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Secure Formation Control via Edge Computing
Enabled by Fully Homomorphic Encryption and

Mixed Uniform-Logarithmic Quantization
Matteo Marcantoni , Bayu Jayawardhana , Mariano Perez Chaher , and Kerstin Bunte

Abstract—Recent developments in communication tech-
nologies, such as 5G, together with innovative computing
paradigms, such as edge computing, provide further pos-
sibilities for the implementation of real-time networked
control systems. However, privacy and cyber-security con-
cerns arise when sharing private data between sensors,
agents and a third-party computing facility. In this let-
ter, a secure version of the distributed formation control
is presented, analyzed and simulated, where gradient-
based formation control law is implemented in the edge,
with sensor and actuator information being secured by
fully homomorphic encryption method based on learning
with error (FHE-LWE) combined with a proposed mixed
uniform-logarithmic quantizer (MULQ). The novel quantizer
is shown to be suitable for realizing secure control systems
with FHE-LWE where the critical real-time information can
be quantized into a prescribed bounded space of plain-
text while satisfying a sector bound condition whose lower
and upper-bound can be made sufficiently close to an iden-
tity. An absolute stability analysis is presented, that shows
the asymptotic stability of the closed-loop secure control
system.

Index Terms—Networked control systems, quantized
systems, agents-based systems.

I. INTRODUCTION

RECENT advances in communications technology, such
as 5G, offer ultra-low latency and highly reli-

able wireless information exchange paving the way for
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pervasive edge computing for industrial internet-of-things
(IoT) applications [1]. In fact, the combination of 5G and
high-performance computing infrastructure can enable the
deployment of real-time networked control systems via edge
servers, where sensing and control information are exchanged
in real-time within the wireless network.

With the emergence of networked control systems, privacy
and cyber-security concerns become increasingly important
and cutting-edge solutions are highly desired [1]–[4], espe-
cially when using potentially untrustworthy third-party com-
puting facilities. Traditional encryption algorithms, such as
AES and RSA, can protect private data during their trans-
portation to edge or cloud computing devices. However, the
corresponding decryption process removes their confidential-
ity in order to allow for further data processing in these
third-party servers [3]. Fully homomorphic encryption (FHE)
algorithms have recently been introduced to overcome this
shortcoming as they allow for data manipulation directly on
the encrypted data, thus eliminating the need for decryp-
tion [5]–[7]. Specifically, FHE based on Learning with Error
(FHE-LWE) allows us to perform addition and multiplication
with the encrypted data without error accumulation due to
the encryption process, thereby enabling secure control system
design [7]–[10].

When dealing with real-world actuator and sensor data,
however, a quantization process is required before FHE-
LWE can be used [10], [11]. We propose the use of the
mixed uniform-logarithmic quantizer (MULQ), derived from
the quasi-logarithmic quantizer [11], because it permits both
to quantize data in a prescribed bounded integer set and to
adjust its lower and upper-bound, as we discuss later. In the
literature, several works deal with control design and analysis
methods in presence of quantization [12]–[14]. Here we focus
on the sector bound approach [12], [14] to assess the absolute
stability of the secure feedback control system.

In this letter, we present a secure version of the distributed
formation control problem [15]–[20], in which the objective
is to guide a multi-agent system towards a desired formation
while guaranteeing privacy and cyber-security via FHE-LWE
and MULQ. As an example, this framework could be useful
when a third-party computing facility is employed to facili-
tate the usage of information coming from external sensors,
i.e., not located on-board the agents, that are essential to the
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control task. Our contribution is three-fold: we discuss the
sector bound property of the mixed uniform-logarithmic quan-
tizer (MULQ) in Section III, we describe the distance-based
secure formation control system and analyze the stability of
the closed-loop multi-agent system in Section IV. For showing
the efficacy of the proposed framework, we present a simula-
tion result on secure formation control of four agents forming
a square in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Fully Homomorphic Encryption by Learning With
Error

