
 

 

 University of Groningen

Coordinated maintenance in a multi-component system with compound Poisson deterioration
Rombouts, Pim; Ramirez, Stefanny; Bauso, Dario

Published in:
Nonlinear Analysis: Hybrid Systems

DOI:
10.1016/j.nahs.2022.101159

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Rombouts, P., Ramirez, S., & Bauso, D. (2022). Coordinated maintenance in a multi-component system
with compound Poisson deterioration. Nonlinear Analysis: Hybrid Systems, 44, [101159].
https://doi.org/10.1016/j.nahs.2022.101159

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 13-02-2023

https://doi.org/10.1016/j.nahs.2022.101159
https://research.rug.nl/en/publications/bd13025c-db61-4ec1-9313-245015b16594
https://doi.org/10.1016/j.nahs.2022.101159


Nonlinear Analysis: Hybrid Systems 44 (2022) 101159

a

b

A
c

s

w
i
b
s

d
t
p
a
w
o
a
m

h
1
l

Contents lists available at ScienceDirect

Nonlinear Analysis: Hybrid Systems

journal homepage: www.elsevier.com/locate/nahs

Coordinatedmaintenance in amulti-component systemwith
compound Poisson deterioration
Pim Rombouts a, Stefanny Ramirez a, Dario Bauso b,c,∗

ENTEG, Fac. Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
Jan C. Willems Center for Systems and Control, ENTEG, Fac. Science and Engineering, University of Groningen, Nijenborgh 4, 9747
G Groningen, Netherlands
Dipartimento di Ingegneria, Università di Palermo, 90128 Palermo, Italy

a r t i c l e i n f o

Article history:
Received 21 April 2020
Received in revised form 21 October 2021
Accepted 14 January 2022
Available online 7 February 2022

Keywords:
Semi-Markov processes
Maintenance
Dynamic programming

a b s t r a c t

This paper proposes a coordinated maintenance model in a multi-component system
with compound Poisson deterioration. The main contribution is a policy-iteration ap-
proach for Semi-Markov processes that optimizes the threshold at which the component
is eligible for preventive maintenance if another component requires corrective main-
tenance. The methodology is novel as we develop explicit expressions for the policy
evaluation and prove these expressions to satisfy the set of linear equations which
characterize traditional policy evaluation. By doing so, long-run average cost savings
are achieved, since setup costs can be shared.
© 2022 TheAuthors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Corrective maintenance is maintenance that is carried out after a failure detection to restore the condition of an asset
uch that it can perform its tasks again. Preventive maintenance, on the other hand, is carried out regularly to decrease the
likelihood of failures. The combination of these two maintenance types is called opportunistic maintenance, by means of
hich savings in set-up costs can be obtained. As the term suggests, corrective maintenance of a certain component results

n an opportunity for preventive maintenance of another component. This is usually referred to as economic dependence
etween components [1,2] and show commonalities of methods with can-order (S, c, s) policies in [3–5]. The general
etup for this paper is the following one.
One wishes to design an optimization policy that takes interdependencies between components into account. The

eterioration of components will be generated by independent compound Poisson processes, which causes the deteriora-
ion to be of random size and to happen at random moments in time. Once maintenance is being carried out, a machine’s
roduction will come to a halt. The resulting loss is seen as the major setup cost incurred when carrying out a maintenance
ction. The major setup cost is proportional to the time it takes to open up a machine and perform maintenance. Thus,
hen a component is undergoing corrective maintenance with the incurred major setup cost, another component has the
pportunity to undergo preventive maintenance with only minor setup costs incurred. Furthermore, it is also possible that
component has been so severely damaged that it also damages other parts of a machine, which in turn incurs higher
aintenance costs.
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1.1. Highlights of contributions

Motivated by coordinated maintenance we develop a renewal model which involves deterioration and maintenance by
xploiting the analogy with renewal inventory models. The deterioration process can be viewed as the inventory decay
rocess and maintenance operations correspond to reordering actions. The main contribution of this paper is a novel
S, c, s, F )-policy and a constructive method to design the must-repair s and can-repair c thresholds to minimize the
long-run average maintenance costs. A failure-level F is defined which resembles the state of a component in which it
damages surrounding parts and thus incurs higher costs. We frame our approach within the area of dynamic programming
and policy iteration. Policy iteration consists of iterated sequences of policy evaluation and policy improvement. As for
the policy evaluation we provide an explicit expression for the long-run average cost under a given rule. We prove that
such expression satisfies the traditional set of linear equations obtained from the Bellman’s equation. The result is used to
design an algorithm that is able to find the optimal maintenance policy for one component in a multi-component system
with compound Poisson deterioration.

1.2. Related literature

Several studies have been conducted on opportunistic maintenance. For example, the authors in [6] considered a
system in which the only possible action is a repair or replacement of all components. Thus, corrective maintenance
is carried out on all failed components and preventive maintenance is simultaneously carried out on all non-failed
components. This action is performed if more than m components have failed or time T has passed [6].

Other studies require immediate maintenance once a component has failed [2,7–13]. The most recent example of
hese studies has been conducted by Zhu et al. (2018), who considered a dynamic inspection interval as well as dynamic
hresholds. Thus, the inspection interval can decrease or increase based on the state of the components. Additionally,
he thresholds can be altered based on the state of the components after maintenance [2]. More recent studies focus
n condition-based maintenance optimization problems of multi-component systems with stochastic deterioration [14–
6]. In these studies, considering the economic dependence between components, the purpose is to determine the
ptimal policy that minimizes the total cost. In [16] the authors use a stochastic programming approach to determine
hich components require maintenance. In [15] the authors determine the optimal control limit at which preventive
aintenance of a single component should be performed by developing an approximate evaluation procedure. The
aintenance occurs when the deterioration level of the component is above the control limit and there is another
omponent getting failure-based maintenance or periodic maintenance. In the work by Poope et al. [14] a similar
aintenance model as in [15], with two optimal control limits to perform maintenance, is studied. Similarly to the
orks mentioned above, in this research we also consider the economic dependence between components and we analyse
he case of opportunistic maintenance for a single component in a multi-component system where the deterioration is
etermined by a Poisson process. However, the main difference with respect to previous research is that we propose a new
S, c, s, F )-policy and we apply a policy iteration algorithm to determine the optimal can-repair level c and must-repair
evel s that minimize the cost in the long-term. Additional studies regarding opportunistic maintenance with an economic
ependence approach can be found in [17–19]. For further references related to condition-based maintenance models of
ulti-component systems, in [20] the authors present an extensive review of the literature. They provide a classification
ased on the dependencies between the components and the impacts that it has on the optimal maintenance policy.
Previous research relates maintenance to degradation modeling [21–23]. These maintenance models are based on how

