, the search for a solution Y must be preceded by a line
search on ρ.

Data-dependent feedback Kalman-Yakubovitch-Popov Lemma.
Theorem 1 can be viewed as a data-dependent feedback Kalman-Yakubovitch-
Popov Lemma [43, Section 2.7.4], meaning that it results in a data-dependent
feedback design guaranteeing the well-known frequency domain condition
of the closed-loop system. In fact, in the proof of Theorem 1 we have shown
that the condition (2.14) is equivalent to the existence of P Â 0 such that
(2.17) holds. As Q º 0, from the block (1,1) of (2.17) we deduce that the
matrix (X1 −LF0)G = A+BK is Schur stable, hence det(eiωI − A−BK ) 6= 0
for all ω ∈R and by the Kalman-Yakubovich-Popov lemma for discrete-time
systems [56, Theorem 2], (2.17) implies the frequency domain condition[

(eiωI − A−BK )−1L
I

]∗ [
Q S
S> R

][
(eiωI − A−BK )−1L

I

]
≺0 (2.20)

for all ω ∈ R, where ∗ denotes the conjugate transpose. Hence, condition
(2.14) leads to the existence of a gain matrix K such that the frequency
condition (2.20) holds. Conversely, if det(eiωI −A−BK ) 6= 0 for allω ∈R and
the matrix inequality holds, then by [56, Theorem 2] there exists a matrix
P = P> and a real number τ≥ 0 such that (2.17) holds. Note however that
there is no guarantee, except in special cases, that P Â 0, and therefore
(2.14), which would require a positive definite matrix X0Y = P−1, cannot be
concluded.
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Passive nonlinearities.
The analysis of the special case of passive nonlinearities, i.e. z> f (z) ≥ 0 for
all z ∈Rp , in which case Q = 0, S = H>, R = 0, is deferred to Section 2.3.2.

2.3.2. CONTINUOUS-TIME SYSTEMS

One of the features of the data-dependent representation introduced in [4] and
here adopted to deal with nonlinear systems, is that it holds for both continuous-
time and discrete-time systems thus allowing for a unified analysis and design
framework for both classes of systems. In this subsection, we see how Theorem
1 becomes in the case of continuous-time systems. Besides being of interest on
its own sake, our motivation is to have a result to be used for some illustrative
examples, which are more commonly found for continuous-time systems in the
literature.

We start with the data-dependent representation for continuous-time systems,
given by

ẋ = (X1 −LF0)Gx +Lv
z = H x
v = f (t , z)

(2.21)

and
X1 =

[
ẋ(t0) ẋ(t1) . . . ẋ(tT−1)

]
(2.22)

with tk , k = 0,1, . . . ,T −1, the sampling times at which measurements are taken
during the off-line experiment. We assume that f satisfies the standard conditions
for the existence and uniqueness of the solution to the feedback interconnection,
namely piece-wise continuity in t and local Lipschitz property in z.

Theorem 2 (Data-driven absolute stabilizability of continuous-time systems)
Consider the nonlinear continuous-time system

ẋ = Ax +Bu +L f (t , z), z = H x (2.23)

Let Assumptions 1 and 2 hold. Let the constraint (2.12) be regular. There exists two
matrices G and P Â 0 such that (2.24) holds for all (x, v) 6= 0 that satisfy (2.12)

1. (Q º 0) if and only if there exists a T ×n matrix Y such that the matrix
inequality Y >X >

L +XLY L+X0Y S X0Y Q1/2

? R 0
? ? −I

≺ 0

holds.
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2. (Q = 0) if and only if there exists a T ×n matrix Y such that the matrix
inequality [

Y >X >
L +XLY L+X0Y S
? R

]
≺ 0

holds.

3. (Q ¹ 0) if there exists a T ×n matrix Y such that the matrix inequality (2.27)
holds. In this case, the regularity of (2.12) is not needed.

In all the three cases, the matrix K that solves the problem is given by K =U0Y (X0Y )−1.
■

Proof. The proof follows closely the one of Theorem 1. Similar to the discrete
case in the previous section, we focus on the existence of a matrix P Â 0 such that[

x
v

]>[
G>X >

L P +P XLG PL
? 0

][
x
v

]
< 0 (2.24)

holds for all x 6= 0 and for all v = f (t , z) that satisfy (2.12) and obtain a necessary
and sufficient condition given by the existence of P Â 0 such that[

G>X >
L P +P XLG +Q PL+S

? R

]
≺ 0 (2.25)

holds.

1. In case Q º 0, starting from (2.25) using similar manipulations as in Theo-
rem 1 return the inequalityY >X >

L +XLY L+X0Y S X0Y Q1/2

? R 0
? ? −I

≺ 0 (2.26)

where Y =GP−1. The relation K =U0G gives the control gain K =U0Y (X0Y )−1.

2. In the case Q = 0, we obtain from (2.26) the simpler condition[
Y >X >

L +XLY L+X0Y S
? R

]
≺ 0, (2.27)

3. The condition (2.27) is also a sufficient condition for the data-dependent
absolute stabilizability of the continuous-time system when Q ≺ 0.
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■

An important special case is that of passive nonlinearities, namely z> f (t , z) ≥
0 for all z, which corresponds to the case where f belongs to the sector [0,∞] [44,
Definition 6.2]. Passive nonlinearities can be written in the form (2.12) letting
Q = 0, S = H> and R = 0. Since R = 0, this case does not directly fall in the previous
analysis. However, it is an easy matter to see that, in this case, a sufficient data-
dependent condition for the absolute stabilizability via linear feedback u = K x of
(2.21) amounts to the existence of a matrix Y such that

X0Y Â 0
Y >X >

L +XLY ≺ 0
L+X0Y H> = 0

(2.28)

If a solution to (2.28) exists then the matrix K that solves the problem is given by
K =U0Y (X0Y )−1. In fact, recalling that A +BK = (X1 −LF0)G = XLG , condition
(2.28) can be recognized as a data-dependent condition for the strict positive
realness [44, Lemma 6.3] of the closed-loop system (H , A +BK ,L), where the
constraint (A+BK )>P +P (A+BK ) ≺ 0, P Â 0, is written in the equivalent form

Y >X >
L +XLY ≺ 0

introducing the change of variable Y =GP−1, which implies the identity P−1 =
X0Y because of the constraint X0G = I . Condition (2.28), in turn, is a sufficient
condition for absolute stability under passive nonlinearities [44, Theorem 7.1],
the so-called multivariable circle criterion.

Remark 2 (Inferring open-loop properties from data-driven design)
Condition (2.28) is also the data-dependent version of a well-known passifiability
condition [43, Theorem 2.12]: if L is full column rank, there exists a feedback
controller u = K x which makes the triple (H , A +BK ,L) state strictly passive if
and only if the system defined by the triple (H , A,B) is minimum phase and the
matrix HL ≺ 0. Since H ,L are part of our prior knowledge, the condition HL ≺ 0
can be checked. Hence, if the inequality (2.28) is feasible, we infer the property of
the open-loop triple (H , A,B) being minimum phase without explicitly knowing
the matrices A,B but rather relying on the data X0, X1,F0. Using conditions for
data-driven control to infer properties of an open-loop system deserves further
attention in future work. ■

Example 1 We introduce an example to illustrate the application of the results
in this section. In particular, we focus on the condition (2.28). We consider a
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Figure 2.2 | Phase portrait of system (2.29) in Example 1 under the designed feedback control
u = [ 4.3339 −3.7435 ] x. The solutions asymptotically converge to the origin.

pre-compensated surge subsystem of an axial compressor model, see e.g. [57]

ẋ =
[9

8 −1
0 0

]
x +

[
0
1

]
u +

[−1
−β

]
ϕ(x1) (2.29)

with β> 9/8 a parameter and ϕ a passive nonlinearity such that zϕ(z) ≥ 0. Specif-
ically, ϕ(z) = 1

2 z3 + 3
2 z2 + 9

8 z. Hence, for this example, we observe that a precise

knowledge of L is not required, any estimate L̂ =α[−1 −β]>
, with α> 0, used in

(2.28) does not affect the outcome of the design. We perform an open-loop exper-

iment from the initial condition x(0) = [
2 −1

]>
, with α= 1, β = 1.2, under the

input u(t) = sin t over the time horizon [0,1] using T = 5 evenly spaced sampling
times, and collect the measurements in the matrices U0, X0, X1,F0:

U0 =
[
0 0.2474 0.4794 0.6816 0.8415

]
X0 =

[
2 1.269 1.3208 1.5113 1.7451
−1 −2.993 −4.3724 −6.0225 −8.2189

]
X1 =

[−21.25 −5.309 −4.6511 −5.9817 −8.1951
−29.4 −11.428 −12.1319 −15.7636 −21.2112

]
F0 =

[
12.25 4.8648 5.2547 6.8522 9.1886

]
Assumption 2 holds. We replace the data matrices in (2.28) along with L̂ =α[−1 −β]>

,
having set α= 2 and H = [

1 0
]
. We remark that the parameter α used in (2.28)
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is different from the value used during the experiment to stress that the precise
knowledge of L is not needed.
We solve (2.28) with cvx [54] for Y , and obtain

Y =


1.2922 1.6018
−0.1923 1.0528
0.5113 −0.5863
0.5192 −1.1827
−1.0316 0.2419


from which

K =U0Y (X0Y )−1 = [
4.3339 −3.7435

]
We observe that

Y >X >
L +XLY =

[−23.6176 −30.3340
−30.3340 −39.1227

]
≺ 0

and the entries of αL + X0Y H>, with α = 2, are of order 10−12, thus 2x>P ((A +
BK )x +L f (z)) < 0 for all x, which guarantees asymptotic stability uniformly with
respect to any passive nonlinearity f . A phase portrait of the closed-loop system
is shown in Fig. 2.2. Finally, we observe that should the nonlinearity f be time-
varying, i.e. f (t , z) during the experiment and different from the one appearing in
the dynamics when the control is applied, the same result of uniform asymptotic
stability will continue to hold as long as z> f (t , z) ≥ 0 during the experiment and
in the closed-loop system. ■

Before concluding the section, we observe that there has been some recent
interest on promoting stability of systems with energy preserving quadratic non-
linearities [58], also with data-driven methods [59]. These systems are of the form
(2.1) with B = 0 and f̂ (t , x) independent of t and such that

f̂ (x) =

x>Q1x
...

x>Qn x

 with x> f̂ (x) = 0

and Qi , for i = 1, . . . ,n, constant matrices. This class of systems falls into the
category of systems with passive nonlinearities and −L = H = In , provided that the
term Bu is added. However, the problem considered in [58], [59], namely unveiling
a locally asymptotically stable point by shifting the state variables, is different
from the one considered here of making the system globally asymptotically stable
by feedback.

Giving up the knowledge about L, H is a difficult task. In the next section, we
examine one possibility based on strengthening the requirement on the collected
data.
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2.4. RELAXING SOME PRIOR KNOWLEDGE BY STRENGTHENED

DATA ASSUMPTIONS

The last example has shown the difficulty to relax the knowledge about the matri-
ces L, H , which influence how the nonlinearity affects the dynamics and which
state variables appear in the nonlinear function. The situation dramatically
changes as far as L is concerned if we consider a stronger assumption on the
set of available data. We also examine how to use nonlinear feedback. Specifically,
we use the term f (t , z), measured for all time t , in the design of the feedback
control.

As remarked in Section 2.2, real time knowledge of f (t , z) is justified in those
case in which the term f (t , z) appears as a physically detached block whose
output can be measured. In model-based absolute stability theory, the case in
which the nonlinearity f is unknown but the signal f (t , z) is available for on-line
measurements has been considered in [57]. Alternatively, the term L f (t , z(t))
can originate from modeling the nonlinearity via a vector of known regressors f
and a matrix of unknown coefficients L, as classically done in nonlinear adaptive
control [60]. This is also the point of view taken in recent papers that combine
sparsity-promoting techniques and machine learning [61]. Here, however, since
we are not interested in estimating the dynamics but directly controlling it, we do
not need to assume to know the analytic expression of f .

If we can measure in real-time f (t , z), then we can use it also in the feedback
policy, along with the state x(t). Hence, here we consider the case in which the
system (2.2) is controlled via the feedback

u(t ) = K x(t )+M f (t , z(t )), z(t ) = H x(t ) (2.30)

where K , M are matrices to design. Again we stress that the feedback gains K , M
are to be designed without knowing the analytic expression of f nor A,B ,L but
only the real time measurements of the vector x(t ) and f (t , z) The matrix H must
be known since it appears in the matrix Q (see (2.13)), which in turn appears in
the LMI conditions that we give below.

Since the matrix F0 in (2.6d) is known, along with X0, X1,U0, we take advantage
of this knowledge by revising Assumption 2 as follows:

Assumption 3 The matrix

Ψ0 :=
X0

F0

U0


is full-row rank.
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For any matrix
[
K M

] ∈Rm×(n+q), we let the matrix G = [
G1 G2

] ∈RT×(n+q),
where G1 has n columns and G2 q columns, satisfy In 0n×q

0q×n Iq

K M

=
X0

F0

U0

[
G1 G2

]
(2.31)

Then we obtain the relation

[
A L

]+B
[
K M

]= [
A L B

] In 0n×q

0q×n Iq

K M


= [

A L B
]X0

F0

U0

[
G1 G2

]
= X1

[
G1 G2

]
where we have exploited the identity X1 = AX0 +BU0 +LF0. We conclude that
system (2.2) in closed-loop with the nonlinear feedback (2.30) is equivalent to the
nonlinear data-dependent system

x+ = X1
[
G1 G2

][
x

f (t , z)

]
= X1G1x +X1G2 f (t , z)

z = H x

(2.32)

with matrices G1,G2 that satisfy (2.31). We now study the absolute stability of
such data-dependent system under the quadratic constraint assumption. We only
state the result in the case Q º 0 since the other cases are immediately obtained.
As before, we address the problem considering quadratic Lyapunov functions
V (x) = x>P x, so that the problem becomes the one of the existence of a symmetric
positive definite matrix P such that (2.33) holds (cf. (2.11)).

Theorem 3 (Data-driven absolute stabilizability II)
Consider the nonlinear system (2.2) and let the constraint (2.12) be regular. Let
Assumptions 1 and 3 hold and let Q º 0. There exists three matrices G1, G2 and
P Â 0 such that [

x
v

]>[
G>

1 X >
1 P X1G1 −P G>

1 X >
1 P X1G2

? G>
2 X >

1 P X1G2

][
x
v

]
< 0 (2.33)
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holds for all (x, v) 6= 0 that satisfy (2.12) if and only if there exist T ×n, T ×q and
n ×n matrices Y1, Y2, W such that the conditions

−W W S Y >
1 X >

1 W Q1/2

? R Y >
2 X >

1 0
? ? −W 0
? ? ? −In

 ≺ 0

[
X0Y1 −W X0Y2

F0Y1 F0Y2 − Iq

]
= 0

(2.34)

hold. In this case, the matrices K , M that solve the problem are given by K =
U0Y1W −1 and M =U0Y2.

Proof. Repeating the same analysis as in the proof of Theorem 1 but this time
for the representation (2.32), we obtain the counterpart of (2.16), which is[

G>
1 X >

1 P X1G1 −P +Q G>
1 X >

1 P X1G2 +S

? G>
2 X >

1 P X1G2 +R

]
≺ 0 (2.35)

where P Â 0 is to be determined, and we have carried out the normalization P
τ → P .