Prior to describing the encryption method, we need to
introduce some relevant notations as used in the literature.
Throughout this letter, we denote the base 10 logarithm of
x as log(x). Let the plaintext space, namely the unencrypted
information space, be a bounded integer set [a] := {b ∈
Z : − a

2 ≤ b < a
2 } of cardinality a ∈ N. Since the plain-

text for our control application represent numbers of sensor
and control signals we can conveniently set a to be a power
of 10. Furthermore, let the cyphertext space, i.e., the encrypted
information space, be the set of integers modulo Zq whose ele-
ments are denoted in bold, q ∈ N. We define q = wa where
the parameter w is also a power of 10.

For the implementation of a secure formation control law
via third-party computing facility, full capability of multipli-
cation and addition operations in cyphertext are desirable.
This can be achieved with Fully Homomorphic Encryption
by Learning with Error (FHE-LWE), briefly reviewed as fol-
lows. Let m ∈ [a]n be a plaintext message of length n to
be encrypted and s ∈ Z

N
q be a secret key of length N. The

encryption operation Enc(·) of m is defined by

MEnc = Enc(m) := [(−As + wm + e) (mod q), A], (1)

where the matrix MEnc ∈ Z
n×N+1
q is the resulting cyphertext

message. Furthermore, the operators [·, ·] and (mod q) refer
to the concatenation and modulo q operator respectively. The
matrix A ∈ Z

n×N
q is sampled from a uniform distribution over

Z
n×N
q , while the injected error vector e is sampled from a uni-

form distribution over [r]n with r < w, such that the following
inequality holds: |ei| < w

2 for i = 1, . . . , n.
Once the encrypted message MEnc is computed, the decryp-

tion process will involve the secret key vector s and the
injected error vector e [10]. Let MEnc ∈ Z

n×N+1
q be a cypher-

text message and s̄ := col(1, s) be a stacked column vector.
of length N + 1 constructed by the secret key vector s. The
decryption process Dec(·) of MEnc is defined by

m = Dec(MEnc) :=
⌈

(MEncs̄) (mod q)

w

⌋
=

⌈
wm + e

w

⌋
(2)

where vector m ∈ [a]n is the resulting plaintext message and
�·� refers to the element-wise round half away from zero.1 As
briefly mentioned before, the FHE-LWE method allows for
the addition operation to take place in the cyphertext space,
provided that m1 + m2 ∈ [a]n and |e1,i + e2,i| < w

2 holds for
i = 1, . . . , n [10].

1For example, �−1.5� = −2 and �−1.4� = −1.

Before defining the multiplication operation in the cypher-
text space, we need to introduce another encryption method.
Let m ∈ [a] be a scalar message to be encrypted. The second
encryption method Enc2(·) is defined by

MEnc2 = Enc2(m) := mR + OEnc, (3)

where the matrix MEnc2 ∈ Z
log(q)(N+1)×N+1
q is the resulting

cyphertext. OEnc = Enc(0log(q)(N+1)) refers to the encrypted
zero column vector 0log(q)(N+1) ∈ [a]log(q)(N+1) and R is
defined by:

R := col
(

100, 101, . . . , 10log(q)−1
)

⊗ IN+1,

where ⊗ denotes the Kronecker product and IN+1 the identity
matrix of dimension N + 1.

Since any row vector c ∈ Z
N+1
q can be represented as

c = ∑log(q)−1
i=0 10ici with row vectors ci ∈ Z

log(q)(N+1)
q , whose

components are one of the single digit from 0 to 9, we can
define a function D : ZN+1

q → Z
log(q)(N+1)
q that decomposes

any row vector c ∈ Z
N+1
q by its string of digits as

D(c) := [c0, c1, . . . , clog(q)−1].

Therefore, c = D(c)R for any row vector c ∈ Z
N+1
q [10].