he deterioration of the components influences the way in which the system operates, and how by taking into account
he deterioration we can improve the optimization and the operation of the system. Differently from those papers, in our
ork we focus on the impact that the optimal policy has on the cost minimization in the long term rather than on the
erformance of the system.
Models and methods in this research have a resemblance with can-order policies, also known as (s, c, S)-policies

eveloped in the context of coordinated replenishment [3–5,24–27]. The setup of this paper is motivated by the procedure
hat has been developed by Federgruen et al. (1984), in which optimal ‘can-order’ policies for multi-item inventory systems
re determined. By means of these so called (S, c, s)-policies, an item is reordered up to a certain level ‘S’ once its inventory
evel is at or below ‘s’. Furthermore, if another item is reordered because its inventory level is at or below ‘s’, an item
hose inventory level is at or below ‘c ’ is also replenished up to level ‘S’. Thus, to extend this concept to this research, a
omponent requires corrective maintenance once its state is at or below a level ‘s’ and preventive maintenance once its
tate is at or below a level ‘c ’ when corrective maintenance is carried out on another component. In addition, compared
o the ideas presented in the work by Federgruen et al. [5], we determine not only the ‘‘can-repair’’ level c but also the
‘must-repair’’ level s in the (S, c, s, F )-policy that minimize the long-run average cost in a multi-component system. To
evelop the policy iteration algorithm that determines the optimal policy we use an explicit expression of the long-run
verage cost.
This paper is organized as follows. In Section 2 we develop the model and formulate the problem. In Section 3 we

ntroduce the policy-iteration method and develop an explicit form for the policy-evaluation and prove analogies with
he traditional Bellman’s equation. In Section 4 we provide simulations. In Section 5 we provide conclusions and future

orks.
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2. Model and problem formulation

Let x(t) and u(t) be the state (deterioration condition) and control (repair/norepair) of a machine at time t . Let tk be
he time of the kth transition where t0 = 0. The state and control stay constant between transitions, namely, xk = x(tk);
(t) = xk for tk ≤ t ≤ tk+1, and uk = u(tk); u(t) = uk for tk ≤ t ≤ tk+1.
Control u(t) is obtained from an (S, c, s, F )-type control policy R : I → A(i),where I is the state space and A(i) is the

ontrol space. More specifically R : i ↦→ a which maps state i into action a as follows. In an (S, c, s, F )-policy corrective
maintenance occurs every time the component is below a ‘‘must-repair’’ level s. When the component has reached
the failure level F < s corrective maintenance is performed with a higher cost. Preventive maintenance is executed
when the state of the component is below the ‘‘can-repair’’ level c > s and there is at least another component that
requires corrective maintenance. Every time a repair occurs the component goes back to the ‘‘repair-up-to’’ level S. Three
parameters are specified similarly, namely: the ‘repair-up-to’ level S, the ‘can-repair’ level c and the ‘must-repair’ level s,
where in this research s < c < S. The repair-up-to threshold S will be fixed, since a component’s state is always ought to
be fully restored. Additionally, a certain state of the component will be defined as a state at which failure has occurred,
F , which has to be lower than the ‘must-repair’ level s. It is assumed that reaching this state incurs more costs, which
will be further referred to as penalty cost.

The size of the deterioration is a non-negative variable with common discrete probability distribution. The probability
of the size of the deterioration being j is denoted by φ(j), j ≥ 0, and the state of the component is known at any moment
in time. Deterioration follows a compound Poisson process with rate λ. There are different techniques that can be applied
to estimate the rate parameter λ based on past data, such as exponential [28] smoothing or Poisson regression [29].
However, these techniques are outside of the scope of this research.

There are two possible repair opportunities, namely when the component under review has deteriorated, or when
another component has reached its ‘must-repair’ level. The first case is referred to as a ‘normal’ repair opportunity
with setup costs K whereas the second case is referred to as a ‘special’ repair opportunity with setup costs κ , where

< K . These special repair opportunities occur at epochs that are generated by a Poisson process, in this case with
ate µ. These special repair opportunities are calculated by multiplying the amount of other components, n, by the
ate of repair of the other components, η. This is done under the assumption that these components can only undergo
orrective maintenance. Thus, µ is an approximation to the superposition of the preventive maintenance actions triggered
y corrective maintenance on any other component and is calculated by

η =
λ

Sother − sother
, µ = n ∗ η, (1)

where Sother − sother is the difference between the fully repaired state and the state that requires corrective maintenance
of all other components.

When deterioration on the component under review has occurred leaving the component’s state at or below the failure
state F , a penalty cost P is incurred, where P ≥ K . Additionally, the lead time of a repair is assumed to be zero. Lastly,
the time between two consecutive decision epochs is independent and exponentially distributed with mean 1

λ+µ
. Thus,

he probability that the next decision epoch is generated by the component’s own deterioration is λ
λ+µ

, whereas the
robability that it is generated by another component requiring maintenance is µ

λ+µ
.

The expected time until the following decision epoch if action a is chosen in state i, τi(a), is determined by the deterioration
ate of the component under review, λ, and the approximation of the superposition of the maintenance opportunities
riggered by the other components, µ. Thus, we have,

τi (a) =
1

λ + µ
, ∀ i ∈ I, a ∈ A. (2)

Since the expected time until the following decision epoch does not depend on action a, it will be further referred to
s τ .
To obtain the transition probability matrix, consider that the probability that the system will be in state j at the next

ecision epoch when action a is chosen in state i, pij(a), is determined by calculating the transition probabilities for three
ossible state ranges, namely F ⩽ i ⩽ s, s < i ⩽ c and c < i ⩽ S. Let β :=

λ
λ+µ

, and γ :=
µ

λ+µ
.

First of all, if the state of the component is at or below the must-repair threshold, i ⩽ s, action a implies a mandatory
epair. Thus, the probability of the system being in state j at the next decision epoch when action a is chosen in state i,
or i ⩽ s, has the same transition probabilities as state i = S. This is due to the fact that there is zero lead-time, which
mplies that a component whose state is at or below s is immediately repaired up to state i = S. Then we have

pij(a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ + βφ(0), F ⩽ i ⩽ s, j = S,
βφ(S − j), F ⩽ i ⩽ s, F < j < S,

β

∞∑
φ(t), F ⩽ i ⩽ s, j = F .

