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Abstract 

Approximately one-fourth of all cellular proteins represent integral membrane proteins 

(IMPs) that are transported through the cytosol across or into the organellar or plasma 

membrane. Transport of IMPs requires precise timing which needs to be precisely regulated 

for them to reach their final destination. Tail-anchored (TA) proteins represent specific class 

of membrane proteins that lack the N-terminal signal peptide, which targets the nascent 

polypeptide to the endoplasmic reticulum (ER) membrane for the co-translational 

transport. Instead, they possess single C-terminal transmembrane domain (TMD) that 

serves as their targeting signal. Therefore, TA proteins are transported only post-

translationally when the C-terminal TMD appears from the ribosome. The Guided Entry of 

Tail-anchored proteins (GET) pathway is the dominant way of how TA proteins find their 

way into the ER membrane. It is a multistep process that is mediated by six (Sgt2, Get1-

Get5) proteins in yeast and seven (plus Bag6) proteins in human, which involves recognition 

of a TA protein, its targeting to the ER membrane and the actual membrane insertion. In 

addition to the model cell systems, some of GET pathway components were studied in 

plants and recently in Plasmodium falciparum, which makes our knowledge on the 

distribution and the general mechanism of the pathway very limited. 

We used parasitic protist Giardia intestinalis as model organism to study the general 

aspects of GET pathway and also to understand the evolution of this eukaryote-specific 

machinery. Detailed characterization and crystal structures of G. intestinalis Get3 greatly 

contributed to our understanding of the Get3 catalytic cycle during the transport of TA 

proteins. In addition, the identification of the GET pathway components in G. intestinalis, 

showed the involvement of a Bag6 homologue, which was so far known only in metazoan 

species. Our data show that last eukaryotic common ancestor (LECA) possessed all the GET 

pathway components (Sgt2, Get1-Get5, Bag6) and therefore Bag6 was secondarily lost in 

some lineages of eukaryotes including yeast. Our results from both the experimental and 

bioinformatic studies suggest that the GET pathway is an ancestral eukaryotic pathway with 

critical role for eukaryotes. 
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Abstrakt 

Membránové proteiny, které tvoří přibližně jednu čtvrtinu všech proteinů v buňce, jsou 

transportovány skrze hydrofilní prostředí cytosolu, než jsou integrovány do membrány 

organel, nebo do plasmatické membrány. Jedná se o složitý proces, který vyžaduje správné 

načasování i souhru řady zúčastněných proteinů. Skupina transmembránových proteinů, 

tzv. Tail-anchored (TA) proteinů, neobsahuje klasický signální peptid umístěný na N-konci 

proteinu, který proteiny cílí k membráně endoplasmatického retikula. Tato informace je 

místo toho obsažena v jediné transmembránové doméně na C-konci TA proteinů. Z tohoto 

důvodu musí být TA proteiny transportovány až po ukončení translace. Hlavní způsob 

transportu TA proteinů je zprostředkován tzv. Guided Entry of Tail-anchored protein drahou 

neboli GET drahou. Tuto dráhu tvoří u kvasinek celkem šest (Sgt2, Get1-Get5) a u člověka 

sedm (navíc Bag6) proteinů, které mají za úkol rozeznat a navázat TA protein, přenést ho 

k membráně endoplazmatického retikula a zprostředkovat jeho vložení do membrány. 

Kromě modelových systémů, byly některé z proteinů GET dráhy studovány u rostlin a u 

Plasmodium falciparum. To do značné míry komplikuje naše pochopení obecného 

mechanismu dráhy i její využití napříč eukaryoty. 

Rozhodli jsem se proto charakterizovat GET dráhu u parazitického prvoka Giardia 

intestinalis, který představuje divergentního zástupce eukaryot. Krystalické struktury a 

detailní charakterizace Get3 homologu z G. intestinalis doplňují potřebné informace 

k pochopení obecné funkce a cyklování Get3 proteinu v průběhu transportu TA proteinů. 

