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shown that cellular senescence constitutes a stress-mediated pathophysiological mechanism implicated in a wide
range of CVDs at the cellular and molecular levels. In this review, we recapitulate key molecular and clinical findings
supporting the involvement of senescence in heart disease and discuss current clinical strategies aimed at eradicat-
ing the detrimental effects of senescence on cardiac homeostasis. On the basis of recent evidence, we additionally
address how the advent of the senotherapeutics field, in conjunction with the development of novel senescence
detection tools in tissues and biological fluids, may now facilitate effectively combating CVDs.
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Abstract

Cardiovascular diseases (CVDs) constitute the prime cause of global mortality, with an immense impact on
patient quality of life and disability. Clinical evidence has revealed a strong connection between cellular senes-
cence and worse cardiac outcomes in the majority of CVDs concerning both ischemic and nonischemic cardio-
myopathies. Cellular senescence is characterized by cell cycle arrest accompanied by alterations in several
metabolic pathways, resulting in morphological and functional changes. Metabolic rewiring of senescent cells
results in marked paracrine activity, through a unique secretome, often exerting deleterious effects on neighbor-
ing cells. Here, we recapitulate the hallmarks and key molecular pathways involved in cellular senescence in
the cardiac context and summarize the different roles of senescence in the majority of CVDs. In the last few
years, the possibility of eliminating senescent cells in various pathological conditions has been increasingly
explored, giving rise to the field of senotherapeutics. Therefore, we additionally attempt to clarify the current
state of this field with a focus on cardiac senescence and discuss the potential of implementing senolytics as a
treatment option in heart disease.
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1. INTRODUCTION

To facilitate survival during embryonic development, the
heart is the first organ formed in a rapidly growing fetus
during the third week of gestation. Hence, the heart
exerts a fundamental role for organismal homeostasis
and well-being throughout life.

The heart is a mosaic of subsets of differentiated cells,
including discrete myocytes (atrial and ventricular myo-
cytes and myocytes of the conduction system), arterial
and venous smooth muscle cells, autonomic ganglia, en-
dothelial cells, macrophages, interstitial mesenchymal
fibroblast cells, and progenitor/stem cells (1). Notably, it
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is the nonmyocytes that form the majority of cells in the
heart (2). Studies in humans (i.e., postmortem hearts
from healthy subjects) and animals (rat and mouse mod-
els) have shown that cardiomyocytes occupy �70–85%
of the mammalian heart volume but constitute only 30–
40% of total heart cells (3–5). Cardiomyocytes comprise
a dynamic cell type, capable of being constantly
recycled (6). It has been estimated that, despite variabili-
ty between different proteins and organelles, the entire
mammalian heart turns over all of its constituent proteins
at least once every 30 days. Thus, through this process
of recycling, cardiomyocytes respond and adapt to alter-
ations that jeopardize cardiac homeostasis (e.g., ische-
mia, infection, and mechanical stress) (6). In addition, the
dogma that cardiomyocytes remain in a postmitotic
phase has been challenged, since it has been shown
that cardiomyocytes still retain a low proliferative cap-
acity (4, 7). For human cardiomyocytes this capacity is
highest in early childhood but decreases gradually
throughout life to <1% per year in adulthood. Other cell
subpopulations exert a more substantial renewal rate,
i.e., high turnover rate of endothelial cells throughout life
(>15% per year) in comparison with a more limited
renewal of mesenchymal cells (<4% per year in adult-
hood) (4).
Nonmyocytes occupy a relatively small volume frac-

tion, but they are altogether more abundant compared
with cardiomyocytes. Furthermore, nonmyocyte cells
exert crucial roles in cardiovascular homeostasis by pro-
viding the heart with extracellular matrix (ECM) (8, 9).
ECM is a scaffold/network of structural and matricellular
proteins that confers mechanical support, facilitates
intercellular communication and metabolic exchange,
and modulates cellular responses such as cell survival,
death, proliferation, and differentiation (8, 9). Interestingly,
the prevailing view that fibroblasts are the most prevalent
subset of noncardiomyocytes in the heart has been chal-
lenged based on modern technologies and novel genetic
tools (5, 10, 11). Indeed, it has been demonstrated that en-
dothelial cells outnumber all other cardiac cell types,
comprising>60% of noncardiomyocyte populations, with
an estimated ratio of endothelial cells to cardiomyocytes
being 3:1 (5, 10, 11). This suggests a more fundamental
role for endothelial cells in cardiac homeostasis and
response to injury than previously appreciated (5). The
number of fibroblasts seems lower than previously esti-
mated, accounting for <20% of noncardiomyocyte cells.
Another important population found in the heart are mac-
rophages (originating by both peripheral monocyte
recruitment and local proliferation), which account for 5–
10% of noncardiomyocytes (5, 12).
The unique spatiotemporal interplay between differ-

ent cardiac cell populations is of paramount importance
for the proper structure and function of the mammalian

heart (13). Over a lifetime, each one of these diverse cells
senses and responds to intrinsic and extrinsic stressors
that jeopardize tissue homeostasis (14). Ultimately, dis-
ease results from the suboptimal ability of diverse cell
populations and macromolecules to respond and adapt
to stress (15).
In the cardiac context, cellular senescence enters the

scene as a stress response mechanism induced by a
plethora of stimuli, including telomere attrition, hypoxia,
viruses, oxidative stress, mitochondrial dysfunction, per-
turbed proteostasis, and autophagy impairment (16).
Senescent cells display the following interdependent
traits: 1) cell cycle withdrawal, 2) macromolecular dam-
age, 3) a unique secretory phenotype (SASP), 4) deregu-
lated metabolism, 5) tolerance to apoptosis, and 6)
morphological changes (16). Although cellular senes-
cence was initially described as a process preventing pro-
liferation of stressed/damaged mitotic cells, accumulating
evidence suggests a putative role of postmitotic cell se-
nescence (PoMiCS) in health and disease. In organs prin-
cipally harboring postmitotic cells such as the heart,
PoMiCS provides an evolutionary advantage to ensure
cellular integrity by restraining stressor-induced tissue
degeneration and facilitating tissue repair (17). However,
PoMiCS may also promote disease progression, mainly
through secretion of SASP factors (17). Importantly, during
the last decade emerging evidence has revealed a con-
nection between cellular senescence and cardiovascu-
lar disease (CVD), the leading cause of morbidity and
mortality worldwide. Of relevance, cellular senes-
cence is also a hallmark of aging, the main nonmodifi-
able risk factor for CVD (18). Indeed, it has been
extensively demonstrated that accumulation of sen-
escent cells with age may be detrimental for tissue
homeostasis (17, 19). Even more intriguing is the find-
ing that a class of compounds (i.e., senotherapeutics)
that target senescent cells by exploiting molecular
pathways implicated in the senescence phenotype
can alter the natural history of CVDs.
The involvement of cellular senescence in the

pathogenesis of CVD is a relatively novel concept
(FIGURE 1). Here, we initially discuss the common
hallmarks and molecular pathways of cellular senes-
cence and CVDs; because of length restrictions, the
implication of cellular senescence in stroke, aortic
aneurysm/dissection, peripheral arterial disease, and
vascular pathologies such as vasculitis or vascular
disorders that occur in the frame of other entities
(e.g., chronic obstructive pulmonary disease) are not
discussed here. Subsequently, we focus on recent
findings dealing with the involvement of senescence
in specific cardiovascular scenarios. Finally, we pres-
ent the potential advantages and limitations of the
use of senotherapeutics in CVD.
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2. FUNDAMENTAL ASPECTS OF CELLULAR
SENESCENCE

2.1. Inducers and Global Features of Senescence

Etymologically, senescence stems from the Latin senex,
meaning “someone of old age.” It was originally shown
by Hayflick and Moorhead in 1961 that serial passaging
of normal human diploid fibroblasts constituted a barrier
to their in vitro proliferation after reaching a fixed num-
ber of population doublings now known as the Hayflick
limit (20–22). Later on, the Hayflick limit was attributed to
telomere shortening (23). These observations led to the
hypothesis that aging may be the outcome of cells pro-
gressively losing their proliferative capacity because of
telomere attrition (replicative senescence), thus becom-
ing unable to replace damaged tissues and thereby con-
tributing to organismal dysfunction over time (24).
Since its discovery, cellular senescence has been

widely perceived as a cell fate determinant upon a variety
of signals. It has been extensively supported that cells
undergo senescence in response to various extrinsic and
intrinsic insults, such as irradiation, nutrient deprivation,
genotoxic and oxidative stress, telomere attrition, telomeric
structure modifications, mitogenic signals, oncogene acti-
vation, epigenetic modifications, chromatin rearrange-
ments, mitochondrial dysfunction, immune response
modulators, infectious agents, and inflammation (16,
22). Senescence is a well-orchestrated process in
which cells cease to divide, acquiring a secretory
phenotype and distinctive phenotypic alterations
linked with changes in morphology, cellular metabo-
lism, epigenetic regulation, and gene expression (16).
Moreover, senescent cells display increased resistance

to programmed cell death due to the activation of cell
survival pathways and modulators, such as the BCL-2
family of antiapoptotic proteins, even after exposure to
exogenous stress cues (25, 26). The complete network
of molecular events selectively leading to senescence
activation over apoptosis remains largely elusive; how-
ever, it has been postulated that the intensity and dura-
tion of the stimulus, as well as the nature of damage and
cell type, are factors dictating cell fate (20, 27, 28).
Over the last decade, extensive research and signifi-

cant progress in our understanding of the causes and
consequences of cellular senescence has occurred, de-
spite the absence of a consensus agreement on what
features truly reflect the senescence phenotype and the
lack of reliable and specific senescence markers (16).
The latter enabled discussions that led to a revised defi-
nition of cellular senescence and drove the develop-
ment of novel markers and approaches for accurate
cellular senescence determination (16, 29). Toward
this direction, in the last few years a guideline multi-
marker algorithmic approach for accurate senescent
cell assessment has been adopted by the senes-
cence community, rendering detection of senescent
cells feasible and precise even in clinical (archival)
material (16, 29). The latter is imperative not only to
further elucidate the role of senescence in the patho-
physiology of various age-associated diseases but
also to estimate the effectiveness of therapeutic
strategies that target senescent cells.
An important, frequently confusing issue stems from

the fact that the term “senescence” was incorrectly used
for many years to refer to both cellular and organismal
senescence (aging). Currently it is clear that the terms
“senescent” and “aged” are not equal and should not
be used interchangeably. Senescence can be triggered
rather acutely by a variety of non-telomere-dependent
insults, on a premature basis, earlier than the exhaustion
of the cellular replicative potential (stress-induced se-
nescence) (16). In contrast, aging refers to the outcome
of the accumulation of cell-intrinsic changes due to mild
but steady damage, which eventually leads to a decline
in cellular function (18). Therefore, compared with cellu-
lar senescence, the loss of physiological integrity char-
acterizing the aged cell is gradual and progressive
(FIGURE 2). Moreover, aging is a nonreversible phenom-
enon, whereas recent findings suggest that cellular se-
nescence represents an occasionally reversible state,
given that under certain conditions escape from senes-
cence may occur (18, 30–32). In particular, it has been
thoroughly demonstrated in a series of studies that cells
undergoing senescence following prolonged oncogenic
activation (oncogene-induced senescence), irrespective
of cell origin (epithelial or mesenchymal), may “escape”
from this cellular state and reenter the cell cycle, thus
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FIGURE 1. Investigation of the involvement of senescence in cardi-
ovascular diseases (CVDs) is a rapidly growing field. Results by year
for the search query “cellular senescence AND cardiovascular dis-
eases” in the PubMed platform.
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adopting aggressive features (16, 30, 33). During carci-
nogenesis senescence in preneoplastic cells restrains
the propagation of incipient cancer cells, whereas in
“full-blown” cancers senescent cells represent a pool of
dormant cancer cells that need to be eliminated to pro-
hibit further tumor progression and relapse (34–37).
Therefore, novel anticancer strategies aimed at senes-
cent cell elimination, complementary to classical thera-
peutic interventions, have been recently proposed (37). It
should be noted that escape from senescence represents
a phenomenon entirely different from that described as se-
nescence “bypass.” Senescence bypass pertains to the
circumvention of senescence entry occurring during
tumorigenic transformation (38).
Although senescence is a dynamic process in which,

under certain conditions, senescence-associated cell
cycle arrest may be reversed, the term “senescence re-
versal” mainly refers to a state of “light” senescence
accompanied by low p16INK4A levels in which “reversed”
cells more or less recapitulate their original, presenes-
cence features (39). In contrast, “escape” refers to cell
cycle reentry following a prolonged period of “deep” se-
nescence leading to cells with a significantly altered
genetic and epigenetic landscape compared with their
presenescent state, also reflected in their biological
behavior (16, 36, 39, 40). In this respect, although the
various types of cell state conversions are not yet fully
elucidated, escape from senescence appears highly dis-
tinct from senescence reversal.
Cells of any age can undergo senescence. In fact, this

probably occurs throughout our life; in developing and
young organisms cellular senescence prevents the
propagation of damaged cells and contributes to tissue
formation and homeostasis, whereas in old organisms
senescent cells start to accumulate because either the
rate of their formation is increased or a deregulated
immune system fails to remove them (16). It is notewor-
thy that, contrary to the dogma that senescence is re-
stricted to proliferating cells, a number of senescence
markers have also been identified in postmitotic cells,
such as cardiomyocytes, neurons, and adipocytes, a
phenomenon termed postmitotic senescence (41–43).