(3)
t=S−F

3
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Secondly, if the state of the component is above the must-repair threshold and at or below the can-repair threshold,
ction a implies a preventive repair if another component requires corrective maintenance. Thus, with probability µ

λ+µ

the state of the component will be i = S at the next decision epoch. Additionally, with the probability of the component
deteriorating, λ

λ+µ
, multiplied by the probability of the size of the deterioration, φ(i − j), i − j ≥ 0, the state of the

omponent at the next decision epoch is j, for j > F . The probability of the component reaching the failure state, F , is
qual to λ

λ+µ

∑
∞

j=i−F φ(j), ∀ s < i ⩽ c. This yields

pij(a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
βφ(i − j), s < i ⩽ c, F < j ⩽ c, i ⩾ j,
γ , s < i ⩽ c, j = S,

β

∞∑
t=i−F

φ(t), s < i ⩽ c, j = F .

(4)

Lastly, if the state of the component is above the can-repair threshold and at or below state i = S, action a implies that
no repair has to be conducted. Thus, with probability µ

λ+µ
+

λ
λ+µ

φ(0) the state of the component will remain the same.
urthermore, with the probability of the component deteriorating, λ

λ+µ
, multiplied by the probability of the size of the

eterioration, φ(i − j), i − j > 0, the state of the component at the next decision epoch is j, for j > F . The probability of
he component reaching the failure state, F , is equal to λ

λ+µ

∑
∞

j=i−F φ(j), ∀ c < i ⩽ S. Then we can write

pij(a) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

γ + βφ(0), c < i ⩽ S, F < j ⩽ S, i = j,
βφ(i − j), c < i ⩽ S, F < j ⩽ S, i > j,

β

∞∑
j=i−F

φ(j), c < i ⩽ S, j = F ,

0, otherwise.

(5)

The transitions between states is governed by the transition distribution

Qij(τ , a) = P{tk+1 − tk ≤ τ , xk+1 = j|xk = i, uk = a} = pij(a)(1 − e−νi(a)τ ),

where the pij(a) are transition probabilities as in (3)–(5) and νi(a) is the transition rate which equals λ + µ.
As for the expected costs until next decision epoch, note that the expected incurred costs until the following decision

epoch if action a is chosen in state i, ci(a), is dependent on the action a which is prescribed by rule R. When the state of
the component is c < i ≤ S, the expected incurred costs are 0, since no repair will be done. If the state of the component
is s < i ⩽ c , a preventive repair of costs κ will be performed with the probability of another component requiring a
mandatory repair, µ

λ+µ
. Thus, the expected incurred costs are µ

λ+µ
κ . Furthermore, if the state of the component is F < i ⩽ s,

mandatory repair is performed of costs K . Lastly, if the state of the component is at the failure level, F , the costs of repair
re P . Thus, the expected incurred costs until the next decision epoch can be formulated as

ci(a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, c < i ≤ S,

µ

λ + µ
κ, s < i ⩽ c,

K , F < i ⩽ s,
P, i = F .

(6)

The problem we wish to solve is to find the optimal thresholds to minimize

JR(i) = lim
N→∞

1
E{tN |x0 = i, R}

E

{
N−1∑
k=0

cxk (Rxk )|x0 = i

}
.

It is well known that the above problem can be assimilated to a stochastic shortest path problem (SSP) by dividing
the trajectory into cycles characterized by successive visits to a generic predefined node, say node n, associated in our
xample to state S. The cost at state i and under action a is ci(a) − λ∗τi(a), where λ∗ is the optimal expected cost per
nit time. We view each cycle as a trajectory of an associated SSP problem with node n as the termination state. So the
ellman’s equations for the average cost problem is given by:

v∗

i = min
a∈A(i)

⎧⎨⎩ci(a) − λ∗τi(a) +

∑
j∈I

pij(a)v∗

j

⎫⎬⎭ . (7)

. Policy-iteration

The policy-iteration algorithm starts by initializing a stationary policy R, where R is of the (S, c, s, F )-type in this
esearch. The state of the component at which the costs of maintenance are the highest due to the component incurring
4
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damage to other parts of the machine is denoted as F . The initial state of the component, which resembles the component
being in its initial and fully functioning state, is denoted by S. The optimal ‘can-repair’ threshold c and the optimal
‘must-repair’ threshold s are to be determined by the policy-iteration algorithm which consists in two steps performed
iteratively: a policy-evaluation and a policy-improvement step.

After the initialization of the stationary policy R, policy-evaluation is performed by determining the long-run average
cost g(R) and the relative values υi(R). For the chosen rule R, g(R) and υi(R), i ∈ I , are computed as the unique solution of
he linear equations

vi = ci (Ri) − gτi (Ri) +

∑
j∈I

pij (Ri) vj, i ∈ I

vs = 0,
(8)

n which s is arbitrarily chosen such that the normalization equation υs = 0.
To solve the linear programming problem which is stated in Eq. (8), ci (Ri), τi(Ri) and pij (Ri) need to be determined.
Once the stationary policy R has been evaluated, policy-improvement is performed. Policy-improvement is performed

by determining action a for every state i ∈ I that yields the minimum in

min
a∈A(i)

⎧⎨⎩ci(a) − g(R)τ +

∑
j∈I

pij(a)vj(R)

⎫⎬⎭ (9)

where g(R) and υj(R) are obtained from the policy-evaluation step. Furthermore, ci(a) and pij(a) are recalculated for every
action a ∈ A. The one action a, which is prescribed by the values of the thresholds s and c , that minimizes Eq. (9) for all
states i, determines the new policy R̄ = (S, a, F ) = (S, c, s, F ).

If the new policy R̄ = R, the algorithm is stopped and R̄ is the optimal policy. We also have g(R̄) = λ∗. Otherwise, the
algorithm is repeated with R replaced by R̄.

In the following we develop explicit formulas to obtain the long-run average cost. These explicit formulas represent
an equivalent and alternative way to solving the set of linear equations (8).

3.1. Validation model policy-evaluation

The expected long-run average costs g(R) for a policy R can be equivalently obtained by calculating the total expected
costs from the initial state S to the state right after a repair and dividing these expected costs by the expected time it
takes from the initial state S to the state right after a repair has taken place. We prove that this is the same value as the
value of g(R) which is obtained from the policy-evaluation step.

