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Data-driven distributionally robust iterative risk-constrained
model predictive control

Alireza Zolanvari Ashish Cherukuri

Abstract— This paper considers a risk-constrained infinite-
horizon optimal control problem and proposes to solve it in
an iterative manner. Each iteration of the algorithm generates
a trajectory from the starting point to the target equilibrium
state by implementing a distributionally robust risk-constrained
model predictive control (MPC) scheme. At each iteration, a
set of safe states (that satisfy the risk-constraint with high
probability) and a certain number of samples of the uncertainty
governing the risk constraint are available. These states and
samples are accumulated in previous iterations. The safe states
are used as terminal constraint in the MPC scheme and samples
are used to construct a set of distributions, termed ambiguity
set, such that it contains the underlying distribution of the
uncertainty with high probability. The risk-constraint in each
iteration is required to hold for all distributions in the ambiguity
set. We establish that the trajectories generated by our iterative
procedure are feasible, safe, and converge asymptotically to the
equilibrium. Simulation example illustrates our results for the
case of finding a risk-constrained path for a mobile robot in
the presence of an uncertain obstacle.

I. INTRODUCTION

Practical control systems often operate in uncertain envi-
ronments, for example, a mobile robot navigating in the pres-
ence of obstacles. Safe optimal control in such situations can
be modeled in many different ways. On the one hand, robust
approaches consider the worst-case effect of the uncertainty
on control design. On the other hand, popular probabilistic
approaches model safety as chance-constraints in the optimal
control problem and design deterministic or sample-based
algorithms to solve it. A convenient strategy to balance these
approaches is to consider appropriate risk constraints. We
adopt this approach in our work and define a risk-constrained
infinite-horizon optimal control problem. We assume that
the task needs to be performed in an iterative way and
the data regarding the uncertainty is incrementally revealed
as iterations progress. We design an iterative method that
combines the notions of learning model predictive control [1]
and distributionally robust risk constraints [2].

Literature review: Optimization problems with worst-case
expectation over a set of distributions, either in objective or
constraints, is commonly termed as distributionally robust
(DR) optimization [3]. The considered set of distributions
is referred to as the ambiguity set. The DR framework is
particularly attractive when the data regarding uncertainty
is less. In this case, the decision-maker can construct the
ambiguity set of appropriate size to tune the out-of-sample
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performance. Thus, DR optimization lends itself as a fitting
tool for ensuring safety in uncertain systems. With this
motivation, works [4]–[7] explore distributional robustness in
model predictive control (MPC). Further, recent works [8],
[9] investigate risk-averse MPC for Markovian switched sys-
tems, while making use of the connection that the so-called
coherent risk measure of a random variable is equivalent to
the worst-case expectation over a set of distributions.

While most of the above-listed works on MPC consider
stochastic systems, we only focus on uncertain environments.
This setup finds application in risk-averse motion planning,
where our work is related to [10], [11]. Here risk constraints
encode safety against collision. When only few samples
regarding the uncertainty are available, [12], [13] use dis-
tributional robustness to ensure safety. However, none of
these works explore the possibility of executing the task in
an iterative manner. Such a method is appealing when data
regarding the uncertainty is scarce at the beginning and more
samples get revealed as the task is done repeatedly. As a
consequence, the environment can be explored progressively.
To actualize such a method, we make use of the learning
model predictive framework introduced in [1]. Here, at each
iteration, a part of the state space is explored and stored for
future iterations where these states are used as terminal con-
straints. In [14], a learning-based MPC has been developed
to tackle the uncertainties in the problem’s constraints in a
safe procedure. However, these strategies aim at satisfying
robust and not risk constraints.