Conclusively, even though cellular senescence is a hall-
mark of aging and senescent cells become more abun-
dant in aged tissues, the extent to which senescence
drives the aging process remains unknown. It is impor-
tant to underline that since cellular senescence can
occur both independently of age (i.e., stress-induced
premature senescence) or correlated with age (i.e., repli-
cative senescence), not all senescent cells are aged
cells.

2.2. Hallmarks of Cellular Senescence

Cell cycle arrest is a cardinal trait of the senescence
phenotype, driven by the sequential activation of the
p53/p21WAF1/Cip1 and the Rb-p16INK4A axes (16). DNA
damage is a common but not universal trigger of cell
cycle withdrawal given that it is absent in certain types
of senescence (e.g., developmental senescence) (16). In
senescent cells, DNA damage is evident in the form of
persistent (irreparable) DNA damage and double-strand
breaks, leading to continuous activation of the DNA
damage response (DDR) pathway, reflected in persistent
DDR foci formation (16, 20, 44). Colocalization of DDR
foci with promyelocytic leukemia (PML) nuclear bodies
has been suggested to be a senescence marker (45,
46). DDR blocks cell cycle progression by exerting
checkpoint functions, to ensure that only intact genomic
information is inherited by daughter cells (20). It has
been found that senescence entry occurs via the DDR
component p53, which activates its downstream target
p21WAF1/Cip1 upon ATM/ATR stimulation, thereby eliciting
cell cycle arrest, whereas p16INK4A may further maintain
senescence by functioning as a CDK4/6 inhibitor (39,
47). Of note, inhibition of the DDR signaling kinases
ATM, ATR, and CHK1/2 in senescent cells leads to cell
cycle reentry (20, 48). Moreover, the tumor suppressor
ARF acts as a p53 stabilizer, leading to senescence
induction (49, 50). Other types of DNA damage evident
in senescent cells include cytoplasmic chromatin frag-
ments (CCFs) and mitochondrial DNA (mtDNA) damage
(16). In the case of oncogenes, their aberrant activation
results in a hyperproliferative cellular state that is

Aging Acute
stress

Cardiovascular
diseases

Replicative
senescence

Stress-
induced
senescence

FIGURE 2. Aging vs. senescence. Senesce-
nce is triggered acutely by a variety of non-
telomere-dependent insults, on a premature
basis, earlier than the exhaustion of the cellu-
lar replicative potential. In contrast, aging
refers to the outcome of the accumulation of
changes within the cell due to random dam-
age over time, which leads to a decline in cel-
lular function. Vectors were obtained from
www.vecteezy.com.
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inherently linked with deregulated DNA replication (rep-
lication stress) leading to DNA damage, DDR pathway
stimulation, and manifestation of senescence, a process
collectively known as oncogene-induced senescence
(OIS) (34, 51, 52). Oncogene-mediated cell cycle arrest
also occurs through the tumor suppressors p16INK4A and
ARF, which are both encoded by the CDKN2A genomic
locus (53, 54). Moreover, the DDR pathway and ARF
have been found to synergize during OIS, with ARF
requiring a higher oncogenic load than the DDR (14).
Telomere shortening and dysfunctional telomeres

constitute a key feature of cellular senescence linked
with persistent DNA damage termed telomere dysfunc-
tion-induced foci (TIFs) (16, 20, 22). The DNA replication
machinery lacks the capacity to fully replicate telomeric
DNA; thus in the absence of mechanisms ensuring accu-
rate telomere maintenance such as telomerase expres-
sion or recombination among telomeric DNA, each
round of cell division results in telomere attrition (55,
56). As critically shortened telomeres are deprived of
their protective structures and telomere capping factors,
they are recognized as one-ended DSBs (persistent
DNA damage) by components of the DDR pathway,
thereby activating DDR in a similar fashion as DSBs (55,
56). Importantly, persistent telomeric DDR activation
may result in senescence and can be found not only at
the gradually shortened telomeres of proliferating cells
but also at the telomeres of certain types of noncycling
cells, regardless of telomere length (57). In the latter
case, a persistent DDR is often observed at the telo-
meres of aging cells or nondividing cells that have been
exposed to genotoxic insults, as repair is considerably
less efficient when DSBs are found within telomeres;
when those telomeric DSBs persist, cells enter senes-
cence (57).
Upon entering senescence, cells exhibit an enlarged

and flattened morphology and rewire their metabolic ac-
tivity despite being in a cell growth arrest state (16). Not
only is senescence accompanied by intracellular effects,
but secreted signals from senescent cells also have the
capacity to affect their surrounding microenvironment,
including neighboring nonsenescent cells that respond
to a variety of secreted factors (22, 58). The secretome
of senescent cells undergoes significant changes, and
as a result senescent cells display a distinct secretory
phenotype named the senescence-associated secretory
phenotype (SASP), which constitutes a key senescence
hallmark (16, 59). SASP consists of a large variety of
soluble signaling factors such as chemokines, proin-
flammatory cytokines, angiogenic factors and growth
modulators, extracellular matrix components, matrix
metalloproteinases (MMPs), and bioactive lipids (59,
60). Among the main SASP drivers are transcription fac-
tors such as NF-κB, C/EPBb, and GATA4 (16, 61–63),

signaling pathways including the mammalian target of
rapamycin (mTOR) and p38 mitogen-activated protein ki-
nase (p38MAPK) pathways (62, 64), and DNA sensors
such as the cGMP-AMP (cGAMP) synthase (cGAS),
which activates the adaptor protein STING, leading
to production of type I interferons and inflammatory
cytokines (65, 66). Upstream signals activating SASP
vary depending on the senescence inducer; how-
ever, they include cytoplasmic chromatin fragments
(CCFs) that mediate inflammation (67). Several cell
surface markers have been identified in regulating
the SASP, such as Notch1 in OIS and dipeptidyl-pepti-
dase 4 (DPP4) in replicative senescence and OIS
(68). It has been demonstrated that senescent cells
communicate with their microenvironment via NOTCH
signaling, as well as through the production of reac-
tive oxygen species (ROS), formation of cytoplasmic
bridges, and secretion of extracellular vesicles such
as exosomes (16). Thus, characterizing the senescent
secretome in several biological settings is a promis-
ing strategy in deriving senescence-related molecu-
lar signatures.
The metabolic demands of the heart are the largest

compared with all organs; even though the heart
accounts for only �0.5% of body weight, it is respon-
sible for roughly 8% of the overall energy consump-
tion (69). Cellular metabolism is deregulated during
senescence, which is at least partly associated with
mitochondrial dysfunction, aberrant proteostasis,
altered autophagic properties, and the presence of
dysfunctional lysosomes, thus leading to the accu-
mulation of macromolecular damage (14, 16). In the
postnatal heart, substrate switching and metabolic
flexibility are features of normal function (70). Of
great interest, metabolic reprogramming induces
functional and structural remodeling in the heart,
upon stress (71, 72). Indeed, an early trait of the mal-
adapted heart is loss of metabolic flexibility (70). The
healthy myocardium uses mainly fatty acids as its
major energy source, with little contribution of glu-
cose. However, lactate, ketone bodies, amino acids,
or even acetate can be oxidized in heart cells under
certain circumstances. For this reason, the heart is
considered to be a metabolic “omnivore” (73). In
addition, metabolic signals regulate transcriptional,
translational, and posttranslational signaling in the
heart (70). Developmental and/or pathophysiological
stimuli regulate the expression of genes implicated
in cardiac metabolism via specific nuclear receptor
transcription factors and coactivators, including per-
oxisome proliferator-activated receptors (PPARs) and
their nuclear receptor coactivator, estrogen-related
receptors, and hypoxia-inducible transcription factor
1 (HIF-1) (74). Importantly, mitochondria constitute
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30% of the myocardial mass and represent the main
sites of ATP production. Thus, mitochondria retain a
central role in cardiac metabolism and heart muscle
function (75). In keeping with this, mitochondrial dys-
function frequently accompanies the senescence
phenotype (76). Mitochondrial sirtuins are evolutio-
narily conserved proteins that function as histone
deacetylases (HDACs) and regulate several aspects
of aging across different species (77). It has been shown
that inactivation of sirtuins as well as selective perturba-
tion of mitochondrial functions drives adoption of the se-
nescence phenotype (20, 78). Additionally, a body of
evidence supports the presence of a reciprocal relation-
ship between mitochondrial dysfunction and DNA dam-
age (79). Interestingly, a distinct senescence phenotype
named MiDAS (mitochondrial dysfunction-associated se-
nescence), which is regulated by the NAD-AMPK-p53
pathway, has been found to display a cell-autonomous
program likely resulting in deregulated adipocyte differ-
entiation encountered in aged animals (78).
Mitochondrial dysfunction also leads to ROS-mediated

lipid damage, increase of lipid deposits, and accumula-
tion of lipofuscin (14, 79, 80). Besides oxidation, lipid-
derived aldehyde modifications have been identified in
senescent cells (81), whereas depletion of senescent
cells in either obese or aged mouse models restricted
hepatic and brain lipid accumulation (80, 82). Although a
strong association between cellular senescence and
lipid accumulation is evident, little is known about lipid
metabolism in senescent environments (83). Recently, it
was demonstrated that senescent cells activate the bio-
synthesis of several oxylipins, dihomo-prostaglandins,
and leukotrienes, promoting SASP and reinforcing cell
cycle arrest (84). However, given the high variability of
senescence-related lipid profiles, the implementation of
lipid modification detection methods may be of limited
use. Similarly to mitochondria, lysosomes are severely
affected by senescence, as indicated by their increased
number and size within senescent cells (85). The
increased lysosomal content leads to an increased or-
ganelle mass, which is associated with senescence-de-
pendent b-galactosidase (SA-b-gal) activity (86).
SA-b-gal has been widely used as a senescence bio-
marker; however, its abundant expression in senes-
cent cells provides no indication of its requirement in
the manifestation of the senescence phenotype (86).
Most senescent cells exhibit profound epigenetic and

chromatin organization changes, which are associated
with cell-autonomous and paracrine features of senes-
cence-mediated cell cycle arrest (20). A type of chromatin
foci called senescence-associated heterochromatin foci
(SAHFs) is one of the senescence hallmarks that predomi-
nantly appear as nuclear structures in repressive chroma-
tin marks and proteins, such as trimethylated histone

H3 Lys9 (H3K9me3), high-mobility group protein A
(HMGA) players, heterochromatin protein 1 (HP1), histone
variant macroH2A, and histone cochaperones (20). More-
over, striking decondensation of peri/centromeric satellite
heterochromatin termed senescence-associated disten-
sion of satellites (SADS) is commonly observed in various
species upon different means of senescence induction
(87). Senescence-related chromatin structure modifica-
tions are not usually accompanied by changes in histone
marks but rather by structural modifications occurring in
nuclear proteins, such as nuclear lamina degradation (87).

2.3. The Role of Cellular Senescence in
Cardiomyocytes

Cellular senescence is commonly associated with both
hypertrophic growth and fibrosis in cardiomyocytes (88,
89). Given that the majority of cardiomyocytes become
postmitotic soon after birth, investigating how they enter
cellular senescence adopting PoMiCS is particularly
interesting. As cardiomyocyte cell divisions and turnover
rates in both mice and humans are extremely low (90),
telomere shortening-mediated replicative senescence is
unlikely to occur. However, both human and mouse car-
diomyocytes display a senescent phenotype where
DNA damage is observed at telomere regions (41). It
was found that this length-independent telomere dam-
age is responsible for activating the senescence-
promoting p21WAF1/Cip1 and p16INK4A pathways in
cardiomyocytes, thereby leading to an atypical pro-
fibrotic and prohypertrophic SASP (41). Interestingly,
it was also shown that elimination of senescent cells
in mice may rescue both fibrotic and hypertrophic
cardiac phenotypes (41).
By conducting a SASP factor analysis in purified sen-

escent cardiomyocytes, Anderson et al. (41) identified
considerable differences between cardiomyocytes and
whole heart homogenates. Specifically, in contrast to ca-
nonical SASP, the inflammatory factors Il-6 and Cxcl1
were not found to be elevated, whereas noncanonical
SASP factors such as Edn3 and TGF-b2, known to pro-
mote cardiac hypertrophy, were found to be upregu-
lated (41). This suggested that SASP complexes in
cardiomyocytes may include not only proinflammatory
cytokines but also cardiac remodeling molecules (91).
Cellular senescence induces distinct morphologi-

cal alterations in cardiomyocytes. Fetal senescent
cardiomyocytes display enlargement and vacuoliza-
tion of their cell bodies (92). It was found that hypoxia
treatment was able to confer such morphological
changes in cardiomyocytes, accompanying senes-
cence entry (91). Moreover, the anticancer agent
doxorubicin was shown to promote cardiomyocyte
senescence, with cells displaying increased cell
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volume, flattened morphology, and the presence of
vacuoles (91). The anthracycline DNA intercalator doxor-
ubicin is a known DSB inducer and topoisomerase II in-
hibitor, while it has also been shown to enhance
nucleosome turnover (93, 94). Cardiomyocyte senes-
cence following doxorubicin treatment was invariably
accompanied by cardiotoxicity (91).
Along those lines, senescent cardiomyocytes also

exhibit contractile dysfunction, linked with accumu-
lated endoplasmic reticulum (ER) stress (89). ER
stress activates the unfolded protein response (UPR)
and, furthermore, contributes to apoptosis and cardi-
omyocyte hypertrophic growth (89). Interestingly, ER
stress attenuation protects against cardiomyocyte
senescence, by concomitantly improving cardiomyo-
cyte contractility (89).
A means of preventing cardiomyocyte senescence

was based on inhibiting oxidative stress, a known in-
ducer of cellular senescence (16, 91). Glutathione re-
ductase (GR) is a homodimeric flavoprotein disulfide
oxidoreductase that plays a critical role in maintain-
ing the antioxidant capacity of cells by modulating
the reduced glutathione (GSH)-to-oxidized glutathi-
one (GSSG) ratio (95). It was recently shown that GR
repression was implicated in cardiomyocyte senes-
cence in mice following inactivation of the aging suppres-
sor gene Klotho (96). Inversely, GR overexpression
reduced oxidative stress and rescued the senescent phe-
notype as indicated by decreased p16INK4A levels in
Klotho-deficient mice (96).