The same manipulations that followed (2.16) lead in this case to
−P S G>

1 X >
1 Q1/2

S> R G>
2 X >

1 0
? ? −P−1 0
? ? ? −In

≺ 0

By pre- and post-multiplying the matrix above by the matrix block.diag(P−1, I , I , I )
we obtain (2.34) having set W := P−1, Y1 :=G1P−1, Y2 :=G2. Isolating the equation[

In 0n×q

0q×n Iq

]
=

[
X0

F0

][
G1 G2

]
(2.36)

in (2.31), taking its transpose and multiplying it on the left by block.diag(P−1, Ip ),
we obtain [

P−1 0
0 Iq

]
=

[
P−1G>

1 X >
0 P−1G>

1 F>
0

G>
2 X >

0 G>
2 F>

0

]
=

[
Y >

1 X >
0 Y >

1 F>
0

Y >
2 X >

0 Y >
2 F>

0

]
that is, the constraints (2.31) expressed in the variables Y1, Y2, W . In particular,
since P−1 = X0Y1, we have X0Y1 Â 0. Moreover, by

[
K M

] = U0
[
G1 G2

]
, we

obtain K =U0G1 =U0Y1P =U0Y1(X0Y1)−1 and M =U0Y2. ■
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Example 2 We consider a slightly revised version of Example 1 given by

ẋ =
[9

8 −1
0 0

]
x +

[
0
1

]
u +

[−1
0

]
ϕ(x1)

where the nonlinearity ϕ(x1) is defined as before.Compared with (2.29), the term
−βϕ(x1) is missing from the dynamics. In fact, it will be shown that the feasibility
of (2.34) in Theorem 3 leads to correctly select from data the parameters in the non-
linear controller (2.30) to provide such a term. The condition (2.34) in the case of
passive nonlinearities for continuous-time systems is obtained via straightforward
modifications of (2.28), and returns the following condition: there exist T ×n and
T ×q matrices Y1, Y2 such that

Y >
1 X >

1 +X1Y1 ≺ 0
X1Y2 +X0Y1H> = 0
X0Y1 Â 0
X0Y2 = 0
F0Y2 = Ip

F0Y1 = 0

(2.37)

We consider the same experiment as in Example 1: initial condition x(0) = [
2 −1

]>
,

α = 2, and input u(t) = sin t over the time horizon [0,1]. We take T = 10 evenly
spaced sampling times. We collect the measurements in the matrices U0, X0, X1,F0,
which we do not report here for the sake of brevity. It can be checked that Assump-
tion 3 is satisfied. We obtain the solution

[
Y1 Y2

]=



0.9823 −3.5073 −5.6005
−2.0064 8.5180 12.8729
−1.3370 7.1478 10.2375
0.41465 3.1658 2.6801

2.2302 −0.2915 −4.4256
3.5496 −3.1425 −10.2866
3.7054 −4.8273 −12.6223
2.2325 −4.4031 −9.1124

−0.7529 −1.5849 −0.4900
−6.3569 3.4286 16.4407


from which we compute the feedback gains

K = [
7.0779 −3.9230

]
, M =−3.5130

and the Lyapunov matrix

P = (X0Y1)−1 =
[

4.1628 −2.0853
−2.0853 1.1872

]
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which satisfies the Lyapunov inequality

Y >
1 X >

1 +X1Y1 =
[−2.5259 −2.6865
−2.6865 −5.2943

]
≺ 0

and the condition P (L+B M ) = (X0Y1)−1X1Y2 =−H>. We observe that the program
(2.37) is able to correctly compute from data that the gain M satisfies M < −9/8,
which is a necessary condition for feedback (2.30) to render the closed-loop system
strictly positive real [57, Example 1]. ■

Remark 3 Identities (2.31) suggest a way to renounce to the knowledge of L without
resorting to a nonlinear feedback involving f (t , z). This can be achieved by impos-
ing M = 0 in (2.31), which amounts to adding the constraint 0 =U0G2 to (2.34).
Under such conditions, we conclude that Theorem 3 holds when the feedback is the
linear one u = K x. With respect to the case where L is known, the price to pay is
that we need Assumption 3 instead of Assumption 2, which is less stringent. ■

Example 3 To illustrate the previous remark, we consider Example 1 again,2 this
time however without assuming that the matrix L in (2.29) is known. In fact,
differently from Example 1 where we employed (2.28), here we solve (2.37) with the
addition of 0 =U0G2. We use the same data X0, X1,U0,F0 as in Example 1. We
observe that

[
X >

0 F>
0 U>

0

]
is full row rank. We obtain

K =U0Y (X0Y )−1 = [
35.8066 −2.1645

]
which makes the closed-loop matrix A+BK Hurwitz, with Lyapunov matrix

P = (X0Y1)−1 =
[

0.5217 −0.0181
−0.0181 0.015

]
which satisfies PL+H> = 0. ■

2.5. CONCLUSIONS

We have presented a purely data-driven solution to derive a state feedback con-
troller to stabilize systems with quadratic nonlinearities, providing necessary and
sufficient conditions for the absolute stabilizability of the closed-loop system.
We have discussed several variants of the results under different feedback (linear
and nonlinear) and strengthened conditions on the data used for the design. To
focus on the impact of nonlinearities satisfying a quadratic constraint in the data-
dependent control design, we first considered in this chapter noiseless data. The

2We do not use the system in Example 2 because it cannot be stabilized by a linear feedback [57].
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addition of process disturbances during the acquisition of data will be discussed
in Chapter 3. The proposed conditions consist of semi-definite programs that
depend on input-state data only and once solved they directly return controllers.
As such, they represent end-to-end solutions to learning control from data for an
important class of nonlinear systems.





3
STABILIZATION OF SYSTEMS WITH

NONLINEARITIES SATISFYING

QUADRATIC CONSTRAINTS WITH

DISTURBED DATA

ABSTRACT

In the previous chapter, we presented a complete data-driven design for a feedback
controller that solve the problem of absolute stability for nonlinear system with
quadratic constrains. To simplify the presentation, we have disregarded the presence
of noise in the data used for the design, noise that in real applications is often not
negligible. This chapter continues the discussion on the absolute stability problem
by considering the data noise in the design of the controller. Necessary and sufficient
conditions are derived to guarantee absolute stability and noise robustness for both
discrete-time and continuous-time systems.

This chapter has been published in "On data-driven stabilization of systems with nonlinearities
satisfying quadratic constraints."Luppi, Alessandro, Claudio De Persis, and Pietro Tesi; Systems &
Control Letters 163 (2022): 105206.
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3.1. DATA-DRIVEN ABSOLUTE STABILIZABILITY WITH DISTURBED

DATA

We now examine the case in which the system is affected by disturbances during
the process of collecting data, namely we focus on the following perturbed system

x+ = Ax +Bu +Lv +E d

z = H x

v = f (t , z)

(3.1)

In this system, d ∈ Rs is an unknown signal representing process disturbances
affecting the dynamics during the data collection phase and E ∈Rn×s is a known
matrix describing the way d affects the different states of the system. If such an
information is not available, then E = In and s = n.

In the presence of d , in addition to the matrices U0, X0, X1 and F0 in (2.6), one
introduces the matrix D0 collecting the disturbance samples, i.e.

D0 := [
d(0) d(1) · · · d(T −1)

]
(3.2)

which, in contrast to U0, X0, X1,F0, is unknown. These matrices of data satisfy the
identity

X1 = AX0 +BU0 +LF0 +D0.

Based on this identity, under Assumption 2, and for any matrices K ∈Rm×n and
G ∈ RT×n satisfying (2.8), one obtains that system (3.1) in closed-loop with the
control law u = K x can be equivalently expressed as

x+ = (X1 −LF0 −ED0)Gx +Lv

z = H x

v = f (t , z)

(3.24)

Note that we assume to neglect the effect of the disturbances during the execution
of the control task, as this would require to make the nonlinear system stable with
respect to external perturbations, which is considerably more difficult than the
absolute stabilizability problem considered here. We note, however, that global
asymptotic stability implies input-to-state stability with “small disturbances" [62,
Theorem 2].

To address the absolute stabilizability problem for system (3.24), we follow
an analogous line of arguments as in the case of disturbance-free measurements
treated in Chapter 2, marking the differences due to the presence of disturbances
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in due course. Hence, we consider a quadratic Lyapunov function V (x) = x>P x
and look for matrices P Â 0 and G such that[

x
v

]>[
G>(XL −ED0)>P (XL −ED0)G −P G>(XL −ED0)>PL

? L>PL

][
x
v

]
< 0 (3.25)

holds for all x 6= 0 and for all v = f (t , z) that satisfy[
x
v

]>[
Q S
S> R

][
x
v

]
≥ 0. (3.26)

Notice that the difference of (3.25) in comparison with the noiseless case[
x
v

]>[
G>X >

L P XLG −P G>X >
L PL

? L>PL

][
x
v

]
< 0

lies in the presence of the unknown matrix D0. Retracing the same steps as in the
proof of Theorem 1, we arrive at the equivalent condition that there exists a T ×n
matrix Y such that

−X0Y X0Y S Y >(XL −ED0)> X0Y Q1/2

? R L> 0
? ? −X0Y 0
? ? ? −I

≺ 0 (3.27)

where XL := X1 −LF0.
In contrast to the noiseless case (from Theorem 1)

−X0Y X0Y S Y >X >
L X0Y Q1/2

? R L> 0
? ? −X0Y 0
? ? ? −I

≺ 0,

condition (3.27) is not implementable due to the presence of the unknown term
ED0. Without any condition on the disturbance affecting the measurements it
is hard to give an implementable condition of absolute stabilizability. We will
consider the disturbance as unknown-but-bounded, a solution that has a long
history in the literature, as the main idea dates back to the works of [63] [64].
Hence, we introduce an energy bound with the following condition on the distur-
bance matrix D0

D0 ∈D := {D ∈Rn×T : DD> ¹∆∆>}, (3.28)

where ∆ is some known matrix. This condition allows one to get rid of the de-
pendence on D0 via the following matrix inequality, which is a consequence of a
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completion-of-the-squares argument. Given matrices Γ,Θ, for any D0 satisfying
(3.28) and any ε> 0, it holds that

ΓD0Θ+Θ>D>
0 Γ

> ¹ εΓ∆∆>Γ>+ε−1 Θ>Θ.

Using this inequality, we obtain inequality
0 0 −Y >D>

0 E> 0
0 0 0 0

−ED0Y 0 0 0
0 0 0 0

¹


ε−1Y >Y 0 0 0

0 0 0 0
0 0 εE∆∆>E> 0
0 0 0 0

 . (3.29)

Hence, (3.27) is implied by the existence of a T ×n matrix Y and a constant ε> 0
such that

−X0Y +ε−1Y >Y X0Y S Y >X >
L X0Y Q1/2

? R L> 0
? ? −X0Y +εE∆∆>E> 0
? ? ? −I

≺ 0 (3.30)

holds. Yet another application of the Schur complement allows us to get rid of the
product Y >Y in block (1,1) and obtain

−X0Y X0Y S Y >X >
L X0Y Q1/2 Y >

? R L> 0 0
? ? −X0Y +εE∆∆>E> 0 0
? ? ? −I 0
? ? ? ? −εI

≺ 0. (3.31)

We formalize the argument as follows.

Theorem 4 (Data-driven absolute stabilizability under noisy measurements)
Consider the nonlinear system (3.1). Suppose that Assumption 1 and 2 hold. Then,
there exist two matrices G and P Â 0 such that (3.25) holds for all (x, v) 6= 0 that
satisfy (3.26) and D0 that satisfy (3.28)

1. (Q º 0) if there exists a T ×n matrix Y and a scalar ε> 0 such that the matrix
inequality (3.31) holds;

2. (Q = 0) if there exists a T ×n matrix Y and a scalar ε> 0 such that the matrix
inequality 

−X0Y X0Y S Y >X >
L Y >

? R L> 0
? ? −X0Y +εE∆∆>E> 0
? ? ? −εI

≺ 0 (3.32)

holds;
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3. (Q ¹ 0) if there exists a T ×n matrix Y and a scalar ε> 0 such that the matrix
inequality (3.32) holds.

In all the three cases, a state-feedback matrix K that ensures absolute stability for
the closed-loop system can be computed as K =U0Y (X0Y )−1.

Proof.

1. It has been already proven, see steps from (3.25) to (3.31).

2. Again, tracing the steps of the proof of Theorem 1, we arrive at the following
equivalent condition to (3.25), namely there exist matrices P Â 0 and G such
that −P S G>(XL −ED0)>

? R L>

? ? −P−1

≺ 0 (3.33)

which is a modified version of (2.18). From (3.33), by left- and right-multiplying
by block.diag(P−1, I , I ), we obtain−X0Y X0Y S Y >(XL −ED0)>

? R L>

? ? −X0Y

≺ 0 (3.34)

where Y =GP−1 as before. Bearing in mind the argument that led to (3.29),
we obtain that (3.33) is implied by−X0Y +ε−1Y >Y X0Y S Y >X >

L
? R L>

? ? −X0Y +εE∆∆>E>

≺ 0 (3.35)

which is equivalent to (3.32) by an application of Schur complement.

3. Since Q ¹ 0, condition (3.33) implies (3.25), hence, in view of the arguments
used to prove the previous point, condition (3.32) is sufficient for (3.25) to
hold.

■

Note that we have removed the requirement on the regularity of the constraint
(3.26) since the conditions are sufficient.
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3.1.1. CONTINUOUS-TIME SYSTEMS WITH DISTURBED DATA

In this section, we preset the case of a continuous-time system with an additive
noise in the measurements. Consider the nonlinear continuous-time system
affected by perturbations in the form of an additive process disturbance d , i.e.

ẋ = Ax +Bu +L f (t , z)+E d , z = H x (3.36)

Then the data-dependent closed-loop system representation is

ẋ = (X1 −LF0 −ED0)Gx +L f (t , z)+E d , z = H x (3.37)

with D0 := [
d(t0) d(t1) · · · d(tT−1)

]
as in (3.2).

Theorem 5 (Data-driven absolute stabilizability of continuous-time systems
with disturbed data)
Consider the nonlinear continuous-time system (3.36). Let Assumptions 1 and 2
hold. There exists two matrices G and P Â 0 such that[

x
v

]>[
G>(XL −ED0)>P +P (XL −ED0)G PL

? 0

][
x
v

]
< 0 (3.38)

holds for all (x, v) 6= 0 that satisfy (3.26) and D0 that satisfy (3.28)

1. (Q º 0) if there exists a T ×n matrix Y and a scalar ε> 0 such that the matrix
inequality

Y >X >
L +XLY +εE∆∆>E> L+X0Y S X0Y Q1/2 Y >

? R 0 0
? ? −I 0
? ? ? −εI

≺ 0 (3.39)

holds.

2. (Q = 0) if there exists a T ×n matrix Y and a scalar ε> 0 such that the matrix
inequality Y >X >

L +XLY L+X0Y S Y >

? R 0
? ? −εI

≺ 0 (3.48)

holds.

3. (Q ¹ 0) if there exists a T ×n matrix Y and a scalar ε> 0 such that the matrix
inequality (3.48) holds.

In all the three cases, the matrix K that solves the problem is given by K =U0Y (X0Y )−1.
■

The proof descends from minor modification of previous arguments (Theorem 2)
and is therefore omitted.
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3.1.2. PASSIVE NONLINEARITIES

In the case of passive nonlinearities, a sufficient data-dependent condition for
the absolute stabilizability via linear feedback u = K x amounts to the existence of
a matrix Y and a scalar ε> 0 such that

X0Y Â 0[
Y >X >

L +XLY +εE∆∆>E> Y >
Y −εI

]
≺ 0

L+X0Y H> = 0

(3.49)

If a solution to (3.49) exists then the matrix K that solves the problem is given by
K =U0Y (X0Y )−1. In the following, we apply this result to a numerical example.

Example 4 We revisit Example 1 from Chapter 2 and consider disturbances on the
system’s dynamics, hence obtaining

ẋ =
[9

8 −1
0 0

]
x +

[
0
1

]
u +

[−1
−β

]
ϕ(x1)+

[
d1

d2

]
(3.50)

where β,ϕ are as before and d := [
d1 d2

]>
is the vector of disturbances. Note that

for this example E = I2. The entire setup of Example 1 is unchanged except for the
disturbance addition. In particular, an experiment is performed from the same
initial condition and applying the same input.