V G. intestinalis jsme identifikovali všechny proteiny GET dráhy, a to včetně homologu Bag6 

proteinu, který byl doposud považován za inovaci přítomnou pouze u zástupců skupiny 

Metazoa. Na základě našich výsledků můžeme vyvodit, že všechny proteiny GET dráhy byly 

přítomny u posledního společného předka eukaryot (LECA) a že Bag6 protein byl u 

některých eukaryotických linií sekundárně ztracen. GET dráha proto představuje evolučně 

konzervovaný mechanismus, který je nezbytný pro správnou funkci eukaryotické buňky. 
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Introduction 

Eukaryotic cells contain multiple membrane enclosed organelles, such as the nucleus, 

the endomembrane system, mitochondria, peroxisomes, and chloroplasts in plants. 

Integral membrane proteins (IMPs), among others, mediate communication throughout 

cell membrane compartments, and are involved in various signal and transport pathways 

(F. Li et al., 2021). The number of IMPs varies across species, but they constitute 

approximately one-fourth of protein-coding genes (Krogh et al., 2001). IMPs contain 

different number of TMDs formed by transmembrane helix of about 20 hydrophobic amino 

acids; a length spanning the lipid bilayer (White et von Heijne, 2005). Bacterial and archaeal 

IMPs are transported directly to the plasma membrane (Xie et Dalbey, 2008). Eukaryotic 

cell compartmentalization evolved mechanisms for sorting and transport of proteins into 

the organelles (Mayerhofer, 2016; Wiedemann et Pfanner, 2017; X. Xu et al., 2021). 

However, most of the eukaryotic IMPs are first transported into ER, which is evolutionary 

derived from plasma membrane (Baum et Baum, 2014). Translation in the aqueous 

environment of the cytosol requires protection of the hydrophobic regions and molecular 

machineries for the targeting and transport of IMPs into the membrane. In case of a flaw, 

IMPs aggregate, mislocalize and undergo degradation (Guna et Hegde, 2018). 

The central point of this thesis is GET pathway, a pathway that post-translationally 

targets and transports TA proteins, to the ER membrane. The GET pathway, together with 

its individual components, has been intensively studied in recent years and therefore 

an attempt to summarize all information is beyond the scope of this work. 

In order to study post-translational protein transport to the ER, we consistently use our 

model organism the parasitic protist G. intestinalis. The next section of this thesis provides 

a detailed description of this model organism, and is followed by sections covering general 

information on TA-proteins and the concept of the GET pathway. Publication 1 and 

Manuscript 2, in the order enclosed in this PhD thesis, cover the detailed description of 

the results of this first part. 

In addition, our work on the targeting of TA proteins led us to different of cellular 

process besides the GET pathway. The mislocalization of the ER-destined TA protein to 
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mitosomes (reduced mitochondria in G. intestinalis; details are provided below) was 

observed during the study of mitosomal protein transport (Voleman, 2011). This prompted 

us to test potential role of 3’ untranslated region (UTR) of mRNA in protein targeting and 

the role of RNA-binding proteins of the PUMILIO family. The results of this study are 

summarized in Publication 3. 

 

1. Giardia intestinalis 

The anaerobic protist G. intestinalis (syn. G. lamblia and G. duodenalis) infects a wide 

range of hosts and causes a disease giardiasis. G. intestinalis belongs to the Metamonada 

group, which includes both parasitic and free-living (e.g., Trepomonas, Carpediemonas) 

organisms and is considered one of the earliest divergent eukaryotic lineages (Adl et al., 

2012). Giardia species are classified into eight assemblages (A-H) based on genetic 

differences and host specificity, whereas only assemblages A or B can infect humans (Monis 

et al., 2009). Giardiasis is a worldwide disease with annually more than 200 million 

symptomatic cases while around 1 billion people are estimated to be infected each year. 

The prevalence of giardiasis is even ten times higher in developing countries (Torgerson et 

al., 2015). 

Infection of G. intestinalis occurs via the oral-fecal route from contaminated water or 

food. Life cycle involves two major stages: infective cysts and motile trophozoites. 

