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Abstract

Environmental monitoring of microplastics (MP) contamination has become an area of great

research interest, given potential hazards associated with human ingestion of MP. In this

context, determination of MP concentration is essential. However, cheap, rapid, and accu-

rate quantification of MP remains a challenge to this date. This study proposes a deep learn-

ing-based image segmentation method that properly distinguishes fluorescent MP from

other elements in a given microscopy image. A total of nine different deep learning models,

six of which are based on U-Net, were investigated. These models were trained using at

least 20,000 patches sampled from 99 fluorescence microscopy images of MP and their cor-

responding binary masks. MP-Net, which is derived from U-Net, was found to be the best

performing model, exhibiting the highest mean F1-score (0.736) and mean IoU value

(0.617). Test-time augmentation (using brightness, contrast, and HSV) was applied to MP-

Net for robust learning. However, compared to the results obtained without augmentation,

no clear improvement in predictive performance could be observed. Recovery assessment

for both spiked and real images showed that, compared to already existing tools for MP

quantification, the MP quantities predicted by MP-Net are those closest to the ground truth.

This observation suggests that MP-Net allows creating masks that more accurately reflect

the quantitative presence of fluorescent MP in microscopy images. Finally, MAP (Microplas-

tics Annotation Package) is introduced, an integrated software environment for automated

MP quantification, offering support for MP-Net, already existing MP analysis tools like MP-

VAT, manual annotation, and model fine-tuning.
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1 Introduction

Since the 1940s, the production of plastics has increased rapidly, given the attractive properties

of plastic goods (durable, lightweight, corrosion resistant) and the inexpensive methods for

manufacturing them. However, this once desirable material has currently become a significant

environmental concern [1]. Indeed, plastic pollution has become so severe that even an island

of plastic, called the Great Pacific Garbage Patch, can now be found in the Central Pacific Gyre

[2]. Furthermore, in the marine environment, microplastics (MP;< 5 mm) are the most domi-

nant form of aquatic plastic litter [3]. They are derived from synthetic polymers that are pri-

marily manufactured in small sizes (primary source) or from the degradation of large plastic

fragments (secondary source) [4].

Given their small size, marine organisms ingest MP with their natural food during feeding.

This raises several concerns regarding the safety of seafood consumption [5]. As such, MP

ingestion by marine biota, in particular those intended for human consumption, is attracting

more and more research attention.

Investigating MP consumption by marine biota is usually done by first extracting MP, fol-

lowed by MP collection through filtration. Using a microscope, MP pieces are then manually

sorted and counted. The latter steps are typically performed by multiple researchers in order

to avoid measurement bias. Since this approach is a labor-intensive and time-consuming task,

there is a great interest in the development of automated techniques. In this respect, a number

of tools that enable semi- or fully automated quantification of MP in images are already avail-

able, such as MP-VAT [6] and MP-VAT 2.0 [7]. However, these tools suffer from drawbacks

like overestimation and mislabeling, as demonstrated by the experiments presented in this

paper. Therefore, a strong need exists for the development of computational tools that facilitate

accurate recognition of MP in images, simultaneously measuring quantity and characterizing

attributes such as size and shape.

In this paper, we propose a novel approach that leverages deep learning for mimicking the

way MP is investigated by researchers, making it possible to automatically determine the quan-

tity, size, and shape of stained MP in fluorescence microscopy images. To implement this

approach, we explored several image segmentation models that make use of multi-layered arti-

ficial neural networks. To that end, we created training examples out of microscopy images,

containing MP that were isolated from clams and that were subsequently stained with a fluo-

rescent dye called Nile Red.

Specifically, in this paper, we introduce MP-Net, an effective U-Net-based deep learning

model for MP segmentation. This model is part of a new software package that we have named

Microplastics Annotation Package (MAP), coming with a graphical user interface (GUI) that

enables user-friendly MP analyses. Furthermore, this software package embeds already exist-

ing non-deep learning tools for MP analysis (MP-VAT, MP-VAT 2.0, C-VAT, and Galaxy

Count), thus also making it possible for users to select—after a comparison—the tool that best

fits their research purposes.

The initial research efforts dedicated to the creation of MP-Net and MAP were first pre-

sented in a workshop paper by Baek et al. [8]. This journal paper builds on top of that prelimi-

nary work by providing a more in-depth analysis at different levels:

• More candidate models: In the previous study, we investigated three U-Net-based models.

In this study, we incorporate other types of segmentation models and test-time augmenta-

tion (TTA), resulting in the fine-tuning and evaluation of a total of nine different deep learn-

ing models.
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• Improved annotation: In the previous study, we made use of a dataset, further referred to as

Dataset A, that was composed of 99 images. These images were labeled by a single researcher

using an RGB-based thresholding method in ImageJ [9]. In this study, we make use of Data-

set B, created by performing a pixel-based comparison of the labels provided by three differ-

ent researchers.

• Recovery assessment: Next to a number of performance metrics commonly used in the field

of computer vision, we also make use of percentage recovery, using both artificial and real-

world MP, an approach that is more meaningful from the point-of-view of environmental

monitoring.

2 Related work

The use of deep learning for the detection of MP in environmental samples has been studied

before, taking as input different types of spectral data. For instance, the presence of MP in

mussels was detected and characterized using a random forest classification (RFC) algorithm,

using micro-FTIR and micro-Raman spectral data [10–12]. In soil, MP contamination was

detected using a convolutional neural network (CNN) model that works with ultra violet—

near infrared spectra (UV-NIR) [13]. However, the collection of spectral data is time-consum-

ing and expensive, mostly due to the high cost of specialized equipment and the need for a

trained operator [14]. Because of these constraints, Nile red staining became an attractive alter-

native for MP visualization and detection.

The aforementioned staining technique relies on the affinity of Nile red to different plastic

polymers [15]. Indeed, thanks to the fluorescent nature of the dye, only a fluorescence micro-

scope is needed to observe the MP, after which images can be captured with a camera, and

where these images can then be analyzed to quantify and characterize the MP present in the

sample at hand. Taken together, Nile red staining is relatively easier and cheaper to do than

the collection of spectral data.

To date, several image-based techniques are available for working with unstained and Nile

red-stained MP, as shown in Table 1. However, a deep learning-based method that takes

advantage of Nile red-stained MP has not been investigated yet. The following section

describes already existing image-based methods for MP analysis, outlining their most impor-

tant features.

2.1 Image-based methods

The image-based methods shown in Table 1 can be mainly classified based on the type of

input image used: unstained or Nile red-stained. The first four studies made use of unstained

images, while the remaining seven studies utilized Nile red staining to produce images of fluo-

rescent MP. Each method has its own features, which are summarized in the last column of

Table 1. These features can be one or a combination of the following:

• thresholding (TR);

• MP counting (MC);

• shape classification (SC); and

• size measurement (SM).

TR corresponds to the binarization step shown in Fig 1. This technique determines whether

pixels are MP (foreground) or non-MP (background). MC determines the quantity of MP
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present in the mask that is the result of TR, while SC classifies the shape of each piece of MP.

In general, we can make a distinction between three types of shapes, as described in Section

3.2: particle, fragment, and fiber. Finally, SM measures the size of each piece of MP. To that

end, the Feret diameter (μm) or the occupying area (μm2) are used. The Feret diameter is

defined as the length of the longest straight line that can be drawn in a given piece of MP.