As for d, at the T sampling times we generate values for d1,d2 uniformly dis-
tributed in the interval [−δ/

p
n,δ/

p
n], with δ= 0.01, n = 2, which are interpolated

to emulate a continuous-time disturbance signal. Below is the occurrence of D0

used in the simulations of this example

D0 =
[−0.0012 0.0031 −0.0071 −0.0028 −0.0050
−0.0058 −0.0044 −0.0022 −0.0015 0.0005

]
D0 is unknown to the designer. We set ∆ := δpT I2 = 0.0158 I2. With such a choice,
D0D>

0 ¹∆∆>. We collect the measurements in the matrices U0, X0, X1, F0, with U0

as in Example 1 and

X0 =
[

2 1.2693 1.3208 1.5113 1.7452
−1 2.9946 −4.3760 −6.0270 −8.2248

]
X1 =

[−21.2512 −5.3085 −4.6550 −5.9798 −8.1966
−29.4058 −11.4380 −12.1346 −15.7649 −21.2137

]
F0 =

[
12.2500 4.8671 5.2549 6.8521 9.1899

]
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Assumption 2 holds. We solve (3.49) with cvx [54] for ε and Y , and obtain ε =
90.9064

Y =


1.3812 1.5803
−0.1661 3.7288
0.4856 −2.8528
−0.1946 −4.5080
−0.5150 2.9152


from which

K =U0Y (X0Y )−1 = [
14.3773 −12.1370

]
It can be checked that the closed-loop matrix (XL −ED0)G, with G = Y (X0Y )−1,
is Hurwitz (eigenvalues equal to −5.2460,−12.0643). The entries of αL+X0Y H>,
with α= 2, are of order 10−10. Hence, the controller guarantees asymptotic stability
of the closed-loop system uniformly with respect to any passive nonlinearity f . ■

3.2. RELAXING SOME PRIOR KNOWLEDGE

A version of Theorem 3 from Chapter 2 that applies to the case in which dis-
turbances perturb the data collection can also be given based on the same as-
sumptions: the matrices U0, X0, X1 and F0 are known (Assumption 1) and the
matrix

Ψ0 :=
X0

F0

U0


is full-row rank (Assumption 3).

Theorem 6 (Data-driven absolute stabilizability II with disturbed data)
Consider the nonlinear system (3.1). Let Assumptions 1 and 3 hold and let Q º 0.
There exist three matrices G1, G2 and P Â 0 such that[

x
v

]>[
G>

1 (X1 −ED0)>P (X1 −ED0)G1 −P G>
1 (X1 −ED0)>P (X1 −ED0)G2

? G>
2 (X1 −ED0)>P (X1 −ED0)G2

][
x
v

]
< 0

(3.51)
holds for all (x, v) 6= 0 that satisfy (3.26) and D0 that satisfy (3.28) if there exist T ×n,
T ×q and n ×n matrices Y1, Y2, W and a scalar ε> 0 such that the conditions

−W W S Y >
1 X >

1 W Q1/2 Y >
1

? R Y >
2 X >

1 0 Y >
2

? ? −W +εE∆∆>E> 0 0
? ? ? −In 0
? ? ? ? −εIT

 ≺ 0

[
X0Y1 −W X0Y2

F0Y1 F0Y2 − Iq

]
= 0

(3.52)
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hold. In this case, the matrices K , M that solve the problem are given by K =
U0Y1W −1 and M =U0Y2.

The proof is similar to the one of Theorem 3 with minor modifications and is
not repeated here.

3.2.1. PASSIVE NONLINEARITIES WITH ADDITIVE DISTURBANCES

As for the case of passive nonlinearities examined in Chapter 2, Example 2, we
make the following observations.

The directional derivative V̇ (x) of the Lyapunov function V (x) = x>P x along
the data-dependent vector field of system (3.1) in closed-loop with u = K x, namely
ẋ = (X1 −ED0)G1x + (X1 −ED0)G2 f , is given by

V̇ (x) = x>(P (X1 −ED0)G1 +G>
1 (X1 −ED0)>P )x

+2x>P (X1 −ED0)G2 f (t , z)

Due to the presence of the disturbance-induced matrix D0, it is immediately
recognized that the conditions (2.37) (reported below)

Y >
1 X >

1 +X1Y1 ≺ 0
X1Y2 +X0Y1H> = 0
X0Y1 Â 0
X0Y2 = 0
F0Y2 = Ip

F0Y1 = 0

are no longer sufficient to guarantee that V̇ (x) < 0 for all x 6= 0 and for all f (t , z)
that satisfy z> f (t , z) ≥ 0 for all z. However, (2.37) suggests modified conditions to
guarantee such a property for V̇ (x). We preliminarily observe that the conditions
X0Y1 Â 0, X0Y2 = 0, F0Y2 = Ip , F0Y1 = 0, which descend from (2.31) (reported
below),  In 0n×q

0q×n Iq

K M

=
X0

F0

U0

[
G1 G2

]
remain unchanged.

The first modified condition, a robustified version of the condition Y >
1 X >

1 +
X1Y1 ≺ 0, implies the Hurwitz property of the matrix (X1 −ED0)G1 for all D0

satisfying (3.28), and is obtained by the completion-of-squares argument recalled
in Section 3.1. The condition takes the form[

Y >
1 X >

1 +X1Y1 +εED0D>
0 E> Y >

1
Y1 −εIT

]
≺ 0
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where, in addition to Y , we have the positive scalar ε as decision variable.
The condition X1Y2 +X0Y1H> = 0 in (2.37) aims at assigning to the nonlinear

term the value −z> f (t , z) ≤ 0 to x>P (X1−ED0)G2 f (t , z). The presence of D0, how-
ever, only allows the designer to obtain the bound V̇ (x) <−2x>PED0G2 f (t , H x)
for x 6= 0, where the sign of −2x>P ED0G2 f (t , H x) is not determined because of
D0. In this case, to infer absolute stabilizability properties, we need to strengthen

the assumption on the nonlinearity and require that | f (t ,z)|
|z| → 0 as |z| → 0 uni-

formly with respect to t , i.e., for any ε> 0 there exists δε > 0 such that | f (t , z)| < ε|z|
for all |z| < δε and all t ≥ 0, which guarantees local uniform asymptotic stability of
the closed-loop system. An estimate of the region of attraction of the closed-loop
system could be carried out using the methods in [24].

3.3. CONCLUSIONS

With this chapter, we have completed the discussion on the design of an absolute
stabilizing controller directly from measurements. As in the noiseless case, we
have provided necessary and sufficient conditions for the absolute stabilizability
of the closed-loop system for both the discrete-time and continuous-time case.
The derived algorithm consists of a semi-definite program that from noisy system
measurements (input-state data) returns a stabilizing controller without any
additional step.

In the next chapter, we will introduce the concept of safety as an additional
requirement in the controller design in addition to closed-loop stability. Moreover,
instead of considering nonlinear systems with quadratic nonlinearities, we will
focus on another class of nonlinear systems called polynomial systems.
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DATA-DRIVEN DESIGN OF SAFE

CONTROL FOR POLYNOMIAL

SYSTEMS

ABSTRACT

We consider the problem of designing an invariant set using only a finite set of
input-state data collected from an unknown polynomial system in continuous time.
We consider noisy data, i.e., corrupted by an unknown-but-bounded disturbance.
We derive a data-dependent sum-of-squares program that enforces invariance of
a set and also optimizes the size of the invariant set while keeping it within a set
of user-defined safety constraints; the solution of this program directly provides a
polynomial invariant set and a state-feedback controller. We numerically test the
design on a system of two platooning cars.

4.1. INTRODUCTION

This chapter presents the work done on enforcing invariance with a controller
designed directly from data extending the results in [65] in multiple ways. First,
polynomial nonlinear systems are considered in this chapter. Polynomial systems

This chapter has been published in "Data-driven design of safe control for polynomial systems."
Luppi A., Bisoffi A., De Persis C.,and Tesi P.; arXiv preprint arXiv:2112.12664 (2021).
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are a notable class of nonlinear systems widely used to model processes in engi-
neering applications such as fluid dynamics [66, 67] and robotics [68]. Second,
contrary to [65], we do not assume knowledge of the set that we would like to
make invariant. Finally, we consider safety constraints to obtain an invariant set
that also includes the safety set, all states satisfying the safety requirements. The
resulting controller is called a safe controller.

To obtain a safe controller usually the nonlinear control design is formulated
as an optimization problem but it is generally computationally intractable to
verify whether a multivariate (matrix) polynomial is nonnegative. For the case of
polynomial systems a computationally viable approach is to adopt a relaxation
and verify instead whether such a polynomial is a sum-of-squares (SOS) since
SOS optimization can be solved through semidefinite programming (SDP) [69, 70].
In a model-based setting, SOS programs have been used to design stabilizing
controllers for hybrid systems [71], for disturbance analysis in linear systems [72]
and to obtain inner-approximations of the basin of attraction [73] [74], to name a
few applications.

Still, SOS programs suffer from some limitations that have been or are being
addressed in the literature. A first one is scalability of SOS programs: tools are
available [75] that automatically reduce the problem size without major com-
putational costs, and recent works on large-scale semidefinite and polynomial
optimization [76] improve scalability of SOS programs significantly. Secondly, it is
often the case that the obtained SOS program is bilinear in the decision variables.
This occurs in model-based SOS programs as in [73] and also in our case. An
iterative approach to solve these bilinear SOS programs is commonly used [72].
Alternatively, there exist tools to solve these bilinear SOS programs directly, such
as PENBMI and BMIBNB. For these reasons, the limitations of SOS programs seem
largely outweighed by their positive features.

From the side of (direct) data-driven control, this work is positioned in the
literature thread [77–79], to name a few, which exploits the so-called fundamental
lemma in [2, Th. 1]. Within this thread, [65, 80–82] are the most closely related
works to this one. As mentioned before, [65] addresses also an invariance problem,
but for systems with linear dynamics and where the set to be rendered invariant
is given. The works [80, 81] and [82, Section 5] consider nonlinear input-affine
polynomial systems as here, but the goal is data-driven almost global [80] or global
[81, 82] stabilization; invariance is a weaker dynamical property (e.g., solutions do
not need to converge to an attractor within the invariant set), hence the conditions
here are less conservative and yet significant to enforce safety.

In this chapter, we show how to enforce invariance in absence of a model
of the system to be controlled, but using only a set of input-state data points
collected from it in an experiment. We consider an input-affine nonlinear sys-
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tem with polynomial dynamics and a polynomial controller. This allows us to
make the data-based invariance conditions tractable by using an SOS relaxation
and alternately solving two SOS programs. In this work, we consider the realis-
tic setting when invariance needs to be guaranteed despite the presence of an
unknown-but-bounded [83] additive noise in data. Moreover, we show that also
in the data-driven case it is possible to optimize the size of the invariant set while
respecting safety constraints. Finally, we provide numerical evidence to show
the effectiveness of the approach, in particular on the practical example of two
platooning cars.

The chapter is structured as follows. In Section 4.2 recalls the theory enabling
our results. In Section 4.3, we set up the invariance problem for polynomial sys-
tems. In Section 4.5, we derive a data-driven controller that solves the invariance
problem, and also includes safety constraints. In Section 4.7, we exemplify our
data-based solution for two platooning cars.

4.2. PRELIMINARIES

In this section, we present a fundamental result from real algebraic geometry, the
Positivstellensatz. We first report from [70, 72] the notions needed to state that
result.

We start from sum-of-squares (SOS) polynomials and SOS matrix polynomials.
A function h :Rn →R is a monomial of degree d in x = (x1, x2, . . . , xn) ∈Rn if

h(x) = axq1

1 xq2

2 · · ·xqn
n

with a ∈R, q1, . . . , qn ∈Z≥0 and d =∑n
i=1 qi . A function h :Rn →R is a polynomial

if it is a sum of (a finite number of) monomials h1, h2, . . . : Rn → R with finite
degree, and the largest degree of the hi ’s is the degree of h. Π denotes the set of
polynomials.

Definition 2 (SOS polynomial) h ∈Π is an SOS polynomial if there exist h1, . . . ,hk ∈
Π such that h(x) =∑k

i=1 hi (x)2. The set of SOS polynomials h ∈Π is denoted as Σ.

A function H :Rn →Rr1×r2 is a matrix polynomial if the entries of H satisfy hi j ∈Π
for all i = 1, . . . , r1 and j = 1, . . . , r2, and the largest degree of the entries of H is the
degree of H . The set of matrix polynomials H :Rn →Rr1×r2 is denoted by Πr1,r2 . A
function H :Rn →Rr1×r2 is a square matrix polynomial if r1 = r2. The set of square
matrix polynomials H :Rn →Rr×r is denoted by Πr .

Definition 3 (SOS matrix polynomial [70]) H ∈Πr is an SOS matrix polynomial
if there exist H1, . . . , Hk ∈Πr such that H(x) = ∑k

i=1 Hi (x)>Hi (x). The set of SOS
matrix polynomials H ∈Πr is denoted by Σr .
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SOS polynomials are instrumental to define three sets of polynomials appearing
in the Positivstellensatz.

Definition 4 (Multiplicative monoid [72, Def. 3]) Given g1, . . . , g t ∈Π, the multi-
plicative monoid generated by g j ’s is the set of all finite products of g j ’s, including
1 (i.e., the empty product). It is denoted by M (g1, . . . , g t ), with M (;) := 1 for com-
pleteness.

An example is M (g1, g2) = {g k1
1 g k2

2 : k1,k2 ∈Z≥0}.

Definition 5 (Cone [72, Def. 4]) Given f1, . . . , fr ∈Π, the cone generated by fi ’s is
C ( f1, . . . , fr ) := {

s0 +∑l
i=1 si bi : l ∈Z≥0, si ∈Σ,bi ∈M ( f1, . . . , fr )

}
.

If s ∈Σ and f ∈Π, then f 2s ∈Σ. Then, a cone of { f1, . . . , fr } can be expressed as a
sum of 2r terms without loss of generality. An example is C ( f1, f2) = {s0 + s1 f1 +
s2 f2 + s3 f1 f2 : s0, . . . , s3 ∈ Σ} where terms like s4 f 2

1 or s5 f 2
2 with s4, s5 ∈ Σ are not

needed since they are captured by s0 anyway.

Definition 6 (Ideal [72, Def. 5]) Given h1, . . . ,hu ∈Π, the ideal generated by hk ’s is
J (h1, . . . ,hu) := {

∑u
k=1 hk pk : pk ∈Π}.

An example is J (h1,h2) = {h1p1 +h2p2 : p1, p2 ∈ Π}. With Definitions 4-6, we
finally recall the version in [72] of the Positivstellensatz (P-Satz), in the next fact.

Fact 1 (Positivstellensatz (P-Satz) [72, Th. 1]) Given f1, . . . , fr ∈ Π, g1, . . . , g t ∈ Π,
and h1, . . . ,hu ∈Π, the following are equivalent.

1. The set x ∈Rn :
f1(x) ≥ 0, . . . , fr (x) ≥ 0
g1(x) 6= 0, . . . , g t (x) 6= 0
h1(x) = 0, . . . ,hu(x) = 0

=;.

2. There exist polynomials f ∈C ( f1, . . . , fr ), g ∈M (g1, . . . , g t ), h ∈J (h1, . . . ,hu)
such that

f + g 2 +h = 0.