2.4. Physiological and Pathophysiological
Implications of Cellular Senescence

Senescence is considered to be a stress response
mechanism, implicated in a variety of important bio-
logical functions. One of the most beneficial roles of
senescence is reflected in embryogenesis, where se-
nescence pathways are transiently activated to regu-
late growth and patterning in the mammalian embryo
(mesonephros and the endolymphatic sac of the
inner ear) and placenta, thus highlighting the signifi-
cant contribution of senescence to morphogenesis
(97–100). Besides its important role in normal devel-
opment, later in life acute or transient senescence
becomes fundamental in tissue repair: homeostasis
and tumor suppression (20). Damaged or stressed
(senescent) cells are removed by cells of the immune
system via SASP, thus maintaining the structural in-
tegrity and function of tissues after injury. For
instance, in liver fibrosis, which is associated with tis-
sue scarring and functional retardation of hepatic
cells, senescence restricts the growth of ECM-pro-
ducing stellate cells, thus limiting damage (101). It was

also found that senescence limits fibrosis in skin
wound healing (102).
On the other hand, persistent or chronic senescence

is related to a plethora of detrimental phenomena at
the tissue level including mild chronic inflammation,
impaired renewal capacity due to stem cell niche exhaus-
tion, extracellular matrix degeneration, paracrine senes-
cence, immunosenescence, and tissue fibrosis (16).
Particularly, although SASP facilitates tissue homeostasis,
its prolonged activity sets the groundwork for the estab-
lishment of a deregulated tissue microenvironment, ulti-
mately leading to age-related disorders (16, 22). Indeed,
elevated levels of IL-6, IL-1 receptor antagonist (IL-1RA), as
well as tumor necrosis factor (TNF) receptor, which are all
SASP mediators, have emerged as biomarkers of chronic
disease (103). Senescence might also impact on tissue
repair and regeneration by posing a barrier to the prolifer-
ative capacity of stem cell progenitors. For example, mus-
cle progenitor cells, which display elevated p16INK4A

expression upon DNA damage and subsequently enter
senescence, exhibit limited potential in contributing to tis-
sue regeneration following injury (104). In accordance
with these observations, it was found that hematopoietic
stem cell (HSC) clonogenic properties were perturbed af-
ter exposure to SASP factors originating from senescent
stromal cells (105), also implying the presence of a para-
crine regulation of tissue regeneration driven by cellular
senescence.

3. HALLMARKS OF CARDIOVASCULAR
DISEASES AND KEY SIGNALING
MOLECULES/MOLECULAR PATHWAYS
IMPLICATED

3.1. Hallmarks of CVDs

One of the major hallmarks of CVDs relates to telomere
shortening leading to senescence. Senescent cell accu-
mulation in the heart and vascular wall leads to CV sys-
tem deterioration with age (106, 107). It has been found
that reduced leukocyte telomere length (LTL) correlates
with vascular cell senescence, aortic valve stenosis, and
increased atherothrombotic risk regardless of race, age,
and sex (108, 109). Short LTL was additionally correlated
with increased incidence of ischemic and hemorrhagic
stroke compared to individuals with longer LTLs, which
was further supported by meta-analyses confirming a
higher risk for coronary and cerebrovascular disease as
a result of telomere attrition (107).
Mitochondrial dysfunction and ROS constitute another

hallmark of CVDs (FIGURE 3). When the antioxidant
capacity of the human system becomes unable to neu-
tralize the effects of free radicals, the resulting oxidative
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stress causes cardiac tissue injury leading to the onset
of several CVDs such as endothelial dysfunction, athero-
sclerosis, and ischemia (110). Those deleterious effects
are mediated through the formation of the highly reac-
tive products O�

2 and H2O2, which, apart from inducing
DNA damage, are also implicated in inflammation and
cell death pathways (111, 112). It has been reported that in
ischemia or hypoxia the mitochondrial electron transport
(MET) becomes imbalanced, resulting in increased ROS
production (113). Compared with other cell types, cardiac
myocytes have a higher number of mitochondria and
upon pathological conditions may become a source of
oxidative stress themselves, as the increased amount of
ROS they release may target the surrounding tissue
microenvironment (114).
Genomic instability and epigenetic alterations are

a frequent underlying cause of CVDs. With regard
to genomic instability, Hutchinson–Gilford progeria
patients display enormous levels of nuclear DNA
damage, which has been related to premature ather-
osclerosis resulting in myocardial infarction or stroke
before the age of 13 yr (115). Along the same lines,

defective expression of the nucleotide excision
repair genes ERCC1 and XPD yields genomic instabil-
ity in mice, which is associated with cellular senes-
cence, hypertension, and vascular stiffness at an
early age (116). In this context, cardiovascular aging
was observed as a consequence of endothelial nitric
oxide synthase (eNOS) and sirtuin deregulation,
while nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase was increased (116). Apart from
genetic diseases, numerous studies have observed
DNA damage not only in the plaques of atheroscler-
otic patients but also in circulating cells (117), whereas
peripheral blood mononuclear cells (PBMCs) from
coronary heart disease patients display nuclear and
mitochondrial DNA damage linked to disease sever-
ity (118). These observations indicate that sporadic
genomic mutations that are accumulated throughout
life may have a considerable impact on CVDs on
account of genomic instability (107).
With the implementation of novel multiomics approaches,

global histone modification signatures were derived from
human cardiomyocytes from failing hearts (119). Analysis of
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those signatures revealed that, under these pathological
conditions, gene expression was regulated by both active
(H3K9ac, H3K27ac, H3K4me3, and H3K36me3) and re-
pressive (H3K27me3) histone mark modifications (120). For
instance, downregulation of genes involved in transcription
regulation and oxidative stress pathways was likely attrib-
uted to increased H3K9me3/H3K27me3 and decreased
H3K9ac (120). Moreover, a recent body of evidence has
demonstrated that the chromatin remodeling SWI/SNF
complex is closely associated with cardiovascular patho-
physiology, which renders the SWI/SNF complex a putative
clinical target against cardiac hypertrophy and heart failure
(119). In line with this, a significant decrease in the expres-
sion levels of the SWI/SNF subunit BRG1 has been identi-
fied in the myocardium of congenital heart disease patients
(119).
Protein misfolding is considered to be another hall-

mark of CVDs. Proteostasis is ensured by a number of
protective mechanisms that are differentially activated
in various subcellular compartments; however, those
mechanisms are found partially or fully impaired in dis-
eased heart tissue (121). Under normal conditions, pro-
tein synthesis is a stringent process that takes place
either at the endoplasmic reticulum or on free ribo-
somes and culminates in the production of properly
folded, fully functional proteins (121). Nevertheless, cellu-
lar stress or tissue injury frequently yields misfolded,
dysfunctional proteins, which are accumulated in aggre-
somes (121). During the UPR, misfolded proteins are nor-
mally resolved or degraded via an ER-dependent
mechanism with the contribution of mitochondrial UPR,
heat shock response (HSR) proteins, the ubiquitin-pro-
teasome system, and autophagy (122). Amyloid car-
diomyopathy, where the light chain of immunoglobulin
or transthyretin is deposited in cardiac tissue, com-
prises one of the hallmark disorders related to intra-
cardiac aggregation of misfolded proteins leading to
heart failure (121). With regard to the vasculature, pro-
teostasis defects in the arterial wall have been found
to be responsible for the onset and progression of
atherosclerosis, whereas hypertrophic/nonischemic
or idiopathic dilated cardiomyopathy patients carry
misfolded protein oligomers in their cardiac myo-
cytes (121, 123).
Misfolded protein-mediated cardiotoxicity has been

investigated in several experimental settings, including
in animal models (123). With transgenic mice carrying a
mutation in the heat shock gene CryAB (CryABR120G), it
was demonstrated that impaired CryAB function led to
the formation of preamyloid oligomeric intermediates
(PAOs) that were sufficient to induce cardiomyocyte ap-
optosis and lead to heart failure (124). However, in most
of those animal studies it remains unclear which forms
of misfolded proteins (e.g., soluble or insoluble) may be

cardiotoxic (121). Additionally, protein misfolding may act
as the trigger or the outcome of disease, depending on
the case; for example, ATP depletion may trigger protein
misfolding in ischemia, whereas the increased demand
for protein folding in hypertrophic cardiomyopathy may
result in misfolded aggregates (121). Besides protein mis-
folding within the cell, protein aggregates of extracar-
diac origin may additionally contribute to disease
through directly deteriorating cardiac function (121).
A number of recent studies have shown that postmi-

totic human cardiomyocytes display senescence-like
phenotypes after the age of the mid-40s, accompanied
by persistent telomere DNA damage, p21WAF1/Cip1/
p16INK4A-mediated cell cycle arrest, reduced expression
of mitochondrial genes related to the electron transport
chain such as SOD2, autophagy/mitophagy dysfunction
leading to increased SA-b-gal activity, epigenetic modifi-
cations, as well as establishment of a nontypical SASP
(19, 41).

3.2. Key Signaling Molecules and Cascades in
Cardiac Dysfunction

A growing body of evidence has indicated the common
pathways between cellular senescence and CVDs. The
levels of the tumor suppressor and “guardian of the ge-
nome” p53 (110) are markedly increased in end-stage
heart failure patients and implicated in promoting apo-
ptosis in the myocardium (125). Along the same lines,
cardiac cells of hypertrophic/dilated cardiomyopathy
patients display higher p53 levels compared with normal
counterparts (126), implying p53 involvement in cardiac
homeostasis.
p21WAF1/Cip1-activated kinases (PAKs) are serine-threo-

nine kinases that are implicated in inflammatory and car-
diovascular disease (127). PAK1 and PAK2 have been
found to regulate the NADPH oxidase (NOX) in neutro-
phils (128). NOX is an enzyme complex involved in ROS
generation, via catalyzing electron transfer from NADPH
to O2 (127). Although the NOX complex has been
involved in a plethora of biological processes, such as
cellular development, migration, and the immune
response (127), NOX overexpression leads to mani-
festation of CVDs such as hypertension, atheroscle-
rosis, myocardial infarction, and cardiac hypertrophy,
indicating that NOXs may comprise potential targets
for pharmacological inhibition, at least in that context
(127). Interestingly, PAK1 has been also found to be
implicated in cardiac ischemia-reperfusion injury as
well as hypertrophy (129, 130).
Another established cellular senescence marker is

elevated expression of p38 mitogen-activated protein
kinase (p38MAPK) (131). Although all p38 family mem-
bers have been found to contribute to various aspects
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of cardiomyocyte differentiation and growth, it is now
known that they may have either protective or deleteri-
ous effects on the myocardium, which is largely depend-
ent on the identity of the p38 family member involved in
each case (131). To date, most studies investigating the
effect of p38 on CVDs have implemented generic inhibi-
tors, and there is little knowledge regarding how differ-
ent p38 family members may regulate cardiac
physiology (131). Nevertheless, it has been demon-
strated that p38a depletion or pharmacological inhi-
bition halts cardiomyogenesis, thereby providing
evidence of the important role of p38a activation in
cardiac differentiation (132). A role for p38a in car-
diac hypertrophy has also been proposed, as the
p38 pathway is triggered in response to ischemia-
reperfusion (133). In addition, p38 promotes upregu-
lation of the Reg3c protein, a cardiac inflammatory
response player (134). Importantly, the p38 pathway
is activated in cardiac remodeling culminating in car-
diac arrhythmia observed in the failing heart, which is in
line with the observed role of p38 in regulating cardiac
contractility (131). However, a negative correlation between
p38 activation and extracellular matrix remodeling or car-
diac fibrosis, which both lead to heart failure, has been
suggested by previous studies (135, 136).
The mammalian target of rapamycin (mTOR) is

implicated in the regulation of several biological
processes, such as protein synthesis, proliferation,
cellular metabolism, and SASP (137–140). mTOR has
been found to interact with adaptor proteins to form
two complexes named mTOR complex 1 (mTORC1)
and 2 (mTORC2) (139). The mTOR pathway is req-
uired for cardiovascular development during embr-
yogenesis and is a master regulator of cardiac home-
ostasis in postnatal life (141). It has been shown that
mTORC1 activation is required for adaptive cardiac
hypertrophy, whereas mTORC2 is indispensable for
normal cardiac function ensuring the survival of car-
diomyocytes upon pressure overload (141). In accord-
ance with this, mTORC1 inactivation rescues pressure
overload-related heart failure and chronic myocardial in-
farction, while it also ameliorates metabolic disorder-
mediated cardiac cell dysfunction resulting in extended
life span in mice (141). It is hence suggested that phar-
macological inhibition of mTOR signaling constitutes
a potential therapeutic approach to cardioprotection;
however, this remains to be thoroughly validated at
the clinical level (141).
Cardiac fibroblasts, which are required for extracel-

lular matrix (ECM) homeostasis, are normally quies-
cent and secrete ECM components. However, upon
cardiac tissue damage cardiac fibroblasts differenti-
ate toward cardiac myofibroblasts (CMFs), which rep-
resent a more metabolically active cell type (142).