Setup and contributions: We define an infinite-horizon
optimal control problem for a discrete-time deterministic
system, where the state is subjected to a conditional value-
at-risk constraint. The goal is to take the state from a starting
point to a target equilibrium. Our main contribution is the
design of the distributionally robust iterative MPC scheme
that progressively approximates the solution of the infinite-
horizon problem. In our procedure, at each iteration, we
generate a trajectory using an MPC scheme, where a DR
constrained finite-horizon problem is solved repeatedly. We
assume a general class of ambiguity sets that are defined
using the data collected in previous iterations. The terminal
constraint in the finite-horizon problem enforces the state
to lie in a subset of the safe states sampled in previous
iterations. Once a trajectory is generated, the samples of the
uncertainty collected in the iteration are added to the dataset
and the sampled safe set is updated appropriately.

We establish three properties for our method. Under the
assumption that a robustly feasible trajectory is available at
the first iteration, we show that each iteration is recursively
feasible and safe, where safety means satisfying the risk-
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constraint with high probability. We prove that each trajec-
tory asymptotically converges to the target state. Lastly, we
give conditions under which the set of safe states grows
and the cost of trajectory decreases as iterations progress.
We apply our algorithm for finding a risk-averse path for a
mobile robot in the presence of an uncertain obstacle 1.

II. PROBLEM STATEMENT

Consider the following discrete-time system:

xt+1 = f(xt, ut), (1)

where f : Rnx × Rnu → Rnx defines the dynamics and
xt ∈ Rnx and ut ∈ Rnu are the state and control input of the
system at time t, respectively. The system state and control
input are subject to the following deterministic constraints:
xt ∈ X , ut ∈ U for all t ≥ 0, where X and U are
assumed to be compact convex sets. The aim is to solve
an infinite-horizon risk-constrained optimal control problem
for system (1) that drives the system to a target equilibrium
point xF ∈ X . To that end, let r : X × U → R≥0 be a
continuous function that represents the stage cost associated
to the optimal control problem. We assume that r(x, u) ≥ 0
for all (x, u) ∈ X × U and r(x, u) = 0 if and only
if (x, u) = (xF , 0). The risk-constrained infinite-horizon
optimal control problem is given as

min
∑∞

t=0 r(xt, ut) (2a)
s.t. xt+1 = f(xt, ut), ∀t ≥ 0, (2b)

xt ∈ X , ut ∈ U , ∀t ≥ 0, (2c)
x0 = xS , (2d)

CVaRP
β [g(xt, w)] ≤ δ, ∀t ≥ 0, (2e)

where xS ∈ X is the initial state and constraint (2e)
represents the risk-averseness. Here, CVaR stands for the
conditional value-at-risk 2, w is a random variable with
distribution P supported on the compact setW ⊂ Rnw , δ > 0
is the risk tolerance parameter, β > 0 is the risk-averseness
coefficient, and the continuous function g : X ×W → R is
referred to as the constraint function. The constraint (2e)
ensures that the risk associated to the state at any time,
as specified using the random function g, is bounded by
a given parameter δ. More generally, the constraint can
be perceived as a safety specification for system (1) under
uncertain environments.

The infinite-horizon problem (2) is difficult to solve in
general due to state, input, and risk constraints. Besides, in

1We use the following notation throughout. Let R, R≥0, and N denote
the set of real, non-negative real, and natural numbers, resp. The set of
natural numbers excluding zero is denoted as N≥1. Let ∥ · ∥ and ∥ · ∥1
denote the Euclidean 2- and 1-norm, resp. For N ∈ N, we denote [N ] :=
{0, 1, . . . , N}. Given x ∈ R, we let [x]+ = max(x, 0). Given two sets
X and Y , a set-valued map f : X ⇒ Y associates to each point in X a
subset of Y . The n-fold Cartesian product of a set S is denoted as Sn. The
n-dimensional unit simplex is denoted as ∆n.