4.2.1. NOTIONS ON MATRIX ELLIPSOIDS

To have a self-contained and complete explanation of the notions that we used
to formulate the main results of this chapter, we need to discuss the concepts of
matrix ellipsoid explained in [86]. For symmetric matrices P ∈Rp×p ,Q ∈Rq×q , A ∈
Rp×p , C ∈Rq×q and matrices Zc ∈Rp×q , B ∈Rp×q , we define as matrix ellipsoid a
set in one of the next two forms:
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Emat := {
Z ∈Rp×q : (Z−Zc)> P−2 (Z−Zc) ¹ Q

}
(4.1)

E ′
mat := {

Z ∈Rp×q : Z>AZ+Z>B+B>Z+C ¹ 0
}

(4.2)

where P Â 0,Q Â 0 and A Â 0, B>A−1 B−C Â 0. The constraints Q Â 0 and
B>A−1 B−C Â 0 ensure that Emat and E ′

mat are not empty or do not reduce to a
singleton; the constraints P Â 0 and A Â 0 ensure then that the matrix ellipsoid
is a bounded set. We stress that many sets considered in the sequel have to
be expressed in terms of these matrix ellipsoids, and that Emat and E ′

mat are
natural extensions of the classical ellipsoids in the Euclidean space. Standard
computations reformulate (4.2) as

E ′
mat = {Z ∈Rp×q : (Z+A−1 B)>A(Z+A−1 B)− (B>A−1 B−C) ¹ 0}

Hence, Emat and E ′
mat are the same set for

Zc =−A−1 B, P−2 = A, Q = B>A−1 B−C (4.3)

Establishing the correspondence in (4.3) is useful since in the following (Sec-
tion 4.5) matrix ellipsoids appear more naturally in the form (4.2) than (4.1). On
the other hand when we need to define a size for matrix ellipsoids, it is easier
using Emat in (4.1). By Q Â 0 (4.1) is equivalently written as

Emat =
{
Z ∈Rp×q : Q−1/2 (Z−Zc)> P−2 (Z−Zc)Q−1/2 ¹ I

}
= {

Zc +PYO1/2 : Y ∈Rp×q ,Y>Y ¹ I
}

where Y >Y ¹ I is equivalent to |Y | ≤ 1.

4.3. COLLECTING DATA AND ENFORCING INVARIANCE

We consider polynomial systems of the form

ẋ = f (x)+ g (x)u (4.4)

where x ∈ Rn is the state, u ∈ Rm is the control input, f and g are polynomial
vector fields. The specific expressions of f and g are unknown. The polynomial
system (4.4) can be written into the linear-like form by re-writing the polynomials
as a multiplication of coefficients and monomials

ẋ =AZ (x)+BW (x)u (4.5)



4

44 4. SAFE CONTROL FOR POLYNOMIAL SYSTEMS

where the coefficient matrices A ∈Rn×NA and B ∈Rn×NB are unknown, the known
NA×1 vector Z (x) contains as entries the distinct monomials in x that may appear
in f , and the known NB ×m matrix W (x) contains as entries the monomials that
may appear in g . The conditions we will propose to design an invariant set are the
same regardless of the choice of the monomials in Z and W . On the other hand,
different choices of Z and W affect feasibility and quality of the solution arising
from those conditions, as is generally the case with model structure selection. In
Section 4.7, we will present guidelines for the choice of monomials in Z and W .

We consider the control law u = K (x) where K ∈Πm,1 is to be designed. The
closed-loop dynamics results in

ẋ =AZ (x)+BW (x)K (x) = [
A B

][
Z (x)

W (x)K (x)

]
. (4.6)

Data are generated through an experiment in the presence of an additive distur-
bance d as

ẋ =AZ (x)+BW (x)u +d . (4.7)

We apply an input sequence of T elements, and measure the state and state
derivative sequences generated by (4.7); we sample uniformly these sequences at
times 0, τs, . . . , (T −1)τs for sampling period τs > 0; this results in data points, for
j = 0, . . . ,T −1,

ẋ j := ẋ( jτs), z j := Z (x( jτs)), v j :=W (x( jτs))u( jτs). (4.8)

A disturbance sequence given for j = 0, . . . ,T −1 by

d j := d( jτs)

acts during the experiment but is unknown. Hence, the data generation mecha-
nism is described by

ẋ j =Az j +Bv j +d j , j = 0,1, . . . ,T −1. (4.9)

4.4. INVARIANT SET

Our goal is to use the collected data points to obtain an invariant set for (4.6) as
specified in the next definition.

Definition 7 (Invariant set) For a : Rn →Rn polynomial, i.e., a ∈Πn,1, and for an
arbitrary x0 ∈ Rn , denote t 7→ α(t , x0) the (unique maximal) solution to ẋ = a(x)
with initial condition x0 = α(0, x0) and defined on the interval [0,T (x0)) (with
T (x0) possibly +∞). A set I is said to be invariant for ẋ = a(x) if x0 ∈ I implies
that for all t ∈ [0,T (x0)), α(t , x0) ∈I .
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Consider the set
I := {x ∈Rn : h(x) ≤ 0} (4.10)

with h ∈ Π. To impose that I is an invariant set according to Definition 7, we
require the condition

{x ∈Rn : h(x) = 0} ⊆ {x ∈Rn :
∂h

∂x
(x)ẋ ≤−ε} (4.11)

where ẋ, used for brevity, takes the expression in (4.6) and the parameter ε> 0 is
introduced to guarantee some degree of robustness at the boundary of I .

Remark 1 We emphasize that whereas we use noisy data for control design as per
the data generation mechanism in (4.9), we design a controller to enforce nominal
invariance for d = 0 as in (4.6), instead of robust invariance. Nonetheless, our
design features some degree of robustness thanks to ε, as we now show. Define
the nominal closed-loop vector field in (4.6) as fn(x) :=AZ (x)+BW (x)K (x) and
consider now the perturbed dynamics ẋ = fn(x)+d with |d |2 ≤ω (as we will have
later in (4.15)). I is robustly invariant for this perturbed dynamics as long as

∂h
∂x (x)( fn(x)+d) ≤ 0 ∀(x,d) : h(x) = 0, |d |2 ≤ω (4.12)

By achieving (4.11), we have that for all x and d with h(x) = 0 and |d |2 ≤ω,

∂h
∂x (x)( fn(x)+d) ≤−ε+

∣∣∣∂h
∂x (x)

∣∣∣pω.

Then, robust invariance in (4.12) is achieved if
∣∣∣∂h
∂x (x)

∣∣∣≤ ε/
p
ω for all x such that

h(x) = 0 or, equivalently, if[−ε2/ω ∂h
∂x (x)

∂h
∂x (x)> −I

]
¹ 0 ∀x : h(x) = 0,

which can be relaxed into an SOS condition and added to our optimization program
(see later Theorem 8). For these reasons, we rather consider for simplicity nominal
invariance and introduce ε> 0 to guarantee nonetheless some degree of robustness
at the boundary of I .

With the goal of applying Fact 1, (4.11) can be cast as{
x ∈Rn : h(x) = 0,

∂h

∂x
(x)ẋ +ε≥ 0,

∂h

∂x
(x)ẋ +ε 6= 0

}
=;.
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This empty set condition is equivalent, by Fact 1, to the existence of `1 ∈ Π,
s0, s1 ∈Σ and k1 ∈Z≥0 such that

`1h + s0 + s1

(∂h

∂x
ẋ +ε

)
+

(∂h

∂x
ẋ +ε

)2k1 = 0. (4.13)

With the final goal of implementing numerically this condition, we simplify (4.13)
by setting s0 = 0, k1 = 1 and `1 = `

(
∂h
∂x ẋ +ε) and, for ` ∈Π and s1 ∈Σ, obtain

(∂h

∂x
ẋ +ε

)[
`h + s1 +

(∂h

∂x
ẋ +ε

)]
= 0,

which is a relaxation of (4.13). So, the original (4.11) is implied by

`(x)h(x)+ ∂h

∂x
(x)ẋ +ε+ s1(x) = 0

`(x)h(x)+ ∂h

∂x
(x)ẋ +ε=−s1(x) ≤ 0 ∀x, s1 ∈Σ. (4.14)

The arguments above can be summarized as follows.

Lemma 1 If there exists ` ∈Π such that condition (4.14) holds, then I in (4.10) is
an invariant set for (4.7).

Indeed, for all x such that h(x) = 0 (corresponding to the boundary of I ), the
condition imposes ∂h

∂x (x)ẋ ≤−ε, i.e., the Lie derivative of h is strictly negative. For
all x such that h(x) < 0 (corresponding to the interior of I ), the condition imposes
∂h
∂x (x)ẋ ≤ −ε−`(x)h(x). Since ` is a polynomial without any sign definiteness
requirement and ε is a design parameter selected as a small positive number, the
term −ε−`(x)h(x) does not need to be negative and can actually be positive;
hence, the condition may allow even for a positive ∂h

∂x (x)ẋ, consistently with set
invariance being less restrictive than attractivity.

4.5. DATA-DRIVEN SAFE CONTROL

Our goal is to formulate a condition depending exclusively on noisy data to find
an invariant set for the actual system (4.6). We substitute in (4.14) the closed-loop
dynamics in (4.6) and obtain

`(x)h(x)+ε+ ∂h

∂x
(x)

[
A B

][
Z (x)

W (x)K (x)

]
≤ 0 ∀x.

Since the model is not available and the true coefficient matrices A and B are
unknown, we rather enforce the previous inequality on all matrices (A,B) that are
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consistent with data (for a given disturbance model), as we now characterize. By
consistent with data, we mean all matrices (A,B) that could have produced the
measured data sequences {ẋ j , z j , v j }T−1

j=0 as in (4.8) for an additive disturbance d
that is bounded. A realistic bound on disturbance is that the norm of any possible
disturbance instance d is upper-bounded, and so are the norms of the unknown
d 0, . . . , d T−1. This corresponds to an instantaneous bound given, for ω≥ 0, by the
set

Dins := {d ∈Rn : |d |2 ≤ω}. (4.15)

Remark 2 Note that |d |2 ≤ω is equivalent to d>d ≤ω or dd> ≤ωI .

Then, based on the bound in Dins, the system matrices consistent with a single
data point j ∈ {0, . . . ,T −1} belong to the set

C
j

i :=
{

[A B ] : ẋ j = Az j +B v j +d , dd> ¹ωI
}

, (4.16)

=
{

[A B ] :
[
I A B

]I ẋ j

0 −z j

0 −v j

 ·
[
ωI 0
0 −I

]
[?]>º 0

}
.

C
j

i is the set of all matrices for which some disturbance d satisfying the bound
in (4.15) could have generated the measured data point j , as in [84, 85]. Here and
in the following the subscript i denotes the formulation for the instantaneous
bound (4.15), it is not an index.

The set of matrices (A,B) consistent with all data points j = 0, . . . ,T −1 is then

Ci :=
T−1⋂
j=0

C
j

i . (4.17)

Unfortunately (4.17) is difficult to obtain exactly. In fact,Ci is an intersection
of matrix ellipsoids, and even for systems with one input and one output, finding
the ellipsoid of minimum volume containing Ci is NP-complete. As consequence
for matrices ζ0, P = P> Â 0, Q =Q> º 0, the set Ci cannot be expressed as a matrix
ellipsoid1 of the form

{ζ ∈R(n+m)×n : (ζ−ζ0)>P−2(ζ−ζ0) ¹Q}, (4.18)

which is instrumental to obtain our main result.
We thus set up a convex optimization problem to obtain a computable over-

approximation C i of Ci.

1As the name suggests, a matrix ellipsoid is an extension of the classical (vector) ellipsoid {ζ ∈
Rp : (ζ−ζ0)>P−2(ζ−ζ0) ≤ q} with P = P> Â 0 and q ≥ 0, see [86] for details.
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Using C i it is possible to obtain (4.18) for the matrix ellipsoid defined for
Ai Â 0 as

C i :=
{

[A B ] = ζ> :
[
I ζ>

][
B>

i A−1
i Bi − I B>

i
Bi Ai

][
I
ζ

]
¹ 0

}
. (4.19)

Indeed, for Ai Â 0, the condition in (4.19) is precisely (ζ+A−1
i Bi)>Ai(ζ+A−1

i Bi) ¹ I ,
so that the selections

ζi :=−A−1
i Bi, P

−2
i := Ai, Q i := I (4.20)

rewrite C i equivalently as

C i = {[A B ] = ζ> : (ζ−ζi)
>P

−2
i (ζ−ζi) ¹Q i}. (4.21)

In summary, because the form (4.21) allows us to obtain our main result, we
over-approximate Ci in (4.17) through C i in (4.19) where the matrices Ai Â 0 and
Bi are determined by solving an optimization program, which we recall from [86,
Section 5.1].
From data, define for j = 0, . . . ,T −1

c j :=−ωI + ẋ j (ẋ j )>,

b j :=−
[

z j

v j

]
(ẋ j )>, a j :=

[
z j

v j

][
z j

v j

]>
. (4.22)

As it is done for classical ellipsoids [51, Section 3.7.2], we impose that the ma-
trix ellipsoid C i, which is well-defined for Ai Â 0, includes Ci through the (lossy)
S-procedure [51, Section 2.6.3] and we then minimize the size of C i. This corre-
sponds to the optimization program

minimize − logdet Ai

subject to−I −∑T−1
j=0 τ j c j B>

i −∑T−1
j=0 τ j b>

j B>
i

Bi −∑T−1
j=0 τ j b j Ai −∑T−1

j=0 τ j a j 0

Bi 0 −Ai

¹ 0,

Ai Â 0, τ j ≥ 0 for j = 0, . . . ,T −1.

(4.23)

When this optimization program is solved, we use the returned Ai and Bi to obtain
the matrices ζi, P i Q i as in (4.20). Before further analyzing the optimization
program, we discuss in the next remark an alternative bound on the disturbance
that is commonly used.
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Remark 3 When an instantaneous bound on the disturbance is given by |d |2 ≤ω
as in Dins in (4.15), one can infer that the whole unknown disturbance sequence[
d 0 . . . d T−1

]
of the experiment belongs to the set

De := {D ∈Rn×T : DD> ¹ TωI }, (4.24)

which we call an energy bound on the disturbance. By collecting data points in (4.8)
in matrices

X1 := [
ẋ0 . . . ẋT−1

]
, (4.25a)

Z0 := [
z0 . . . zT−1

]
,V0 := [

v0 . . . vT−1
]

, (4.25b)

the set of matrices consistent with data is

Ce :=
{

[A B ] : X1 = AZ0 +BV0 +D, D ∈Rn×T , DD> ¹ TωI
}

, (4.26)

or, after standard manipulations as in [82, Section 2.3],

Ce =
{

[A B ] = ζ> :
[
I ζ>

][
Ce B>

e

Be Ae

][
I
ζ

]
¹ 0

}
Ae :=

[
Z0

V0

][
Z0

V0

]>
, Be :=−

[
Z0

V0

]
X >

1 ,

Ce :=−TωI +X1X >
1 . (4.27)

This form is mathematically analogous to that of C i in (4.19) and one can indeed
adapt the results we will find for C i to the set Ce, as we will show in Remark 4. How-
ever, [86] illustrates that, unless T is very large and thus impacts the computational
cost, it is advantageous to work with C i instead of Ce.

The results that follow rely on the optimization program in (4.23) being feasible.
We would like to show that feasibility of (4.23) is guaranteed under a relatively mild
assumption. This assumption is that the data set {ẋ j , z j , v j }T−1

j=0 yields a matrix[
Z0
V0

]
:=

[
z0 ... zT−1

v0 ... vT−1

]
with full row rank. This rank condition can be easily checked

from data and when not verified, one can always collect additional data points,

thereby adding columns to
[

Z0
V0

]
, to try and meet the rank condition (in a linear

setting, this rank condition is related to classical persistence of excitation, see [82,
Section 4.1]). We have then the next result for feasibility of (4.23).

Lemma 2 If
[

Z0
V0

]
has full row rank, then the optimization program (4.23) is feasi-

ble.
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Proof. With the matrices Ae and Be defined in (4.27) from data, set in (4.23)

τ0 = ·· · = τT−1 = τ, Ai = τAe,Bi = τBe (4.28)

for τ> 0 to be determined in the proof. Since
[

Z0
V0

]
has full row rank, Ae in (4.27)

satisfies Ae Â 0. Consider the constraints in (4.23); by (4.28), Ae Â 0 and the
selection τ> 0, the statement of the lemma is proven if we choose τ> 0 suitably
to verify [ −I−∑T−1

j=0 τc j τB>
e −∑T−1

j=0 τb>
j τB>

e

τBe−∑T−1
j=0 τb j τAe−∑T−1

j=0 τa j 0
τBe 0 −τAe

]
¹ 0.

By recalling (4.22) and (4.27), we have the relations

Ce =
T−1∑
j=0

c j =−TωI+X1X >
1 , Be =

T−1∑
j=0

b j =−
[

Z0
V0

]
X >

1 , Ae =
T−1∑
j=0

a j =
[

Z0
V0

][
Z0
V0

]>
.