CMF differentiation, which is a common feature of
cardiac fibrosis encountered in heart failure and dia-
betic cardiomyopathy, is elicited through involve-
ment of TGF-b1, a known SASP factor (62, 143).
Specifically, TGF-b1 signaling activates the SMAD nu-
clear factors, which in conjunction with Forkhead box
type O (FoxO) proteins facilitate CMF conversion
(143, 144). It was recently shown that TGF-b1 signaling
downregulates FoxO3a expression in cardiac fibro-
blasts and that TGF-b1-mediated regulation of FoxO3a
relies on active SMAD3, as well as the ERK1/2 and Akt
serine/threonine kinases (145). This was not an unex-
pected finding, as FoxO3a is a known member of the
FoxO family implicated in several fibrotic processes, such
as in pulmonary tissue (146). Interestingly, FoxO1 was
found to be essential in TGF-b1-induced FoxO3a upregu-
lation and that CMF conversion was perturbed by
FoxO3a expression, implying that a FoxO1-FoxO3a regu-
lation may have a negative effect on TGF-b1-mediated
CMF differentiation (145).

4. CLINICAL AND EXPERIMENTAL EVIDENCE
REGARDING THE ROLE OF SENESCENCE
IN CARDIOVASCULAR DISEASES

A growing body of clinical and experimental studies
highlights the involvement of cellular senescence in
the pathogenesis of a plethora of cardiac diseases.
The rationale relies heavily upon the view that cellu-
lar senescence represents an adaptation to stress. In
addition, there are several functional and structural
senescence-mediated changes characterizing the
aging heart, involving a number of molecular path-
ways (FIGURE 4). The progressive deterioration that
characterizes the aging heart is attributed to modifi-
cations at the cellular, subcellular, and macroscopic
levels. For example, aged cardiac cells exert specific
microscopic traits such as fibrosis, hypertrophy, amy-
loid deposits, and lipofuscin accumulation (147). The
decreased number of cardiomyocytes along with the
low self-renewal capacity of cardiac progenitor cells
justifies a diminished regenerative capacity of the
aged heart upon stress or damage (148). At the mac-
roscopic level, the aged heart exerts systolic and dia-
stolic dysfunction, impaired autonomic control, and a
propensity to arrhythmias. Systolic dysfunction is
associated with an O2 supply-demand mismatch that
can be attributed to pressure overload, remodeling
of the myocardial microvasculature, and decreased
coronary perfusion, whereas the diastolic dysfunction
is due to impaired active relaxation (149). Chronic activa-
tion of nutrient and growth signaling pathways, including
the renin-angiotensin-aldosterone system, TGF-b, mTOR,
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and insulin-like growth factor-1 (IGF-1) signaling, is
detrimental for the heart and drives both hypertrophy
and fibrosis as well as relaxation impairment (150–
152). Another molecular mechanism underlying age-
dependent heart dysfunction is impaired active relax-
ation due to Ca21 handling deregulation, which is associ-
ated with reduced sarco(endo)plasmic reticulum Ca21-
ATPase 2 (SERCA2) expression and posttranslational
SERCA2 modifications (153, 154). In addition, a growing
body of evidence suggests that microRNAs are important
regulators of cardiac aging (155).

However, it has not yet been fully elucidated in which
scenarios cellular senescence is the causative factor or
an epiphenomenon of pathological phenotypes or, even
more intriguingly, in which context cellular senescence
may exert a beneficial role.
To present findings in a comprehensive way, in

each of the following subsections we initially provide
a brief introduction regarding the pathophysiologi-
cal basis of the clinical entities presented therein and
then appose evidence linking cellular senesce-
nce with key molecular players in the cardiac cell
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duction abnormalities. Several critical molecular mechanisms have been involved in cardiac aging, such as chronic activation in neurohormonal
signaling (RAAS, ANG II), nutrient and growth signaling deregulation (mTOR, IGF-1), mitochondrial dysfunction/oxidative stress, impaired calcium
handling, adverse extracellular matrix remodeling (TGF-b, MMPs) and a number of miRNAs. Of great importance, the accumulation of senescent
cells is a hallmark of the aging process and drives these changes. See GLOSSARY for abbreviations. Vectors were obtained from www.vecteezy.
com.

CELLULAR SENESCENCE AND CARDIOVASCULAR DISEASES

Physiol Rev �VOL 103 � JANUARY 2023 � www.prv.org 619

Downloaded from journals.physiology.org/journal/physrev at University of Groningen (129.125.141.148) on December 19, 2022.

http://www.vecteezy.com
http://www.vecteezy.com
http://www.prv.org


subtypes involved in each case. A schematic sum-
mary of the key molecular players involved in senes-
cence-associated CVDs in individual cardiac cell
types is provided in FIGURE 5.

4.1. Ischemia: From Atherosclerosis to Myocardial
Infarction

Atherosclerosis refers to a process of arterial vessel wall
remodeling secondary to atheromatous plaque formation

mainly driven by chronic inflammation (156, 157). Overall,
senescent cells are main drivers of this pathological con-
dition, acting mainly as inflammatory hotspots through-
out the natural progress of the disease. Different cell
populations acquire a senescent program as disease
progresses to more advanced stages. These are en-
dothelial cells, macrophage foam cells, immune cells
(monocytes/macrophages, neutrophils, T cells), vascu-
lar smooth muscle cells (VSMCs), and adventitial fibro-
blasts (158). Senescence in this context can be
induced either prematurely by stress (e.g., oxidative
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stress, mitochondrial dysfunction, infection) or natu-
rally by replicative exhaustion (159).
There are two main pillars responsible for atheroscler-

otic lesion formation: 1) endothelial dysfunction and 2)
lipid retention and oxidative modification within the arte-
rial vessel wall. Endothelial dysfunction, which has been
identified as an early event in atherosclerosis (160, 161),
is associated with accumulation of endothelial cell se-
nescence (162, 163). Increased ROS production within
endothelial cells leads to NF-κB activation, a master reg-
ulator of inflammatory responses (161). Elevated oxida-
tive and inflammatory stress seem to be the pathways
through which many traditional CVD risk factors (increased
LDL, elevated blood pressure, blood glucose and sodium
intake, old age, obesity) induce endothelial senescence
(161).
Additionally, endothelial senescent cells upregulate exp-

ression of homing molecules-receptors (ICAM, VCAM,
P-selectin) and cytokines/chemokines through their SASP,
thus allowing recruitment of immune cells including neu-
trophils (important for disease initiation) and monocytes
(important for disease progression through their differ-
entiation in dendritic and inflammatory macrophages)
(164). Overall, the senescent endothelium acquires a
proinflammatory, proatherosclerotic, prothrombotic,
and prooxidant phenotype that facilitates oxidation of
the built-up lipids, leading to xanthoma formation.
Oxidative modification of lipids creates neoepitopes that

trigger activation of the immune response. Initially, neoepi-
topes of ox-LDL, ox-phospholipids, and ox-triglycerides
(164), accumulated in the subendothelium, are recognized
as foreign bodies by resident dendritic cells and macro-
phages. Macrophages, after lipid uptake, are transformed
into foam cells that become senescent and display
deleterious properties throughout all disease stages
(165). Chemokine release by the abovementioned
immune cells and endothelial senescent cells through
SASP results in neutrophil chemotactic recruitment.
Neutrophils, in turn, recruit classical monocytes [i.e.,
inflammatory monocytes that differentiate into inflam-
matory macrophages (166)], which migrate into the
inflamed vessel wall (164, 167) to regulate the inflam-
matory process by clearing apoptotic cells, including
apoptotic neutrophils.
Persistent inflammation activates VSMCs to migrate to-

ward the lesion site, where a portion of VSMCs transdiffer-
entiate to alternative cell lineages of macrophage-like and
mesenchymal stem cell-like phenotype and another portion
become senescent (168, 169), acquiring a secretory pheno-
type (SASP) that involves production of metalloproteinases
(MMPs) and ECM remodeling, responsible for pathological
intimal thickening and fibrous plaque formation.
Depending on the number of VSMCs and on the

degree of deposited fibrin and ECM consistency, plaque

stability is determined based on the thickness of the fi-
brous cap. Of great importance, the process of fibrous
cap thinning is causally linked to senescence via
increased MMP production by senescent endothelial-
like, macrophage-like, and VSMC-like foam cells (165,
170). In line with this, thinning of the fibrous cap is paral-
leled by a progressive decrease in the VSMC-to-macro-
phage ratio due to VSMC senescence and increased
phagocyte recruitment (171).
Other features pointing toward rupture are intrapla-

que neoangiogenesis, hemorrhage, and increased ne-
crotic core size, all associated with cellular senescence.
Neoangiogenesis and hemorrhage, late features in the
disease course, are mainly the result of HIFs secreted
by hypoxic macrophages located deep within the ne-
crotic core (172), coupled with vascular endothelial
growth factor (VEGF) and other SASP-related vessel-
trophic growth factor effects (59). Necrotic core size is
highly dependent on the functional state of efferocyto-
sis, a phagocytic process eliminating apoptotic cells.
During the initial disease stages, efferocytosis protects
against atherosclerosis via indirect and direct mecha-
nisms; indirect mechanisms refer to decreases in ROS
and proinflammatory cytokines, whereas direct mecha-
nisms are related to enhancement of anti-inflammatory
cytokines and antioxidant actions. Of note, the efficiency
of efferocytosis decreases over time, especially in
advanced lesions. In these lesions, “eat-me” molecules
[i.e., engulfment signals displayed by cells marked out
for destruction, which recruit the phagocytic machinery
(173)] produced by apoptotic cells, including foam cells,
and bridging molecules (produced by recruited effector
macrophages) are decreased (174). Interestingly, analy-
sis of genes linked to senescence with the SeneQuest
database suggests that many of these signals are differ-
entially expressed in senescent cells (16), suggesting
that efferocytosis deficiency is causally linked to cellular
senescence. Specifically, eat-me signaling such as
CD31, the macrophage receptors Tim1 and Sphingosine
1 receptor 1, and TAM, a bridging molecule expressed by
macrophages that facilitates efferocytosis, appears to
be downregulated during cellular senescence (174). In
addition, MERTK, a macrophage receptor that recog-
nizes eat-me signals, is thought to be proteolytically
cleaved by ADAM17, an enzyme commonly upregulated
in senescent cells (175, 176). It has also been shown that
MERTK is downregulated in macrophages treated with
senescent cell-conditioned medium, showing decreased
efferocytosis and a dysbalanced RvD1 (Resolvin D1, a pro-
resolving lipid mediator produced by x-3 docosahexae-
noic acid)-to-LTB4 (leukotriene B4, a proinflammatory
lipid mediator) ratio that favors inflammation persistence
over resolution (177, 178). Moreover, the most well-known
“don’t-eat-me” signaling pathway mediated by CD47 is
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upregulated in cellular senescence, and CD47-blocking
antibodies were able to restore efferocytosis and abro-
gate atherosclerotic lesions in multiple mouse models
(179). Additionally, protracted TNF-a production, a main
SASP component, induces CD47 expression, rendering
vascular cells resistant to efferocytosis. All the above are
indicative of how cellular senescence may potentially reg-
ulate efferocytosis directly via modulation of effector
molecules involved in the process, unveiling another
mechanism by which cellular senescence supports athe-
rogenesis and atheroprogression.
The role of activated myofibroblasts residing in the

adventitia of blood vessels in atherosclerosis has been
lately acknowledged (180, 181). Intriguingly, these cells
are largely regarded as senescent cells since they har-
bor profibrotic and prosecretory properties involved in
wound healing and repair (182, 183). Adventitial fibro-
blasts are therefore an additional cell population
whose senescence is likely involved in the process of
atherosclerosis, although the disease stage at which
this occurs still remains elusive.
Myocardial infarction (MI) typically results in large-