For the system which is controlled by rule R and is currently in state i, the expected time it takes to reach the next epoch
at which a repair is conducted and the probability that the component’s next repair is triggered by its own deterioration,
are denoted by tR(i) and qR(i), respectively. For the determination of tR(i) and qR(i), the must-repair threshold s is the
lowest state that is considered, since any state i < s, will trigger a mandatory repair similarly to state i = s. Thus, the
probabilities of reaching state i ⩽ s are all assigned to state s. Furthermore, the expected penalty costs incurred until the
next repair is conducted are denoted by hR(i), which is calculated by multiplying the probability of going from state i to
state i = F by the penalty costs P . The determination of tR(i), qR(i) and hR(i) will be clarified in the following.

emma 1. It holds

tR(i) =
1 + λ

∑i−s−1
j=1 tR(i − j)φ(j)

λ + µ − λφ(0) − δ(i − c)µ
, i > s. (10)

roof. Calculation of tR(i) for s < i ≤ c

The first situation that is elaborated upon, is the determination of tR(i) for s < i ≤ c . In Fig. 1, the probabilities of
oving from s + 1 to all other states are shown. With the probability of another machine requiring a repair, µ

λ+µ
, the

machine under control is also repaired. Furthermore, with the probability that deterioration occurs and is greater than
or equal to 1, λ

λ+µ

∑
∞

j=1 φ(j), the machine under control is also repaired. In both cases, the time it takes to reach the
next epoch at which a repair is conducted, is 1

λ+µ
. Lastly, with the probability that a deterioration of 0 takes place, the

machine under control remains in the state s+ 1. In this case, the time it takes to reach the next epoch at which a repair
is conducted, is 1

λ+µ
+ tR(s + 1). Evidently, it can be concluded that the time it takes to reach the next epoch at which a

epair is conducted, is at least 1
λ+µ

. With probability λ
λ+µ

φ(0), it takes tR(s + 1) longer. Thus, tR(s + 1) is defined as

tR(s + 1) =
1

+
λ (

φ(0)tR(s + 1)
)
. (11)
λ + µ λ + µ

5
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Fig. 1. Probabilities of going from s + 1 to another state.

Fig. 2. Probabilities of going from s + 2 to another state.

In Fig. 2, the probabilities of moving from s+2 to all other states are shown. Similarly to the situation in Fig. 1, it takes
t least 1

λ+µ
to reach the next epoch at which a repair is conducted. However, in this case, with probability λ

λ+µ
φ(0) it

akes tR(s + 2) longer and with probability λ
λ+µ

φ(1) it takes tR(s + 1) longer. Thus, tR(s + 2) is defined as

tR(s + 2) =
1

λ + µ
+

λ

λ + µ

(
φ(0)tR(s + 2) + φ(1)tR(s + 1)

)
. (12)

It readily follows that tR(i) for s < i ≤ c can be defined as

tR(i) =
1

λ + µ
+

λ

λ + µ

i−s−1∑
j=0

tR(i − j)φ(j). (13)

alculation of tR(i) for i > c
The second situation that is elaborated upon, is the determination of tR(i) for i > c. In Fig. 3, the probabilities of moving

from c + 1 to all other states are shown. Similarly to t (i) for s < i ≤ c , it takes at least 1 to reach the next epoch
R λ+µ

6
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Fig. 3. Probabilities of going from c + 1 to another state.

Fig. 4. Probabilities of going from c + 2 to another state.

t which a repair is conducted. In this case, with the probability of deterioration occurring and being 0, λ
λ+µ

φ(0), and
he probability of another machine breaking down, µ

λ+µ
, it takes tR(c + 1) longer. With the probability of deterioration

ccurring and being 1, λ
λ+µ

φ(1), it takes tR(c) longer. Additionally, with the probability of deterioration occurring and
being 2 or 3, it takes tR(s + 2) or tR(s + 1) longer, respectively. Thus, tR(c + 1) is defined as

tR(c + 1) =
1

λ + µ
+

µ

λ + µ
tR(c + 1) +

λ

λ + µ

(
φ(0)tR(c + 1) + φ(1)tR(c) + φ(2)tR(s + 2) + φ(3)tR(s + 1)

)
. (14)

In Fig. 4, the probabilities of moving from c+2 to all other states are shown. Similarly to the aforementioned situations,
t takes at least 1 to reach the next epoch at which a repair is conducted. However, in this case, with the probability of
λ+µ

7
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deterioration occurring and being 0, λ
λ+µ

φ(0), it takes tR(c + 2) longer. Furthermore, with the probability of deterioration
ccurring and being 1, 2, 3 or 4, it takes tR(c + 1), tR(c), tR(s+ 2) or tR(s+ 1) longer, respectively. Thus, tR(c + 2) is defined
s

tR(c+2) =
1

λ + µ
+

µ

λ + µ
tR(c+2)+

λ

λ + µ

(
φ(0)tR(c+2)+φ(1)tR(c+1)+φ(2)tR(c)+φ(3)tR(s+2)+φ(4)tR(s+1)

)
. (15)

It readily follows that tR(i) for i > c can be defined as

tR(i) =
1

λ + µ
+

µ

λ + µ
tR(i) +

λ

λ + µ

i−s−1∑
j=0

tR(i − j)φ(j). (16)

alculation of tR(i) for i > s
By combining Eqs. (13) and (16), tR(i) for i > s is obtained as

tR(i) =
1

λ + µ
+

µ

λ + µ
tR(i)δ(i − c) +

λ

λ + µ

i−s−1∑
j=0

tR(i − j)φ(j), (17)

here δ(i − c) = 1 if i > c and δ(i − c) = 0 otherwise.
However, for modelling purposes, tR(i) needs to be isolated in Eq. (17). This is done in the following way

tR(i)
(

λ + µ − µδ(i − c) − λφ(0)
λ + µ

)
=

1 + λ
∑i−s−1

j=1 tR(i − j)φ(j)

λ + µ
, (18)

hich yields (10) and this concludes our proof. ■

emma 2. It holds

qR(i) =

λ

(
1 −

∑i−s−1
j=0 φ(j) +

∑i−s−1
j=1 qR(i − j)φ(j)

)
λ + µ − λφ(0) − µδ(i − c)

, i > s. (19)

Proof. Calculation of qR(i) for s < i ≤ c

The first situation that is elaborated upon, is the determination of qR(i) for s < i ≤ c. The probabilities of moving from
s + 1 to all other states are shown in Fig. 1 in the previous section. In this case, with the probability of deterioration
occurring and being 0, λ

λ+µ
φ(0), the probability is again qR(s + 1). Furthermore, with the probability of a deterioration

ccurring and being greater than or equal to 1, λ
λ+µ

∑
∞

j=1 φ(j), the repair is triggered by the machine’s own deterioration.
Thus, qR(s + 1) is defined as

qR(s + 1) =
λ

λ + µ

( ∞∑
j=1

φ(j) + qR(s + 1)φ(0)
)
. (20)

The probabilities of moving from s + 2 to all other states are shown in Fig. 2 in the previous section. In this case,
with the probability of deterioration occurring and being 0, λ

λ+µ
φ(0), the probability of deterioration triggering repair

s again qR(s + 2). Additionally, with the probability of deterioration occurring and being 1, λ
λ+µ