Now we have the necessary means to define multiplica-
tion in the cyphertext space. Let MEnc2

1 ∈ Z
log(q)(N+1)×N+1
q

and mEnc
2 ∈ Z

N+1
q be two messages in cyphertext computed

via (1) and (3) respectively and m1, m2 ∈ [a] be their decrypted
scalars in plaintext. The multiplication operation � of MEnc2

1
and mEnc

2 is defined as follows

MEnc2
1 � mEnc

2 := D(mEnc
2 )MEnc2

1 , (4)

where MEnc2
1 � mEnc

2 ∈ Z
N+1
q . It can be shown that

Dec(MEnc2
1 � mEnc

2 ) = m1m2 (5)

as long as m1m2 ∈ [a] and |m1e2
w + D(mEnc

2 )e1
w | < 1

2 holds [10].
The injected error vector e1 ∈ [r]log(q)(N+1) comes from the
encryption of the zero vector in (3).

B. Formation Graph With Infinitesimal Rigid Formation
and Distance-Based Formation Control

Following the rigidity formation framework as proposed
in [20], we will define the formation control using an undi-
rected graph G = (V, E) where V = {1, 2, . . . , n} is the set of
vertices, representing the set of n mobile agents, and E ⊆ V×V
is the set of edges. Note that for each pair of agents i and j
we define only one edge in E , i.e., either (i, j) or (j, i). For
the pair (i, j) the agent i is referred to as the tail node and the
agent j as the head node. The set of neighboring agents to the
i-th agent is denoted by Ni := {j ∈ V:(i, j) ∈ E ∨ (j, i) ∈ E}.

Associated to the graph G, we can define an incidence
matrix B ∈ R

|V |×|E | whose elements bik are given by

bik =
⎧⎨
⎩

+1 if i = E tail
k−1 if i = Ehead

k
0 otherwise,

(6)

where E tail
k and Ehead

k denote the tail and the head of the edge
Ek. |V| and |E | refer to the cardinality of the sets V and E
respectively.
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Each node in V can be associated to the agents’ posi-
tion vector p = col(p1, . . . , pn) by indicating the i-th agent’s
position with pi ∈ R

2. Since for any k-th edge in E , with
pairing agents (i, j), we can define the relative position vec-
tor between the agents i and j as zk = pi − pj ∈ R

2. Then,
every edge in E can be associated to the vector of relative
positions z = col(z1, . . . , z|E |). The vector z can be described,
in compact form, by

z = B̄Tp

with B̄ = B ⊗ I2 ∈ R
2n×2|E |.

Using the above graph formalism, we can formalize the
notion of infinitesimally rigid formation as follows. With the
formation framework defined by the tuple (G, p), an edge
function fG : R2n → R

|E | is defined by

fG(p) := col(‖z1‖2, . . . , ‖z|E |‖2) = DT
z z,

where Dz := diag(zk) ∈ R
2|E |×|E | for k = 1, . . . , |E | is a

block diagonal matrix. The rigidity matrix R(z) of the frame-
work (G, p) is given by the Jacobian of the edge function fG
R(z) = DT

z B̄T . For the formation in 2D plane as pursued in
this letter, the framework (G, p) is said to be infinitesimally
rigid if Rank(R(z)) = 2n − 3. Moreover, if |E | = 2n − 3 it is
said to be minimally rigid.

In this letter, we assume that the agents’ position vector
dynamics is described by

ṗ(t) = u(t), (7)

where ṗ(t) =: d
dt p(t) and u(t) = col(u1(t), . . . , un(t)) is the

concatenated control input signal with ui(t) be the velocity
control input signal of the agent i. In the rest of this letter, we
do not write the dependence on time t in all signals when it is
clear from the context. Let d = col(d1, · · · , d|E |) ∈ R

|E | be the
set of desired inter-agents distances associated to the desired
formation shape. Accordingly, we can define the set of all
equilibrium points that satisfy the desired distance constraints
by D := {p ∈ R