In the studies presented in [17–20], which made use of unstained images, the MP can be

distinguished by the naked eye (0.3 * 5 mm). The National Oceanic and Atmospheric

Administration (NOAA) protocol [16] was used in these studies. This protocol is generally

Table 1. Literature reports that describe image-based methods for MP analysis. Highlighted (bold) papers made applications publicly available to other researchers.

NOAA protocol stands for National Oceanic and Atmospheric Administration protocol [16].

Authors Tested MP size Extraction protocol Source Analysis approach

Mukhanov et al. [17] 0.3 * 5 mm NOAA collect, clean, scan Sea surface Photoshop (TR)

ImageJ (MC, SC, SM)

Lorenzo-Navarro et al. [18] 1 * 5 mm NOAA collect, clean, scan Beach sediments Adaptive thresholding (TR)

Machine learning (SC)

Lorenzo-Navarro et al. [19] 1 * 5 mm NOAA collect, clean, photograph Beach sediments U-Net segmentation (TR)

VGG-16 (SC)

Massarelli et al. [20] 0.5 * 5 mm NOAA collect, clean, photograph River water, sediments OpenCV (MC, SM)

Machine learning (SC)

Maes et al. [21] 2 * 20 μm Nile Red Beach sediments ImageJ

(Polymer classification)

Mason et al. [22] 6.5+ μm Nile red Bottled water Galaxy Count (TR, MC, SM)

Prata et al. [6] 0.65+ μm Nile red River water, sediments ImageJ (MC, SC, SM)

Max entropy (TR)

Prata et al. [7] 2+ μm Nile red River and lagoon water, sediments ImageJ (MC, SC, SM)

Renyi entropy (TR)

Patchaiyappan et al. [23] 100 * 1, 000 μm Nile red Beach sediments ImageJ (MC, SC, SM)

Dowarah et al. [24] 21 * 1, 500 μm Nile red Bivalves ImageJ (MC, SC, SM)

Chen et al. [25] 7.0+ μm Nile red Beverage containers Absolute thresholding (TR)

ImageJ (MC, SC, SM)

Our approach 10 * 1, 000 μm Nile red Bivalves U-Net segmentation (TR) MAP (MC, SC, SM)

� TR: Thresholding, MC: MP counting, SC: Shape classification, SM: size measurement.

https://doi.org/10.1371/journal.pone.0269449.t001

Fig 1. Overview of MP measurement. Overall approach towards MP measurement, from sampling to image

processing: (a), (b) corresponds to the complete MP measurement process we made use of. We propose a new

binarization method (green-colored box) that uses deep learning. (a) Wet-lab phase: MP acquisition in a laboratory.

(b) Dry-lab phase: Image acquisition and analysis.

https://doi.org/10.1371/journal.pone.0269449.g001
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adopted to isolate MP debris from the sea surface and sediment, and to subsequently deter-

mine size and shape. In contrast, the remaining studies that employed Nile red observed

smaller MP (2 * 1,500 μm). Due to the high fluorescence intensity of the dye, smaller MP,

which are typically difficult to distinguish, can be noticed easily.

Among the studies that involved unstained MP, the authors of [18–20] proposed a machine

learning model, trained with unstained and large pieces of MP. For stained MP images, the ini-

tial work we presented in [8] showcased the first deep learning approach. The majority of the

other existing methods are implemented in ImageJ, an open-source software package for sci-

entific image analysis. Only the work by [22] introduced a new platform, called Galaxy Count,

which is a semi-automated tool requiring user input. In 2019, [6] introduced MP-VAT, the

first automated MP analysis tool that works in ImageJ. In 2020, an upgraded version of

MP-VAT, called MP-VAT 2.0, was released [7]. A modified version of MP-VAT was intro-

duced in 2021 by [25], which will be further referred to as C-VAT for the sake of convenience.

Unlike MP-VAT, C-VAT copes with noise by using a despeckle filter and outlier removal, also

using an absolute threshold of 222 to distinguish background from MP. Being the most recent

and high-throughput MP analysis tools for stained MP images, the effectiveness of MP-VAT,

MP-VAT 2.0, and C-VAT is compared to the effectiveness of our deep learning models in Sec-

tion 5.

A common feature of Galaxy Count, MP-VAT, MP-VAT 2.0, and C-VAT is the use of

global TR, which is the main decision-making function that determines if a pixel in an image

is classified as MP or non-MP. The following two sections describe in detail global TR and the

differences with deep learning-based TR models.

2.2 Differences between TR-based models

The approaches followed by the four studies highlighted in bold in Table 1 [6, 7, 22, 25] are

publicly available. Although these approaches use almost identical methods for MC, SM, and

SC, considerable differences can be observed for TR, as discussed below.

In what follows, we make use of the notation M to refer to a TR-based model that is

responsible for MP and background separation. M takes as input a microscopy image I 2
Rw�h�c

and returns a mask M 2 Rw�h
, with w denoting the image width, h the image height,

and c the number of color channels:

M ¼MðIÞ : ð1Þ

Note that a color image usually comes with three channels (Red, Green, Blue; RGB; c = 3).

If c is not mentioned explicitly, then a single-channel image (i.e., a gray-scale image; c = 1) is

used.

The TR-based model M can be split into two sub-models. The first sub-model fI! G takes I
as an input and outputs a one-dimensional monotonic intensity image G 2 Rw�h

. The second

sub-model fG! M takes G as an input and outputs the corresponding mask M. For fG! M, a

thresholding function can be used, like the one shown in the equation below:

Mij ¼

255; if Gij > T

0; if Gij � T
; i ¼ 1; . . . ;w; j ¼ 1; . . . ; h ;

8
<

:
ð2Þ

with T denoting the threshold value. If a pixel has a value of 255, it is assumed to denote MP,

and if a pixel has a value of 0, it is assumed to denote background. This approach, which can

be referred to as global thresholding or simple thresholding, allows extracting objects of inter-

est (i.e., microplastics) from an image by making use of a single fixed threshold value T for all
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pixels that can be found in the given image of size w × h. Table 2 shows the different fI! G and

fG! M models used by the research efforts previously highlighted in Table 1.

In the column labeled ‘fI! G’ of Table 2, the value Gray scale means that color images have

been converted to gray scale. Unlike the other three models shown in Table 2, MP-VAT 2.0

extracts and uses only the red channel of an RGB image, given that Nile red dye contains more

red information. Next, in the column labeled ‘fG! M’, the value Custom threshold means that a

user needs to iteratively adjust the threshold per image (based on direct inspection of the gen-

erated output). Similarly, Absolute threshold refers to thresholding with a value that is manu-

ally determined through trial and error, and where this value is used for every image. When

using Max entropy, a threshold is selected that leads to the largest entropy after summing.

Renyi entropy was introduced by [26], determining a final threshold by weighing three differ-

ent max entropy values, calculated by setting α to 0.5, 1, and 2 in the following Renyi entropy

equation:

Haðq1; q2; :::qnÞ ¼
1

1 � a
log

Xn

k¼1

qak

 !

: ð3Þ

Here, qk denotes the normalized occurrence of pixel value k. In other words, qk refers to the

number of pixels having a brightness of k divided by the total number of pixels. For the case of

α = 1, a converging Taylor series is obtained (α = 1 + �, �! 0), and the resulting expression

corresponds to the Max entropy: H1 ¼
Pn

k¼1
qklogðqkÞ.

In both cases, a large entropy is indicative of a large amount of available information. In

other words, a large entropy means that MP pixels can be distinguished well from non-MP

pixels. Both max entropy and Renyi entropy can be used in ImageJ (Available at https://

imagej.net/plugins/auto-threshold).