φ(1), the probability of
deterioration triggering repair is qR(s+ 1). Lastly, with the probability of a deterioration occurring and being greater than
or equal to 2, λ

λ+µ

∑
∞

j=2 φ(j), the repair is triggered by the machine’s own deterioration. Thus, qR(s + 2) is defined as

qR(s + 2) =
λ

λ + µ

( ∞∑
j=2

φ(j) + qR(s + 2)φ(0) + qR(s + 1)φ(1)
)
. (21)

It readily follows that qR(i) for s < i ≤ c can be defined as

qR(i) =
λ

λ + µ

( ∞∑
j=i−s

φ(j) +

i−s−1∑
j=0

qR(i − j)φ(j)
)
. (22)

Calculation of qR(i) for i > c
The second situation that is elaborated upon, is the determination of qR(i) for i > c. The probabilities of moving

from c + 1 to all other states are shown in Fig. 3 in the previous section. In this case, with the probability of another
machine breaking down, µ

λ+µ
, the probability of deterioration triggering repair is again qR(c + 1). Additionally, with

he probability of deterioration occurring and being 0, λ φ(0), the probability of deterioration triggering repair is also

λ+µ

8



P. Rombouts, S. Ramirez and D. Bauso Nonlinear Analysis: Hybrid Systems 44 (2022) 101159

i

T
p
W

d

C

w
i

F

w

L

o
s

w

qR(c+1). Furthermore, with the probability of deterioration occurring and being 1, 2 or 3, the probability of deterioration
triggering repair is qR(c), qR(s + 2) or qR(s + 1), respectively. Lastly, with the probability of deterioration occurring and
being greater than or equal to 4, λ

λ+µ

∑
∞

j=4 φ(j), the repair is triggered by the machine’s own deterioration. Thus, qR(c+1)
s defined as

qR(c + 1) =
µ

λ + µ
qR(c + 1) +

λ

λ + µ

( ∞∑
j=4

φ(j) + qR(c + 1)φ(0) + qR(c)φ(1) + qR(s + 2)φ(2) + qR(s + 1)φ(3)
)
. (23)

he probabilities of moving from c +2 to all other states are shown in Fig. 4 in the previous section. In this case, with the
robability of another machine breaking down, µ

λ+µ
, the probability of deterioration triggering repair is again qR(c + 2).

ith the probability of deterioration occurring and being 0, λ
λ+µ

φ(0), the probability of deterioration triggering repair
is also qR(c + 2). Furthermore, with the probability of deterioration occurring and being 1, 2, 3 or 4, the probability
of deterioration triggering repair is qR(c + 1), qR(c), qR(s + 2) or qR(s + 1), respectively. Lastly, with the probability of
deterioration occurring and being greater than or equal to 5, λ

λ+µ

∑
∞

j=5 φ(j), the repair is triggered by the machine’s own
eterioration. Thus, qR(c + 2) is defined as

qR(c+2) =
µ

λ + µ
qR(c+2)+

λ

λ + µ

( ∞∑
j=5

φ(j)+qR(c+2)φ(0)+qR(c+1)φ(1)+qR(c)φ(2)+qR(s+2)φ(3)+qR(s+1)φ(4)
)
.

(24)

It readily follows that qR(i) for i > c can be defined as

qR(i) =
µ

λ + µ
qR(i) +

λ

λ + µ

( ∞∑
j=i−s

φ(j) +

i−s−1∑
j=0

qR(i − j)φ(j)
)
. (25)

alculation of qR(i) for i > s
By combining Eqs. (22) and (25), qR(i) for i > s is obtained as

qR(i) =
µ

λ + µ
qR(i)δ(i − c) +

λ

λ + µ

( ∞∑
j=i−s

φ(j) +

i−s−1∑
j=0

qR(i − j)φ(j)
)
, (26)

here δ(i − c) = 1 if i > c and δ(i − c) = 0 otherwise. However, for modelling purposes, qR(i) needs to be isolated
n Eq. (26). To do this let us rewrite as follows:

qR(i)
(

λ + µ − µδ(i − c) − λφ(0)
λ + µ

)
=

λ

λ + µ

( ∞∑
j=i−s

φ(j) +

i−s−1∑
j=1

qR(i − j)φ(j)
)

, (27)

rom the above we obtain

qR(i) =

λ

(∑
∞

j=i−s φ(j) +
∑i−s−1

j=1 qR(i − j)φ(j)
)

λ + µ − λφ(0) − µδ(i − c)
, (28)

hich yields (19) and this concludes our proof. ■

emma 3. It holds

hR(i) =

Pλ

(
1 −

∑i−F−1
j=0 φ(j) +

∑i−F−1
j=1 FR(i − j)φ(j)

)
λ + µ − λφ(0) − µδ(i − c)

, i > s. (29)

Proof. Calculation of hR(i)

The expected penalty costs incurred from state i until the next repair, hR(i), are calculated by multiplying the probability
f reaching the failure state F from every state i by the penalty cost P . Let FR(i) be the probability of reaching the failure
tate from state i.
For s < i ≤ c , the probabilities of moving from s + 1 to all other relevant states are shown in Fig. 5. In this case,

ith the probability of deterioration occurring and being 0, λ
λ+µ

φ(0), the probability of reaching the failure state is again
FR(s + 1). Additionally, with the probability of a deterioration occurring and being greater than or equal to s + 1 − F ,

λ
λ+µ

∑
∞

j=s+1−F φ(j), the component reaches its failure state F . Hence, FR(s + 1) is defined as

FR(s + 1) =
λ

λ + µ

( ∞∑
φ(j) + FR(s + 1)φ(0)

)
. (30)
j=i−F

9
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Fig. 5. Probabilities of going from s + 1 to another state.

Fig. 6. Probabilities of going from s + 2 to another state.