2Given a real-valued random variable Z with probability distribution P
and parameter β ∈ (0, 1), the conditional value-at-risk (CVaR) of Z at
level β, denoted CVaRP

β [Z], is given as [15], CVaRP
β [Z] = inft∈R

{
t+

β−1EP[Z−t]+
}

, where EP[ · ] denotes expectation under P. The parameter
β characterizes risk-averseness. When β is close to unity, the decision-maker
is risk-neutral, whereas, β close to the origin implies high risk-averseness.

practice, the distribution P is usually unknown beforehand.
To tackle these challenges, we propose a data-driven iterative
MPC scheme outlined in the following section.

III. DISTRIBUTIONALLY ROBUST RISK-CONSTRAINED
ITERATIVE MPC

In this section, we provide an iterative strategy for solving
the infinite-horizon optimal control problem (2) in an approx-
imate manner. Here, each iteration refers to an execution of
the control task, that is, taking the system state from xS to
xF in a safe manner. Our iterative framework is inspired
by [1] and roughly proceeds in the following manner. At the
start of any iteration j, we have access to a finite number of
samples of the uncertainty, a set of safe states, and the cost
it takes to go from each of these safe states to the target. In
iteration j, we use this prior knowledge and define an MPC
scheme that constructs a safe trajectory starting at xS and
ending at xF . The aim of this newly generated trajectory is to
possibly reduce the cost or improve the safety as compared to
the previous iterations. At the end of the iteration, we update
the dataset with samples gathered along the execution of the
MPC scheme. Subsequently, we update the set of safe states.
In the following, we make all the necessary ingredients of
the iterative framework precise and later put them together
in the form of Algorithm 1.

A. Components of the Iterative Framework

1) Trajectories: Every iteration results into a trajectory.
The system state and the control input at time t of the jth

iteration are denoted as xj
t and uj

t , respectively, and the jth

trajectory is given by concatenated sets:

xj := [xj
0, x

j
1, . . . , x

j
t , . . . , x

j
Tj
],

uj := [uj
0, u

j
1, . . . , u

j
t , . . . , u

j
Tj−1].

(3)

We assume that all trajectories start from xS , that is, xj
0 = xS

for all j ≥ 1. While our objective is to solve an infinite-
horizon problem (2), for practical considerations, we aim to
find trajectories that reach the target xF in a finite number of
steps. Thus, we assume that for each iteration j, the length
of the trajectory is finite, denoted by Tj ∈ N≥1. Throughout
the paper, whenever we mention trajectory of states, we
implicitly mean that there exists a feasible control sequence
that makes this trajectory of states possible.

2) Data and Ambiguity Sets: At the start of iteration j,
a dataset Ŵj−1 := {ŵ1, . . . , ŵNj−1

} ⊂ W of Nj−1 i.i.d.
samples of the uncertainty w drawn from P is available.
Here, the index j − 1 indicates the samples collected till
iteration j − 1. We assume that we collect one sample per
time-step of each iteration and so the number of samples
available for iteration j+1 are Nj = Nj−1+Tj . Our aim is
to use the dataset Ŵj−1 to enforce the risk constraint (2e)
in an appropriate sense for the trajectory generated in the
jth iteration. To this end, we adopt a distributionally robust
approach. That is, we generate a set of distributions, termed
ambiguity set, that contains the underlying distribution P with
high probability. We then enforce the risk constraint (2e) for
all distributions in the ambiguity set. To put the notation in
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place, assume that given a confidence parameter ζ ∈ (0, 1),
we have access to a map D :W∞ ⇒ P(W) such that given
any set of N i.i.d samples ŴN = {ŵ1, . . . , ŵN} the set of
distributions D(ŴN ) contains P with confidence ζ. In the
definition of the map, the domain is W∞ = ∪∞i=1Wi and
P(W) denotes the set of all distributions supported on W .
We assume that D always leads to a closed and nonempty
ambiguity set. We term D as the ambiguity set generating
map. Given D, our strategy is to set the ambiguity set used
for iteration j as Dj−1 := D(Ŵj−1). The assumption on D
imply that Dj−1 is (ζ,P|Ŵj−1|)-reliable, that is,

P|Ŵj−1| (P ∈ Dj−1
)
≥ ζ. (4)

The above property implies that for the MPC scheme related
to the jth iteration, if we impose the risk constraint (2e) for
all distributions in Dj−1, then the generated trajectory will
satisfy the risk constraint with at least probability ζ. Ideally,
we must aim to find trajectories that satisfy (2e). However,
when only limited data regarding the uncertainty is known,
one can only enforce such a constraint in a probabilistic
manner and the above definition aims to capture this feature.