The use of TR has the advantage of being intuitive and fast. However, because only one

value is used to distinguish MP pixels from background pixels, it is difficult to properly recog-

nize ambiguous pixels. In particular, fluorescence images have the property of shining brighter

when dyed objects are densely gathered.

For example, a background pixel can be wrongly recognized as an MP pixel (Type 1

error) when using a low threshold and when the pixel in question is brighter than the sur-

rounding pixels. Alternatively, as illustrated in Fig 2(b), when the center of an MP particle is

photographed relatively dark due to its thickness, a corresponding MP pixel may be recog-

nized as a background pixel (Type 2 error). Therefore, users that apply single-value thresh-

olding should have a good awareness of these weaknesses. Furthermore, depending on the

input image used, interactive (i.e., manual) post-processing may be required for accurate

MC, SC, and SM.

Table 2. Differences between TR-based models. All existing methods consist of a channel extracting step (fI! G) and

a thresholding step (fG! M).

Authors M fI ! G fG ! M

Mason et al. [22] Galaxy Count Gray scale Custom threshold

Prata et al. [6] MP-VAT Gray scale Max entropy

Prata et al. [7] MP-VAT 2.0 Red channel from RGB Renyi entropy

Chen et al. [25] C-VAT Gray scale Absolute threshold

https://doi.org/10.1371/journal.pone.0269449.t002
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2.3 Deep learning-based TR models

Unlike already existing TR-based models that make use of global thresholding, our study

focuses on building a TR-based deep learning model fI! M(I;θ) that distinguishes MP pixels

from background pixels. This model creates a mask M directly from a given image I, thus not

making use of distinct sub-functions (end-to-end learning).

Given an image dataset D ¼ ðIk;MkÞ
n
k¼1

, where Ik 2 R
w�h�c

is an original image and where

Mk 2 R
w�h is its corresponding mask, let M be a segmentation model that takes Ik as input

and predicts M̂k 2 R
w�h as an approximation of the true mask Mk:

MðIk; yÞ ¼ M̂k � Mk ; ð4Þ

where θ are the model parameters. The difference between the predicted mask M̂k and the

ground truth mask Mk is quantified by a loss function L. Given a segmentation model M and

a loss function L, we want to find the values for θ that minimize the total loss based on the

dataset D.

Ideally, when a new image Il comes in, the trained model M makes a prediction M̂l that is

close to the true underlying segmentation mask. Intuitively speaking, the TR-based model

then mimics the MP and background selection criteria used by a researcher, given that this

TR-based model has been trained on the image and mask pairs previously created by

researchers.

Deep learning-based image segmentation has the disadvantage of being slow, both during

training and prediction, requiring more computational power than already existing TR-based

models. However, deep learning-based image segmentation has the advantage that it reduces

the amount of post-processing needed (e.g., manual correction of annotations). Supported by

experimental results, a more detailed comparison between already existing TR-based models

and deep learning-based image segmentation models will be provided in Section 5.

3 Methods

This section describes the process of MP acquisition and analysis, from sampling to image pro-

cessing. The entire process is composed of eight steps that are presented in Fig 1. The different

steps are explained by dividing the overall process into two major phases: the wet-lab phase, as

shown in Fig 1(a), and the dry-lab phase, as shown in Fig 1(b). The image pairs (fluorescent

and mask) obtained at the end of the dry-lab phase are, in a next step, fed into the dataset prep-

aration phase, as discussed in Section 4.1.

Fig 2. Type 1 and Type 2 errors when using a single value for thresholding.

https://doi.org/10.1371/journal.pone.0269449.g002
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3.1 Wet-lab phase

Sampling. Manila clam samples (Ruditapes philippinarum), as can be seen in Fig 3(a),

were bought at the Incheon Complex Fish Market (Incheon, Korea) in May 2019. Immediately

after the purchase, the samples were kept on ice. After transport to the laboratory, the clams

were wrapped in aluminum foil and stored in a -20˚C freezer.

Extraction (digestion). All steps were performed inside a clean bench and all solutions

were filtered using a 0.22μm membrane filter to avoid contamination. For sample preparation,

frozen whole clam tissue was separated from the shell using a scalpel. To prevent MP from

being released due to thawing, this step was executed as quick as possible. The wet weight of

each clam was recorded. To dissolve organic matter, samples were incubated in 250 ml 10%

KOH at 60˚C with stirring for 24 hours. Through this digestion step, the MP that were inside

the organism were obtained [27]. For clams weighing more than 10 g, the tissue was randomly

split into two similar pieces and digested separately. Once digestion was completed, samples

were vacuum filtered using GF/A (glass microfiber) filters.

Purification (separation). After digestion and filtration, the MPs were separated from

marine contaminants (sand, silt, and shell) through density separation. Filter papers were

resuspended in 10 ml 1.37 g mL-1 zinc chloride with sonication for 3 mins. After three repeti-

tions, the solutions were centrifuged and the supernatant was filtered to recover MP [21].

Staining. Nile Red (1 μg mL-1 in acetone) was added to the purified sample solution at a

final concentration of 10 μg mL-1. The dye was incubated with the sample at 60˚C for 30 mins

with constant mixing. Solutions were vacuum filtered using a GF/A filter. To remove excess

dye, the GF/A filters were washed with absolute ethanol three times. Additional washing was

performed for samples that showed high background fluorescence [21].

3.2 Dry-lab phase

Capturing. Stained MP debris on filter paper was viewed under a stereomicroscope

(Olympus SZX10). This stereomicroscope was equipped with a SZX2-FGFPHQ filter set hav-

ing 460–480 nm excitation and 495–540 nm emission. Because each filter was too large to be

captured as a single photo, images of different filter sections were taken using a DigiRetina 16

microscope camera, with the images having a resolution of 1600 × 1200 and an exposure time

of 80 ms.

Fig 3. (a) Manila clams used in our experiments, (b) microscopy image of MP stained with Nile red dye, and (c)

binary mask for (b). The white rectangle that can be seen in the left-upper part of (b) is used for calibration purposes.

In (c), black pixels belong to MP (foreground), whereas white pixels denote non-MP (background).

https://doi.org/10.1371/journal.pone.0269449.g003
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Stitching. To create a complete image of a sample, images containing different sections of

the same filter paper were combined using Microsoft Image Composite Editor. That way, a

total of 99 composite filter paper images were obtained from the Manila clam samples used. A

representative image can be found in Fig 3(b).

RGB thresholding and binarization. Each composite image was loaded in ImageJ. First,

the scale was set (Analyze > Set Scale) and a representative fluorescent MP piece was selected

to determine the optimal RGB threshold (Image > Adjust > Color threshold) for automated

MP selection. When necessary, RGB values were adjusted manually to ensure selection of all

MP. Afterwards, a “mask” image was generated (Edit > Selection > Create mask), as illus-

trated in Fig 3(c).

Counting and measuring. The Microplastics Automated Counting Tool (MP-ACT)

macro [6] in ImageJ was used to automatically quantify the MP in each mask

(Plugins > Macros > MP-ACT). This macro utilizes ImageJ functionalities such as circularity

(range goes from 0.0 to 1.0) to perform shape identification and Feret diameter (provides an

approximation of the longest dimension) to perform size measurement. The shapes that can

be identified include fiber (0.0–0.3), fragment (0.3–0.6), and particle (0.6–1.0). MP-ACT cre-

ates an output file that contains a tabulated summary of each MP piece that could be found in

the generated mask, describing its shape and size.