The probabilities of moving from s+2 to all other relevant states are shown in Fig. 6. In this case, with the probability
of deterioration occurring and being 0, λ

λ+µ
φ(0), the probability of reaching the failure state is again FR(s+2). Furthermore,

ith the probability of deterioration occurring and being 1, λ
λ+µ

φ(1), the probability of reaching the failure state is FR(s+1).
astly, with the probability of a deterioration occurring and being greater than or equal to s + 2 − F , λ

∑
∞

φ(j),

λ+µ j=s+2−F

10
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Fig. 7. Probabilities of going from c + 1 to another state.

he component reaches its failure state F . Thus, FR(s + 2) is defined as

FR(s + 2) =
λ

λ + µ

( ∞∑
j=s+2−F

φ(j) + FR(s + 2)φ(0) + FR(s + 1)φ(1)
)
. (31)

It readily follows that FR(i) for s < i ≤ c can be defined as

FR(i) =
λ

λ + µ

( ∞∑
j=i−F

φ(j) +

i−s−1∑
j=0

FR(i − j)φ(j)
)
. (32)

The second situation that is elaborated upon, is the determination of FR(i) for i > c. The probabilities of moving from
c +1 to all other relevant states are shown in Fig. 7. In this case, with the probability of another machine breaking down,

µ

λ+µ
, the probability of reaching the failure state is again FR(c+1). With the probability of deterioration occurring and being

, λ
λ+µ

φ(0), the probability of reaching the failure state is also FR(c+1). Additionally, with the probability of deterioration
ccurring and being 1, 2 or 3, the probability of reaching the failure state is FR(c), FR(s + 2) or FR(s + 1), respectively.
astly, with the probability of deterioration occurring and being greater than or equal to c + 1 − F , λ

λ+µ

∑
∞

j=c+1−F φ(j),
he component reaches its failure state F . Thus, FR(c + 1) is defined as

FR(c + 1) =
µ

λ + µ
FR(c + 1)+

λ

λ + µ

( ∞∑
j=c+1−F

φ(j)+ FR(c + 1)φ(0)+ FR(c)φ(1)+ FR(s+ 2)φ(2)+ FR(s+ 1)φ(3)
)
. (33)

The probabilities of moving from c +2 to all other relevant states are shown in Fig. 8. In this case, with the probability
of another machine breaking down, µ

λ+µ
, the probability of reaching the failure state is again FR(c+2). With the probability

f deterioration occurring and being 0, λ
λ+µ

φ(0), the probability of reaching the failure state is also FR(c+2). Furthermore,
ith the probability of deterioration occurring and being 1, 2, 3 or 4, the probability of reaching the failure state is FR(c+1),
(c), F (s + 2) or F (s + 1), respectively. Lastly, with the probability of deterioration occurring and being greater than or
R R R

11



P. Rombouts, S. Ramirez and D. Bauso Nonlinear Analysis: Hybrid Systems 44 (2022) 101159

e

w

Fig. 8. Probabilities of going from c + 2 to another state.

qual to c + 2 − F , λ
λ+µ

∑
∞

j=c+2−F φ(j), the component reaches its failure state F . Thus, FR(c + 2) is defined as

FR(c + 2) =
µ

λ + µ
FR(c + 2) +

λ

λ + µ

( ∞∑
j=c+2−F

φ(j)

+ FR(c + 2)φ(0) + FR(c + 1)φ(1) + FR(c)φ(2) + FR(s + 2)φ(3) + FR(s + 1)φ(4)
)

.

(34)

It readily follows that FR(i) for i > c can be defined as

FR(i) =
µ

λ + µ
FR(i) +

λ

λ + µ

( ∞∑
j=i−F

φ(j) +

i−F−1∑
j=0

FR(i − j)φ(j)
)
. (35)

By combining Eqs. (32) and (35), FR(i) for i > s is obtained as

FR(i) =
µ

λ + µ
FR(i)δ(i − c) +

λ

λ + µ

( ∞∑
j=i−F

φ(j) +

i−F−1∑
j=0

FR(i − j)φ(j)
)
, (36)

here δ(i − c) = 1 if i > c and δ(i − c) = 0 otherwise.
However, for modelling purposes, FR(i) needs to be isolated in Eq. (36). This is done in the following way

FR(i)
(

λ + µ − µδ(i − c) − λφ(0)
λ + µ

)
=

λ

λ + µ

( ∞∑
j=i−F

φ(j) +

i−F−1∑
j=1

FR(i − j)φ(j)
)

, (37)

FR(i) =

λ

(∑
∞

j=i−F φ(j) +
∑i−F−1

j=1 FR(i − j)φ(j)
)

λ + µ − λφ(0) − µδ(i − c)
, (38)

FR(i) =

λ

(
1 −

∑i−F−1
j=0 φ(j) +

∑i−F−1
j=1 FR(i − j)φ(j)

)
, i > s. (39)
λ + µ − λφ(0) − µδ(i − c)
12
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Finally, the expected penalty costs incurred from state i until the next repair, hR(i), are calculated by multiplying FR(i)
y the penalty costs P . Thus, for hR(i) we obtain (29) and this concludes our proof. ■

The total expected costs of going to the repaired state from state i, when using rule R, are denoted by kR(i) as

kR(i) = hR(i) + KqR(i) + κ (1 − qR(i)) , i > s. (40)

Analogous to the model by Federgruen et al. (1984), the long-run average cost per unit time when using rule R is
enoted by

gR = kR(S)/tR(S). (41)

The relative costs of going to the regeneration state from state i when using rule R, υR(i), are defined by

υR(i) =

⎧⎨⎩
kR(i) − gRtR(i), i > s,
K , F < i ⩽ s,
P, i = F .

(42)

heorem 1. Let rule R be given. The long-run average cost gR and the relative costs vR(i) for all i ∈ I satisfy the set of linear
q. (8).

roof. From the definition of kR(i) in (40) we have that

• for all j = 0, . . . , i − s − 1 with probability λ
λ+µ

φ(j) the transition is to state i − j where the cost is kR(i − j),
• for all j = i − s, . . . , i − F − 1 with probability λ

λ+µ
φ(j) the transition is to a state F + 1 ≤ i − j ≤ s where the cost

kR(i − j) = K , and
• for all j = j = i−F , . . . ,∞ with probability λ

λ+µ
φ(j) the transition is to a state i−j ≤ F where the cost is kR(i−j) = P ,

• with probability µ

λ+µ
a discounted repair occurs which leaves the state unchanged if i ≥ c or has a cost k if i < c .

We can summarize the above cases in the following equation

kR(i) =
λ

λ+µ

∑i−s−1
j=0 kR(i − j)φ(j) + K λ

λ+µ

∑i−F−1
j=i−s φ(j)

+ P
λ

λ + µ

∞∑
j=i−F

φ(j) +
µ

λ + µ
{δ(i − c)kR(i) + (1 − δ(i − c))k},

(43)

hich represents a recursive expression of the total expected costs of going to the repaired state from state i. As regards
he expected time of going to the repaired state from state i we can use (17) which we write below again

tR(i) =
1

λ + µ
+

µ

λ + µ
tR(i)δ(i − c) +

λ

λ + µ

i−s−1∑
j=0

tR(i − j)φ(j). (44)

The stage cost of the assimilated SSP problem is kR(i)−gRtR(i) which can be obtained by subtracting gR times (44) from
43). Thus we have

kR(i) − gRtR(i)

= −gR
1

λ + µ
+

λ

λ + µ

i−s−1∑
j=0

φ(j)
(
kR(i − j) − gRtR(i − j)

)

+K
λ

λ + µ

i−F−1∑
j=i−s

φ(j) + P
λ

λ + µ

∞∑
j=i−F

φ(j)

+
µ

δ(i − c)
(
kR(i) − gRtR(i)

)
+

µ
(1 − δ(i − c))k.