3) Cost-to-go: The cost-to-go from time t for the trajec-
tory (xj , uj) generated in iteration j, is denoted as:

Jj
(t:∞) :=

∑∞
k=t r(x

j
k, u

j
k). (5)

Setting t = 0 in (5) gives us the cost of the jth iteration as
Jj
(0:∞), that measures the performance of the controller in

that iteration. For every time-step t ≥ Tj , we assume that
the system remains at xF and the control input is zero. Thus,
the infinite sum in (5) is well-defined as r(xF , 0) = 0.

4) Sampled safe set: The main advantage of the iterative
scheme is that it allows data to be gathered and state-space to
be explored in an incremental manner. That is, we keep track
of all samples from past iterations (discussed above) and we
also maintain a set of safe states (along with their respec-
tive minimum cost-to-go) that were visited in the previous
iterations. These safe states are form terminal constraints in
the MPC scheme (as proposed in [1]). In iteration j, the
risk constraint (2e) is imposed for all distributions in Dj−1

in the finite-horizon optimal control problem solved in the
MPC scheme (see Section III-A.6). Thus, due to (4), the
trajectory (xj , uj) is (ζ,P|Ŵj−1|)-safe, that is

P|Ŵj−1|
(
CVaRP

β

[
g(xj

t , w)
]
≤ δ

)
≥ ζ (6)

for all t ∈ [Tj ]. Note that xj is safe with respect to the
dataset Ŵj−1. However, since the next iteration j + 1 is
built considering safety with respect to the dataset Ŵj , all
previously generated trajectories need to be (ζ,P|Ŵj |)-safe
to be considered as the set of safe states in iteration j + 1.
In particular, the sampled safe set obtained at the end of
iteration j and to be used in iteration j + 1, denoted Sj ⊆
[ j ]×X × R≥0, is defined recursively as

Sj = Sj
(
Sj−1 ∪ {(j, xj

t , J
j
(t:∞))}

Tj

t=1

)
. (7)

In the above expression, the set {(j, xj
t , J

j
(t:∞))}

Tj

t=1 collects
the set of states visited in iteration j, along with the asso-
ciated cost-to-to. The counter j is maintained in this set to
identify the iteration to which a state with a particular cost-
to-go is associated with. The set Sj−1 is the sampled safe
set used in iteration j. The map Sj only keeps the states that
are safe with respect to the new data set Ŵj . This aspect
of our method is different from [1] where explored sates are
safe for all future iterations. The exact procedure that defines
Sj is given in our algorithm.

For ease of exposition, we define maps Πtraj(·), Πstate(·),
and Πcost(·), such that, given a safe set S, Πtraj(S),
Πstate(S), and Πcost(S) return the set of all trajectory
indices, states, and cost-to-go values that appear in S, re-
spectively. The following assumption is required to initialize
our iterative procedure with a nonempty sampled safe set.