scale cardiomyocyte loss. Ischemic injury triggers DNA
damage, oxidative stress, and mitochondrial dysfunc-
tion, which predispose to cardiomyocyte senescence
(184). Since cardiomyocytes are terminally differentiated
cells, cell cycle arrest is not a hallmark of cardiomyocyte
senescence. In fact, senescent cardiomyocytes express
other senescence-associated features including DNA
damage and repair response, ROS accumulation, meta-
bolic maladaptation, endoplasmic reticulum stress, mito-
chondrial dysfunction, impaired contractile function,
hypertrophic growth, and SASP (89). Topologically, cel-
lular senescence has been identified within the surviving
myocardium, proximal to the infarcted region and in bor-
der areas, early after the ischemic event, as demon-
strated by an increase in senescence markers SA-b-Gal,
p21WAF1/Cip1, and p16INK4A and TAF accumulation (88,
185).
During the weeks following an acute ischemic insult,

lost cardiomyocytes are replaced by noncontractile scar
tissue. Scar formation induces a remodeling process
that progressively alters ventricular architecture, impairs
systolic function, and causes heart failure with reduced
ejection fraction. Besides cardiomyocyte senescence,
fibroblast senescence also occurs in the adult heart after
myocardial infarction. The matricellular protein CCN1
has been reported to induce fibroblast senescence via
p53 and p16INK4A activation (102). It has been suggested
that CCN1-induced senescence may have a beneficial
role in acute ischemia by inhibiting myofibroblast prolif-
eration, thus preventing adverse cardiac remodeling
and improving cardiac function. In a model of infarcted
adult mice, CCN1-treated hearts exhibited more senescent

cells and fewer proliferating fibroblasts in the ischemic
regions. Moreover, infarct size was attenuated and cardiac
function improved (186). In line with these findings, senes-
cence mediated by the GATA-binding factor 4/CCN1 axis
averts postinfarct myocardial fibrosis and preserves heart
function (88). In agreement, aldehyde dehydrogenase 2
(ALDH2) knockout impaired the beneficial effects of myo-
cardial senescence by blocking the GATA-binding factor
4/CCN1 pathway (88). As a regulatory interplay has been
identified between GATA factors and Hippo pathway com-
ponents (187–189), it would be interesting to explore the
potential impact of the Hippo pathway on senescence in
the MI context.
Interestingly, as mentioned above, pathological involve-

ment of cellular senescence is context dependent, and
this notion justifies, at least in part, some contradictory find-
ings (110). For example, although senescent endothelial
cells are consistently reported as detrimental in the aging
cardiovascular system, this is not always observed for
fibroblasts. Inhibition of cellular senescence in fibroblasts
exerts detrimental effects in cardiac tissues by promoting
fibrosis in noninfarcted areas and, subsequently, remodel-
ing (190, 191). Activated but nonsenescent fibroblasts (myo-
fibroblasts) highly express periostin, an ECM protein that
appears to play a critical role in myocardial fibrosis and
inflammation. Of note, increased levels of periostin and
associated myocardial fibrosis were observed in individu-
als with myocardial infarction and hypertrophy (192, 193).
Intriguingly, increased periostin expression from activated
cardiac fibroblasts promotes senescence in cardiomyo-
cytes and is associated with increased expression of IL-6
and IL-13 (194).
Cellular senescence of endothelial cells has also been

implicated in myocardial ischemia. Senescent endothe-
lial cells 1) induce endothelial dysfunction that predis-
poses to angina pectoris and ischemic heart injury (195),
2) release endothelium-derived microparticles increas-
ing the expression and activity of tissue factors and aug-
menting the aggregation of platelets, eventually leading
to thrombogenicity (196), and 3) affect cellular prolifera-
tion and angiogenesis, thus impairing repair after MI
(197). Of great interest, recent evidence suggests that
silencing of senescence-associated genes Rb1 and
Meis2 in adult cardiomyocytes results in cell cycle reen-
try and cardiac repair in the context of ischemic injury.
The improvement of cardiac function after infarction was
attributed to both the reduced infarct size and enhanced
peri-infarct angiogenesis (198).
Of great importance, cellular senescence of host heart

cells also affects the local microenvironment by releas-
ing proinflammatory factors. Senescent cellular popula-
tions and the local microenvironment interact through a
vicious cycle in which the inflammatory milieu produced
by senescent cells triggers and enhances a proportionate
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response by the microenvironment, thus promoting myo-
cardial tissue dysfunction (89). After an ischemic injury,
the response of myocardial ECM, a key component of the
local microenvironment, is divided into three phases:
1) early injury response, 2) proliferation, and 3) late matura-
tion. During the first phase, endogenous ligands released
by damaged cells trigger host innate immunity, which
in turn leads to the release of cytokines and chemo-
kines, promoting the trafficking of inflammatory cells
to the site of injury. Degradation products of matrix
proteins can also modulate inflammation and repair.
During the proliferation phase, TGF-b and thrombo-
spondin-1 stimulate proliferation of myofibroblasts.
During the maturation phase, continuous collagen
deposition results in scar formation and healing (9).
Interestingly, cellular senescence has also been asso-
ciated with changes in both ECM component expres-
sion and ECM remodeling enzyme secretion under
various pathological conditions (199). In line with this
view, thrombospondin, TGF-b, and MMPs represent
pleiotropic signaling peptides whose involvement in
cellular senescence is well established.
The current standard of care for MI is early reperfusion

of the occluded vessel with angioplasty or thrombolysis
to reverse ischemia and increase the number of surviv-
ing myocytes. However, cardiac ischemia-reperfusion
injury generates ROS products that have detrimental
effects on viable myocardium (200). In this regard, ische-
mia-reperfusion events induce cellular senescence in
both cardiomyocytes and interstitial cell populations,
which contributes to impaired heart function and adverse

remodeling because of SASP (201). In respect to heart re-
covery, it was recently reported that ectopic transient
expression of miR-294 promotes cell cycle reentry, lead-
ing to augmented cardiac function in mice after myocar-
dial infarction (202). Besides early reperfusion therapy,
angiotensin-converting enzyme (ACE) inhibitors and beta-
blockers are used to prevent remodeling after MI and
progression to heart failure. Notably, treatment with
metoprolol attenuates oxidative stress and senes-
cence of cardiac stem cells, thus delaying progres-
sive cardiac remodeling (203).

4.2. Atrial Fibrillation

Atrial fibrillation (AF) is a supraventricular arrhythmia
characterized by irregular heart rhythm driven by the
predominance of a high-frequency atrial activity over the
normal pacemaker of the heart (i.e., the sinus node)
(204). Despite major milestones in the management of
AF, this arrhythmia remains one of the major causes of
stroke, heart failure, premature death, and cardiovascu-
lar morbidity worldwide. Increasing population age, to-
gether with several conditions predisposing to AF (such
as hypertension, heart failure, coronary artery disease,
valvular heart disease, obesity, diabetes mellitus, or
chronic kidney disease), seems to drive the epidemio-
logical explosion of AF (205). A schematic summarizing
key pathways and mechanisms linking AF with senes-
cence is provided in FIGURE 6.
Occasionally, genetic predispositions and a strong

heritable component are documented (206, 207). Many
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initiation FIGURE 6. Senescence-inducing mechanisms lead-

ing to AF initiation and progression. Schematic of main
mechanisms leading to cellular senescence, accompa-
nied by structural and electrical remodeling of the
heart, which result in AF initiation and progression.
Genetic variants predisposing to senescence lead to
reduced repair capacity, conduction defects, and
decreased antioxidant scavengers; replicative senes-
cence results in early vascular stiffness, increased
ventricular filling pressures, and autonomic nervous
system dysfunction; oxidative stress-induced senes-
cence drives upregulation of the local angiotensin
system and inflammatory marker increase; mitochon-
drial dysfunction-associated senescence leads to
energetic failure, calcium overload, and oxidative
injury. See GLOSSARY for abbreviations.
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common genetic variants have been identified as AF
associated, many of which are proximal to deleterious
mutations causing serious heart defects (i.e., GATA4,
MYH6, NKX2-5, PITX2, TBX5) or near genes important
for striated muscle function and integrity (i.e., CFL2,
MYH7, PKP2, RBM20, SGCG, SSPN) (208, 209). The
most important genetic variants predisposing to AF (up
to 7-fold increased risk for AF) are located close to the
paired-like homeodomain transcription factor 2 (Pitx2)
gene on chromosome 4q25 (210, 211). Reduced Pitx2
expression results in proarrhythmic cardiac electrical
modifications such as atrial action potential shortening
and a depolarized atrial resting membrane, two estab-
lished causes of arrhythmia. Furthermore, Pitx2 defi-
ciency leads to structural remodeling of the atria and
compromises the repair capacity of the heart, both of
which may influence AF through divergent mechanisms
(212). Of note, progressive loss of Pitx2c, the predomi-
nant isoform of Pitx2 expressed in the heart, occurs with
age (213, 214). In cardiomyocytes, Pitx2 plays a critical
role in the regulation of antioxidant scavenger genes
(215). Of relevance, mutation of Pitx2/3 in adult muscle
satellite cells leads to failure of muscle regeneration due
to deregulation of their redox state and triggers senes-
cence as measured by upregulation of senescence-
associated genes (Igfbp5, Ifitm1, or Ccl5), increased
number of cells positive for the Hp1-gamma marker of
heterochromatin foci, and activation of SA-b-Gal activity
(216).
In addition, changes in the activity of splicing factors

and the production of key splice variants have been
implicated in cellular senescence as well as in the aging
process (217). In particular, functional association bet-
ween p53, IGF-1, SIRT1, and ING-1 splice variants and
both senescence and aging has been observed (217).
Defective splicing leads to CVDs such as aortic aneu-
rysm and arrhythmias (218). Missplicing of SCN5A, the
gene that encodes the sodium channel Nav1.5, causes
conduction defects and arrhythmias (219). Thus, defec-
tive splicing may represent another possible nonmuta-
tional mechanism by which cellular senescence and AF
are intertwined.
Given that the prevalence of AF is age dependent and

that telomere shortening is a surrogate marker of biolog-
ical aging, the implication of replicative senescence in
the pathogenesis of AF seems to be an attractive hy-
pothesis to be tested. Shorter telomere lengths contrib-
ute to early vascular stiffness and elevated ventricular
filling pressures, two pathophysiological findings that
characterize AF-induced cardiomyopathy (220, 221).
Shorter telomere lengths have also been linked with
decreased sympathetic tone and accelerated autonomic
nervous system dysfunction, well-established mecha-
nisms that drive the onset of paroxysmal AF (222).

Recently, subjects with a history of AF were shown to
have shorter telomeres compared with individuals in
normal sinus rhythm. Indeed, the association remained
after adjustment for age and cardiovascular risk factors.
Surprisingly, the mean telomere-to-single gene ratio (t/s)
for paroxysmal AF was significantly shorter than for per-
sistent or permanent/long-standing AF, implying that
shortened telomeres are involved in AF onset but not in
AF progression (223). In addition, telomere length was
longer and mRNA levels of the senescence-related pro-
teins sirtuin-2 and -3 were higher in lone AF (LAF) than in
AF patients with structural heart disease, suggesting a
distinct arrhythmogenic substrate between these two
subgroups of AF patients (224).
The functional and structural alterations taking place

in the atria of AF patients along with the stasis of blood
due to the unorganized and ineffective atrial contraction
(especially in the left atrial appendage) generate and
conserve a thrombogenic milieu (225). This generalized
prothrombotic state is manifested by high circulating lev-
els of fibrinolytic degradation products, increased plas-
minogen activator inhibitor-1 (PAI-1) expression, and
enhanced thrombin-antithrombin complex and procoa-
gulant microparticles (MPs) released to the bloodstream
(226, 227). Indeed, endothelial cell-derived MPs facili-
tate cellular senescence through NOX and mitochond-
rion-derived reactive oxygen species (228). In addition,
circulating MPs exert direct effects on vascular and
blood cells, thereby triggering thrombin generation
(229). Recent findings indicate that thrombin, at concen-
trations achieved during vascular injury associated with
thrombus formation, induces oxidative stress and pre-
mature atrial endothelial senescence (230). Atrial endo-
thelial senescence induced by thrombin is characterized
by the acquisition of a prothrombotic, proadhesive, profi-
brotic, and proremodeling phenotype (230). Therefore,
beyond its role in coagulation, thrombin also emerges
as a key molecule for the development of the arrhyth-
mogenic substrate that creates and maintains AF.
Interestingly, thrombin-induced senescence has

been shown to promote the upregulation of the local
angiotensin system in atrial endothelial cells (230).
Respectively, both angiotensin II type 1 receptor
(AT1R) blockade and ACE inhibition significantly dam-
pen thrombin-dependent induction of oxidative stress
and cellular senescence (230). In addition, thrombin
exerts pleiotropic cellular effects in hemostasis, inflam-
mation, cellular growth, and proliferation, by activating
protease-associated receptor-1 (PAR-1) (231). Of great im-
portance, thrombin inhibitors and PAR-1 antagonists
prevent atrial remodeling and reduce AF susceptibility
(231). In line with these findings, cardiac glycosides
(CGs), which were commonly used in AF treatment,
were recently found to exert senolytic properties, thus

EVANGELOU ET AL.