By substituting these relations in the previous matrix inequality, we want to choose
τ> 0 suitably to verify[−I−τCe 0 τB>

e
0 0 0
τBe 0 −τAe

]
¹ 0 ⇐⇒

[
−I−τCe+τB>

e A−1
e Be 0

0 0

]
¹ 0

by Schur complement and τAe Â 0. The last condition is indeed true and the
statement is thus proven because Qe := B>

e A−1
e Be −Ce º 0 by [82, Lemma 1] and a

sufficiently small τ> 0 ensures −I +τQe ¹ 0. ä
With the set Ci of matrices consistent with data in (4.17) and its over-approximation

C i obtained via the optimization program (4.23), we can solve the considered
problem of enforcing invariance for ground truth matrices (A,B). This is achieved
by enforcing invariance in (4.14) for all matrices (A,B) in C i as in the next main
result, so that an invariant set is determined directly from data.

Theorem 7 (Data-driven invariance condition)
For a design parameter ε> 0, consider the data generation mechanism (4.9), mea-
sured data {ẋ j , z j , v j }T−1

j=0 as in (4.8) and disturbance d satisfying the instantaneous

bound Dins in (4.15) (i.e., d 0 ∈Dins, . . . , d T−1 ∈Dins).
Assume that the optimization program in (4.23) is feasible so that parameters ζi, P i

and Q i in (4.20) exist. Assume that there exist decision variables ` ∈Π, η ∈Π, h ∈Π
and K ∈Πm,1 such that for all x ∈Rn , η(x) > 0 and H(x) ¹ 0, with H defined as

H(x):=


{

`(x)h(x)+ε
+∂h
∂x (x)ζ

>
i

[
Z (x)

W (x)K (x)

]} ? ?

η(x)P i

[
Z (x)

W (x)K (x)

]
−2η(x)I ?

Q
1/2
i

∂h
∂x (x)> 0 −2η(x)I

. (4.29)

Then, the set I in (4.10) is invariant for the system in (4.6).
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Proof. Under the assumption that (4.23) is feasible, Ai Â 0 by construction, so
P i and Q i in (4.20) satisfy P i Â 0 and Q i Â 0. These two relations allow us to rewrite
(4.21) as

C i= {ζ>∈Rn×(n+m): Q
−1/2
i (ζ−ζi)

>P
−1
i ·[?]>¹ I } (4.30)

= {(ζi +P iY Qi
1/2

)>: Y ∈R(n+m)×n ,Y >Y ¹ I } (4.31)

where (4.30) is obtained from (4.21) since Q
−1/2
i Â 0 and (4.31) is obtained by

setting Y = P
−1
i (ζ−ζi)Q

−1/2
i in (4.30). Since the disturbance d satisfies the instan-

taneous bound Dins in (4.15), (A,B) ∈⋂T−1
j=0 C

j
i =Ci and, thus, (A,B) ∈C i in (4.31)

since (4.23) enforces Ci ⊆C i by construction. The invariance condition in (4.14)
imposed for all matrices in C i reads

∀[A B ]∈C i,∀x ∈Rn ,

{
`(x)h(x)+ ∂h

∂x (x)ẋ +ε≤ 0
ẋ =AZ (x)+BW (x)K (x).

(4.32)

Since [A B] ∈ C i, if condition (4.32) holds, then the set I in (4.10) is invariant
for the ground truth system in (4.6). Therefore, the proof is complete if we verify
(4.32), i.e., if we verify that

∀[A B ] ∈C i,∀x ∈Rn ,

`(x)h(x)+ε+ ∂h
∂x (x) [ A B ]

[
Z (x)

W (x)K (x)

]
= `(x)h(x)+ε+ 1p

2

[
Z (x)

W (x)K (x)

]> [
A>
B>

]
1p
2
∂h
∂x (x)>

+ 1p
2
∂h
∂x (x) [ A B ] 1p

2

[
Z (x)

W (x)K (x)

]
≤ 0.

Rewrite this invariance condition in the compact form

∀ζ> ∈C i,∀x ∈Rn ,

W (x)+S(x)ζR(x)+R(x)>ζ>S(x)> ≤ 0
(4.33)

after defining

W (x) := `(x)h(x)+ε
S(x) := 1p

2

[
Z (x)

W (x)K (x)

]>
, R(x) := 1p

2
∂h
∂x (x)>.
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(4.33), and thus (4.32), is equivalent, by (4.31), to

∀Y with Y >Y ¹ I , ∀x ∈Rn ,

W (x)+S(x)(ζi +P iY Q
1/2
i )R(x)

+R(x)>(ζi +P iY Q
1/2
i )>S(x)>

=W (x)+S(x)ζiR(x)+R(x)>ζ
>
i S(x)>

+S(x)P iY Q
1/2
i R(x)+R(x)>Q

1/2
i Y >P iS(x)>≤0. (4.34)

If there exist η ∈Π with η(x) > 0 for all x ∈Rn , we have

∀Y with Y >Y ¹ I ,∀x ∈Rn ,

S(x)P iY Q
1/2
i R(x)+R(x)>Q

1/2
i Y >P iS(x)>

≤ η(x)S(x)P i P iS(x)>+ 1
η(x) R(x)>Q

1/2
i Y >Y Q

1/2
i R(x)

≤ η(x)S(x)P
2
i S(x)>+ 1

η(x) R(x)>Q iR(x)

where we use Young’s inequality in the first upperbound and Y >Y ¹ I in the
second upperbound. Using this last upperbound in (4.34), we obtain that (4.34) is
implied by the existence of η, with η(x) > 0 for all x ∈Rn , such that

∀x ∈Rn , W (x)+S(x)ζiR(x)+R(x)>ζ
>
i S(x)>

+η(x)S(x)P
2
i S(x)>+ 1

η(x) R(x)>Q iR(x) ≤ 0.

Replacing the explicit expressions of W (x),S(x),R(x) in this inequality, we con-
clude that the invariance condition (4.32) holds if for all x ∈Rn , η(x) > 0 and

0≥`(x)h(x)+ε+ ∂h
∂x (x)ζ

>
i

[
Z (x)

W (x)K (x)

]
+ η(x)

2

[
Z (x)

W (x)K (x)

]>
P

2
i

[
Z (x)

W (x)K (x)

]
+ 1

2η(x)
∂h
∂x (x)Q i

∂h
∂x (x)>.

This last condition is equivalent to having for all x ∈Rn , η(x) > 0 and H(x) ¹ 0, as
one can easily verify applying Schur complement [51, p. 28] on H(x) ¹ 0. Hence,
(4.32) holds, as we needed to complete the proof. ■

Remark 4 In Remark 3, we commented on the possibility of having an energy
bound on the disturbance. In that case, the conclusion of Theorem 7 continues to
hold if the hypothesis of Theorem 7 is slightly adapted as follows:



4.5. DATA-DRIVEN SAFE CONTROL

4

53

For a design parameter ε> 0, consider the data generation mechanism
(4.9), measured data {ẋ j , z j , v j }T−1

j=0 as in (4.8) and disturbance d satis-

fying the energy bound De in (4.24) (i.e.,
[
d 0 . . . d T−1

] ∈De).

Assume that
[

Z0
V0

]
has full row rank and parameters ζi, P i and Q i are

equal, instead of (4.20), to respectively

ζe :=−A−1
e Be,P e := A−1/2

e ,Qe := B>
e A−1

e Be −Ce (4.35)

for Ae, Be, Ce in (4.27). Assume that there exist decision variables
` ∈Π, η ∈Π, h ∈Π and K ∈Πm,1 such that for all x ∈Rn , η(x) > 0 and
H(x) ¹ 0, with H defined in (4.29), where ζi, P i, Q i are respectively
equal to (4.35).
Then, the set I in (4.10) is invariant for the system in (4.6).

This adaptation of Theorem 7 is proven by observing that: (i) P e and Qe, which
are used in place of respectively P i and Q i, satisfy P e Â 0 and Qe º 0 by the full row

rank of
[

Z0
V0

]
and [82, Lemma 1]; (ii) the set Ce in (4.26), resulting from De, can be

written in the form (4.31) by [82, Prop. 1]; (iii) the rest of the proof of Theorem 7 is
the same.

In this chapter, we have assumed that the first time derivative is measurable.
To collect the sequence of ẋ it is sufficient to compute the value of ẋ at each sample
time using the sequence of x as initial values and the same input signal used to
collect x. Indeed, it can be recovered from state measurements when the states are
sampled densely by finite differences. More sophisticated techniques are devised
in the context of continuous-time system identification, see for instance [87] for
details. Admittedly, all these techniques do not reconstruct the time derivative
exactly, but only with some error. This is something our framework takes care of
through the process disturbance d in (4.7) considered in data collection.

Additionally, one can characterize the set of matrices consistent with data
starting from the integrals of the state x and of the input u [88]. The main advan-
tage of this integral formulation (over finding the first time derivative from the
state measurements) is that the involved integrals are expected to average out
noise (instead of amplifying it).For these reasons, we believe that assuming to
measure the first time derivative of the state is not as restrictive as it may seem.

Next we discuss how the problem can be solved when we consider measuring
the state integrals. Computing these integrals can be done numerically from
samples, possibly with some error that can be incorporated into the disturbance
term.
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With the set Dins := {d ∈Rn : |d |2 ≤ω} and times t0, . . . , tT−1, one can obtain
that for j = 0, . . . , T −2(∫ t j+1

t j

d(t )dt
)>(∫ t j+1

t j

d(t )dt
)
=

∣∣∣∫ t j+1

t j

d(t )dt
∣∣∣2
=

∣∣∣∫ t j+1

t j

d1(t )dt
∣∣∣2
+

+·· ·+
∣∣∣∫ t j+1

t j

dn(t )dt
∣∣∣2

≤
∫ t j+1

t j

d1(t )2dt
∫ t j+1

t j

dt +·· ·+
∫ t j+1

t j

dn(t )2dt
∫ t j+1

t j

dt = (t j+1 − t j )
(∫ t j+1

t j

|d(t )|2dt
)

≤ (t j+1 − t j )2ω

where the first bound is obtained by the Cauchy-Schwarz inequality and the
second bound uses that d(t) ∈Dins for all t ≥ 0. Then, since the data generation
mechanism is ẋ = AZ (x)+BW (x)u +d , we have that data satisfy, for j = 0, . . . ,
T −2,

x̃ j := x(t j+1)−x(t j ) =
∫ t j+1

t j

ẋ(t )dt =
∫ t j+1

t j

(
AZ (x(t ))+BW (x(t ))u(t )+d(t )

)
dt

=A
∫ t j+1

t j

Z (x(t ))dt +B
∫ t j+1

t j

W (x(t ))u(t )dt +
∫ t j+1

t j

d(t )dt =: Az̃ j +Bṽ j +
∫ t j+1

t j

d(t )dt .

(4.36)

With this characterization, we can write a set of matrices consistent with the
disturbance bound and data points on interval [t j , t j+1] for j = 0, . . . , T −2 as

C̃
j

i :=
{

[A B ] : x̃ j = Az̃ j +B ṽ j + d̃ , d̃ d̃> ¹ (t j+1 − t j )2ωI
}

.

With this form, the very same developments presented in this section can be

carried out due to the analogy with the set C
j

i (4.16).

DISCRETE SYSTEMS

For discrete-time systems, it does not seem straightforward to obtain a sum-of-
squares relaxation following the results presented in this chapter for continuous-
time systems. Indeed, consider the discrete-time polynomial dynamics

x+ = AZ (x)+BW (x)K (x) = fcl(x) (4.37)

where the polynomial control law K needs to be determined. Consider also
I := {x ∈Rn : h(x) ≤ 0} as the set to be rendered invariant for a polynomial h, as in
(4.10). The set I is invariant for (4.37) if fcl(I ) ⊆I (Definition 7) or, equivalently,
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fcl(x) ∈ I for all x ∈ I or, equivalently, h( fcl(x)) ≤ 0 for all x such that h(x) ≤ 0.
This holds if, for some polynomial s, we have that for all x, s(x) ≥ 0 and

0 ≥ h( fcl(x))− s(x)h(x) = h
(

AZ (x)+BW (x)K (x)
)− s(x)h(x). (4.38)

Now, if A and B were known as in the model-based case, one could envision an
alternate procedure where (i) for fixed h, we find K and s such that s(x) ≥ 0 and
(4.38) hold for all x; (ii) for fixed K and s, we find h such that (4.38) holds for all x.
However, if we do not know A and B due to data-induced uncertainty and we only
know that they belong to the set in (4.21), it seems hard to provide a condition
depending only on the data-related parameters of the set in (4.21) based on (4.38),
in general.

4.5.1. SAFETY CONSTRAINTS

As discussed in Section 4.1, the invariance condition obtained in Theorem 7
is instrumental to design safe control laws in applications. To effectively link
invariance and safe control we introduce the so-called safe set S , by which a user
can specify all constraints on the state. Formally, these constraints are expressed
by negativity of polynomials σ1, . . . , σq (q ∈Z≥1) and the safe set S is

S := {x ∈Rn : σ j (x) ≤ 0, j = 1, . . . , q}. (4.39)

Hence, when designing the invariant set I , one needs to enforce the condition
I ⊆S so that when the state belongs to I , it will also comply with all constraints
expressed by S . At the same time, it is of interest not only to impose I ⊆S , but
to ensure that I is as “large” as possible. Using a classical approach as in, e.g.,
[72], define the set Lθ for a nonnegative polynomial λ (i.e., λ(x) ≥ 0 for all x) and
a nonnegative scalar θ as

Lθ := {x ∈Rn : λ(x) ≤ θ}. (4.40)

With Lθ, I can be enlarged by imposing Lθ ⊆I while maximizing θ ≥ 0; hence,
Lθ acts as a variable-size set that dilates I from the inside according to the shape
given by the design parameter λ, which can be chosen based on the form of the
safe set S . This approach will be exemplified in Section 4.7, in figure 4.1 you can
see a result from Section 4.7 where three sets S , I and Lθ are shown and it is
possible to visualized the relation Lθ ⊆I ⊆S .

Moreover, we strengthen the positivity conditions of Theorem 7 into more
conservative, but computationally tractable, sum-of-squares conditions. Through
the safe set S , the variable-size set Lθ, the strengthening of positivity conditions
of Theorem 7 and definition

r := 1+m +2n,
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Figure 4.1 | This picture highlight the role of the variable size set Lθ (red) in enlarging the invariant
set (blue). The invariant set must contains Lθ and by increasing θ we can induce the invariant set
to grow. The safe set is shown in light gray. Picture obtain with |d | ≤ 10−4, T = 500.
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we have the next result for data-driven safe control.

Theorem 8 (Data-driven safe control)
For given polynomials σ1, . . . , σq and nonnegative polynomial λ, consider the
set S in (4.39) and the set Lθ in (4.40) parametrized by θ, along with H defined
in (4.29) and a given η̄> 0.
Under the same hypothesis of Theorem 7, assume the program

maximize θ (4.41a)

s.t. {`,η,h}⊆Π,K ∈Πm,1, {s1, . . . , sq ,ς}⊆Σ,θ≥ 0 (4.41b)

η− η̄ ∈Σ,−H ∈Σr (4.41c)

ς(λ−θ)−h ∈Σ, (4.41d)

s j h −σ j ∈Σ, j = 1, . . . , q. (4.41e)

has a solution. Then, the set I in (4.10) is invariant for the system in (4.6) and
satisfies Lθ ⊆I ⊆S .

Proof. (4.41c) implies that for all x ∈ Rn , η(x) ≥ η̄ > 0 and H(x) ¹ 0 (by Def-
inition 3) and, under the same hypothesis of Theorem 7, these two conditions
were shown in Theorem 7 to imply that I is invariant for (4.6). The statement
is then proven if we show that with (4.41b), (4.41d) implies Lθ ⊆ I and (4.41e)
implies I ⊆S . Since the reasoning is the same, we show only the latter. I ⊆S

is equivalent to the set inclusion

{x ∈Rn : h(x) ≤ 0} ⊆ {x ∈Rn : σ j (x) ≤ 0}

holding for all j = 1, . . . , q or, equivalently, to the empty-set condition

{x ∈Rn : −h(x) ≥ 0,σ j (x) ≥ 0,σ j (x) 6= 0} =;
holding for all j = 1, . . . , q or, equivalently by Fact 1, to the existence, for all j =
1, . . . , q , of polynomials s j ,0, s j ,1, s j ,2, s j ,3 in Σ and k j ∈Z≥0, j = 1, . . . , q such that

s j ,0 − s j ,1h + s j ,2σ j − s j ,3hσ j +σ2k j

j = 0.