Assumption III.1. (Initialization): Before starting the first
iteration, the sampled safe set S0 contains the states of a
finite-length robustly safe trajectory x0 that starts from xS

and reaches xF . That is, x ∈ X , g(x,w) ≤ δ for all w ∈ W ,
and all x ∈ Πstate(S0). •

5) Minimum Cost-to-go: The sampled safe set Sj keeps
track of the cost-to-go associated with each state in the set.
However, a state can appear in more than one trajectory. For
such cases, we need to maintain the minimum cost-to-go
associated with a state. To this end, given Sj , we define the
associated minimum cost-to-go map as

Qj(x) :=

 min
J∈F j(x)

J, x ∈ Πstate(Sj),

+∞, x /∈ Πstate(Sj),
(8)

where F j(x) = {J i
(t:∞) | Πstate(

{
(i, xi

t, J
i
(t:∞))

}
) =

{x}, (i, xi
t, J

i
(t:∞)) ∈ S

j}. Here, the set F j(x) collects all
cost-to-go values associated to the state x ∈ Πstate(Sj). The
function Qj then finds the minimum among these.

6) DR Risk-constrained Finite-Horizon Problem: We now
present the finite-horizon optimal control problem solved at
each time-step of each iteration. We write the problem for
generic current state x, sampled safe set S, and ambiguity set
D. Let K ∈ N≥1 be the length of the horizon and consider

J(S,D)(x) :=



min
∑K−1

k=0 r(xk, uk) +Q(xK)

s. t. xk+1 = f(xk, uk),∀k ∈ [K − 1],

xk ∈ X , uk ∈ U ,∀k ∈ [K − 1],

x0 = x, xK ∈ Πstate(S),
supµ∈D

[
CVaRµ

β [g(xk, w)]
]
≤ δ,

∀k ∈ [K − 1],
(9)

where Q : X → R gives the minimum cost-to-go for
all states in S and is calculated in a similar manner as
in (8). The decision variables in the above problem are
(x0, x1, . . . , xK) and (u0, u1, . . . , uK−1). The set S defines
the terminal constraint xK ∈ Πstate(S). Finally, note that
the risk constraint is required to hold for all distributions in
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the ambiguity set D. Thus, we refer to it as distributionally
robust (DR) constraint. For iteration j and time-step t, the
MPC scheme solves the finite-horizon problem (9) with
x = xj

t , S = Sj−1, D = Dj−1, and Q = Qj−1.

B. The Iterative Framework
Here, we compile the elements described in the previous

section and present our iterative procedure termed distri-
butionally robust risk-constrained iterative MPC (DR-RC-
Iterative-MPC). The informal description is given below.

[Informal description of Algorithm 1]: Each it-
eration j ≥ 1 starts with a sampled safe set
Sj−1 and an ambiguity set Dj−1. The ambiguity
set is constructed (see Line 3) using samples in
dataset Ŵj−1 collected in previous iterations and
the map D that ensures (4). In the first step of the
iteration (Line 2), a trajectory (xj , uj) is generated
by the DR_MPC routine (described in Algorithm 2)
to which the sampled safe set Sj−1 and the ambi-
guity set Dj−1 are given as inputs. This trajectory
is (ζ,P|Ŵj−1|)-safe, that is, it satisfies (6). The
samples collected in iteration j are appended to
the dataset Ŵj−1 in Line 2 and the ambiguity set
for the next iteration is constructed in Line 3. The
trajectory xj along with its associated cost-to-go
is appended to the sampled safe set in Line 4. In
Lines 5 to 7, the sampled safe set Sj−1 is modified
to make sure that it only contains trajectories that
are (ζ,P|Ŵj |)-safe. These steps collectively repre-
sent the map S defined in an abstract manner in (7).
The indices of trajectories present in Sj−1 are
maintained in the set Ij−1. In Line 5, trajectories
in Ij−1 ∪ {j} for which at least one state is not
(ζ,P|Ŵj |)-safe are enumerated in the set UIj .
Accordingly, in Line 6, the set Ij is updated as
trajectories in Ij−1 ∪{j} that are not in UIj . The
states visited in these trajectories are stored in Sj
in Line 7. Finally, the minimum cost-to-go for all
states in Sj is updated in Line 8

Note that in the above algorithm, the sampled safe set is
updated in an iterative way. That is, we add the jth trajectory
to Sj−1 and then check safety with respect to the dataset
Ŵj . In the process, we loose some trajectories in iterations
{1, . . . , j − 1} that could have been (ζ,P|Ŵj |)-safe.