Environmentally resistant cysts are ingested via contaminated water or food. Upon 

ingestion, the acidic environment in the stomach and the presence of trypsin and bile in 

the duodenum will initiate the infection: the trophozoites are released from the cyst 

(excystation) and attach to intestinal epithelial cells using their specific adhesive disc. These 

trophozoites actively multiply through binary fission and will eventually move further down 

in the small intestine where they will form infective cysts (encystation). G. intestinalis cysts 

are released from the host body through their digestive system and are immediately 

infectious for the next host (Ankarklev et al., 2010; Einarsson et al., 2016). The entire 

surface of the trophozoite is covered by highly immunogenic surface antigens that are 

called variant surface proteins (VSP). Only a single VSP protein is expressed at a time, but 
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expression changes from one VSP to another. This sophisticated system allows 

G. intestinalis to escape the host’s immune system. This antigenic variation is seen in vitro 

and during encystation and excystation processes (Carranza et al., 2002; Nash et al., 1990; 

Svärd et al., 1998). 

Giardiasis can be asymptomatic, but can also cause acute or chronic diarrhoea, which 

could be accompanied by nausea, vomiting, or abdominal cramps (Einarsson et al., 2016). 

In some cases, the infection may lead to years of chronic fatigue and long-term 

gastrointestinal disorders (Hanevik et al., 2014). Children with giardiasis can experience 

growth failure and malnutrition. The infection usually resolves on its own, but if not, drugs 

containing metronidazole are currently the first-line treatment for giardiasis (reviewed in 

Riches et al., 2020). 

G. intestinalis trophozoites have a typical pear-shaped form and distinctive microtubule 

cytoskeleton structures. Their four flagella pairs, adhesive disk, and the median body are 

crucial components for motility, division, attachment to the host’s intestine epithelium, 

encystation, and excystation (Hagen et al., 2020). Additionally, the presence of mitosomes, 

one of the most reduced mitochondrial related organelles, makes G. intestinalis even more 

unique (Tovar et al., 2003). Mitosomes are double membrane-bounded organelles without 

its own genome and with highly reduced translocation machinery. Mitosomes are devoid 

of respiration and ATP production and the only pathway retained in the mitosomes mediate 

the assembly of Fe-S clusters (Jedelský et al., 2011; Martincová et al., 2015; Nyindodo-Ogari 

et al., 2014). Other well-defined endomembrane components present in G. intestinalis are 

the endoplasmic reticulum, peripheral vacuoles and encystations-specific vesicles. 

G. intestinalis has long been believed to lack other common subcellular compartments, 

such as peroxisomes and the Golgi apparatus (Faso et Hehl, 2011). However, recently, two 

peroxisomal proteins were identified in silico and their localization in cytosolic vesicles 

suggest the presence of rudimentary form of peroxisomes in G. intestinalis (Acosta-Virgen 

et al., 2018). Similarly, Golgi like structures called encystation specific vesicles (ESVs), were 

observed in encysting cells. They originate from ER and are required for transport of cell 

wall material such as cyst wall proteins (Štefanić et al., 2009). The observed effect on 



4 

the growth of G. intestinalis cells after treating them with Brefeldin A, a drug that blocks 

protein transport through the Golgi apparatus in animals, suggests the presence of 

a rudimental Golgi apparatus or an alternative pathway. Other studies have shown 

participation of the ER in protein sorting, thus potentially taking on Golgi apparatus 

functions in G. intestinalis (Faso et al., 2013; Klausner et al., 1992; Lujan et al., 1995; 

Zamponi et al., 2017). 

The WB isolate (assemblage A) is the most studied G. intestinalis isolate and is 

commonly used as a model organism in the laboratory. This strain was isolated from 

a patient W.B. who suffered from chronic symptomatic giardiasis, after getting infected in 

Afghanistan. The G. intestinalis culture of this strain was further axenized at the NIH (Nash 

et al., 1985; Smith et al., 1982). The genetic manipulation (stable episomal transfection) of 

G. intestinalis is based on DNA electroporation and the subsequent use of antibiotics as 

selectable markers (Singer et al., 1998; Sun et al., 1998; Yee et Nash, 1995). Cells are 

maintained in vitro in complex media TYI-S-33 (Keister, 1983) and the protocols for 

excystation and encystation in vitro are also well established (Bingham et Meyer, 1979; 

Gillin et al., 1988). Furthermore, the genome of isolate WB was the first sequenced genome 

of G. intestinalis (Morrison et al., 2007) and was recently re-sequenced (F. Xu et al., 2020). 