4 Experimental design

As shown in Fig 4, the process of generating a TR-based deep learning model can be roughly

summarized by making use of three major steps: (1) dataset preparation; (2) model pre-train-

ing, fine-tuning, and validation; and (3) model testing. Aside from the common performance

metrics described in Section 4.3, recovery assessment, an additional measure of model effec-

tiveness, is introduced in Section 4.4.

Fig 4. Overview of the overall approach. This approach can be divided into three phases: (1) dataset preparation, (2)

model pre-training, fine-tuning, and validation, and (3) model testing.

https://doi.org/10.1371/journal.pone.0269449.g004
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4.1 Dataset preparation

The first step, namely Dataset preparation, involves preparing the image and mask pair dataset

D and dividing it into five subsets for the purpose of 4-fold cross-validation and testing, mak-

ing sure no data leakage is occurring.

In our previous study [8], only one researcher performed labeling using RGB thresholding.

For the study presented in this paper, the previously obtained thresholded RGB masks were

used as a starting point. Three researchers manually and independently performed individual

pixel annotation (IPA) for each image, as discussed in more detail in S1.1 Section in S1 File.

The final mask for each image was subsequently obtained by making use of pixel-wise majority

voting, an approach also described in more detail in S1.1 Section in S1 File. These final masks

were then used as the ground truth. A total of 99 ground truth masks, corresponding to the 99

fluorescence microscopy images, were created. It should be clear that, by taking into account

the input of three different researchers, labeling can be expected to be more reliable and objec-

tive. For the sake of convenience, the dataset used in our previous study [8] is denoted as Data-

set A, and the dataset newly created for this study is denoted as Dataset B.

For both Dataset A and Dataset B, the 99 fluorescence images were distributed over the

four cross-validation folds (further referred to as CVF (1), CVF (2), CVF (3), and CVF (4))

and the test set in such a way that the amount of MP pixels is evenly distributed. This was

achieved by first arranging the ground truth masks according to an increasing number of MP

pixels and by then distributing them one by one over the four cross-validation folds and the

test set. In particular, we started with the test set, followed by CVF (1), CVF (2), CVF (3), and

then CVF (4), after which the order was inverted. This process was repeated until all images

were assigned to a particular set. That way, we prevented a particular set from containing

images with a larger MP composition than the others. In the end, 19 images were assigned to

the test set while each CVF contained 20 images. Note that, since the ground truth masks from

Dataset A were further annotated (i.e., refined) to obtain Dataset B, the order of the images,

according to an increasing number of MP pixels, was different between both datasets. As a

result, the masks making up each set were also different between the two datasets, as illustrated

by Table 3.

As shown in Fig 5, CVF (1)—(4) were used for either fine-tuning or validation. For

instance, for Fine-tuning (1), CVF (4) was used as the validation set (indicated as a green box),

while the remaining three folds were used as the fine-tuning set (indicated as white boxes). As

Table 3. Overview of the datasets used. The last two columns describe the patches sampled using a sliding window approach. Other values are expressed as

mean ± standard deviation.

Dataset Split Number of images Width Height MP (10−2)% Patches created before random

deletion

With MP Without MP

A Test set 19 3380.1±1523.1 2456.8±1113.1 0.010±0.013 20640 156150

CVF (1) 20 3299.4±1473.5 2558.8±1282.6 0.012±0.015 29798 161496

CVF (2) 20 3567.7±1704.0 2510.0±1610.0 0.015±0.017 34799 179759

CVF (3) 20 2894.5±1760.2 2387.8±1670.3 0.014±0.016 34027 149959

CVF (4) 20 3474.0±1638.5 2474.9±1350.9 0.012±0.018 30854 169608

B Test set 19 2949.6±1709.7 2425.6±1594.5 1.00±1.11 30486

CVF (1) 20 3558.3±1718.0 2747.7±1630.5 1.40±1.97 29793

CVF (2) 20 3041.5±1486.7 2433.4±1209.3 1.30±1.62 30700

CVF (3) 20 3620.0±1425.1 2420.4±1247.6 1.28±1.55 33490

CVF (4) 20 3424.8±1730.0 2359.5±1362.6 1.30±1.50 26708

https://doi.org/10.1371/journal.pone.0269449.t003
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can be seen in the columns ‘Width’ and ‘Height’ of Table 3, our images do not have the same

resolution (given the use of stitching). Since a deep learning model can only receive input of a

fixed size, small patches p 2 R256�256 were sampled from each image I using a sliding window

approach.

Finally, detailed information about the sampled patches created after the dataset prepara-

tion phase can also be found in Table 3, in the column labeled ‘Patches created before random

deletion’. We can observe that, for Dataset A, the number of patches containing MP is signifi-

cantly smaller than the number of patches without MP. This can be interpreted as our dataset

having more background pixels than MP pixels. To solve this imbalance problem, we adopted

over-sampling, with Dataset B not including patches without MP. A detailed description of

our sliding window approach and oversampling is provided in S1.2 Section in S1 File.

Fig 5. Dataset segregation. Dataset segregation for fine-tuning, validation, and testing of the already existing TR-

based models and the TR-based deep learning models. Green-colored boxes refer to the fold used for validation, while

white-colored boxes denote the folds used for fine-tuning.

https://doi.org/10.1371/journal.pone.0269449.g005

Fig 6. Fine-tuning of a TR-based deep learning model. N corresponds to the size of the mini-batch of images fed to

the model. The dotted box represents an additional step that is performed when TTA is included.

https://doi.org/10.1371/journal.pone.0269449.g006
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4.2 Model pre-training, fine-tuning, and validation

This section discusses the way our TR-based deep learning models were created. As can be

seen in Fig 6, and as explained in Section 2.3, images are first cropped to patches of the same

size of 256 × 256. The obtained patches are then fed to a TR-based deep learning model, result-

ing in a predicted mask for each patch (Fig 6, red arrows). In Fig 6, N represents the size of the

mini-batch, i.e., the number of images that is fed to the model at the same time. Next, the loss,

which quantifies the difference between the ground truth mask and the predicted mask, is cal-

culated (Fig 6, blue arrows and blue box). Based on the calculated loss, the model parameters θ
are updated by relying on stochastic gradient descent and backpropagation [28] (Fig 6, green

arrow). That way, it is possible for a TR-based deep learning model to iteratively learn how to

predict masks that, after each step, are closer to the ground truth masks.

In our experiments, nine different TR-based deep learning models were evaluated by mak-

ing use of Dataset B. Information about the loss and optimizer used by each model is presented

in Section 5.1.2. U-Net (1) to U-Net (4) all have the same U-Net structure [29], but the loss

and optimizer combinations are different. TTA U-Net (3) and TTA U-Net (4) are models that

apply TTA to U-Net (3) and U-Net (4), respectively. Finally, in order to obtain a more com-

plete performance comparison, segmentation models different from U-Net were also tested,

namely FCN [30], DeepLabv3 [31], and Nested U-Net [32].

Each of the nine TR-based deep learning models consists of an encoder that extracts fea-

tures from a patch and a decoder that reconstructs the patch as a mask. We initialized the

encoder through transfer learning [33], making use of pre-trained parameters from two

benchmark datasets, namely ImageNet [34] and MS COCO 2017 [35]. Afterwards, Dataset B

was used to fine-tune the parameters of each model. Specifically, as shown in Fig 5, 4-fold

cross-validation was performed. Finally, each fine-tuned model was evaluated through the

respective test set and the average of the four results was taken to obtain the final effectiveness.