2n : ‖zk‖ = dk, ∀ k = 1, . . . , |E |}.
One of the well-known distributed formation control law

that can guarantee the local exponential stability of D
is the distance-based formation control, as expounded in
[15], [17]–[19]. In particular, the distributed formation control
law is given by

u = col
i∈{1,...,n}(ui) = −B̄DzDz̃e = R(z)TDz̃e, (8)

where z̃ = col(‖z1‖�−2, . . . , ‖z|E |‖�−2) and e = col((‖z1‖� −
d�

1), . . . , (‖z|E |‖� − d�
|E |)) with � ∈ N [16]. In the following,

we will only consider the case with � = 2. From the compact
form of formation control in (8), the local control input of
every agent i uses only relative information with its neighbors
and it is given by

ui = −
∑
k∈Ni

B̄ikzk‖zk‖�−2ek, (9)

where B̄ik is the (i, k) element of the matrix B̄. In other
words, (9) is a distributed control law for any i-th agent. When
� = 2, (9) becomes

ui = −
∑
k∈Ni

B̄ikzkek, (10)

which we will consider throughout this letter.

C. Secure Formation Control Problem Formulation

In the following two Sections, we will present the method
and analysis to solve the following secure formation control
problem via FHE-LWE.

Secure Formation Control Problem: For a given formation
framework (G, p) with agent dynamics given by (7), design
a secure formation control scheme via FHE-LWE, where the
formation control law (10) is computed in cyphertext space
(hence it is implementable in an unsecured third-party com-
puting facility), such that the formation error e(t) → 0 as
t → ∞.

While the use of distributed formation control in (10) leads
to distributed input signals defined on R, it cannot directly
be implemented in the cyphertext Zq in the edge or cloud via
FHE-LWE method as presented in Section II-A. In Section III,
we present a mixed uniform-logarithmic quantizer (MULQ)
method that allows the quantization of the sensing information,
which are subsequently used to compute the formation control
input in cyphertext. This setup is different from the distributed
formation control law in [15]–[20] where the use of quantiz-
ers is not considered. Although, such quantizer has been used
before in [11], its focus was on the deployment of distributed
estimator in the cloud to compensate for sensor bias without
stability analysis. In contrast, by restricting to the standard
distributed formation control law (10), we show that the use
of this quantizer can still guarantee the local asymptotic sta-
bility of the desired formation shape in our main result in
Section IV.

III. MIXED UNIFORM-LOGARITHMIC QUANTIZER

Let us define the mixed uniform-logarithmic quantizer
(MULQ) operator Q : R → R by

Q(x) := 1

S(x)
�S(x)x� (11)

for all x = 0 and Q(0) = 0, where S(x) is the base-10 scaling
factor defined by

S(x) = 10(σ−�log(|x|)�−1). (12)

�·� refers to the floor function and σ ≥ 1 ∈ N is the
desired significant figures parameter, i.e., the number of lead-
ing digits of x that will be kept after the quantization.
For example, for σ = 1 the set of quantization levels is
given by {aρ : a ∈ {−9,−8, . . . , 8, 9}, ρ ∈ {10k}, k ∈
N} = ±{. . . , 0.09, 0.1, 0.2, . . . , 0.9, 1, 2, . . . , 9, 10, 20, . . .}
∪{0}. This is in contrast to that of the standard logarithmic
quantizer with coarseness parameter 0 < ρ < 1 given by
{±ρk : k ∈ N} [14]. The significant figures parameter σ plays
an important role in guaranteeing the stability of the closed-
loop system that depends on the information on the formation
rigidity matrix and graph, as shown in Section IV. In the fol-
lowing Lemma, we show that the sector bound property of the
proposed MULQ operator, where the bounds depend directly
on the parameter σ . The larger σ is, the thinner the band of
the sector bound is and the closer it is to an identity operator.
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Lemma 1: Let the MULQ Q : R → R and S(x) with a
given σ ≥ 1 be defined according to (11) and (12). Then the
following inequalities hold for all x ∈ R:

(A1). (1 − 0.5
10σ−1 )|x|2 ≤ xQ(x) ≤ (1 + 0.5

10σ−1 )|x|2,
(A2). |x − Q(x)| ≤ 0.5

10σ−1 |x|,
(A3). |Q(x)| ≤ (1 + 0.5

10σ−1 )|x|.
Proof: In the following we prove the Lemma for the case

x > 0 only, since it is similar for x < 0. Firstly, let us prove
(A1) with x > 0. The difference between x and Q(x) can be
rewritten as:

x − Q(x) = x − 1

S(x)
�S(x)x� = 1

S(x)
(S(x)x − �S(x)x�).

Note, that the rounding operation gives us −0.5 ≤ S(x)x −
�S(x)x� ≤ 0.5. Hence, using the upper-bound of the rounding
operation, it follows that:

x − Q(x) ≤ 0.5

S(x)
⇔ Q(x) ≥ x − 0.5

S(x)
= x − 0.5

10σ−1
10�log x�

≥ x − 0.5

10σ−1
x =

(
1 − 0.5

10σ−1

)
x,

where we have used the fact that 10�log x� < x for positive x.
This implies that xQ(x) ≥ (1 − 0.5

10σ−1 )x2. Similarly, using the
lower-bound of −0.5 ≤ S(x)x − �S(x)x�, it follows that:

x − Q(x) ≥ −0.5

S(x)
⇔ Q(x) ≤ x + 0.5

S(x)
= x + 0.5

10σ−1
10�log x�

≤ x + 0.5

10σ−1
x =

(
1 + 0.5

10σ−1

)
x. (13)

In this case, the upper-bound of xQ(x) is given by xQ(x) ≤
(1 + 0.5

10σ−1 )x2, which proves (A1). Now similarly, to prove
(A2) with x > 0 we rewrite:

x − Q(x) ≤ 0.5

S(x)
= 0.5

10σ−1
10�log x� ≤ 0.5

10σ−1
x,

which implies immediately that |x−Q(x)| ≤ 0.5
10σ−1 |x|. Finally,

from (13) follows that |Q(x)| ≤ (1 + 0.5
10σ−1 )|x|, which proves

(A3).
Using the MULQ operator Q as above, we can now encrypt

the digits of Q(x) by using Q(x)S(x) ∈ [a] with a = 2(10)σ −1
and [a] be as defined in Section II-A. The cyphertext message
Enc(Q(x)S(x)) or Enc2(Q(x)S(x)) can be sent to a third-party
computing facility for further computation in the cyphertext
space. Recalling the previous example with σ = 1, we have
that Q(x)S(x) ∈ [a] for any x ∈ R. Thus a static plaintext
space with cardinality a = 19 can be used. The processed
information in cyphertext can then be decrypted with local
secret keys and re-scaled back by 1

S(x) to get the desired local

control law. Again, using the example with σ = 1, 1
S(x) ∈

{10k : k ∈ N}. This will be discussed further in the following
Section.

IV. DISTANCE-BASED SECURE FORMATION CONTROL

A. Distributed Distanced-Based Formation Control via
MULQ and FHE-LWE

The reason to employ a third-party computing facility to
calculate the control inputs is to facilitate the use of exter-
nal sensor systems that are essential to the control task. In

this case FHE-LWE ensures that the private information, com-
ing from these sensors, cannot be retrieved by others. In the
previous Section, we briefly discussed how Q(x) and the digit
information S(x)Q(x) can be used to deploy FHE-LWE. For
every edge k, we have to encrypt the scalars Q(zk,1)S(zk,1),
Q(zk,2)S(zk,2) and the scalar Q(ek)S(ek) to enable the use of
FHE-LWE on relative position vector zk = col(zk,1, zk,2) and
on distance error ek information. The first two are encrypted
with Enc2(·) via (3), while the last one with Enc(·) via (1)

ZEnc2
k,1 = Enc2

(
Q(zk,1)S(zk,1)

)
,

ZEnc2
k,2 = Enc2

(
Q(zk,2)S(zk,2)

)
,

EEnc
k = Enc(Q(ek)S(ek)).