624 Physiol Rev �VOL 103 � JANUARY 2023 � www.prv.org

Downloaded from journals.physiology.org/journal/physrev at University of Groningen (129.125.141.148) on December 19, 2022.

http://www.prv.org


suggesting a causal involvement of senescence in the
pathophysiology of AF (232).
Another possible link between cellular senescence

and AF appears to be mitochondrial dysfunction.
Deregulation of mitochondrial homeostatic mecha-
nisms is considered to be a hallmark of both cellular
senescence and aging (see sects. 2.1, 2.2, and 3.1)
(76). At the same time, a selective reduction in the ac-
tivity of the mitochondrial electron transport chain
drives oxidative stress and facilitates AF develop-
ment (75). Moreover, mitochondrial function decline
in the elderly predisposes to AF due to enhanced
sensitivity of the myocardium to energetic failure, cal-
cium overload, and oxidative injury during stress
(233, 234). In accordance with this, loss of mtDNA in
cardiac muscle is pronounced in AF patients, further
implying that mitochondrial dysfunction is involved in
the pathogenesis of AF (235).

4.3. Nonischemic Cardiomyopathies

Nonischemic cardiomyopathies comprise a diverse
group of inherited cardiac disorders that frequently
lead to death or heart failure requiring cardiac trans-
plantation. Further elucidation of the fundamental
mechanisms involved in the onset and progression of
nonischemic cardiomyopathies is urgently needed to
optimize targeted therapy (236, 237). Surprisingly,
emerging evidence supports the involvement of cel-
lular senescence in several of these clinical entities.
In this section we only refer to those nonischemic
cardiomyopathies exhibiting the strongest links with
senescence to date.

4.3.1. Hypertrophic cardiomyopathy.

Hypertrophic cardiomyopathy (HCM) is a complex heart
disease that is most commonly caused by a single muta-
tion in genes encoding sarcomeric proteins (238). HCM
is characterized by left ventricular hypertrophy, adverse
cardiac remodeling, fibrosis, and atrial fibrillation and
may ultimately culminate in heart failure (239). Acc-
umulation of damaged and misfolded proteins due
to impairment of the ubiquitin-proteasome system are
key processes in HCM pathogenesis. In addition,
patients with HCM show higher levels of p53 expres-
sion compared with control subjects (240) and have
shorter cardiomyocyte telomeres (241). Cardiac telo-
mere attrition is cell type specific (identified only in
cardiomyocytes within diseased human hearts) and is
associated with increased cardiomyocyte DNA dam-
age (241). Of interest, telomere length was found to be
associated with disease severity in the obstructive
HCM subtype (242).

HCM with heart failure is the most common cause of
early death in Friedreich ataxia, a progressive cardio-
and neurodegenerative disease typically diagnosed in
midchildhood. Mutations in the Frataxin gene (FXN) are
considered to be the main cause of Friedreich ataxia
(243). FXN deficiency correlates with attenuated ven-
tricular contractility (244). Interestingly, mitochondrial
dysfunction induced by FXN deficiency has been
associated with cellular senescence and abnormal
calcium metabolism (245). Additionally, FXN defi-
ciency promotes endothelial replication stress, sus-
tained DDR (including ATR, CHK1, CHK2, p53, and
cH2AX), and S-phase arrest, thus triggering endothe-
lial senescence in pulmonary hypertension (246).

4.3.2. Arrhythmogenic cardiomyopathy.

Arrhythmogenic cardiomyopathy (ACM) encompasses a
genetically heterogeneous group of myocardial dis-
eases that are morphologically characterized by appa-
rent patches of apoptotic tissue in the right, and to a
lesser extent, left ventricles along with fibro-adipogenic
infiltration. Mutations in the TMEM43 transmembrane
protein are known to cause ACM (247). Of great interest,
cardiomyocyte-restricted heterozygous deletion of the
TMEM43 gene in mice leads to activation of the DDR/
TP53 pathways and expression of SASP, which is asso-
ciated with a late-onset senescence-associated cardio-
myopathy characterized by cardiac dilation, systolic
dysfunction, myocardial fibrosis, and apoptosis (248).
Recently, a new homozygous missense mutation in LEM
Domain Nuclear Envelope Protein 2 (LEMD2) leading to
juvenile cataract and a severe form of arrhythmic cardio-
myopathy with variable onset was reported in people of
the Hutterite population (249). Cardiac tissue and fibro-
blasts from affected patients exhibited abnormally
shaped and elongated nuclei as well as disorganized,
condensed heterochromatin. Mutant fibroblasts dis-
played reduced proliferative capacity and cell senes-
cence but no increased apoptosis, suggesting an
involvement of mutant LEMD2 in chromatin remodeling
processes and premature aging (249).

4.3.3. Diabetic cardiomyopathy.

Diabetes mellitus results in the development of card-
iac myopathy, a distinct clinical entity characterized by
a decrease in muscle mass, chamber dilation, and
impaired ventricular function, in the absence of coronary
artery disease (CAD). Pathophysiological factors that
contribute to the development and progression of dia-
betic cardiomyopathy include, among others, impai-
red cardiac insulin metabolic signaling, mitochondrial
dysfunction, increased oxidative stress, inflammation,
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endoplasmic reticulum stress, and microvascular dys-
function (250). These pathophysiological abnormalities
promote cardiac stiffness, hypertrophy, and fibrosis,
resulting in subclinical pathological cardiac remodeling
that initially manifests itself as isolated diastolic dysfunc-
tion but with time progresses to systolic dysfunction
eventually leading to overt heart failure (250). Multiple
proinflammatory pathways regulate the development of
diabetic cardiomyopathy such as activation of protein ki-
nase C (PKC), MAPK, and NF-κB signaling pathways,
microRNA (miRNA) dysregulation, and exosome secre-
tion (251). Upregulation or downregulation of specific
miRNAs has been involved in insulin sensitivity, systemic
glucose metabolism, cardiac diastolic dysfunction, as
well as cardiomyocyte hypertrophy and interstitial fibro-
sis, in clinical and preclinical diabetic models (251). In ac-
cordance, in type 2 diabetic hearts, the exosomal
transfer of miR-320 into coronary endothelial cells
caused reduced NO production and inhibition of angio-
genesis (252). Systemic and cardiac cell inflammation
promotes oxidative stress and mitochondrial dysfunction
leading, subsequently, to cardiomyocyte contractile dys-
function, metabolic imbalance, hypertrophy, and death
(251).

Within this context, the diabetic heart is characterized
by premature senescence of cardiac progenitor cells, as
documented by telomeric shortening and express-
ion of the senescence-associated proteins p53 and
p16INK4A. This, in turn, is responsible for the increase
of the number of senescent myocytes and therefore
premature myocardial aging and heart failure (253).
Diabetes mellitus inhibits the regenerative potential of
multipotent cardiac stem/progenitor cells (CSCs) through
the induction of cellular senescence and SASP independ-
ently of aging (254). Interestingly, ablation of senescent
CSCs suspends SASP and restores a fully proliferative
and differentiation-competent human CSC pool in type 2
diabetes mellitus (T2DM), thus improving cardiac function
(254). Epigenetic regulation of cardiac progenitor cell se-
nescence is another mechanism involved in the pathoge-
nesis of diabetic cardiomyopathy. Those epigenetic
mechanisms include DNA and histone modifications
as well as noncoding RNA-mediated effects (through
microRNAs and long-noncoding RNAs) (255, 256).
DNA and histone modifications pertain to hypermeth-
ylation of CpG islands as well as increased trimethyla-
tion of histones H3K9, H3K27, and H4K20 and
deacetylation of H3K9 and K27, which convert active
chromatin to its inactive form, thus inhibiting the tran-
scription of genes involved in cell growth and prolifer-
ation and finally triggering senescence in cardiac
progenitor cells (CPCs) in diabetes (255).
The role of p53-dependent pathways in the pathoge-

nesis of diabetic cardiomyopathy is of great interest. In a

type 1 diabetes (T1DM) mouse model in which diabetes
is induced by streptozotocin (STZ), inhibition of p53 pre-
vented cardiac apoptosis during early-stage diabetes,
attenuated diabetes-induced cell senescence, and
prevented glycolytic and angiogenetic dysfunction by
increasing HIF-1a protein stability and HIF-1a-mediated
genomic transcription (257).
Furthermore, in type 2 diabetes, both myocardial

and immune cells undergo metabolic remodeling
characterized by low metabolic flexibility and impaired
adaptive capacity to nutrient and oxygen availability. In
this respect, metabolic stress-induced immunosenes-
cence, which is a trait of the prolonged low-grade
systemic inflammation characterizing type 2 diabe-
tes, has been recognized as a key contributing factor
to cardiac dysfunction in diabetic cardiomyopathy
(258, 259).

4.4. Implication of Cellular Senescence in Cancer
Therapy-Induced Cardiotoxicity

Classical/conventional chemotherapy and radiotherapy
along with novel antitumor treatment modalities such as
immunotherapy pose a considerable risk of cardiotoxic-
ity (260). The term “cardiotoxicity” here refers to cardio-
vascular complications that are manifested after the
implementation of an anticancer treatment and include
a wide spectrum of cardiac pathologies, from asymp-
tomatic systolic dysfunction to clinically overt heart fail-
ure, as well as myocarditis, arrhythmias, valvulopathies,
pericardial effusions, and arterial or pulmonary hyperten-
sion. The molecular mechanisms by which cardiotoxicity
is mediated are constantly investigated and involve,
among others, mitochondrial dysfunction, oxidative
stress, autophagy deregulation, and telomere dys-
function, all of which are also well-established triggers
of cellular senescence (261–263). Consequently, cel-
lular senescence has been recently acknowledged as
a key player in the development of cardiotoxicity due
to cancer treatment. Not only cardiomyocytes but also
cardiovascular endothelial cells and fibroblasts are
susceptible to the senescence-inducing effect of anti-
cancer agents (262, 264, 265). It has been recently
reported that accelerated cardiomyocyte senescence
due to mitochondrial DNA damage contributes to dox-
orubicin-induced impairment of heart function (262).
Of note, anticancer therapy-induced senescent cells
exert common features with cells triggered to senesce
by other stimuli, including persistent hypoprolifera-
tion, upregulation of p16INK4A, persistent DNA dam-
age, and transcriptional activation of genes encoding
many SASP factors, thus contributing to local and sys-
temic inflammation (264). Of clinical relevance, elimi-
nation of senescent cells can alleviate cardiac systolic
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dysfunction (264–266). From another point of view,
molecular signatures/patterns of senescent cardiovas-
cular cells and detection of specific molecules (such
as SASP components or lipofuscin, a by-product of the
metabolism of senescent cells) in blood samples and
other biological fluids hold the potential to serve as
novel biomarkers in the field of cardio-oncology (267).

5. SENOLYTICS/SENOTHERAPEUTICS

Transient cellular senescence is beneficial throughout
embryonic and normal life, whereas the accumulation of
chronic senescent cells in the organism exerts deleteri-
ous effects compromising tissue and organ homeostasis
and eventually leading to age-related diseases and
aging (16). Genetic elimination of senescent cells
resulted in delayed aging phenotypes and attenuation
of age-associated pathologies (268, 269), prompting the
development of reagents that selectively kill senescent
cells (senolytics) or neutralize their adverse effects in tis-
sues and organs (senomorphics). In particular, the devel-
opment of mouse models such as INK-ATTAC or
p16-3MR, which enable pharmacogenetic ablation of
senescent p16INK4A-positive cells, was crucial to deter-
mining the impact of senescence in heart integrity and
how p16INK4A loss ameliorates those effects in preclinical
models (270, 271). Based on those model systems, it
was shown that senescence contributes to cardiac
aging and cardiomyocyte hypertrophy in naturally aged
mice (268) and cardiac dysfunction after therapy (264).
Regarding the cardiovascular system, accumulating evi-
dence has highlighted the importance of senescence in
the onset, development, and deterioration of CVDs
(272, 273). Therefore, senotherapies are emerging as a
promising strategy to prevent or cure CVDs (FIGURE 7)
(274).

Senotherapeutics are chemical compounds primarily
derived from other research and clinical purposes such
as cancer, idiopathic pulmonary fibrosis, and chronic kid-
ney disease (drug repurposing) or well-characterized
natural bioactive compounds and derivatives (35, 275).
Although the majority of these compounds/drugs have
been successfully evaluated in cellular systems and ani-
mal models, administration in humans is now under
investigation in clinical trials, with some of these mole-
cules possibly exerting unfavorable outcomes (272).
Apart from cytotoxicity reflected by neutropenia and
thrombocytopenia, senotherapeutic treatments raise
additional concerns given that neutralization of senes-
cent cells may evocate putative oncogenic mutations
(276). Therefore, their translation to clinical trial testing
should be limited to a controlled context, while the
discovery of a suitable drug for the treatment of a spe-
cific clinical entity/setting still remains a challenging
task. Senotherapeutics are classified as follows (35,
275): 1) Senolytics are agents that promote cell death
by inhibiting cardinal senescence prosurvival path-
ways. Senescent cells exhibit resistance to apoptosis,
a property that extends their life span compared with
normal cells (27, 277). Processes such as DNA damage
and DDR activation, altered metabolic traits, senes-
cence-associated mitochondrial dysfunction (SAMD),
and SASP, commonly evident in senescent cells, are
associated with the activation of a variety of prosurvival
pathways, termed senescent cell antiapoptotic path-
ways (SCAPs). These include signaling cascades medi-
ated by p53/p21WAF1/Cip1/serpins, BCL-2/Bcl-XL, PI3K/
AKT/ceramide, HIF-1a, and the heat shock protein
HSP90, rendering senescent cells resistant to their own
proinflammatory secretome (278, 279). SCAPs are con-
sidered to be the “Achilles’ heel” of senescent cells, ren-
dering senescent cells vulnerable to cell death when
targeted with senolytics (280). Inactivation of more than
one SCAP may lead to elimination of senescent cells

Senolytics

SASP

Senomorphics/
Senostatics

? ?