This is implied by the existence, for j = 1,. . . , q , of k j = 1, s j ,0 = 0, s j ,1 = 0 and s j ,2,
s j ,3 in Σ such that σ j (s j ,2 − s j ,3h +σ j ) = 0, which is implied by (4.41e). ■

To conclude the section, we show in the next remark how input constraints can
be readily incorporated in the proposed design to account for actuator limitations.

Remark 5 Suppose that input u needs to be bounded in norm, i.e., |u| ≤ uM for
some uM > 0. This constraint is enforced by imposing that for each x, |K (x)| ≤ uM,

which is equivalent to K (x)>K (x) ≤ uM and
[

uM K (x)>
K (x) I

]
º 0. This condition can be

relaxed as
[

uM K >
K I

]
∈Σm+1 and added to the conditions in Theorem 8.
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4.6. NUMERICAL EXAMPLE: VAN DER POL OSCILLATOR

In this section, we show the ability of Theorem 7 to find an invariant set and a
suitable state feedback controller.

To find a solution to the conditions of Theorem 7, we turn the positivity condi-
tions into more conservative, but tractable, sum-of-squares conditions. Specif-
ically, we replace the positive semidefiniteness condition (4.29), i.e., −H(x) º 0
for all x ∈ Rn , with the requirement that −H be an SOS matrix polynomial, i.e.,
−H ∈ Σr with r := 1+m +2n; we also replace η(x) > 0 for all x ∈ Rn with η ∈ Σ.
We note that η ∈Σ implies only nonnegativity, and not positivity, of η; however,
as pointed out in [89, p. 41], interior-point algorithms find automatically η ∈ Σ
that is strictly positive, if it exists. Hence, we impose η ∈Σ and verify a-posteriori
its positivity, rather than imposing η− η̄ ∈Σ for a small η̄> 0. Besides these SOS
relaxations, due to the products between decision variables in H , the optimization
is solved in two alternate steps.

The discussed strategy is summarized in Algorithm 1.

Algorithm 1 SOS relaxation of Theorem 7

Initialize: c = 1, K (x) = 0, `(x) = 1.

Find h ∈P , η ∈P

subject to η ∈Σ, −H ∈Σr .
Update h, η.

Find ` ∈P , F
subject to −H ∈Σr .

The SOS programs are solved in Matlab with YALMIP [90] [75] and MOSEK.
The degrees of the polynomials `, η, h are respectively 2,2,4. The proposed
solution was tested with two kinds of van der Pol oscillator.

CASE 1
We consider a van der Pol oscillator with unstable origin and stable limit cycle for
u = 0:

ẋ1 = x2

ẋ2 =−x1 + (1−x2
1)x2 +u.

(4.42)

The SOS program is solved with a collection of T = 20 samples. The obtained
solution consist of a controller K (x) and an invariant set I = {x ∈R2 : h(x)−1 ≤ 0}
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Figure 4.2 | Closed-loop phase plot of Case 1 of Section 4.6 with invariance set (4.44) shown in light
blue, state-feedback controller (4.43) and bounded disturbance |d |2 ≤ 0.1.

with

K (x) =10−3(−3.2x1 −0.37x2 −0.34x2
1 +0.32x1x2) (4.43)

h(x) =−2.879x2
1 +0.695x1x2 −5.773x2

2 −0.001x3
1+

−0.002x2
1 x2 −0.017x1x2

2 +0.007x3
2 −1.522x4

1+
−1.470x3

1 x2 +0.845x2
1 x2

2 −1.303x1x3
2 +0.327x4

2 . (4.44)

In this and all results, we remove the smaller coefficients (< 10−5). In Figure 4.2,
we can see the invariant set plotted over the trajectories of system (4.42) with
u = K (x).

CASE 2
We consider a van der Pol oscillator with stable origin and unstable limit cycle for
u = 0:

ẋ1 =−x2

ẋ2 = x1 − (1−x2
1)x2 +u.

(4.45)

The SOS program is solved with a collection of T = 20 samples with a sample time
of 0.5 seconds. The obtained solution consist of a controller K (x) and an invariant
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Figure 4.3 | Closed-loop phase plot of Case 2 of Section 4.6 with invariance set (4.47) shown in light
blue, state-feedback controller (4.46) and bounded disturbance |d |2 ≤ 0.01.

set I = {x ∈R2 : h(x)−1 ≤ 0} with

K (x) = 10−3(6.6x1 +4.9x2), (4.46)

h(x) =−112.45x2
1 +24.66x1x2 −38.56x2

2 +0.11x3
1+

−0.27x2
1 x2 +0.04x1x2

2 +0.0007x3
2 +2.16x4

1+
−1.58x3

1 x2 −56.28x2
1 x2

2 +13.18x1x3
2 −30.41x4

2 . (4.47)

In figure 4.3, we can see the invariant set plotted over the trajectories of system
(4.45) with u = K (x).

4.7. NUMERICAL EXAMPLE: CAR PLATOONING

As a safety-critical system, we consider two cars moving in a platoon formation.
The system can be modeled as

ẋ1 = u1 −γ1 −β1x1 −α1x2
1 (4.48a)

ẋ2 = u2 −γ2 −β2x2 −α2x2
2 (4.48b)

ẋ3 = x1 −x2 (4.48c)

where: the components x1, x2, x3 of state x represent respectively the velocity of
the front vehicle, the velocity of the rear vehicle and the relative distance between
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the two; the components u1, u2 of input u represent the forces normalized by
vehicle mass; γk , βk , αk for k = 1,2 are the static, rolling and aerodynamic-drag
friction coefficients normalized by vehicle mass. We impose safety constraints by
the set

S := {x ∈R3 : d0 +τhx2 ≤ x3, x3 ≤ d1,

0 ≤ x1, x1 ≤ vM, 0 ≤ x2, x2 ≤ vM}

=: {x ∈R3 : σ1(x) ≤ 0, . . . ,σ6(x) ≤ 0} (4.49)

where d0 +τhx2 is a relative distance required to avoid collisions with the front
vehicle (d0 > 0 is a standstill distance and τh > 0 is a time headway), d1 is a dis-
tance required to keep the benefits of platooning (especially, aerodynamic drag
reduction), and vM is a maximum velocity allowed on the road. Finally, we con-
sider as point of interest x̄ := (v̄ , v̄ , d̄) where v̄ is a predefined cruise velocity and
d̄ is a reference safety distance. Numerical values of parameters are in Table 4.1.

γ1 0.005 N
kg β1 0.1 Ns

kgm α1 0.02 Ns2

kgm2

γ2 0.005 N
kg β2 0.2 Ns

kgm α2 0.04 Ns2

kgm2

τh 0.2s d0 5m d1 10m
vM 22.2 m

s v̄ 8.5 m
s d̄ 8m

Table 4.1 | Values of the parameters for the two cars platoon simulations in Section 4.7.

The numerical program to find invariant set and controller is in Algorithm 2
and is implemented in Matlab with YALMIP [75, 90] and MOSEK. We now com-
ment Algorithm 2, which consists of an initialization (lines 1-2) and a main part
(lines 3-15) made of two steps.

As for the initialization of Algorithm 2, we set the degrees of polynomials h,
η, s j ( j = 1, . . . ,6) and ς to 4,2,2,2. Moreover, the shape of the safe set S in (5.27)
(light blue set in Figure 4.4) is wider in the coordinates x1 and x2 and narrow in the
coordinate x3. Hence, we dilate the invariant set I through an ellipsoid shaped
similarly to S and with center x̄ since we would like I to contain x̄; i.e., we dilate
I through

Lθ :={x ∈R3 : (x − x̄)>
[

0.02 0 0
0 0.05 0
0 0 1

]
(x − x̄) =:λ(x) ≤ θ}

as in (4.40). Finally, a guess of h is needed to initialize the iterations in the proce-
dure. In a data-based fashion, we can use as a guess of h the Lyapunov function
obtained from data by using [82, Th. 2] and performing a preliminary experiment
with “small” input and state signals around the equilibrium x̄.
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Algorithm 2 Car Platooning

1: Excite the system around an equilibrium point of interest, collect input/state
data and obtain a Lyapunov function for the linearized system from data by
[82, Th. 2].

2: initialize: ι = 0 (a counter), θι = θ0 = 0.01, ε = 0.01, η(x) = 1, h equal to the
Lyapunov function found above.

3: repeat
4: Find ` ∈Π, K ∈Πm,1 and s1, . . . , s6,ς ∈Σ
5: subject to −H ∈Σr

6: ς(λ−θι)−h ∈Σ
7: s j h −σ j ∈Σ, j = 1, . . . ,6.
8: Update `, K , s1, . . . , s6, ς.
9:

10: Maximize θ over η,h ∈Π and θ ≥ 0,
11: subject to η ∈Σ, −H ∈Σr

12: ς(λ−θ)−h ∈Σ
13: s j h −σ j ∈Σ, j = 1, . . . ,6.
14: Update η, h, θι = θ, ι← ι+1.
15: until θι−θι−1 is less than some tolerance (10−3).

As for the main part of Algorithm 2, it corresponds to the SOS program (4.41)
in Theorem 8. However, since (4.41) presents products between decision variables,
we first fix h, η and θ in (4.41) and solve for the other decision variables (lines 4-
8), and then fix `, K and s1, . . . , s6, ς in (4.41) and solve for the other decision
variables (lines 10-14). Moreover, we asked η−η̄ ∈Σ in Theorem 8 for (small) η̄> 0;
here, we ask the weaker condition η ∈Σ because, if the constraint η ∈Σ is feasible,
interior-point algorithms automatically find [89, p. 41] a strictly positive η, hence
satisfying η− η̄ ∈Σ, which we verified a-posteriori. Finally, since −H ∈Σr in (4.41)
is homogeneous with respect to (h,η), we prune solutions by fixing the 0-degree
coefficient of h to a given constant.

We also remark that in H the terms Z and W appear. The choice of the
monomials considered in (4.5) for Z and W is important to obtain the best result
from our solution. The simplest choice is to consider all monomials in x1, x2,
x3 up to a maximum degree; with noisy data, however, the coefficient of each
monomial becomes uncertain and coping with it results in more conservative
solutions. A smarter choice is to include high-level prior knowledge [91]. For
platooning, we use Z (x) = [ x1 x2 x3 x2

1 x2
2 ]> and W (x) = I , since we know from

physical considerations that the time derivative of the relative distance x3 depends
only on the velocities x1 and x2, and ẋ1, ẋ2 depend only on x1, x2

1 , x2, x2
2 and u.
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h(x) = 90.30+202.66x2
1 +364.18x2

2 −458.07x1x2 +28.19x1x3 −283.29x2x3 +158.34x2
3

−0.95x3
1 −0.63x2

1 x2 −47.29x2
1 x3 +3.70x1x2

2 −3.89x3
2 −83.13x2

2 x3 +108.33x1x2x3−
7.36x1x2

3 +65.74x2x2
3 −38.24x3

3 +0.10x4
1 −0.10x3

1 x2 +0.36x2
1 x2

2 −0.25x1x3
2 +0.29x4

2

−0.21x3
1 x3 −0.36x2

1 x2x3 −0.43x1x2
2 x3 −0.46x3

2 x3 +3.47x2
1 x2

3 −5.93x1x2x2
3

+6.15x2
2 x2

3 −0.18x1x3
3 −4.95x2x3

3 +2.75x4
3 .

(4.50)

By using Algorithm 2, we obtain an invariant set I = {x ∈R3 : h(x) ≤ 0} with h as

in (4.50), displayed over two columns, and a controller u = K (x) =
[

K1(x)
K2(x)

]
with

K1(x)=14.39x3−10.45x1+44.05x2−0.85x2
1 −4.24x2

2 ,

K2(x)=71.28x3−2.47x1−23.32x2+0.10x2
1 −4.09x2

2 .

We removed monomials coefficients smaller than 10−5 in h and K .
We compared our data-driven solution in Algorithm 2 against a model-based

solution in which perfect model knowledge is assumed. Thereby providing a
baseline for what we can achieve with the data-based scheme. The model-based
implementation, which is the counterpart of (4.41), corresponds to

maximize θ

s.t. {`,h} ⊆Π,K ∈Πm,1, {s1, . . . , s6,ς} ⊆Σ,θ ≥ 0

− (`h +ε+ ∂h
∂x [A B ]

[
Z

W K

]
) ∈Σ

ς(λ−θ)−h ∈Σ, s j h −σ j ∈Σ, j = 1, . . . ,6.

In Figure 4.4, we can see that the model-based and the data-driven solutions are
comparable as for the sizes of the resulting invariant sets for data points affected
by a disturbance satisfying |d | ≤ 10−3. In both cases safety constraints are not
violated since both invariant sets are within S . In Figure 4.5, the invariant set
I of the data-driven solution is plotted together with trajectories corresponding
to the vector field (4.48) in closed-loop with controller u = K (x). Trajectories are
initialized close to the boundary of I to show that once in the set I , they never
leave it, thereby confirming that I is invariant.

4.8. CONCLUSIONS

In this chapter, we addressed the problem of enforcing invariance for a polynomial
system based on data. We assumed that the open-loop data are corrupted by
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Figure 4.4 | Invariant set for the model-based case in light red and for the data-driven case in green
(|d | ≤ 10−3, T = 1000). The safe set in light blue highlights that the two invariant sets comply with
safety constraints.

noise, whose nature and characteristic are unknown except for an (instantaneous)
bound. The presence of noise resulted then in a set of dynamics consistent with
data, which we over-approximated via matrix ellipsoids and took into account in
the design. Our solution provided a data-dependent SOS optimization program
to obtain a state feedback controller and an invariant set for the closed-loop
system, and we optimized the size of the invariant set under the constraint that it
remains contained in a user-defined safety set. Finally, we tested our data-driven
algorithm on a platooning example where we showed that, for a reasonable noise
level, our solution compares well with the case of perfect model knowledge.
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Figure 4.5 | To show that the invariant set I (green) given by (4.50) is invariant, we simulate the
closed-loop system with initial conditions slightly outside I , close to the boundary. All simulated
trajectories (red) never leave the set after entering it.





5
DATA-DRIVEN DESIGN OF ROBUST

SAFE CONTROL FOR POLYNOMIAL

SYSTEMS

ABSTRACT

In this chapter we continue the discussion on the design of safe controllers for poly-
nomial systems, but with one key difference. Instead of considering the condition of
nominal invariance for the controlled closed-loop system we explicitly take into
account the disturbance during closed-loop operation in the design by using a
robust invariance condition. In this way the resulting controller guarantees positive
invariance of a certain set even in case of disturbances acting on the system during
operation. The designed robust controller is then compared with the controller
presented in Chapter 4 for the control of a platoon of cars with safety constraints.

5.1. PRELIMINARIES

We consider perturbed polynomial systems of the form

ẋ = f (x)+ g (x)u +d (5.1)

where x ∈ Rn is the state, u ∈ Rm is the control input, d ∈ Rn is the disturbance,
and f and g are polynomial vector fields. The specific expressions of f and g are

67
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unknown, and d is also unknown but satisfies

Dins := {d ∈Rn : |d |2 ≤ω}. (5.2)

Following the same procedure used in the previous chapter we can write the
polynomial system (5.1) into a linear-like form

ẋ =AZ (x)+BW (x)u +d (5.3)

where A ∈Rn×NA and B ∈Rn×NB are unknown constant matrices, the known NA×1
vector Z (x) contains as entries the distinct monomials in x that may appear in f ,
and the known NB×m matrix W (x) contains as entries the monomials that may
appear in g .