(45)
λ + µ λ + µ

13
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Table 1
Simulation parameters for Figs. 9 and 10.
S F λ λ Sother sother η n µ K κ P

100 1 2 3 100 9 0.044 15 0.66 100 60 300

Table 2
Simulation parameters for Figs. 9 and 10.
S F λ λ Sother sother η K P

100 1 2 3 100 9 0.044 100 300

Fig. 9. Long-run average cost over thresholds.

Setting l := max{i − j, F} we can rewrite the above as

kR(i) − gRtR(i)

= −gR
1

λ + µ
+

λ

λ + µ

s+1∑
j=i

pil
(
kR(i − j) − gRtR(i − j)

)

+K
F+1∑
l=s

pil + PpiF + ci(a)

= ci(R) − gR
1

λ + µ
+

S∑
l=F

pilvR(l).

(46)

Note that vR(l) = vR(S) for all l ≤ s. This concludes our proof. ■

4. Simulations

In this section, simulations are performed to extend the theoretical results which are developed in Section 3.1. The
numerical studies show convexity of the long-run average cost with respect to s and c. Furthermore, the influence of the
amount of other components, n, is simulated with regards to the optimal threshold levels. Hereafter, the evolution of the
state of the component under review is simulated over a period of two years. Subsequently, the influence of the costs of
preventive maintenance, corrective maintenance and failure is simulated. The cost-savings that can be achieved by means
of coordinated maintenance are also acquired.

4.1. Convexity

In order to ensure that the algorithm which is stated in Section 3 provides a global optimum, the long-run average
cost is plotted for several combinations of the must-repair and can-repair thresholds. In Fig. 9(a) the long-run average
cost is plotted over the must-repair threshold, 5 ⩽ s ⩽ 39, for policies with the can-repair threshold, 20 ⩽ c ⩽ 40, where

< c . In Fig. 9(b) the long-run average cost is plotted over the can-repair threshold, 10 ⩽ c ⩽ 75, for policies with the
ust-repair threshold, 5 ⩽ s ⩽ 10, where s < c. The simulation parameters are listed in Table 1.
In the 2D plots in Fig. 9, it can be seen that the long-run average cost function is convex with respect to the must-repair

nd can-repair thresholds. In Fig. 10 the long-run average cost is plotted over the must-repair and can-repair thresholds
14
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Fig. 10. 3D plot of long-run average cost over the must-repair and can-repair thresholds.

Fig. 11. Optimal must-repair and can-repair thresholds levels for different values of n.

in 3D, where the global minimum is indicated by the blue dot. The convexity of the long-run average cost is evident in
this figure. It can thus be concluded that the optimal must-repair and can-repair thresholds obtained by the algorithm
are global optima.

4.2. Influence of amount of other components on optimal thresholds

The influence of the amount of other components that can trigger preventive maintenance of the component under
review on the must-repair and can-repair thresholds is simulated by determining the optimal values of the thresholds for
only one other machine up to thirty other machines, 1 ⩽ n ⩽ 30. The simulation parameters are listed in Table 2.

In Figs. 11(a) and 11(b), the optimal must-repair and can-repair thresholds are shown for κ = 25, and κ = 60,
espectively. The thresholds are monotonically non-increasing for an increasing n. Also, the can-repair threshold is affected
he most by an increase in the amount of other components. If the value of µ is rather high, the can-repair threshold should
e relatively low. On the contrary, if the value of µ is low, the risk of the component being repaired while it is still in a
ather good state is relatively low.

The value of the optimal can-repair threshold is also influenced by κ . For a low κ as in Fig. 11(a), preventive
aintenance becomes highly desirable. Thus, the time window during which the component is eligible for such a repair
hould be rather high, which corresponds to a relatively high can-repair threshold.

.3. Time evolution of state of component

The time evolution of the state of the component is simulated over two years by firstly determining the optimal must-
epair and can-repair thresholds. During the simulations the state of the component once repaired is ϵ less than it was
fter the previous repair. The simulation parameters are listed in Table 3.
15
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Table 3
Simulation parameters for Figs. 12 and 13.
S F λ λ Sother sother η K P ϵ

100 1 2 3 100 9 0.044 100 300 1

Fig. 12. Evolution of the state of the component for different values of n, κ = 25.

In Fig. 12, the time evolution of the state of the component is plotted (black solid) for n = 1, 5, 15 and 30. The figure
depicts the must-repair and can-repair thresholds (blue dashed) and the instant repair (red dotted).

When µ is low (only one other component), the machine’s repair is mostly triggered by its own deterioration but
can also undergo a preventive repair while it is still in a good state. Actually, in Fig. 12(a) a preventive repair of cost
κ = 25 was conducted while the component’s state was 57. Also, the optimal thresholds are positioned in such a way
that the probability of preventive maintenance for the relatively low costs κ = 25 is increasing, for an increasing amount
of other components. Moreover, in Fig. 12(d), all maintenance actions are triggered by another component’s corrective
maintenance, thus resulting in all repairs only costing κ = 25.

It can be seen that the thresholds in Fig. 13 are similar to the optimal thresholds as shown in Fig. 11(b). The difference
between the plots in Figs. 12 and 13 are the costs of preventive maintenance, κ = 25 and κ = 60, respectively. As it has
been explained in Section 4.2, the optimal thresholds are non-increasing for an increasing amount of other components.
This results in lower thresholds for the plots in Fig. 13 compared to the plots in Fig. 12. Resulting from this is the fact
that, on average, the greater the ratio κ:K is, the more maintenance actions will be corrective instead of preventive for
a greater amount of components. Lastly, it is concluded that the must-repair threshold is positioned in such a way that
the probability of reaching the rather expensive failure state, F = 1, is very low.

4.4. Influence of costs

The influence of the costs of corrective and preventive maintenance as well as the costs of failure, K , κ and P ,
respectively, is simulated by determining the optimal values of the thresholds for the case of fifteen other components,
n = 15. The simulation parameters are listed in Table 4.
16
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Fig. 13. Evolution of the state of the component for different values of n, κ = 60.

Table 4
Simulation parameters for Figs. 14–16.
S F λ λ Sother sother η n µ K κ P

100 1 2 3 100 9 0.044 15 0.66 100 60 300

Fig. 14. Optimal must-repair and can-repair threshold levels for different penalty costs.