Nanomaterials/
Nanocarriers ImmunotherapiesFibroblast

Arterial VSMC

Cardiomyocyte

Arterial EC
Senescent cell

Apoptosis
resistance

Cell cycle arrest
(p53-p21 axis,
P16-Rb axis)

FIGURE 7. Potential therapeutic approaches targeting
senescent cells in CVDs. Senescence-associated CVDs
are likely to benefit from the development of therapies in
the fields of senotherapeutics, nanomedicine, and immu-
nology. Senolytics: dasatinib and quercetin, navitoclax,
cardiac glycosides, 17-DMAG; senomorphics/senostatics:
rapamycin, metformin, statins, polyphenols, SRT1720. See
GLOSSARY for abbreviations.
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depending on the cell type and the senescence pheno-
type, due to the degree of redundancy that these
exert (281). Over the last decades, nanomaterials
have emerged as a rapidly growing field that, among
others, has greatly influenced the area of biomedi-
cine. Nanoparticles/nanocarriers can efficiently carry
and accurately deliver therapeutic agents or biologi-
cal factors to targeted sites such as a specific cell
type, tissue, or organ. In this context, nanoparticles
carrying senolytics and specifically targeting senes-
cent cells by promoting SCAP inactivation have
recently been developed, providing innovative thera-
peutic perspectives in translational medicine (282).
2) Senomorphics or senostatics are compounds or
specific antibodies that act as SASP suppressors (on
SASP factors or SASP signaling cascades) or modi-
fiers of the senescent phenotype. 3) Modifiers/
enhancers of the immune system are immunothera-
peutic and immunomodulatory interventions aiming
to increase the immunogenicity of senescent cells or
reactivate exhausted immune cell populations.
A body of evidence from cell culture and in vivo stud-

ies suggests that senotherapeutics can be a promising
and innovative strategy to prevent the onset of CVDs or
delay their progression, while clinical trials imple-
menting senotherapeutics are soon expected to
contribute to a deeper understanding of the field
(283, 284). Pharmacological elimination of senes-
cent cells has been linked with reversal of pheno-
typic changes associated with aging, via improvement of
cardiac dysfunction, stimulation of cardiomyocyte re-
generative capacity, and inhibition of heart fibrosis
(41, 148).
Among the senotherapeutics, the tyrosine kinase in-

hibitor dasatinib and the flavonoid quercetin (polyphe-
nol, PI3K inhibitor) were the first drugs tested for CVD
treatments (276, 285). Both exert senolytic properties,
and their combination has been proven to be accompa-
nied by maximum senolytic effects while they do not
affect the viability of proliferating or quiescent cells.
Quercetin alone is more effective in eliminating senes-
cent human umbilical vein endothelial cells (HUVECs)
than dasatinib (280). Treatment with dasatinib1 querce-
tin (D1Q) has been demonstrated to drastically dec-
rease TAF-positive senescent VSMCs in the aorta media
in aged and hypercholesterolemic mice and improve
cardiac function (left ventricular ejection fraction and
fractional shortening) in aged mice (280). At the same
time, D1Q treatment has been found to improve vaso-
motor function and diminish aortic calcification (280,
285). Moreover, significantly improved vascular endo-
thelial function and vascular smooth muscle sensitivity
to nitroprusside were observed after D1Q administra-
tion, without any effect on smooth muscle contractile

function (280). On the other hand, D1Q treatment did
not influence the senescent cell burden in established
intimal atherosclerotic plaques or their size in athero-
sclerotic ApoE�/� mice receiving a western diet (285).
Another class of compounds with proven senolytic

effects in the context of CVDs includes the BH3 mim-
etics, small molecules that act as inhibitors of the B cell
lymphoma 2 (BCL-2) family proteins (BCL-2, BCL-W, and
BCL-XL) (26, 286). ABT-263 (navitoclax) selectively
increases apoptosis of senescent but not of proliferating
HUVECs (287). Navitoclax has been demonstrated to
dramatically prevent the onset of atherogenesis in the
aorta of Ldlr�/� mice receiving a high-fat diet (165). In
addition, ABT-263 treatment of aged mice eliminates
senescent cardiomyocytes and diminishes fibrosis and
cardiomyocyte hypertrophy (41). Notably, senescent cell
removal by ABT-263 restores myocardial remodeling
and improves diastolic function and survival in a myocar-
dial infarction mouse model (288).
Cardiac glycosides (CGs) have also been described

as senolytic compounds with potentially beneficial
effects in atherosclerosis, pulmonary fibrosis, and anti-
cancer treatments (232, 289). They act as inhibitors of
the Na1-K1-ATPase, a well-known plasma membrane
(PM) pump that mediates cellular exit of Na1 and K1

influx into cells against concentration gradients, thereby
promoting cell membrane depolarization and cytosol
acidification (232). Senescent cells are sensitive to CG-
induced apoptosis, as they demonstrate a depolarized
plasma membrane and a lower pH than nonsenescent
cells (232). GCs additionally seem to regulate a variety
of Na1-K1-ATPase-dependent signaling pathways inclu-
ding SRC, ITPR, and AKT (290). Among the most widely
used GCs are digoxin, quabain, and digitoxin (290).
Digoxin, through its senolytic activity, has been demon-
strated to reduce cancer cell senescence and lung fibro-
sis (290). Ouabain and digoxin administration has been
linked with increased expression of proapoptotic BCL2
family members such as NOXA through activation of the
JNK, GSK-3b, and P38 pathways (290). Treatment of
mice with ouabain reduced senescent cell burden and
improved parameters related to inflammation, metabo-
lism, and physical fitness normally compromised during
aging (290). Digitoxin has been found to exert senolytic
properties at doses similar to those administrated to
patients for the treatment of heart failure and atrial fibrilla-
tion (290).The HSP90 inhibitors ganetespib and 17-DMAG
have been shown to have senolytic properties in irradia-
tion-induced senescent HUVECs and improve atheroscle-
rosis in mice (291, 292). Moreover, the glucose analog
2-deoxy-D-glucose (2DG) exhibits senolytic properties, by
inhibiting ATP synthesis and thus determining cell cycle
arrest and cell death in senescent VSMCs. 2DG seems to
additionally impact the progression of atherosclerosis by
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influencing the metabolic activity of senescent cells (293).
Notably, b-hydroxybutyrate restrains vascular cell senes-
cence occurring during fasting and caloric restriction, thus
rendering this compound putatively beneficial for CVD
prevention (294, 295).
Among compounds with senomorphic activity, rapa-

mycin (mTOR inhibitor) and metformin (an antidiabetic
drug that functions directly or indirectly on the liver to
decrease glycose production) act by preventing CVD
development or improving disease progress (296–299).
Metformin and rapamycin (sirolimus) interfere with the
SASP and alleviate the proinflammatory environment
(283). Moreover, in mice rapamycin reduces cell senes-
cence burden and accompanying adverse effects
including atherosclerosis, hence extending life span
(300, 301). Vascular function is ameliorated in diabetic
patients treated with metformin and pioglitazone (302–
304). In addition, TA-1887, a SGLT2 inhibitor, can have
cardioprotective effects in diabetic patients (305).
Statins have also been demonstrated to prevent SASP
(306). Polyphenols have antioxidant and anti-inflamma-
tory effects, neutralizing prooxidant and proinflamma-
tory signaling (307). In particular, resveratrol has been
proposed not only as a cell senescence suppressor but
also as an inhibitor of cardiovascular complications
(308). Resveratrol is known to exert its effect though
Sirtuin1 (SIRT1) signaling cascades. Interestingly, resvera-
trol-mediated SIRT1 activation results in inhibition of
both arterial wall inflammation and stiffening in primates
(308). SIRT1 downregulation is evident in vascular
smooth cells from patients affected by abdominal aortic
aneurysm, whereas SIRT1 activation is accompanied by
low levels of VSMC senescence and vascular inflamma-
tion (309–311). Other SIRT1 inducers, such as SRT1720,
reduce hypertension and arterial stiffness in mice (312).
Similarly, rivaroxaban, an anticoagulant agent, can
attenuate VSMC senescence (313) and has been shown
to prevent CVDs (314, 315).
Other unconventional treatments that are under inves-

tigation include a variety of anti-inflammatory and
immune-modulatory approaches (immunotherapy, anti-
bodies, and vaccines) that can inhibit CVD-related
inflammatory pathways while displaying limited immune-
suppressive side effects (316). Those treatments are
mainly focused on atherosclerotic cardiovascular dis-
eases (316). Whether cellular senescence and SASP
could be targeted or neutralized by such interventions
to prevent the development of or treat CVDs remains to
be elucidated in clinical settings. Recent technological
advances have enabled the development of a variety of
nanomaterials for the treatment of cardiovascular disor-
ders such as ischemic heart failure and atherosclerosis
(317). Interestingly, encapsulation of doxorubicin in seno-
therapeutic nanoparticles reduced the cardiotoxicity of

the free drug in mice (318). Similar results were achieved
by the incorporation of activatable senolytic prodrugs in
nanocarriers (319, 320). Although for the time being clini-
cal studies with nanoparticles/carriers specifically target-
ing senescence in cells of the cardiovascular system are
lacking, the adoption of such approaches for the treat-
ment of CVDs seems not so far away.

6. FUTURE PERSPECTIVES

A robust body of evidence has demonstrated the impact
of cellular senescence on heart disease progression
and patient outcome, leading to the design of numerous
potentially druggable approaches aimed at eradicating
senescent cell pools (321). However, several aspects of
CVD-related senescence still remain elusive, such as
whether senescence may be implicated in stent throm-
bosis and restenosis following balloon angioplasty.
Additionally, although the detrimental effects of cardio-
vascular senescence have been largely established
(272, 321), it remains unclear how individual cell types
may lead to different clinical outcomes upon induction
of senescence, as well as whether ablation of senescent
cells can be pursued in all CVD cases. Along those lines,
the clinical and experimental evidence connecting se-
nescence with important clinical entities such as valvular
heart disease or some of the nonischemic cardiomyopa-
thies, such as dilated cardiomyopathy, inflammatory
cardiomyopathies, and peripartum cardiomyopathy,
is still not strong enough or inconclusive. Thus,
additional research is required to shed light on the
role of cellular senescence in the various clinical
settings of CVDs, including those of a congenital
nature.
Precise detection and quantification of senescent

cells in clinical material is of paramount importance to
develop diagnostic as well as therapeutic strategies
specifically targeting senescent cell pools. However, for
many years the most widely used senescence markers
were either nonspecific or characterized by lack of accu-
racy and significant limitations (182, 322, 323). To that
end, the development of novel biomarkers capable of
tracking cellular senescence in sensitive and easy-to-
perform assays emerged as an imperative and challeng-
ing task. In this context, the GL13 (SenTraGor) reagent,
which is a lipophilic, biotin-linked Sudan Black B (SBB)
analog, was synthesized a few years ago. The GL13-
based method allows for specific detection of senescent
cells by interacting with lipofuscin, a hallmark of senes-
cent cells, not only in fresh tissues but in any biological
sample including clinical material (324). Although it only
recently became available, the value of GL13 has been
extensively proven, especially for ex vivo senescence
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detection, given that it allows for concurrent staining of
tissues with other markers involved in senescence phe-
notypes (29, 324). Based on these facts, lipofuscin iden-
tification via GL13 staining has recently been adopted in
the guideline multimarker algorithm for accurate detec-
tion of senescent cells proposed by the senescence
community (16, 29). Our laboratory is currently optimiz-
ing the use of a hydrophilic analog of GL13 in biochemi-
cal applications such as flow cytometry and cell sorting
through FACS, for which GL13 has been suboptimal
because of its lipophilic nature. Replacing GL13/
SA-b-Gal with a hydrophilic analog in our senescence
detection algorithm is of paramount importance in
the field, as it will unlock the possibility of sorting
senescent cells or even performing senescent cell
tracking in vivo. Implementation of the use of such
approaches in basic research and clinical investiga-
tions is expected to add significantly to our under-
standing of the impact of senescence in several
disease settings, including CVDs. Indeed, precisely
following the algorithm, we recently identified that
SARS-CoV-2-infected alveolar cells undergo senes-
cence in COVID-19 patients (325) (see also below).
Along those lines, it will be possible to establish
modern hybrid techniques for senescence evalua-
tion in CVDs, by combining classical imaging meth-
ods with the high level of sensitivity conferred by
novel senescence biomarkers. Thus, the potential of
adopting a robust, senescence-oriented approach
in CVD diagnosis and treatment is increasingly
becoming visible.
The available body of evidence on the impact of se-

nescence on heart tissue has suggested diverse out-
comes with regard to disease, which is mainly attributed
to the different cell types affected in the various CVD
types (see sect. 4). As the effects of senescence on car-
diac homeostasis seem to be cell type specific, it is cur-
rently challenging to determine whether depletion of
senescent cells in CVDs may yield beneficial or detri-
mental phenotypes. To that end, machine learning
approaches would be useful in identifying a potentially
differing expression pattern of predicted senescence-
related regulatory genes among the various cardiac cell
populations, in conditions leading to heart failure versus
normal heart tissue. The SeneQuest database, which
constitutes an information hub for gene-to-senescence
associations derived from the literature (16), already con-
tains machine learning predictions for CVDs (https://
github.com/VGlabUOA/prediction_senescence_CVD).
The rapid accumulation of “-omics” data in the field of
CVDs and senescence is expected to further increase
the accuracy of predictions carried out via artificial intelli-
gence-based approaches, thus culminating in the devel-
opment of better-targeted therapeutic strategies.