The closed-loop dynamics results in

ẋ =AZ (x)+BW (x)K (x)+d = [
A B

][
Z (x)

W (x)K (x)

]
+d (5.4)

and the data generation mechanism is described by

ẋ j =Az j +Bv j +d j , j = 0,1, . . . ,T −1. (5.5)

with

ẋ j := ẋ
(

jτs
)

, z j := Z
(
x

(
jτs

))
,

v j :=W
(
x

(
jτs

))
u

(
jτs

)
,

d j := d
(

jτs
)

.

(5.6)

5.2. ROBUST INVARIANCE

First we need to clarify what kind of disturbance signal we consider in this chapter.
So, we define the set

N := {d :R≥0 →Rn : d is continuous,d(t ) ∈Di for all t ≥ 0} (5.7)

which is the set of functions for the disturbance signals. In Chapter 4 we con-
sidered this kind disturbances only in the measured data used for the design. In
this chapter we consider the presence of a disturbance also during operation. All
disturbances belong to the set N .

Definition 8 (Robust invariant set) For a : Rn →Rn polynomial, i.e., a ∈Πn,1, for
any disturbance d ∈ N , and for an arbitrary x0 ∈ Rn , denote t 7→ α(t , x0,d(t))
the unique solution to ẋ = a(x)+d with initial condition x0 = α(0, x0,d(0)) and
defined on the interval [0,T (x0)) (with T (x0) possibly +∞). A set I is robustly
invariant for ẋ = a(x)+d if x0 ∈I and d ∈N implies that for each t ∈ [0,T (x0)),
α(t , x0,d(t )) ∈I .
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As in Chapter 4 the invariant set is defined as

I := {x ∈Rn : h(x) ≤ 0} (5.8)

with h ∈Π. To impose that I is a robust invariant set for (5.4) as in Definition 8,
we require that for each d ∈Di as in (5.2)

{x ∈Rn ,h(x) = 0} ⊆ {x ∈Rn ,d ∈ ∂h

∂x
(x)ẋ ≤−ε} (5.9)

where ẋ, used for brevity, takes the expression in (5.4) and the parameter ε> 0 is
introduced to guarantee some degree of robustness at the boundary of I .

Lemma 3 (Differentiability, in Section 3.1 [44]) Consider a nonlinear system ẋ =
f (x, t). If f (x, t) is continuous in t and x, then the solution t 7→ φ(x0, t) will be
continuously differentiable.

Lemma 4 Let h be a polynomial. Consider the set (5.8) and a generic system with
additive disturbance ẋ = a(x)+d, with d ∈N . If

{
x ∈Rn , d ∈Di : h(x) = 0

}⊆ {
x ∈Rn , d ∈Di :

∂h

∂x
(x)ẋ ≤−ε

}
(5.10)

then, the set I is robustly invariant (according to Definition 8).

Proof. Suppose by contradiction that Definition 8 does not hold, i.e., there
is some x0 ∈ I and d ∈ N for which it does not hold that α (t , x0,d(t )) ∈ I ,
∀t ∈ [0,T (x0)), i.e., there is some x0 ∈I , some d(t) ∈Di , some t̄ ∈ [0,T (x0)) and
some s̄ ∈ [0,T (x0)) such that

s̄ > t̄ ,α
(
t̄ , x0,d(t̄ )

) ∈I ,α (t , x0,d(t )) ∉I for all t ∈ (t̄ , s̄]. (5.11)

Consider then the function given by t 7→ g (t) := h (α (t , x0,d(t ))). g is continu-
ously differentiable because it is a composition of two continuously differentiable
functions (h is a polynomial in x and α is continuously differentiable in t by
Lemma 3). By (5.11), g (t̄) = h

(
α

(
t̄ , x0,d(t̄ )

)) = 0 and g (t) = h (α (t , x0,d(t ))) > 0
for all t ∈ (t̄ , s̄].

ġ (t̄ ) := lim
ε→0+

g (t̄ +ε)− g (t̄ )

ε
= lim
ε→0+

g (t̄ +ε)

ε
≥ 0

because of g (t̄) = h
(
α

(
t̄ , x0,d(t̄ )

)) = 0 and g (t) = h (α (t , x0,d(t ))) > 0 for all t ∈
(t̄ , s̄]. Consider the point x̄ :=α(

t̄ , x0,d(t̄ )
)
. x̄ satisfies

h(x̄) = h
(
α

(
t̄ , x0,d(t̄ )

))= g (t̄ ) = 0 (5.12)
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and

∂h

∂x
(x̄)(a(x̄)+d(t̄ )) = ∂h

∂x

(
α

(
t̄ , x0,d(t̄ )

))
(a(x̄)+d(t̄ ))

= ∂h

∂x

(
α

(
t̄ , x0,d(t̄ )

))
α̇

(
t̄ , x0,d(t̄ )

)= ġ (t̄ ) ≥ 0
(5.13)

The existence of x̄ satisfying both (5.12) and (5.13) violates (5.10). ä
By using Fact 1, the condition (5.9) is implied by

`(x)h(x)+ε+ ∂h

∂x
(x)(AZ (x)+BW (x)K (x)+d) ≤ 0 (5.14)

for all x ∈Rn and d ∈Di .
Now that we have defined and proved when a set is robustly invariant for

system (5.4), we can present the main result of this chapter.

Theorem 9 (Data-driven robust invariance condition)
For a design parameter ε> 0, consider the data generation mechanism (5.5), mea-
sured data {ẋ j , z j , v j }T−1

j=0 as in (5.6) and a disturbance d ∈N with N defined as
in (5.7) and ω> 0.
Assume that the optimization program in (4.23) is feasible so that parameters ζi, P i

and Q i in (4.20) exist. Assume that there exist decision variables ` ∈Π, η ∈Π, %̃ ∈Π,
h ∈Π and K ∈Πm,1 such that for all x ∈Rn , η(x) > 0, %̃(x) > 0 and H(x) ¹ 0, with
H defined as

H(x):=



{
`(x)h(x)+ε+%̃(x)

+∂h
∂x (x)ζ

>
i

[
Z (x)

W (x)K (x)

]} ? ? ?

η(x)P i

[
Z (x)

W (x)K (x)

]
−2η(x)I ? ?

Q
1/2
i

∂h
∂x (x)> 0 −2η(x)I ?

1
2

p
ω∂h
∂x (x)> 0 0 −%̃(x)I

. (5.15)

Then, the set I in (5.8) is robustly invariant for the system in (5.4).

Proof. The first part of the proof follows the same exact steps as the proof of
Theorem 7. Under the assumption that (4.23) is feasible, Ai Â 0 by construction,
so P i and Q i in (4.20) satisfy P i Â 0 and Q i Â 0. These two relations allow us to
rewrite (4.21) as

C i= {ζ>∈Rn×(n+m): Q
−1/2
i (ζ−ζi)

>P
−1
i ·[?]>¹ I } (5.16)

= {(ζi +P iY Qi
1/2

)>: Y ∈R(n+m)×n ,Y >Y ¹ I } (5.17)
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where (5.16) is obtained from (4.21) since Q
−1/2
i Â 0 and (5.17) is obtained by

setting Y = P
−1
i (ζ− ζi)Q

−1/2
i in (5.16). Since the disturbance d ∈ N , (A,B) ∈⋂T−1

j=0 C
j

i = Ci and, thus, (A,B) ∈ C i in (5.17) since (4.23) enforces Ci ⊆ C i by

construction. The invariance condition in (5.14) imposed for all matrices in C i

reads

∀[A B ]∈C i,∀x ∈Rn ,∀d ∈Di ,{
`(x)h(x)+ ∂h

∂x (x)ẋ +ε≤ 0
ẋ =AZ (x)+BW (x)K (x)+d .

(5.18)

Since [A B] ∈ C i, if condition (5.18) holds, then the set I in (5.8) is robustly
invariant for the ground truth system in (5.4). Therefore, the proof is complete if
we verify (5.18), i.e., if we verify that

∀[A B ] ∈C i,∀x ∈Rn ,∀d ∈Di

`(x)h(x)+ε+ ∂h
∂x (x) [ A B ]

[
Z (x)

W (x)K (x)

]
+ ∂h

∂x (x)d ≤ 0

= `(x)h(x)+ε+ 1p
2

[
Z (x)

W (x)K (x)

]> [
A>
B>

]
1p
2
∂h
∂x (x)>

+ 1p
2
∂h
∂x (x) [ A B ] 1p

2

[
Z (x)

W (x)K (x)

]
+ ∂h

∂x (x)d ≤ 0.

Rewrite this invariance condition in the compact form

∀ζ> ∈C i,∀x ∈Rn ,∀d ∈Di

W (x,d)+S(x)ζR(x)+R(x)>ζ>S(x)> ≤ 0
(5.19)

after defining

W (x,d) := `(x)h(x)+ε+ ∂h
∂x (x)d

S(x) := 1p
2

[
Z (x)

W (x)K (x)

]>
, R(x) := 1p

2
∂h
∂x (x)>.

(5.19), and thus (5.18), is equivalent, by (5.17), to

∀Y with Y >Y ¹ I , ∀x ∈Rn , ∀d ∈Di

W (x,d)+S(x)(ζi +P iY Q
1/2
i )R(x)

+R(x)>(ζi +P iY Q
1/2
i )>S(x)>

=W (x,d)+S(x)ζiR(x)+R(x)>ζ
>
i S(x)>

+S(x)P iY Q
1/2
i R(x)+R(x)>Q

1/2
i Y >P iS(x)>≤0. (5.20)
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If there exist η ∈Π with η(x) > 0 for all x ∈Rn , we have

∀Y with Y >Y ¹ I ,∀x ∈Rn

S(x)P iY Q
1/2
i R(x)+R(x)>Q

1/2
i Y >P iS(x)>

≤ η(x)S(x)P i P iS(x)>+ 1
η(x) R(x)>Q

1/2
i Y >Y Q

1/2
i R(x)

≤ η(x)S(x)P
2
i S(x)>+ 1

η(x) R(x)>Q iR(x)

where we use Young’s inequality in the first upper bound and Y >Y ¹ I in the
second upper bound. Using this last upperbound in (5.20), we obtain that (5.20)
is implied by the existence of η, with η(x) > 0 for all x ∈Rn , such that

∀x ∈Rn , ∀d ∈Di , W (x,d)+S(x)ζiR(x)+R(x)>ζ
>
i S(x)>

+η(x)S(x)P
2
i S(x)>+ 1

η(x) R(x)>Q iR(x) ≤ 0.

Replacing the explicit expressions of W (x,d),S(x),R(x) in this inequality, we con-
clude that the invariance condition (5.18) holds if for all x ∈Rn , ∀d ∈Di , η(x) > 0
and

0≥`(x)h(x)+ε+ ∂h
∂x (x)d+ ∂h

∂x (x)ζ
>
i

[
Z (x)

W (x)K (x)

]
+ η(x)

2

[
Z (x)

W (x)K (x)

]>
P

2
i

[
Z (x)

W (x)K (x)

]
+ 1

2η(x)
∂h
∂x (x)Q i

∂h
∂x (x)>.

As last step we need to remove the unknown disturbance d from

0 ≥ `(x)h(x)+ε+ ∂h
∂x (x)ζ

>
i

[
Z (x)

W (x)K (x)

]
+ η(x)

2

[
Z (x)

W (x)K (x)

]>
P

2
i

[
Z (x)

W (x)K (x)

]
+

+ 1
2η(x)

∂h
∂x (x)Q i

∂h
∂x (x)>+ 1

2
∂h
∂x (x)d +d> 1

2
∂h
∂x (x)>.

First, we use Young’s inequality on the cross product 1
2
∂h
∂x (x)d +d> 1

2
∂h
∂x (x)> to

obtain
1

2
∂h
∂x (x)d +d> 1

2
∂h
∂x (x)> ≤ %(x)

1

4
∂h
∂x (x)dd> ∂h

∂x (x)>+ 1

%(x)

with %(x) > 0 for all x ∈ Rn . Lastly recall that we assumed that d is bounded as
(5.2). The bound can be equivalently written as dd> ≤ωI so we have

%(x)
1

4
∂h
∂x (x)dd> ∂h

∂x (x)>+ 1

%(x)
≤ %(x)ω

1

4
∂h
∂x (x)∂h

∂x (x)>+ 1

%(x)

Putting this all together leads to

0 ≥ `(x)h(x)+ε+ ∂h
∂x (x)ζ

>
i

[
Z (x)

W (x)K (x)

]
+ η(x)

2

[
Z (x)

W (x)K (x)

]>
P

2
i

[
Z (x)

W (x)K (x)

]
+

+ 1
2η(x)

∂h
∂x (x)Q i

∂h
∂x (x)>+%(x)ω

1

4
∂h
∂x (x)∂h

∂x (x)>+ 1

%(x)
.



5.2. ROBUST INVARIANCE

5

73

The last inequality is equivalent to

H(x) :=



{
`(x)h(x)+ε+ 1

%(x)

+∂h
∂x (x)ζ

>
i

[
Z (x)

W (x)K (x)

]} ? ? ?

P i

[
Z (x)

W (x)K (x)

]
− 2
η(x) I ? ?

Q
1/2
i

∂h
∂x (x)> 0 −2η(x)I ?

1
2

p
ω∂h
∂x (x)> 0 0 − 1

%(x) I


¹ 0. (5.21)

by applying Schur complement [51, p. 28].
Finally to obtain (5.15) we define %̃(x) := 1

%(x) and we pre- and post-multiply
H(x) as follows 

I
ηI

I
I

H(x)


I

ηI
I

I

¹ 0. (5.22)

■

The robust invariance condition obtained in Theorem 9 is a key component to
design safe robust control laws in applications. As in Chapter 4 we introduce the
so-called safe set S , by which all constraints on the state can be expressed by
positivity of polynomials σ1, . . . , σq (q ∈Z≥1) and the safe set S is

S := {x ∈Rn : σ j (x) ≤ 0, j = 1, . . . , q}. (5.23)

To design a safe robust controller, we need to enforce besides the invariance
condition (5.9) a safety condition I ⊆S so that when the state belongs to I , it
will also comply with all constraints expressed by S . To obtain a robust invariant
set that is as “large” as possible, we impose also I ⊆S as in Section 4.5. We recall
here the definition of the variable-size set Lθ used to enlarge I

Lθ := {x ∈Rn : λ(x) ≤ θ}. (5.24)

where θ ≥ 0 is used to enlarge the Lθ. The safe condition and the variable-size
set inclusion are relaxed in sum-of-squares conditions that are computationally
tractable.

Theorem 10 (Data-driven robust safe control)
For given polynomials σ1, . . . , σq and nonnegative polynomial λ, consider the
set S in (5.23) and the set Lθ in (5.24) parametrized by θ, along with H defined
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in (5.15) and a given η̄> 0.
Under the same hypothesis of Theorem 9, assume the program

maximize θ (5.25a)

s.t. {`,η,h}⊆Π,K ∈Πm,1, {s1, . . . , sq ,ς}⊆Σ,θ≥ 0 (5.25b)

η− η̄ ∈Σ,−H ∈Σr , %̃ ∈Σ (5.25c)

ς(λ−θ)−h ∈Σ, (5.25d)

s j h −σ j ∈Σ, j = 1, . . . , q. (5.25e)

has a solution. Then, the set I in (5.8) is robustly invariant for the system in (5.4)
and satisfies Lθ ⊆I ⊆S .

The proof follows the one of Theorem 8 and is therefore omitted.