The scaling information will also be transmitted encrypted
or un-encrypted to the corresponding agents in edge k so that
the processed information can be re-scaled back. When UEnc

i,k
is the resulting gradient computation of formation control law
in the cyphertext for agent i in k-th edge, the applied local
control law for agent i is given by:

ui = −
∑
k∈Ni

⎡
⎣ B̄ik

S(zk,1)S(ek)
Dec

(
UEnc

i,k

)
1

B̄ik
S(zk,2)S(ek)

Dec
(

UEnc
i,k

)
2

⎤
⎦, (14)

where we have used the decryption process Dec(·) in (2) and
Dec(UEnc

i,k )j refers to the j-th element of the vector Dec(UEnc
i,k ).

Following the multiplication property of FHE-LWE as in (5),
it follows from above that

ui = −
∑
k∈Ni

⎡
⎣ B̄ik

S(zk,1)S(ek)
Dec

(
ZEnc2

k,1 � EEnc
k

)
B̄ik

S(zk,2)S(ek)
Dec

(
ZEnc2

k,2 � EEnc
k

)
⎤
⎦

= −
∑
k∈Ni

⎡
⎣ B̄ik

S(zk,1)S(ek)
Q(zk,1)S(zk,1)Q(ek)S(ek)

B̄ik
S(zk,2)S(ek)

Q(zk,2)S(zk,2)Q(ek)S(ek)

⎤
⎦

= −
∑
k∈Ni

B̄ikQ(zk)Q(ek), (15)

where Q(zk) := col(Q(zk,1), Q(zk,2)).
In comparison to the unencrypted version in (10) the local

control law above contains the quasi-logarithmic quantized
version of zk and ek. In particular, FHE-LWE in the feed-
back loop can simply be regarded as an identity operator. In
other words, FHE-LWE becomes transparent due to the use of
MULQ operator and the closed-loop system analysis becomes
an absolute stability analysis with quantizers in the feedback
loop. Consequently, for the analysis of closed-loop systems
in the following Subsection, the compact form of the whole
formation control input can be written as

u = −B̄DQ(z)Q(e), (16)

where the MULQ operator Q is understood element-wise.
Let us remark on securing the information of the scal-

ing factor S(·) for both zk and ek. In the discussion above,
this information is transmitted directly to the agent and used
to re-scale back the computed control input. This re-scaling
operation can be secured in the following way. In addition
to encrypting the quantized information of Q(zk,j)S(zk) and
Q(ek)S(ek), the sensing node can encrypt the exponent of
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S(zk,j) and of S(ek), indicated here with SEnc
z,k,j and SEnc

e,k respec-
tively, and send them to the remote computing facility. The
latter subsequently computes the addition operation of both
SEnc

z,k,j and SEnc
e,k and the result is transmitted to the correspond-

ing agents. The agent can then perform the re-scaling operation
by using the fact that

S(zk,j)S(ek) = 10
Dec

(
SEnc

z,k,j+SEnc
e,k

)

for dimensions j = 1, 2 for substitution in (14).

B. Absolute Stability Analysis of the Closed-Loop
Systems

The application of FHE-LWE (15) to the formation control
of (8) using quantized values of Q(zk,1)S(zk,1), Q(zk,2)S(zk,2)

and Q(ek)S(ek) becomes equivalent to the ones obtained
without FHE-LWE, which is compactly written in (16).
Correspondingly, in the following Proposition, we will analyze
the stability of the closed-loop system where the FHE-LWE
operation is replaced by an identity operator.