Previous research in the cancer field has shown that,
under certain conditions, OIS cells may exit senescence
and reenter the cell cycle in a process collectively
referred to as escape from OIS (30, 31, 326–328). It was
recently demonstrated that as a result of genomic insta-
bility and chromatin refolding changes in OIS cells, acti-
vation of the circadian gene BHLHE40 was sufficient to
drive the escape from OIS, leading to the manifestation
of aggressive oncogenic behavior (36, 329). Given that
genomic instability and epigenetic alterations are a fre-
quent underlying cause of CVDs (107, 119, 120), it would
be important to investigate whether escape from senes-
cence is a possibility in cardiac disease and to delineate
the molecular mechanisms through which it may occur.
As different senescence pathways are activated in the
various CVD settings and cardiac cell types, the out-
come of such research efforts would be extremely
valuable in dissecting heart disease at the genetic
and epigenetic levels.
Although a correlation between viral infections and

CVDs has already been demonstrated (330), evidence
regarding virus-induced senescence (VIS) is still sparse
in human diseases (100, 331–333). This matter is pre-
dicted to be of huge interest and importance in the next
decades given that the emergence of new infectious
agents and the outbreak of new pandemics in the forth-
coming years seems currently a very realistic scenario.
Urged by the SARS-CoV-2 pandemic (334), we demon-
strated in vivo, following the abovementioned algorithm,
that in severe cases of COVID-19 infection of lung epi-
thelial cells with SARS-CoV-2 induces senescence, a find-
ing also confirmed by others (325, 335). Importantly, our
observations support that SARS-CoV-2-induced senes-
cence is accompanied by secretion of proinflammatory
cytokines/inflammation and viral mutagenesis (325, 335).
Apart from the intriguing findings, this work highlights the
significance of applying the algorithmic workflow in clini-
cal samples to accurately identify which cells are truly
senescent and how they are actually involved in the
pathophysiology of human diseases. As the potentially
harmful immediate and long-term effects of SARS-CoV-2
infections or infections mediated by other viral strains on
cardiac function are continuously being investigated, elu-
cidating the exact mechanisms through which viral infec-
tions elicit senescence would be insightful (FIGURE 8).
Additionally, since the establishment of cellular senes-
cence may be proportionally linked to the severity of
SARS-CoV-2-mediated infection (325, 336), the develop-
ment of therapeutic protocols aimed at eliminating senes-
cent cells may fulfill a topical medical need.
There is rapidly growing evidence on novel putative

therapies against CVDs, which holds great promise for
clinical trials involving senotherapeutics (321). Provided
that their safety and efficacy are ensured and the

EVANGELOU ET AL.

630 Physiol Rev �VOL 103 � JANUARY 2023 � www.prv.org

Downloaded from journals.physiology.org/journal/physrev at University of Groningen (129.125.141.148) on December 19, 2022.

https://github.com/VGlabUOA/prediction_senescence_CVD
https://github.com/VGlabUOA/prediction_senescence_CVD
http://www.prv.org


appropriate administration patterns are determined for
human use, senotherapeutics may prove to become val-
uable therapeutic interventions, capable of completely
eliminating senescence and senescence-associated
CVD pathologies and complications at their onset. Apart
from chemical compounds that are currently being
investigated as potential senotherapeutic agents, the
inclusion of nontoxic herb- or plant-based natural com-
pounds in the toolbox against senescence-associated

CVDs may additionally be of considerable value. On
several occasions, natural compounds were found to
exert significant neuroprotective or anticancer effects in
clinical trials and in vitro studies (337, 338); therefore
potential antisenescence effects in CVDs deserve to
be thoroughly explored. It should be stressed, how-
ever, that senescence has also been shown to pro-
duce beneficial effects, for instance by limiting
cardiac fibrosis after infarction (339). Use of senolytic
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FIGURE 8. SARS-CoV-2 infection induces organ damage through virus-induced senescence. A potential link of SARS-CoV-2-mediated senescence
with cardiovascular diseases (CVDs) warrants investigation. ARDS, acute respiratory distress syndrome; PE, pulmonary embolism.
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agents in such cases might result in unwanted effects,
and, additionally, it is tempting to speculate that the elimi-
nation of cardiac or vascular cells in the context of aging
or disease could potentially compromise the integrity of
the tissue. The latter has been recently shown in senes-
cent liver sinusoidal cells (340).
One of the challenges of current research in the CVD

field is the lack of appropriate ex vivo systems capable of
faithfully recapitulating the in vivo tissue organization and
complex interactions between the different cardiac cell
types. The most successful attempts to mimic the in vivo
situation in the heart have relied on induced pluripotent
stem cell (iPSC) technology, where somatic cells are forced
to dedifferentiate into an embryonic-like state before being
guided to differentiate again into a desirable cell type
(341–343). However, this methodology is not free of disad-
vantages such as genomic instability and maintenance of
epigenetic memory, raising several biosafety concerns
(344). In the past decade, a three-dimensional (3-D) in vitro
culture system for several epithelial tissues such as intes-
tine, lung, and skin (345–348) has been established by uti-
lizing the self-renewal properties of adult stem cells
residing in those tissues. Subjecting patient stem cells to
defined culture conditions is sufficient to generate 3-D
minitissues called organoids. Primary tissue-derived orga-
noids are genetically stable, and their generation does not
rely on iPSCs, thereby rendering this system unique in
resembling the in vivo situation better than any other cell
culture to date (344). Given that, to our knowledge, patient-
derived cardiac organoids have yet to be established, the
study of CVDs would benefit highly from expanding the
existing organoid technology to additionally encompass

heart tissue, as was recently achieved for other types of
nonepithelial tissue (349). Since organoid systems are
being successfully used as drug treatment platforms and
can be genetically manipulated to dissect mechanisms of
disease (344), the establishment of patient-derived cardiac
organoids would vastly contribute to the develop-
ment of personalized treatment approaches in the
battle against senescence-driven CVDs. The advent of
new tools for the analysis of high-throughput data based
on artificial intelligence andmachine learning approaches
is expected to strengthen personalized medicine efforts
(350, 351).
In conclusion, there is still much unanswered with

regard to the impact of senescence on cardiac physiol-
ogy and disease, and a lot more clinical and basic
research is required to determine the clinical environ-
ment in which senotherapeutics may provide effective
solutions (FIGURE 9). The implementation of novel bio-
markers enabling detection of cellular senescence with
increased sensitivity and precision, as well as the devel-
opment of comprehensive ex vivo systems to model car-
diac disease in depth, will undoubtedly contribute to
further elucidation of the molecular mechanisms of se-
nescence in the CVD context and design of targeted
treatment approaches at the patient level.

GLOSSARY

2DG 2-Deoxy-D-glucose
ACE Angiotensin-converting enzyme
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FIGURE 9. Future perspectives on senescence-related cardiovascular diseases (CVDs). The advent of new biomarkers, model systems, technological
tools, and therapeutic agents is expected to contribute significantly toward a better understanding and potential treatment of cardiac senescence.
Vectors were obtained from www.vecteezy.com.
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ACM Arrhythmogenic cardiomyopathy
ADAM A disintegrin and metalloproteinase
AF Atrial fibrillation
AKT AKT serine/threonine kinase
ALDH2 Aldehyde dehydrogenase 2
ANG II Angiotensin II
ApoE Apolipoprotein E
ARF Alternative reading frame
AT1R Angiotensin II type 1 receptor
ATM Ataxia-Telangiectasia mutated
ATP Adenosine triphosphate
ATR Ataxia Telangiectasia and Rad3-related protein
BCL-2 B cell lymphoma 2
BRG1 Brahma-related gene 1
C/EPBb CCAAT/enhancer-binding protein b
CAD Coronary artery disease
CCF Cytoplasmic chromatin fragment
CCL5 C-C Motif Chemokine Ligand 5
CCN1 Cellular Communication Network Factor 1
CDK Cyclin-dependent kinase
CG Cardiac glycoside
cGAS cGMP-AMP synthase
CMF Cardiac myofibroblast
CPC Cardiac progenitor cell
CryABR120G Heat shock mutant gene CryABR120G
CSC Cardiac stem cell
CVD Cardiovascular disease
CXCL1 C-X-C Motif Chemokine Ligand 1
DDR DNA damage response
DPP4 Dipeptidyl-peptidase 4
DSB Double-strand break
ECM Extracellular matrix
EDN3 Endothelin 3
eNOS Endothelial nitric oxide synthase
ERCC1 Excision repair cross complementation group 1
ERK Extracellular signal-regulated kinase
FACS Fluorescence-activated cell sorting
FoxO Forkhead box type O
FXN Frataxin
GATA4 GATA Binding Protein 4
GL13 SenTraGor
GR Glutathione reductase
GSK-3b Glycogen synthase kinase 3b
GSSG Glutathione disulfide
H3K9me3 Trimethylated histone H3 Lys9
HCM Hypertrophic cardiomyopathy
HDAC Histone deacetylase
HGPS Hutchinson–Gilford progeria syndrome
HIF-1 Hypoxia-inducible transcription factor 1
HIF-1a Hypoxia-inducible factor 1a
HMGA High-mobility group protein A
HP1 Heterochromatin protein 1
HSC Hematopoietic stem cell
HSR Heat shock response
HUVEC Human umbilical vein endothelial cell
ICAM Intercellular adhesion molecule

IFITM1 Interferon Induced Transmembrane Protein 1
IGFBP5 Insulin-Like Growth Factor Binding Protein 5
IGF-1 Insulin-like growth factor-1
IL-1RA IL-1 receptor antagonist
IL-6 Interleukin 6
ING-1 Inhibitor Of Growth Family Member 1
iPSC Induced pluripotent stem cell
ITPR Inositol 1,4,5-trisphosphate receptor type 1
JNK c-Jun NH2-terminal kinase
LEMD2 Lamina-Associated Polypeptide-Emerin-MAN1

Domain Nuclear Envelope Protein 2
LTB4 Leukotriene B4
LTL Leukocyte telomere length
MERTK MER Proto-Oncogene, Tyrosine Kinase
MET Mitochondrial electron transport
MGI Mouse Genome Informatics
MiDAS Mitochondrial dysfunction-associated

senescence
miRNA MicroRNA
MMP Matrix metalloproteinase
mtDNA Mitochondrial DNA
mTOR Mammalian target of rapamycin
mTORC1 mTOR complex 1
mTORC2 mTOR complex 2
NADPH Nicotinamide adenine dinucleotide phosphate
NF-κB Nuclear factor-κB
NO Nitrogen monoxide
NOX NADPH oxidase
OIS Oncogene-induced senescence
p38MAPK p38 mitogen-activated protein kinase
PAI-1 Plasminogen activator inhibitor-1
PAK p21-activated kinase
PAO Preamyloid oligomer
PAR-1 Protease-associated receptor-1
PBMC Peripheral blood mononuclear cell
PI3K Phosphatidylinositol-3-OH kinase
PITX2 Paired-like homeodomain transcription factor 2
PKC Protein kinase C
PLM Promyelocytic leukemia
PM Plasma membrane
PoMiCS Postmitotic cell senescence
RAAS Renin-angiotensin-aldosterone system
ROS Reactive oxygen species
RvD1 Resolvin D1
SA-b-gal Senescence-dependent b-galactosidase
SADS Senescence-associated distension of

satellites
SAMD Senescence-associatedmitochondrial dysfunction
SASP Senescence-associated secretory phenotype
SBB Sudan Black B
SCAP Senescent cell antiapoptotic pathway
scATAC-seq Single-cell ATAC-seq
scRNA-seq Single-cell RNA-seq
SERCA2 Sarco(endo)plasmic reticulum Ca21-ATPase 2
SGLT2 Sodium glucose cotransporter 2
SIRT1 Sirtuin1
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SMAD Mothers against decapentaplegic homolog
proteins

SOD2 Superoxide dismutase 2
SRC SRC Proto-Oncogene, Non-Receptor Tyrosine

Kinase
STING Stimulator of interferon genes
STZ Streptozotocin
SWI/SNF SWItch/Sucrose Non-Fermentable
T1DM Type 1 diabetes
TAF Telomere-associated DNA damage focus
TAM Tyro3, Axl, and MerTk receptor
TGF Transforming growth factor
TIF Telomere dysfunction-induced focus
TNF Tumor necrosis factor
UMAP Uniform manifold approximation and projection
UPR Unfolded protein response
VCAM Vascular cell adhesion molecule
VEGF Vascular endothelial growth factor
VIS Virus-induced senescence
VSMC Vascular smooth muscle cell
XPD Xeroderma pigmentosum group D
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