5.3. NUMERICAL EXAMPLE: CAR PLATOONING

To prove the effectiveness of our design, in this section we show how to obtain a
robust safe controller for a safety-critical system using only data. For comparison
with the safe controller designed in Chapter 4, we consider the same system with
two cars moving in a platoon formation with the addition of a disturbance. The
system can be modeled as

ẋ1 = u1 −γ1 −β1x1 −α1x2
1 +µ1 (5.26a)

ẋ2 = u2 −γ2 −β2x2 −α2x2
2 +µ2 (5.26b)

ẋ3 = x1 −x2 (5.26c)

where: the components x1, x2, x3 of state x represent respectively the velocity of
the front vehicle, the velocity of the rear vehicle and the relative distance between
the two; the components u1, u2 of input u represent the forces normalized by
vehicle mass; γk , βk , αk for k = 1,2 are the static, rolling and aerodynamic-drag
friction coefficients normalized by vehicle mass; finally to avoid confusion with
the notation the disturbance components are not denoted with d but with µ1, µ2.
We impose the safety constraints represented by the set

S := {x ∈R3 : d0 +τhx2 ≤ x3, x3 ≤ d1,

0 ≤ x1, x1 ≤ vM, 0 ≤ x2, x2 ≤ vM}

=: {x ∈R3 : σ1(x) ≤ 0, . . . ,σ6(x) ≤ 0} (5.27)

where d0 +τhx2 is a relative distance required to avoid collisions with the front
vehicle (d0 > 0 is a standstill distance and τh > 0 is a time headway), d1 is a
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distance required to keep the benefits of platooning (especially, aerodynamic drag
reduction), and vM is a maximum velocity allowed on the road. As in Chapter 4,
we consider as point of interest x̄ := (v̄ , v̄ , d̄) where v̄ is a predefined cruise velocity
and d̄ is a reference safety distance. We used the same numerical values reported
in Chapter 4 in table 4.1 for the parameters.

A robust safe controller for the perturbed system is then obtained using Theo-
rem 10, Algorithm 3 reports all the details of the implementation. Compared with
Algorithm 2, the H matrix now is equal to (5.15) and an additional polynomial %̃
is added. All the other parameters and initialization values used are equal to the
ones in Algorithm 2: for the polynomials h, η, %̃, s j ( j = 1, . . . ,6) and ς the degrees
are set, respectively, to 4,2,2,2,2 with the shaping function Lθ,

Lθ :={x ∈R3 : (x − x̄)>
[

0.02 0 0
0 0.05 0
0 0 1

]
(x − x̄) =:λ(x) ≤ θ}

and with the monomials Z (x) = [ x1 x2 x3 x2
1 x2

2 ]> and W (x) = I .

Algorithm 3 Car Platooning (Robust)

1: initialize: ι= 0 (a counter), θι = θ0 = 0.01, ε= 0.01, η(x) = 1. To initialize the
polynomial h(x) is it possible to proceed as in algorithm 2 using the Lyapunov
function for the linearized system or h(x) can be initialized using the result of
algorithm 2.

2: repeat
3: Find ` ∈Π,ρ ∈Π, K ∈Πm,1 and s1, . . . , s6,ς ∈Σ
4: subject to −H ∈Σr

5: ς(λ−θι)−h ∈Σ
6: s j h −σ j ∈Σ, j = 1, . . . ,6.
7: Update `, K , s1, . . . , s6, ς.
8:

9: Maximize θ over η,h ∈Π, ρ ∈Π, and θ ≥ 0,
10: subject to η ∈Σ, −H ∈Σr

11: ς(λ−θ)−h ∈Σ
12: s j h −σ j ∈Σ, j = 1, . . . ,6.
13: Update η, h, θι = θ, ι← ι+1.
14: until θι−θι−1 is less than some tolerance (10−3).

While algorithm 2 could work with noisy data, it does not provide any the-
oretical guarantees that due to the presence of the disturbance the closed-loop
system can not violate the safety constraints. Algorithm 3 solves this problem by
implementing Theorem 10, that it is based on the definition of robust invariance,
and it can be used to improve upon the result of algorithm 2. Instead of initializing
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h(x) with a Lyapunov function for the linearized system we can use the result of
algorithm 2 to initialize h(x). This solution significantly reduces the number of
iterations needed for algorithm 3 to provide a valid result.

Figure 5.1 | The data-driven invariant set from Chapter 4 in light red and the robust invariance
data-driven design in green (|d | ≤ 10−3, T = 1000). The safe set in light blue highlights that the two
invariant sets comply with safety constraints.

By using algorithm 3 on the platoon of cars, we obtain a robust invariant set
I = {x ∈R3 : h(x) ≤ 0} with

h(x) = 2733.46+3664.65x2
1 +4290.05x2

2 +19653.25x2
3 −2333.36x1x2 −5831.70x1x3+

−13891.54x2x3 −26.55x3
1 −71.02x2

1 x2 −802.53x2
1 x3 −178.46x1x2

2 −15.55x3
2+

−937.89x2
2 x3 +1145.50x1x2x3 +1062.86x1x2

3 +3089.22x2x2
3 −4662.43x3

3+
+12.43x4

1 −10.93x3
1 x2 +40.22x2

1 x2
2 −28.81x1x3

2 +24.13x4
2 −35.69x3

1 x3

−40.54x2
1 x2x3 +33.49x1x2

2 x3 −65.20x3
2 x3 +129.33x2

1 x2
3 −71.65x1x2x2

3+
+148.39x2

2 x2
3 −114.18x1x3

3 −252.75x2x3
3 +318.01x4

3

(5.28)

and a controller u = K (x) =
[

K1(x)
K2(x)

]
with
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Figure 5.2 | To show that the invariant set I (green) given by (5.28) is invariant, we simulate the
closed-loop system with initial conditions slightly outside I , close to the boundary. All simulated
trajectories (red) never leave the set after entering it.

K1(x) = 138.45+575.46x1 −74.51x2 −435.66x3 +99.60x2
1 +119.35x2

2 +233.01x2
3

−162.64x1x2 −201.18x1x3 −82.53x2x3

K2(x) = 233.81+523.61x1 +440.53x2 −843.22x3 +128.01x2
1 +122.09x2

2 +258.79x2
3

−227.42x1x2 −100.05x1x3 −180.11x2x3.

(5.29)

We compared the result given by algorithm 3 with the result for nominal invariance
reported in Section 4.7. In Figure 5.1, we can see that the robust invariant set
found by Algorithm 3 is not worse than the one found by algorithm 2, the data
points are affected by a disturbance satisfying |d | ≤ 10−3. In both cases safety
constraints are not violated since both invariant sets are within S . In Figure 5.2,
the invariant set I for (5.28) is plotted together with trajectories of the vector field
(5.26) in closed-loop with the controller K (x) in (5.29). Trajectories are initialized
close to the boundary of I to show that once in the set I , they never leave it,
thereby confirming that I is invariant.
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5.4. CONCLUSIONS

In this chapter, we investigated how the safe controller design presented in Chap-
ter 4 can be extended to account for noise during operation. Using the concept
of robust invariant set, we have formulated a semi-definite program to obtain
a stabilizing controller that theoretically guarantees the satisfaction of all safety
constraints. The problem was then relaxed in a more tractable form using sum-
of-squares programming. The resulting problem has one additional polynomial
decision variable %(x) and a larger matrix polynomial decision variable H (x) when
compared to the nominal (non-disturbed) case of Chapter 4.



6
CONCLUSION

In this thesis, we proposed new methods to design stabilizing controllers directly
from data. The detailed conclusions are as follows.

• In Chapter 2, we solved the absolute stability problem for nonlinear systems
that can be represented with a nonlinear component that satisfies quadratic
constraints. It was shown that necessary and sufficient conditions for the
design of a stabilizing controller can be obtained directly from input/state
measurements without the need to know the model. These conditions
can be verified directly from data by solving a unique semi-definite pro-
gramming problem. We have also noted that our result can be viewed as
a data-dependent Kalman-Yakubovitch-Popov Lemma. Finally, we have
proved the effectiveness of our results with numerical examples.

• In Chapter 3, we have extended the design of a stabilizing controller for
the nonlinear systems studied in Chapter 2 by considering the presence
of noise in the measurements. Assuming a bounded disturbance, all the
results obtained for the nominal case were reformulated with the inclusion
of the disturbance demonstrating that our solution is suitable also for real
applications.

• In Chapter 4, the problem of designing a safe controller for polynomial sys-
tems was discussed. The Positivstellensatz was used to formulate the prob-
lem in a tractable form by relaxing polynomial positivity conditions with
sum-of-squares conditions. For this chapter, we considered the presence of
the noise only on the measurement collected from open-loop experiments
to estimate the set of compatible system matrices. The operation of the
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controller in closed-loop was assumed noiseless. The proposed solution
was tested on a safety-critical system, a platoon of cars, and the resulting
safe controller was compared with the one obtained with a model-based
design with perfect knowledge. Using this numerical example, we have
shown that our solution returns a controller with comparable performance
to the one derived knowing the system model.

• In Chapter 5, we introduced the definition of robust invariance to provide
theoretical guarantees on the robustness of the derived controller. Using
the Positivstellensatz to relax the problem to a sum-of-squares condition,
we showed how the algorithm derived in Chapter 4 can be modified to guar-
antee stability and safety despite the presence of noise during operation.

6.1. FUTURE RESEARCH

The results presented in this thesis are a contribution in the direction of replac-
ing all model-based solutions for controller synthesis with direct data-driven
algorithms that do not require any knowledge of the system to control.

We have presented in Chapters 2-3 a data-driven solution for the problem of
absolute stability and we considered the disturbance only in the data collected
from the open-loop system. A natural extension of these works would be to
consider the noise during the execution of the control task and study the stability
problem with respect to external perturbations. Handling noise in the data is one
of the main concerns of any data-driven solution and improving the robustness
to disturbance is critical to apply new data-driven algorithms in real applications.

In Chapters 4-5 we have presented an algorithm to derive an invariant set and a
safe controller directly from data. The invariance property of the set was enforced
only around one predefined state, and it would be interesting to extend our design
to the case of tracking a prescribed trajectory without violating any constraint. As
for the work on absolute stability one of the main areas where there is room for
improvement is in the noise robustness. To improve the robustness new options
must be explored since reducing the relaxations we used is not a solution. The
SOS and P-Satz relaxations would be present also in a model based solution and
C is not a critical simplification. One possibility to increase noise robustness can
be to use not raw input/state data but filtered data. Singular spectrum analysis
(SSA) [92][93] is a promising solution to discard all the components that are due to
the presence of noise. SSA is a technique based on singular value decomposition
used to de-noise time series.

The research for completely data-driven control algorithms was also inspired
by the success obtained by machine learning techniques in solving complex
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problems. So, for future research, it is worth to explore more the possibility of
using machine learning algorithms to solve control problem from data. One of the
main differences between classical machine learning algorithms and the solution
we have presented in this thesis is the theoretical guarantees we were able to
provided for our results. In the future it would be interesting to investigate how to
provide the same level of theoretical guarantees, necessary especially for safety
critical systems, with deep neural networks. A good overview of the work done on
this subject can be found in [94].





SUMMARY

The recent successes of machine learning solutions have inspired the research
of new control algorithms derived directly from the available data without any
intermediate step. Being able to design a stabilizing controller directly from data
has the main advantage that, since it does not rely on a model of the system to
control, the controller design is not influenced by any modeling error.

Most of the time real systems are simplified with linear models to reduce
the overall complexity in the controller design discarding all the complex non-
linear behaviors. A linear approximation could be an excessive simplification
for complex system where the presence of nonlinear dynamics are important to
understand those processes and nonlinearities can not be ignored. However, the
analysis and control of a nonlinear model is often challenging. Most of the time
real systems are simplified with linear models to reduce the overall complexity in
the controller design discarding all the complex non-linear behaviors. A linear
approximation could be an excessive simplification for complex system where
the presence of nonlinear dynamics are important to understand those processes
and nonlinearities can not be ignored. However, the analysis and control of a
nonlinear model is often challenging.

This thesis investigates data-based control methods for continuous and discrete-
time nonlinear systems. In particular we have develop a solution to obtain a
stabilizing state feedback controller for the case of nonlinear systems where the
nonlinearities can be bounded with a quadratic constraint. This is a notable class
of systems that includes: systems with sector bounded or passive nonlinearities
and fully recurrent neural networks. As opposed to classic model based solutions
our approach can be applied to both continuous and discrete systems without
any significant change.

Stabilizing a closed-loop system is critical but sometimes it is not enough.
Safety is another important criteria considered in the design of a controller. The
inclusion of safety requirements in the design complicates the overall problem
that now includes additional constraints. Safety constraints can be formulated
as a safe set where the state of the system must never leave. To solve this design
problem using only data, we have developed a new approach for the case of
nonlinear systems that can be modeled as polynomial functions. Using sum-
of-squares programming and the Positivstellensatz theorem we were able to
formulate a tractable semi-definite problem to find a stabilizing controller that
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can also guarantee that the state of the system never violate the safety constraints.
One of the major problem in the application of data-driven algorithms in real

cases is the presence of noise in the measurements. For all the solutions presented
we discuss how to handle noise to obtain stabilizing controllers also with real
measurements.



SAMENVATTING

De recente successen van machine learning-oplossingen hebben geleid tot het
onderzoek naar nieuwe besturingsalgoritmen die rechtstreeks zijn afgeleid van
de beschikbare gegevens zonder enige tussenstap. Het kunnen ontwerpen van
een stabiliserende controller rechtstreeks vanuit data heeft het grote voordeel dat,
aangezien het niet afhankelijk is van een model van het te besturen systeem, het
ontwerp van de controller niet wordt beinvloed door enige modelleringsfout.

Meestal worden echte systemen vereenvoudigd met lineaire modellen om de
algehele complexiteit in het ontwerp van de controller te verminderen, waarbij alle
complexe niet-lineaire gedragingen worden weggegooid. Een lineaire benadering
zou een buitensporige vereenvoudiging kunnen zijn voor complexe systemen
waar de aanwezigheid van niet-lineaire dynamiek belangrijk is om die processen
te begrijpen en niet-lineariteiten niet kunnen worden genegeerd. De analyse en
besturing van een niet-lineair model is echter vaak een uitdaging. Meestal worden
echte systemen vereenvoudigd met lineaire modellen om de algehele complexiteit
in het controllerontwerp te verminderen, waarbij alle complexe niet-lineaire
gedragingen worden weggegooid. Een lineaire benadering zou een buitensporige
vereenvoudiging kunnen zijn voor complexe systemen waar de aanwezigheid
van niet-lineaire dynamiek belangrijk is om die processen te begrijpen en niet-
lineariteiten niet kunnen worden genegeerd. De analyse en controle van een
niet-lineair model is echter vaak een uitdaging.

Dit proefschrift onderzoekt op data gebaseerde regelmethoden voor continue
en discrete tijd niet-lineaire systemen. In het bijzonder hebben we een oplossing
ontwikkeld om een stabiliserende toestandsfeedbackcontroller te verkrijgen voor
het geval van een niet-lineair systeem waar de niet-lineariteiten kunnen worden
begrensd met een kwadratische beperking. Dit is een opmerkelijke klasse van
systemen die omvat: systeem met sectorgebonden of passieve niet-lineariteiten
en volledig terugkerende neurale netwerken. In tegenstelling tot klassieke model-
gebaseerde oplossingen kan onze aanpak zonder noemenswaardige verandering
worden toegepast op zowel continue als discrete systemen.

Het stabiliseren van een gesloten-lussysteem is van cruciaal belang, maar
soms is het niet genoeg. Veiligheid is een ander belangrijk criterium bij het
ontwerp van een controller. Het opnemen van veiligheidseisen in het ontwerp
compliceert het algehele probleem dat nu extra beperkingen bevat. Veiligheids-
beperkingen kunnen worden geformuleerd als een veilige set waar de toestand
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van het systeem nooit mag weggaan. Om dit ontwerpprobleem op te lossen met
alleen data, hebben we een nieuwe benadering ontwikkeld voor het geval van
niet-lineaire systemen die kunnen worden gemodelleerd als polynoomfuncties.
Met behulp van kwadratische programmering en de Positivstellensatz-stelling
konden we een hanteerbaar semi-definitief probleem formuleren om een stabi-
liserende controller te vinden die ook kan garanderen dat de toestand van het
systeem nooit de veiligheidsbeperkingen schendt.

Een van de grootste problemen bij de toepassing van datagestuurde algo-
ritmen in reële gevallen is de aanwezigheid van ruis in de metingen. Voor alle
gepresenteerde oplossingen bespreken we hoe we met ruis kunnen omgaan om
stabiliserende controllers te verkrijgen, ook met echte metingen.
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