Algorithm 1 calls the DR_MPC routine in each iteration
to generate the trajectory. This procedure is given in Algo-
rithm 2 and informally described below.

[Informal description of Algorithm 2]: The proce-
dure generates a trajectory from xS to xF given a
sampled safe set S and an ambiguity set D. The
function Q is computed using (8). At time-step t,
problem (9) is solved with x = xt giving solution

x∗
vec,t = [x∗

t|t, . . . , x
∗
t+K|t],

u∗
vec,t = [u∗

t|t, . . . , u
∗
t+K−1|t],

(10)

where xt+k|t is the prediction made at t regarding
the state at t + k. The control action at time t is

Algorithm 1: DR-RC-Iterative-MPC
Input : S0 – Initial sampled safe set

Ŵ0– Initial set of samples
I0 – Index of trajectory in S0

Initialize : j ← 1, D0 = D(Ŵ0), UI0 ← ∅
1 while j > 0 do
2 Set (xj , uj)← DR_MPC(Sj−1,Dj−1);

T j ← length(xj); Ŵj ← Ŵj−1 ∪ {ŵi}T
j

i=1

3 Set Dj ← D(Ŵj)

4 Set Sj−1 ← Sj−1 ∪ {(j, xj
t , J

j
t→∞)}Tj

t=1

5 Set UIj ← {i ∈ (Ij−1 ∪ {j}) |(i, x, J) ∈ Sj−1,

sup
µ∈Dj

[
CVaRµ

β [g(x,w)]
]
> δ}

6 Set Ij ← (Ij−1 ∪ {j}) \ UIj
7 Set Sj ← {(i, x, J) ∈ Sj−1 | i ∈ Ij}
8 Compute Qj(x) for all x ∈ Πstate(Sj) using (8)
9 Set j ← j + 1

set as the first element of u∗
vec,t (Line 5) and it is

appended to the trajectory u. The state is updated
and added to x in Line 6. The procedure moves to
the next time step with the updated state as xt+1.

Algorithm 2: Distributionally robust MPC function

1 Function DR_MPC(S,D):
Initialize : t← 0; x0 ← xS ; x← [x0], u← [ ]

2 Set Q as minimum cost-to-go in S (use (8))
3 while xt ̸= xF do
4 Solve (9) with x = xt and obtain optimal

solutions x∗
vec,t and u∗

vec,t

5 Set ut ← u∗
t|t; u← [u, ut]

6 Set xt+1←f(xt, ut); x← [x, xt+1]; t← t+ 1
7 return (x, u)

The above explained MPC procedure might not terminate
in finite time, thus possibly violating our assumption that all
trajectories have finite length. To practically overcome this
issue, we terminate the MPC scheme when the state reaches
a neighborhood of the equilibrium xF .

Remark III.1. (Tractability): Note that, if g(·, w) is convex
for every w ∈ W and (1) is a linear system, then the
constraint (2e) as well as the DR risk-constraint in (9) are
convex. Due to the latter fact, all points in the convex
hull of Πstate(S) satisfy the DR risk-constraint. Hence, we
can replace Πstate(S) with its convex hull and define the
minimum cost-to-go function using Barycentric functions
(see [16]) in the problem (9) without affecting the safety of
the resulting trajectory. By doing so, problem (9) becomes
convex which makes it computationally efficient to solve. •

Remark III.2. (Ambiguity sets): The ambiguity set in our
algorithm is defined by an arbitrary map D. Popular choices
of data-based ambiguity sets are the ones using distance
metrics such as Wasserstein, KL-divergence, ϕ-divergence
or using moment information, see [3] for a survey. •
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Remark III.3. (Safety vs cost-performance): The reliability
parameter ζ in our framework is tunable. Meaning, if one
requires high level of safety, then ζ can be selected close
to unity. In that case, the ambiguity set needs to be large
enough to ensure (4) and so the DR risk-constraint turns out
to be conservative. Analogously, if cost improvement is the
goal, then a low value of ζ will be sufficient. •

IV. PROPERTIES OF DR-RC-ITERATIVE-MPC
We first present the recursive feasibility and the safety

guarantee of the trajectories generated by our iterative pro-
cedure given in Algorithm 1.