In Fig. 14, the optimal must-repair and can-repair thresholds for different penalty costs are shown for κ = 25 and
= 60. It can be seen that in both cases the optimal must-repair and can-repair thresholds are monotonically non-

ecreasing for an increasing penalty cost. It can also be seen that both optimal thresholds follow roughly the same pattern.
he monotonically non-increasing must-repair threshold can be explained by the fact that, for an increasing penalty cost,
17
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Fig. 15. Optimal must-repair and can-repair threshold levels for different amounts of corrective maintenance costs.

Fig. 16. Optimal must-repair and can-repair threshold levels for different amounts of preventive maintenance costs.

the probability of having to pay the penalty cost should decrease. Thus, the must-repair threshold is higher when the ratio
K :P is lower. The can-repair threshold is monotonically non-increasing due to the fact that the must-repair threshold is
forced to increase due to the increasing penalty cost, which in turn forces the can-repair threshold to increase. As can
be seen, the difference between the optimal thresholds for κ = 25 and κ = 60 is mainly the level of the can-repair
hreshold, which appears to be higher for a lower preventive maintenance cost. This is explained by the fact that, for a
ower preventive maintenance cost, it is beneficial to have a high probability of the component undergoing preventive
aintenance instead of corrective maintenance. Thus, the difference c − s is greater when the ratio κ:K is lower.
In Fig. 15, the optimal must-repair and can-repair thresholds for different amounts of corrective maintenance costs

re shown for κ = 25 and κ = 60. It can be seen that in both cases the optimal must-repair threshold is monotonically
on-increasing, whereas the optimal can-repair threshold is monotonically non-decreasing for an increasing corrective
aintenance cost. The optimal must-repair threshold is monotonically non-increasing due to the fact that it is mainly

nfluenced by the penalty cost P and its ratio to the corrective maintenance cost, as has been explained in the previous
aragraph. The optimal can-repair threshold is monotonically non-decreasing due to the fact that, for an increasing
orrective maintenance cost, the probability of the component requiring corrective maintenance should be decreased.
urthermore, for a higher corrective maintenance cost, the probability of the component undergoing the relatively cheap
reventive maintenance is higher, since the difference c − s is larger. Lastly, analogously to the last argument, it can be
een that the average value of the can-repair threshold is higher when the ratio κ:K is lower.
In Fig. 16, the optimal must-repair and can-repair thresholds for different amounts of preventive maintenance costs

re shown for K = 100 and K = 200. In both cases the optimal must-repair threshold is monotonically non-decreasing
hereas the optimal can-repair threshold is monotonically non-increasing for an increasing preventive maintenance cost.
he optimal must-repair threshold is monotonically non-decreasing due to the fact that, for a lower can-repair threshold,
he probability of reaching the failure state is greater. To reduce the probability of the system to reach the failure state,
he must-repair threshold needs to be higher. The optimal can-repair threshold is monotonically non-increasing due to
he fact that the ratio κ:K is increasing for an increasing preventive maintenance cost.
18
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Table 5
Simulation parameters for Figs. 17 and 18.
S F λ λ Sother sother η n µ K κ P

100 1 2 3 100 9 0.044 15 0.66 100 60 500

Fig. 17. Cost savings in percentages over the penalty costs.

Fig. 18. Cost savings in percentages over ratios κ:K and amounts of other components.

4.5. Cost savings

The optimal coordinated (S, c, s, F )-policy that is obtained in this research is compared to the optimal independent
(S, s, F )-policy where all components are controlled independently assuming that the cost of corrective maintenance is K ,
similar to the cost of corrective maintenance of the coordinated control problem. The influence of the penalty costs, ratio
κ:K and the amount of other machines is simulated by determining the long-run average cost for both the coordinated
and independent control problem, where all parameters are similar. The simulation parameters are listed in Table 5.

In Fig. 17, the percentage of cost savings is plotted over different values of the penalty costs. It can be seen that the
influence that the penalty costs have on the cost savings are marginal. This is mainly due to the fact that the optimal
policies reduce the probability of the component reaching the failure state to a very small amount. For this reason, the
penalty costs will be set to P = 500 for the rest of the simulations in this section. In this way, the influence that the ratio
κ:K and the amount of other components have on the cost savings can be analysed accurately.

In Fig. 18(a), the percentage of cost savings is plotted over different values of the ratio κ:K for four different amounts
of other components, namely n = 1, 5, 15 and 30. In Fig. 18(b), the percentage of cost savings is plotted over different
amounts of components for four different ratios κ:K , namely κ : K = 0.10, 0.25, 0.60 and 0.80. First of all, it can be seen
that for small ratios κ:K the cost savings are large. This is mainly due to the fact that for the coordinated control rule there
is a possibility of having reduced setup costs. As has been explained in previous sections, for small ratios κ:K the optimal
coordinated control rule ensures that the component under review is mainly repaired by means of preventive maintenance
with reduced setup cost κ . Evidently, for an independent control rule, there is no possibility of having reduced setup costs
and the setup costs are always K . Secondly, it can be seen that cost savings are higher for a greater amount of other
19
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components. This is mainly due to the fact that for a larger amount of other components, the chance of a maintenance
action being preventive is larger.

5. Conclusions and future research

In this research, an algorithm has been developed that optimizes maintenance thresholds to minimize long-run average
osts in a multi-component system with compound Poisson deterioration.
The policy-iteration used in this research consists of three steps, namely value-determination, policy-improvement and

he convergence test. Firstly, the value of the current policy is evaluated by determining the relative values and long-run
verage costs. Secondly, the policy is improved by means of the policy-improvement step. Finally, a convergence test is
erformed where the optimal policy has been achieved if the newest policy R̄ is equal to the previous policy R.
The main insights gained from this analysis are that the percentage of cost savings that can be achieved is mainly

ependent on the relative difference between the preventive cost κ and corrective maintenance cost K . In particular, the
igher the percentage cost savings the lower the ratio κ:K . Furthermore, the cost savings increases with the number of
omponents in the system. It is also concluded that the must-repair threshold is inverse proportional to the ratio K :P .
astly, it is concluded that the lower the ratio κ:K is, the greater the difference between the optimal must-repair and
an-repair thresholds is.
For further research, it is suggested to extend the model by incorporating non-zero lead-time. Furthermore, instead of

pproximating the superposition of the maintenance opportunities triggered by another machine’s corrective maintenance
ction, a model could be created to account for different deterioration rates and setup costs. Note that in this work the
eterioration rate λ is fixed over time, and as a result the rate that determines the special repair opportunities µ is
lso fixed. Therefore, as we one can see in the Simulation section, the thresholds of the (S, c, s, F )-policy do not change
ver time. An interesting extension for further research is to analyse a dynamic behaviour of λ and how it affects the
S, c, s, F )-policy and the long-run average cost.
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