More details on the fine-tuning process are provided in S2.1 Section in S2 File. Information

on the used models is included in S2.2 Section in S2 File, and a detailed description of the loss

and the optimizer used can be found in S2.3 Section in S2 File and S2.4 Section in S2 File,

respectively. Transfer learning is discussed in S2.5 Section in S2 File, while the learning curves

for each model are included in S3 File.

4.3 Model testing

The testing phase aims at determining the effectiveness of the models that have been created

after fine-tuning. As shown in Fig 7, an input image I is split into small patches of the same

size, and each patch is then fed into the fine-tuned model. This model subsequently predicts

the corresponding mask patch. In the next step, the predicted mask patches are merged back

into a predicted mask. The effectiveness of a model is evaluated by determining the similarity

between the predicted mask and the ground truth mask. In this study, we also made use of

TTA, which is a method that aims at increasing the prediction effectiveness by applying one or

more augmentations to each patch. The augmented patches are then fed into the model to

make multiple predictions. These predictions, including that of the original patch, are com-

bined into a single prediction through simple pixel-wise averaging. A detailed explanation of

TTA can be found in S4.1 Section in S4 File.

To determine the final effectiveness of the different models, we adopted five metrics com-

monly used in the field of computer vision, namely balanced accuracy, recall, precision, F1-

score, and the Intersection-over-Union (IoU). A detailed description of each metric can be

found in S4.2 Section in S4 File. Since the already existing TR-based models do not need fine-

tuning, the final effectiveness, as measured by the different metrics, corresponds to the mean
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score of that metric over all images in the test set. On the other hand, since the TR-based deep

learning models were fine-tuned using four different fold combinations, the final effectiveness

was calculated by averaging the four means obtained for the different metrics (one mean per

fine-tuned model). A lowercase letter m is added in front of each metric to signify that the

numbers represent mean values.

4.4 Recovery assessment

To take into account the point-of-view of environmental scientists, we also evaluated the effec-

tiveness of the best model in predicting MP count by assessing its recovery ability. This is done

by calculating the ratio of the predicted MP count to the baseline MP count (as obtained for

the ground truth mask), subsequently converting this ratio to a percentage. Percentage recov-

ery is more relevant in the field of MP monitoring since the level of MP contamination is usu-

ally expressed as the number of MP per weight or volume of the sample under investigation

[36]. In this respect, it should be clear that an accurate prediction of the MP count is of utmost

importance.

For this purpose, five images containing fluorescent MP standards, which are microplastics

of known composition (polymer type and average size), were created. These images are

referred to as spiked images since microplastics were intentionally added (available at http://

www.kaggle.com/sanghyeonaustinpark/mpset). The polymer types used were HDPE (high-

density polyethylene; Dow™ HDPE KT 10000 UE), and PET (polyethylene terephthalate; Ligh-

ter™ C93 PET). The MP standards were prepared using a controlled milling process by the

Center of Polymer and Material Technologies of the Department of Materials, Textiles and

Chemical Engineering of Ghent University. HDPE (1 mg) and PET (0.5 mg) were suspended

in 15 ml zinc chloride and stained following the procedure described in Section 3.1. After-

wards, images were captured and the masks were generated following the steps outlined in Sec-

tion 3.2. These masks were then manually corrected through individual pixel annotation by

three different researchers (see S1.1 Section in S1 File). Through a majority voting strategy, the

final MP count was determined, which was used as the baseline (ground truth).

Fig 7. Mask generation for the fluorescence images in the set used for testing. The generated masks are compared

with the ground truth masks to evaluate the effectiveness of a model, hereby using different metrics. When TTA is not

implemented, the predicted mask patches are generated directly from the fluorescence patches. In contrast, when TTA

is implemented (depicted with a dotted box), the fluorescence patches are augmented and the masks obtained for these

patches are merged into a single mask by taking the pixel-wise average of each prediction.

https://doi.org/10.1371/journal.pone.0269449.g007
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4.5 Statistical analysis

Student’s t-test was used to compare the mean positive pixels (MP pixels in a mask) between

the ground truth and the different methods under investigation, which include the deep learn-

ing models and the already existing tools. The Bartlett test was performed prior to the Student’s

t-test to validate equal or unequal variance between the ground truth and the predicted mask

that is under consideration. In addition, ANOVA was applied to detect differences in the

means of the number of TPs (true positives), FPs (false positives), TNs (true negatives), and

FNs (false negatives) obtained from the masks generated by the different methods. A TP

denotes an MP pixel correctly predicted as MP, an FP denotes a background pixel wrongly

predicted as an MP pixel (Type 2 error), a TN refers to a background pixel correctly predicted

as background, and an FN denotes an MP pixel wrongly predicted as a background pixel

(Type 1 error). Failure to reject the null hypothesis would indicate that the mean number of

either TPs, FPs, TNs, or FNs between different models is not significantly different.

5 Results and discussion

The ability of MP-VAT, MP-VAT 2.0, and C-VAT to predict the quantity of MP in a fluores-

cence image was first evaluated using the 99 images in Dataset B. These predicted MP quanti-

ties were compared to what we consider to be the true MP count derived from the masks,

following the procedure described in S1.1 Section in S1 File.

Based on Fig 8, the predicted quantity of MP is frequently higher than the ground truth

quantity when MP-VAT and MP-VAT 2.0 were used. In the case of C-VAT, all predictions

were over-estimated. This mismatch between the binary masks created by the three existing

methods and the fluorescence images is most likely caused by the use of global thresholding, as

previously described in Section 2.2. Furthermore, the observed errors, particularly for

MP-VAT and MP-VAT 2.0, may also be caused by background fluorescence and fluorescence

halos belonging to very bright particles, as previously noted by the authors of [6].

Fig 8. Accuracy of MP counts by MP-VAT, MP-VAT 2.0, and C-VAT. Predictions of MP quantity that are less than,

equal to, and more than that of the ground truth are denoted as under-estimation, exact, and over-estimation,

respectively. At least 94% of the predicted values from C-VAT, MP-VAT, and MP-VAT 2.0 were over-estimations.

https://doi.org/10.1371/journal.pone.0269449.g008
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In the following sections, we compare the effectiveness of the three already existing meth-

ods to the effectiveness of our deep learning models. We would like to emphasize that we first

carried out experiments using U-Net (1)—(3), as previously discussed in [8]. After observing

the good effectiveness of U-Net (3), as shown in Table 4, we decided to additionally investigate

the effect of changing the optimizer from Adaptive Moment Estimation (Adam) to Stochastic

Gradient Descent (SGD) [37, 38]. This new combination of Dice loss and SGD resulted in the

creation of U-Net (4). Moreover, given that U-Net (3) and U-Net (4) are the most effective

U-Net variations, we also decided to equip these models with TTA, as described in more detail

in S4.1 Section in S4 File. Finally, we also experimented with a number of other contemporary

models, namely FCN [30], DeepLabv3 [31], and Nested U-Net [32].

5.1 MP and background classification (segmentation)

5.1.1 Qualitative results. Figs 9 and 10 visualize the differences in the binary masks gen-

erated by the different approaches used, relying on a representative patch taken from one of

the images in the test set. In the different masks shown, the background pixels are white (TNs).

The TPs, the FPs, and the FNs are colored black, red, and green, respectively.