Proposition IV.1. (Safety and recursive feasibility of DR-
RC-Iterative-MPC): Let Assumption III.1 hold. Then, at each
iteration j ≥ 1 and time-step t ≥ 0, the finite-horizon
problem (9) with x = xj

t , S = Sj−1, and D = Dj−1 solved
in the DR-RC-Iterative-MPC scheme is feasible. Further, the
generated trajectory (xj , uj) is (ζ,PŴj−1

)-safe. •

Next, we give the asymptotic convergence of each trajec-
tory generated by Algorithm 2.

Proposition IV.2. (Convergence of DR_MPC): Let Assump-
tion III.1 hold. Then, for each iteration j ≥ 1 of the DR-RC-
Iterative-MPC procedure, the trajectory (xj , uj) generated
by DR_MPC satisfies xj

t → xF as t→∞. •

Next, we examine the performance across iterations.

Proposition IV.3. (Guarantee across iterations for DR-RC-
Iterative-MPC): For the DR-RC-Iterative-MPC procedure, if
Dj ⊂ Dj−1 for some iteration j ≥ 1, then we have Sj =
Sj−1 ∪ {(j, xj

t , J
j
(t:∞))}

Tj

t=1. As a consequence, Sj−1 ⊆ Sj .
In addition, if the function J(Sj−1,Dj−1) is continuous at xF ,
then Jj

(0:∞) ≤ Jj−1
(0:∞). •

V. SIMULATION

We demonstrate the performance of Algorithm 1 via a mo-
tion planning task for a mobile robot where the environment
includes a randomly moving obstacle.

1) Setup: Consider the following model for a circular
mobile robot navigating in a 2D environment:

xt+1 =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

xt +


0 0
0 0
1 0
0 1

ut.

Here, the state x = [z, y, vz, vy]
⊤ contains the position (z, y)

of the center of mass of the robot and its velocity in z
and y directions. The input u = [az, ay]

⊤ consists of the
acceleration in z and y directions. The objective of this
problem is to steer the agent from the initial point xS =
[0, 0, 0, 0]⊤ to the target point xF = [5, 3, 0, 0]⊤ while con-
straining the risk of colliding with a square obstacle of length
ℓO = 0.4 that moves randomly around the point [2, 2]⊤.
Specifically, the position of the obstacle in each time-step is

given by ot =
[
2 2

]⊤
+

[
1√
2
− 1√

2

]⊤
wt, where wt ∈ R

is the uncertainty defined by the Beta-binomial(15, 10, 15)
distribution supported on the set of fifteen points {−0.5 +

i/14 | i ∈ [ 14 ]}. Since a small number of samples are
usually available in practice, we start with only N0 = 5
samples. We assume that in each time-step of each iteration,
the obstacle’s position is observable, which forms the dataset
of samples. Given position ot, the region of the environment
occupied by the obstacle is given as

Ot = {(z, y) ∈ R2 | ot − ℓO
2 12 ≤ [z y]⊤ ≤ ot +

ℓO
2 12},

where 12 = [1, 1]⊤. The stage cost is quadratic, given
as r(xt, ut) = (xF − xt)

⊤Q(xF − xt) + u⊤
t Rut, where

Q = diag(1, 1, 0.01, 0.01) and R = diag(0.01, 0.01). The
safe set S0 is generated using an open-loop control, see
dashed-black line in Figure 1. We execute the algorithm
for 20 iterations. The prediction horizon is K = 5. We use
β = 0.05 as the risk-averseness coefficient and δ = 0.02 as
the right-hand side of the risk constraint.