Proposition 1: Consider the mobile robots whose dynam-
ics are given by (7). Suppose that the control inputs are given
by the distributed quantized gradient-based formation con-
trol law (16) with the desired formation shape defined by
the desired distance vector d = col(d1, . . . , d|E |) ∈ R

|E | and
the mixed uniform-logarithmic quantization operator Q be as
in (11) with significant figures constant σ ≥ 1. Assume that
the formation graph is infinitesimally and minimally rigid and
connected. Then for sufficiently large σ , the equilibrium point
e = 0 is locally asymptotically stable.

Proof: The proof is based on the established local asymp-
totic stability results in distance-based formation control and
we refer interested reader to [15]–[17], [19], [20] among
many others. The dynamics of the closed-loop autonomous
multi-agent system can be written as

ż = B̄T ṗ = −B̄T B̄DQ(z)Q(e), (17)

ė = DT
z ż = −DT

z B̄T B̄DQ(z)Q(e), (18)

where as before the MULQ operator Q is understood element-
wise when a vector is used in its argument.

Let us consider the following standard Lyapunov function
as used in the aforementioned papers

V = 1

4
eTe =

|E |∑
k=1

Vk = 1

4

|E |∑
k=1

(‖zk‖2 − d2
k )

2. (19)

By computing its time-derivative along the trajectory of the
closed-loop systems, we have

V̇ = −eTDT
z B̄T B̄DQ(z)Q(e)

= +1

2

(
Dze − DQ(z)Q(e)

)T
B̄T B̄

(
Dze − DQ(z)Q(e)

)

− 1

2
eTDT

z B̄T B̄Dze − 1

2
Q(e)TDT

Q(z)B̄
T B̄DQ(z)Q(e), (20)

where B̄ describes the incidence matrix of formation graph
G. In this case, B̄T B̄ is positive semi-definite matrix with the
kernel being a vector of ones 1, due to the connectedness of
the undirected graph.

As established in literature of distance-based formation
control (c.f. [15]–[17], [19], [20]), the second term on the
right-hand side is negative definite and satisfies

− 1

2
eTDT

z B̄T B̄Dze ≤ −λmin‖e‖2, (21)

where λmin refers to the smallest eigenvalue of the positive
definite matrix DT

z B̄T B̄Dz in the neighborhood of e = 0. The
inequality (21) holds since the elements of the above matrix
are real-analytic functions of e, hence there exists a sufficiently
small neighborhood of e = 0, Bδ := {e : ‖e‖2 < δ}, in which
it continues to be positive definite. For details we refer the
interested readers to [15]–[17], [19], [20]. The last term of (20)
is upper-bounded by zero as B̄T B̄ is positive semi-definite. We
will now compute the upper-bound of the first term in (20) as
follows

1

2

(
Dze − DQ(z)Q(e)

)T
B̄T B̄

(
Dze − DQ(z)Q(e)

)

= 1

2
‖B̄

(
Dze − DQ(z)Q(e)

)‖2

≤ 1

2
‖B̄(Dze − DzQ(e))‖2 + 1

2
‖B̄

(
DzQ(e) − DQ(z)Q(e)

)‖2

= 1

2
‖B̄Dz(e − Q(e))‖2 + 1

2
‖B̄

(
Dz − DQ(z)

)
Q(e)‖2. (22)

By Lemma 1 the three inequalities: ‖e − Q(e)‖≤ 0.5
10σ−1 ‖e‖,

‖Dz − DQ(z)‖ ≤ 0.5
10σ−1 ‖z‖, and ‖Q(e)‖ ≤ (1 + 0.5

10σ−1 )‖e‖
hold. Combining these terms to (22) and together with (21),
it follows that (20) becomes

V̇ ≤ λmax

(
0.5

10σ−1
+ 0.5

10σ−1

(
1 + 0.5

10σ−1

))
‖z‖2‖e‖2

− λmin‖e‖2,

where λmax > 0 is the maximum eigenvalue of B̄T B̄.
Note that ‖z‖ can be expressed as a continuous function

of e, namely, ‖z‖ =
√∑

k |ek + d2
k |. Thus in Bδ , ‖z‖2 can be

upper bounded by a constant c that depends on the desired
distance d and the positive constant δ. Correspondingly, for a
sufficiently large σ , the right-hand side of the above inequality
can be made negative in Bδ such that

V̇ ≤ −k‖e‖2 (23)

for all e ∈ Bδ with 0 < k < λmin and in particular

k = λmin − λmaxc

(
0.5

10σ−1
+ 0.5

10σ−1

(
1 + 0.5

10σ−1

))
.