As shown in Fig 9, it is evident that all deep learning models perform better than MP-VAT

2.0 and C-VAT. In particular, for the different U-Net variations, we observe a significant

reduction in the number of FPs and the number of FNs. The same observation can be made

for the masks generated by TTA U-Net (3), TTA U-Net (4), FCN, DeepLabv3, and Nested

U-Net, as illustrated in Fig 10. Among the different models evaluated, U-Net (1) closely resem-

bles MP-VAT and comes with the highest number of FPs. On the other hand, FCN generates

the highest number of FNs. FCN and DeepLabv3 seem to be prone to errors caused by MP

pieces that are in close proximity to each other. This can be seen in the lower right insets of Fig

10(d) and 10(e), showing how two MP pieces are merged into one. Based on the aforemen-

tioned observations, we can conclude that U-Net (1), FCN, and DeepLabv3 perform poorly

compared to the other models.

Furthermore, we observe that only minute differences can be found between the masks gen-

erated by U-Net (2), U-Net (3), and Nested U-Net. On the other hand, U-Net (4) shows a sub-

stantial reduction in the number and the size of the FP regions. Although there are faint traces

of visible FN regions, the mask created by U-Net (4) still closely resembles the ground truth

Table 4. Performance results obtained for Dataset B. The numbers between parentheses are standard deviations. The last column contains the p-values of the t-test com-

paring the mean MP pixel count between ground truth and predicted masks.

Model Loss Optimizer mAccuracy mRecall mPrecision mF1-score mIoU p-value

MP VAT X X 0.731 (0.056) 0.965 (0.111) 0.451 (0.212) 0.574 (0.218) 0.429 (0.190) 0.001

MP VAT 2.0 X X 0.527 (0.161) 0.561 (0.317) 0.172 (0.248) 0.191 (0.199) 0.119 (0.131) 0.001

C-VAT X X 0.542 (0.174) 0.629 (0.383) 0.007 (0.021) 0.012 (0.035) 0.006 (0.019) 0.002

U-Net (1) BCEWithLogits SGD 0.692 (0.013) 0.883 (0.026) 0.517 (0.091) 0.601 (0.079) 0.466 (0.070) 0.278

U-Net (2) DiceBCE Adam 0.637 (0.011) 0.775 (0.022) 0.783 (0.022) 0.727 (0.004) 0.601 (0.004) 0.723

U-Net (3) Dice Adam 0.633 (0.011) 0.767 (0.021) 0.794 (0.013) 0.728 (0.002) 0.606 (0.004) 0.896

U-Net (4) Dice SGD 0.640 (0.020) 0.779 (0.040) 0.803 (0.041) 0.736 (0.014) 0.617 (0.018) 0.639

TTA U-Net (3) Dice Adam 0.597 (0.029) 0.694 (0.058) 0.820 (0.055) 0.696 (0.015) 0.562 (0.016) 0.607

TTA U-Net (4) Dice SGD 0.648 (0.026) 0.795 (0.052) 0.766 (0.072) 0.726 (0.017) 0.600 (0.024) 0.711

FCN Dice SGD 0.610 (0.020) 0.719 (0.039) 0.659 (0.024) 0.637 (0.012) 0.488 (0.009) 0.751

DeepLabv3 Dice Adam 0.623 (0.021) 0.745 (0.042) 0.634 (0.030) 0.643 (0.008) 0.495 (0.009) 0.917

Nested U-Net BCEWithLogits Adam 0.675 (0.019) 0.851 (0.039) 0.710 (0.045) 0.725 (0.007) 0.597 (0.010) 0.556

https://doi.org/10.1371/journal.pone.0269449.t004
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mask, compared to the masks produced by U-Net (2), U-Net (3), and Nested U-Net. Moving

to the TTA counterparts of U-Net (3) and U-Net (4), there seems to exist a subtle difference

between U-Net (3) and TTA U-Net (3), as illustrated by the masks that can be found in Figs 9

(h) and 10(b), respectively. In contrast, the mask produced by TTA U-Net (4), as shown in Fig

Fig 9. Visual comparison of the masks generated when making use of MP-VAT, MP-VAT 2.0, C-VAT, and the

U-Net variations. For better visualization and understanding, regions with MP are also represented by making use of

zoomed-in insets. Black denotes MP that has been correctly predicted (TP), red denotes predicted MP that is not MP

(FP), and green denotes MP that has not been predicted as MP (FN). (a) Fluorescent patch. (b) Inset of each MP. (c)

Ground truth. (d) MP-VAT. (e) MP-VAT 2.0. (f) C-VAT. (g) U-Net (1). (h) U-Net (2). (i) U-Net (3). (j) U-Net (4).

https://doi.org/10.1371/journal.pone.0269449.g009
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10(c), contains more FP regions compared to the mask produced by U-Net (4), as shown in

Fig 9(i). In summary, U-Net (4) comes with the highest number of TPs and the lowest number

of FPs and FNs, making it the best performing model in qualitative terms.

5.1.2 Quantitative results. Table 4 shows the quantitative results obtained for Dataset B,

as described in detail in S1.1 and S1.2 Sections in S1 File.

A comparison of the mean MP pixel count between the ground truth and the predicted

masks was performed for the three existing methods and the TR-based deep learning models.

A significantly higher mean pixel count was observed for MP-VAT, MP-VAT 2.0, and for

C-VAT, as shown in the last column of Table 4. This result agrees with the previous observa-

tions that these three existing tools overestimate the quantity of MP. On the other hand, none

of the predictions made by the deep learning models showed significant differences from the

ground truth, suggesting that, in this respect, these models perform better than already existing

tools. When the mean values of pixels corresponding to TPs, FPs, TNs, and FNs were com-

pared through ANOVA, both mean FP and mean TN were found to be considerably different

(p< 0.05) between MP-VAT, MP-VAT 2.0, C-VAT, and each of the deep learning models

(the detailed numbers can be found in the S1 Table). Based on this observation, a reduction in

the number of FPs and subsequent improved recognition of TNs seems to have been achieved

by the deep learning models, thereby leading to MP quantity predictions that are similar to the

ground truth. Among the nine TR-based deep learning models, U-Net (1) showed the highest

effectiveness in terms of mAccuracy (0.692) and mRecall (0.883). On the other hand, TTA

U-Net (3) obtained the highest mPrecision (0.820), whereas U-Net (4) achieved the highest

Fig 10. Visual comparison of the masks generated when making use of TTA, FCN, DeepLabv3, and Nested U-Net.

For better visualization and understanding, regions with MP are also represented by making use of zoomed-in insets.

Black denotes MP that has been correctly predicted (TP), red denotes predicted MP that is not MP (FP), and green

denotes MP that has not been predicted as MP (FN). (a) Ground truth. (b) TTA U-Net (3). (c) TTA U-Net (4). (d)

FCN. (e) DeepLabv3. (f) Nested U-Net.

https://doi.org/10.1371/journal.pone.0269449.g010
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mF1-score (0.736) and the highest mIoU (0.617). Given these observations, we conclude that

the most effective models are U-Net (1), TTA U-Net (3), and U-Net (4), in no particular order.

In order to select the most effective model, we decided to attach more importance to metrics

that appropriately capture the concept of distinguishing MP, which is a sparse class, from

other image elements. In this respect, the metrics highly influenced by TP were considered to

be relatively more significant.