We consider ambiguity sets defined using the total vari-
ation distance. For discrete distributions P,Q ∈ ∆|W|
supported on a finite set W , the total variation distance
between them is defined as δ(P,Q) = 1

2∥P −Q∥1. Given N
i.i.d samples {ŵ1, . . . , ŵN} of the uncertainty, the empirical
distribution is given by the vector P̂N := (pNi )

|W|
i=1 , where

pNi = (frequency of wi ∈ W in the dataset)/N . Using this
definition, we consider the ambiguity sets of the form D =
{µ ∈ ∆|W| | δ(µ, P̂N ) ≤ θ}, where θ ≥ 0 is the radius.

For collision-avoidance, the constraint function g is given
as the distance between the agent and the safe region Yt
determined by excluding the instantaneous position of the
obstacle from the environment. More precisely, g(x,w) =
mina∈Y ∥Cx − a∥, where Y := R2\O, the set O is deter-
mined by the uncertainty w, and C is chosen such that Cx =
[z, y]

⊤. Taking benefit of the square shape of the obstacle,
we use the simplified representation of function g provided

in [12] which is g(x,w) = minj∈[3]

{
[dj+h⊤

j (Cx−w)]
+

∥hj∥

}
,

where hj and dj represent the outward normal and the
position of one of the constraints defining the obstacle set
(see [12, Lemma 1] for details). Note that g, and so the
distributionally robust constraint (9) are non-convex, and
non-trivial to handle. We reformulate this constraint into a
finite-dimensional form, see the extended version [17] for
details. The problem (9), considering the reformulation is
implemented in GEKKO [18] using APOPT solver.

2) Results: The trajectories for different ambiguity set
sizes are presented in Figure 1. The first iteration is same
for all experiments, given by the robustly feasible trajec-
tory. For small ambiguity sets, the trajectories are closer to
the obstacle. For larger ones, the algorithm becomes more
conservative to the extent that for θ = 0.5 the agent stops
exploring and is only concerned about safety. There is a
noteworthy observation in Figure 1b, that is, trajectories
get closer to the obstacle in the first few iterations but as
more data is collected, the safe set gets refined in later
iterations and the robot deviates from the obstacle more
strongly. Finally in Figure 2 we underline the impact of the
size of the ambiguity set cost-performance and safety. As
shown, smaller ambiguity sets provide cost-efficient trajec-
tories while increasing the probability of collision.
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(a) θ = 5× 10−6 (b) θ = 5× 10−4

(c) θ = 5× 10−2 (d) θ = 0.5

Fig. 1: Plots illustrating the application of the DR-RC-Iterative-MPC procedure for the task of navigating the mobile robot in an environment with an
uncertain obstacle (see Section V for details). We consider four different radii for the ambiguity set and for each case, the radius does not change over the
iterations. The initial robust trajectory (dashed black line) is the same for all cases. Each realization of the obstacle is plotted with a shaded red square.
As observed, the trajectories become more conservative as the radius of the ambiguity set increases.

Fig. 2: The effect of the size of the ambiguity set on safety and performance.
The red block represents the number of iterations (out of 20) in which the
trajectory collides with the obstacle at least once. The blue block depicts
the iteration cost of the collision-free iteration that has the highest index.

VI. CONCLUSIONS

We considered a risk-constrained infinite-horizon opti-
mal control problem and designed an iterative MPC-based
scheme to solve it. Our procedure approximated the risk
constraints using their distributionally robust counterparts.
Each iteration generated a trajectory that is safe and that con-
verges to the equilibrium asymptotically. In future we wish to
explore the finite-time convergence of the MPC scheme, the
convergence of the iterative procedure, and a computationally
tractable implementation for multiple agents.
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