This implies that Bδ is forward invariant, so that ‖z(t)‖ is
bounded by c for all t ≥ 0 and ‖e(t)‖ → 0 as t → ∞. In
other words, the formation converges to the desired shape.

Although the characterization of Bδ is outside the scope
of this letter, the admissible δ > 0 can be computed numer-
ically, for example by checking whether DT

z B̄T B̄Dz remains
positive definite while incrementally increasing δ starting from
δ = 0. We note that a different value of σ can be assigned
in the quantization of zk,j and of ek in order to get a trade-
off between asymptotic stability and minimizing the required
plaintext space. On the one hand, as shown in the proof of
Proposition 1, the parameter corresponding to e (denoted con-
veniently as σek ) plays a crucial role in ensuring that (23)
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Fig. 1. Secure formation control simulation with four agents forming a
square: (a) error trajectories over time (in semi-logarithmic scale); (b) top
view of the agents’ 2D trajectories of the four agents starting from the
initial conditions (triangles) and converging towards the desired square
formation (filled circles).

holds. It has to be chosen sufficiently large for asymptotic
stability. On the other hand, the parameter for zk,j (denoted as
σzk,j ) can be assigned to 1 safely. It allows us to minimize the
space of plaintext needed for the encryption and decryption.

V. NUMERICAL SIMULATION

In this Section, we present the results of a numerical simu-
lation implemented in Python. The task of the distance-based
secure formation controller is to guide a system of 4 agents
into a square formation with desired inter-agent distances.
The undirected graph G = (V, E) is defined with agents
V = {1, 2, 3, 4} and E = {(1, 2), (2, 3), (1, 3), (3, 4), (1, 4)},
while the desired distance vector is d = [1 1

√
2 1 1]T ∈ R

5.
The initial conditions for the agents’ position vector p(0) is
randomly generated within the basin of attraction. Regarding
the encryption, the plaintext [a] and cyphertext Zq space avail-
able are defined by a = 1011 and q = 1022. The secret key
vector s length is N = 30, while the sampling space [r] of
the injected error vector e is defined by r = 4 so that the
conditions for addition and multiplication hold.

Following the computation in the proof of Proposition 1
and using the neighborhood B2.7 of e = 0, we can obtain
the constants c ≈ 12.04, λmin ≈ 0.058 and λmax ≈ 4.11. By
taking σ = 4, the condition stated after (23) in the proof of
Proposition 1 is satisfied. Using the above simulation setup,
the corresponding simulation result is shown in Figure 1.

Figure 1a) shows the plot of error signal ei from all five
edges i = 1, . . . 5. It demonstrates that the error vector e ∈ R

5

of the multi-agent system converges to the equilibrium point
e = 0 as expected with an exponential rate of convergence.
Panel 1b) presents a top view of the four agents’ position
vector p ∈ R

8 over time.
Each agent starts from its initial position depicted in triangle

shapes and all agents converge exponentially to the desired
shape of a square (shown as filled circles in the figure).

VI. CONCLUSION

In this letter, we proposed a secure distributed formation
control system enabled by FHE-LWE encryption and MULQ
quantization. While a similar framework has been presented

before [11] with an empirical analysis, in this contribution we
present rigorous analysis of the closed-loop systems.

Specifically, we show the sector bound property of the
proposed MULQ and we present an absolute stability analy-
sis showing the asymptotic stability of the closed-loop secure
control system. The combined use of MULQ with FHE can
be explored further in other secure networked control design
problems.
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