As shown in S4.2 Section in S4 File, mAccuracy is highly affected by TN. Indeed, since TN

corresponds to correctly identified background, its value is substantially higher than the value

of TP. For this reason, mAccuracy was considered to be a metric of less importance. On a simi-

lar note, both mRecall and mPrecision assign significant weight to TP. However, these two

metrics only account for either FP or FN. Because of this, mRecall and mPrecision were also

considered to be of less importance. Furthermore, mF1-score and mIoU comprehensively take

into account TP, FP, and FN. In addition, they are not affected by TN, thereby making them

the most suitable metrics to determine the most effective model. As a result, U-Net (4), which

showed the highest mF1-score and mIoU, was chosen as the best TR-based deep learning

model. This choice is also supported by the mask patches presented in Figs 9 and 10. As dis-

cussed in Section 5.1.1, the masks generated by U-Net (4) resemble the ground truth masks

more closely, compared to the masks produced by other models. Hence, U-Net (4), which is

referred to as MP-Net throughout the remainder of the paper, exhibited the best performance,

both quantitatively and qualitatively.

Additional experimental results such as assessment of the use of different encoders, analysis

of the impact of TTA, and an ablation study on different types of augmentation, can be found

in S6.1, S6.2 and S6.4 Sections in S5 File, respectively.

5.2 Recovery assessment

Recovery assessment was performed using MP-Net, which was found to be the best TR-based

deep learning model. This type of assessment was conducted using two sets of images with a

different level of complexity: (1) a first set of five spiked images containing only MP standards

and (2) a second set of 15 real images of MP extracted from clams. In the spiked images (avail-

able at http://www.kaggle.com/sanghyeonaustinpark/mpset), the MP standards have less vari-

ability in particle size and shape since they were produced through a controlled milling

process. On the other hand, the real images contain MP with a varying size and shape since

they were extracted from environmental samples, specifically from clams, thus adding com-

plexity to the images. Due to the limited availability of MP standards, only five spiked images

were created for recovery assessment.

As shown in Table 5, the different versions of MP-VAT obtain extremely high percentage

recoveries for the spiked images, with a minimum of 169% and a maximum of 299%. Similarly,

C-VAT shows percentage recoveries of more than 158%. This translates to detecting two to

three times the actual MP quantity. On the other hand, MP-Net shows percentage recoveries

close to 100% for the majority of the spiked images, obtaining an average of 107.8±9.2%.

When it comes to real images, the different versions of MP-VAT have even more extreme

percentage recoveries, as demonstrated in Table 6. Significantly high values of 3,200% and

5,940% were observed for MP-VAT and MP-VAT 2.0, respectively. C-VAT exhibits even

higher percentage recoveries, reaching values of up to 57,020%. For MP-Net, overestimation

was also observed but to a lesser extent, with a maximum percentage recovery of 150%. Some

cases of underestimation were also detected. For instance, samples 5 and 8 have percentage

recoveries of only 83% and 77%, respectively. Despite these high and low percentage recoveries
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obtained by MP-Net for real images, its output is still the closest to the ground truth, with an

average percentage recovery of 107.5±21.0%.

Overall, the different versions of MP-VAT and C-VAT consistently produce over-inflated

estimates of the MP quantity in both spiked and real images. As shown in Fig 11(a)–11(c) and

11e–11(g), the predicted values fall far from the ground truth, which is depicted by the blue

line. On the other hand, predictions from MP-Net lie closer to the blue line, as illustrated in

Fig 11(d) and 11(h).

6 Conclusions

In this study, we proposed and evaluated several computational approaches towards MP quan-

tification. To that end, we created a set of fluorescence microscopy images of MP, together

with corresponding binary masks. This was done by first extracting MP from clams and by

Table 5. MP count and percentage recovery obtained for five spiked MP images. The MP quantity predicted by MP-Net was much closer to the ground truth compared

to MP-VAT, MP-VAT 2.0, and C-VAT.

Sample

number

Ground truth (Majority

vote)

MP-VAT MP-VAT 2.0 C-VAT MP-Net

MP

count

Percentage

recovery

MP

count

Percentage

recovery

MP

count

Percentage

recovery

MP

count

Percentage

recovery

1 170 287 169 396 233 268 158 175 103

2 91 163 179 204 224 166 182 100 110

3 132 337 255 389 295 353 267 135 102

4 53 122 230 153 289 128 242 65 123

5 131 258 197 392 299 284 217 132 101

Average (Standard deviation) 206.0

(35.9)

268.0

(36.4)

213.2

(36.03)

107.8

(9.2)

https://doi.org/10.1371/journal.pone.0269449.t005

Table 6. MP count and percentage recovery obtained for 15 clam MP images. The MP quantity predicted by MP-Net was much closer to the ground truth compared to

MP-VAT, MP-VAT 2.0, and C-VAT.

Sample

number

Ground truth

(Majority

vote)

MP-VAT MP-VAT 2.0 C-VAT MP-Net

MP count Percentage

recovery

MP count Percentage

recovery

MP count Percentage

recovery

MP count Percentage

recovery

1 19 29 153 602 3,168 2,951 15,531 17 89

2 5 19 380 21 420 2,851 57,020 6 120

3 8 11 138 14 175 185 2,312 8 100

4 6 7 117 326 5,433 256 4,266 5 83

5 7 8 114 18 257 355 5,071 6 86

6 5 16 320 297 5,940 15 300 7 140

7 383 655 171 609 159 46,066 12,027 294 77

8 2 64 3,200 9 450 283 14,150 2 100

9 4 39 975 34 850 26 650 6 150

10 223 564 253 449 201 22,819 10,232 230 103

11 11 38 345 28 255 653 5,936 13 118

12 26 42 162 49 188 261 1,003 27 104

13 74 268 362 138 186 5,378 7,267 92 124

14 94 294 313 3,145 3,346 20,943 22,279 114 121

15 138 288 209 1,301 943 2,304 1,669 135 98

Average

(Standard deviation)

480.8

(781.5)

1,467.7

(2,002.5)

10,647

(13,415.1)

107.5

(21.0)

https://doi.org/10.1371/journal.pone.0269449.t006
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Fig 11. Recovery assessment. Comparison of MP counts obtained for five spiked images (a)—(d) and 15 real images

from clam samples (e)—(h). Red dots represent tested images. The x-coordinate refers to the ground truth MP count

and the y-coordinate denotes the predicted MP count. For a red dot above the first bisector (blue line), the number of

MPs is overestimated by the model (MP-VAT, MP-VAT 2.0, C-VAT and MP-Net). (a) MP-VAT. (b) MP-VAT 2.0. (c)

C-VAT. (d) MP-Net. (e) MP-VAT. (f) MP-VAT. (g) C-VAT. (h) MP-Net. MP count on spiked images (a)–(d). MP

count on images from clam samples (e)–(h).

https://doi.org/10.1371/journal.pone.0269449.g011
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subsequently applying Nile red staining, making it possible to highlight MP debris under a

microscope. Through a thorough survey of the literature, we identified already existing semi-

or fully automated tools used to analyze MP. Applying three of these tools, namely MP-VAT,

MP-VAT 2.0, and C-VAT, to our set of MP images showed that the use of a global TR-based

method results in MP overestimation and mislabeling. We hypothesized that these weaknesses

could be overcome by leveraging a TR-based deep learning model, with this end-to-end learn-

ing approach being able to mimic the way researchers identify MP in given fluorescence

microscopy images.

Next to MP-VAT, MP-VAT 2.0, and C-VAT, we tested and compared a total of nine deep

learning models through common performance metrics and visual inspection of the resulting

mask patches. U-Net (4), which we named MP-Net, was found to be the most effective in

terms of MP segmentation. Specifically, MP-Net exhibited the highest mF1-score and mIoU.

Furthermore, we found the masks generated by MP-Net to be the most consistent with the

ground truth masks. Recovery assessment using both spiked and real images also demon-

strated that MP-Net produces better predictions of MP count than the three already existing

tools. Indeed, even though slightly under- and overestimated MP counts were observed for

MP-Net, the percentage recoveries were much closer to 100%, compared to the percentage

recoveries obtained by MP-VAT, MP-VAT 2.0, and C-VAT.

As part of the study presented in this manuscript, we make available MAP, which stands for

Microplastics Annotation Package, an integrated MP annotation tool equipped with a user-

friendly graphical user interface. Specifically, MAP incorporates MP-Net, the first TR-based

deep learning model for MP detection, and the different TR-based models shown in Table 2.

For each piece of MP found in a mask (MC), MAP also creates a summary table containing

SM and SC. Furthermore, MAP provides options for manual annotation and model fine-tun-

ing, thereby allowing a model to be tailored to the specific needs of researchers.

Through this study, we would like to encourage researchers in the field of computer vision

to consider expanding their field of research with the topic of MP analysis. To that end, all the

code used in our experiments is made publicly available, together with a representative set of

patches obtained from real images (see Section 8.2). The five spiked images used in our recov-

ery assessment experiment are also released, together with the bright-field microscopy images

and the corresponding masks (see Section 8.3).

7 Directions for future work

7.1 Improving segmentation effectiveness

7.1.1 Investigating encoder and augmentation combinations. Looking at the additional

experimental results provided in S6.1 and S6.2 Sections in S5 File, we believe it is possible to

still find a better model than the already existing ones. In particular, although the performance

evaluation presented in S6.1 and S6.2 Sections in S5 File was conducted only for Fine-tuning

(1) (see Fig 5), the use of different encoder and augmentation combinations may result in a

higher effectiveness than that of MP-Net. Indeed, as illustrated in S6.1 Section in S5 File, the

use of a ResNet-18 encoder or a ResNet-34 encoder allows for a higher effectiveness than the

use of a ResNet-101 encoder. In addition, augmentation by combining random brightness and

random contrast allows achieving the highest values in terms of mAccuracy, mRecall, mF1-

score, and mIoU, as shown in S6.3 Section in S5 File. Considering these encoder and augmen-

tation combinations at the same time, it may be possible to obtain a TR-based deep learning

model that is even better performing. However, more extensive testing is needed to confirm

this hypothesis.
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7.1.2 Use of generative adversarial networks. As a candidate technique for building TR-

based deep learning models, it may be of interest to consider the adoption of Generative

Adversarial Networks (GANs). A GAN is a type of deep learning model that was introduced in

[39]. If we see a conventional deep learning model as a single model that learns the relationship

between input and ground truth pairs, making predictions close to the ground truth, then

GANs can be seen as structures that are composed of two models, namely a generator and a

discriminator. Assuming a computer vision use case, the generator receives a random number

and generates a fake input image. The discriminator then determines whether the input image

is real or fake. When these two models go through a series of training steps, the generator

learns to produce more plausible images. In other words, the generator learns to understand

the desired image characteristics.

Starting from the MNIST dataset [40], GANs have been gradually applied to computer

vision problems. For instance, [41, 42] present semi-supervised classification approaches using

GANs. Furthermore, Xue et al. [43], Zhang et al. [44], and Majurski et al. [45] are addressing

image segmentation problems using GANs.

Pix2pix [46], which uses conditional GANs, may be of particular interest. Here, a generator

takes as input an edge outline, a map, or a mask and then produces an output image corre-

sponding to the given input. The following use cases are suggested by the authors: (1) input:

satellite image, output: corresponding map image and (2) input: a silhouette image of an object

(e.g., a pair of shoes), output: an image containing the corresponding object. If such a model

receives a fluorescence microscopy image as input and subsequently outputs a corresponding

MP mask, then the effectiveness of this model can be evaluated and compared with other deep

learning-based approaches.

7.1.3 Use of active learning (human-in-the-loop). It may be of interest to incorporate a

tool from the field of artificial intelligence that is commonly referred to as Active Learning

[47] or Suggestive Annotation. Specifically, using this tool, it is possible to calculate the uncer-

tainty of each pixel in a given image and to actively suggest regions of high uncertainty for

researchers to examine and decide upon. That way, the model is able to learn the annotation

strategy used by researchers, leading to more accurate annotations.

7.2 Upgrading MAP

Our annotation software can be further improved in three ways.

First, it would be of interest to implement the RGB thresholding method of ImageJ. Unlike

already existing TR-based models that use a single threshold value, ImageJ has an option for

distinguishing MP pixels from background pixels by setting six thresholds, namely a minimum

and maximum threshold for each RGB channel. By incorporating this approach, users will be

able to proceed with MP monitoring in a more flexible way.

Second, it would be of interest to have support for individual MP visualization. Currently, it

is not possible to highlight a particular piece of MP in an image. Instead, all detected MP are

highlighted and enclosed in a box as shown in Fig 12(a). This can be improved by adding a

function that highlights a selected piece of MP, as shown in Fig 12(b), providing detailed visual

information regarding its size and shape. That way, it is possible to generate better visualiza-

tions for images having a high MP density. In relation to this, filtered visualizations could also

be incorporated where only MP with a specific shape or a particular size range are highlighted.

In that manner, the annotation software becomes more interactive.

Third, it would be of interest to have support for batch processing and batch reports. Usu-

ally, MP monitoring studies generate one fluorescence image per sample. Each image is then

individually analyzed using the desired TR-based method, resulting in the generation of a file
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containing MC, SM, and SC for each piece of MP found in the given image. This means that,

when there are multiple images, an identical number of files will be produced. Researchers

have to collect and organize these files in order to analyze and synthesize the data generated.

To assist researchers in this task, we plan to add a function to MAP that provides batch pro-

cessing of multiple images, followed by the generation of an integrated statistical report con-

taining summarizing charts and tables, thus making it possible to reduce the amount of time

spent by researchers on data curation.

8 Software and dataset availability

8.1 MAP: A GUI-based annotation tool

• Software name: Microplastics Annotation Package (MAP)

• Hardware & OS requirements: PC (Windows, Linux, Mac)

• Year of first official release: 2021

• Code size: 8 MB (+35 * 233 MB for model parameters)

• Availability: https://github.com/powersimmani/Microplastics-Annotation-Package

• License: GPL 3.0

• Documentation: README in GitHub repository

• Video tutorial: https://www.youtube.com/watch?v=ehmRbTbqOKU

8.2 MP-Net: Training and evaluation code for MP segmentation

• Software name: MP-Net

• Hardware & OS requirements: PC (Windows, Linux, Mac)

• Year of first official release: 2021

• Code size: 8 MB (+35 * 233 MB for model parameters)

Fig 12. Representative patches illustrating MP visualization in MAP.

https://doi.org/10.1371/journal.pone.0269449.g012
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• Availability: https://github.com/sanghyeonp/MP-Net

• License: MIT 3.0

• Documentation: README in GitHub repository

8.3 MP-Set: Fluorescence image and mask pairs used to obtain the

experimental results

• Dataset name: MP-Set

• Year of first official release: 2022

• Dataset size: 2.25 GB

• Availability: www.kaggle.com/sanghyeonaustinpark/mpset

• License: CC-BY 4.0

• Documentation: README in repository
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