G. intestinalis contains two nuclei with a compact tetraploid genome distributed on five 

chromosomes. Genome ploidy varies during the life cycle of G. intestinalis from 4N in 

trophozoites to 16N in the cysts (Bernander et al., 2001). However, morphologically similar 

two nuclei may differ in genome size and number of genes, which is caused by deletions 

and aneuploidy (Tůmová et al., 2007, 2016). Originally, G. intestinalis was assumed to be 

asexual, but genes encoding meiotic proteins have been found in the genome. Population 

genetic studies and the surprisingly low sequence heterozygosity in the G. intestinalis 

genome indicated the presence of an unknown system for recombination between 

assemblages (Ankarklev et al., 2012; Cooper et al., 2007; Ramesh et al., 2005). DNA 

exchange between nuclei in one cell (diplomixis) has been suggested to occur during 

encystation, yet no sexual reproduction has been directly observed in G. intestinalis 

(Carpenter et al., 2012; Poxleitner et al., 2008). 
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G. intestinalis genome contains minimal noncoding regions, short 5´ and 3´ UTRs, and 

very few introns; specifically, eight cis and five trans introns (Elmendorf et al., 2001; Franzén 

et al., 2013; L. Li et Wang, 2004; Svärd et al., 1999; F. Xu et al., 2020). In total, 4,963 protein 

encoding genes and additional 306 pseudogenes were annotated in genome. Predicted 

proteins with unknown functions represent 42% of G. intestinalis of the conceptual 

proteomes (F. Xu et al., 2020). In addition to the gene transfection technique mentioned 

above, a variety of tools have been developed for studying G. intestinalis. Homologs of 

Argonaut and Dicer, components of RNA interference (RNAi), were detected in 

G. intestinalis and RNAi was used for gene silencing to find new drug targets and to study 

antigenic variation (Marcial-Quino et al., 2017; Prucca et al., 2008). So far, using the RNAi 

as functional tool for controlling gene expression have not been utilised in G. intestinalis, 

like it is frequently done for trypanosomes (Balaña-Fouce et Reguera, 2007). Morpholino 

oligonucleotides were used to block translation of various genes (Carpenter et Cande, 

2009). The first complete knockout of a G. intestinalis gene was carried out using 

the Cre/loxP system that enabled to recycle the selectable marker for subsequent deletion 

of four gene alleles (Ebneter et al., 2016). The CRISPR/Cas9, CRISPRi and CasRx systems 

have been established in G. intestinalis cells for gene knockdowns (Z. Q. Lin et al., 2019; 

McInally et al., 2019; Shih et al., 2021) and only recently, the efficient and easily applicable 

CRISPR/Cas9 mediated gene deletion system was established (Horáčková et al., 2022). All 

these tools now allow to apply long missed functional genomics to study G. intestinalis 

biology. 

Because of its genomic reduction, G. intestinalis allows the study of minimal sets of 

cellular components that are needed for general biological pathways and cellular processes. 

The parasitic lifestyle, unique cellular structures, and early divergent origin make 

G. intestinalis an attractive object for studying cell and evolutionary biology. 
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2. Integral membrane proteins (IMPs) and their ways into the ER membrane 

The vast majority of the endomembrane IMPs are first transported to the ER membrane 

and subsequently to their final destination. Generally, the protein transport of ER-destined 

proteins occurs either co- or post-translationally. The best understood pathway depends 

on the signal recognition particle (SRP), which specifically recognizes the N-terminal signal 

peptide sequence on the nascent polypeptide that emerges from the ribosome during 

translation. Binding of SRP to the nascent peptide stops the translation and targets 

the entire complex to the proximity of the ER, where proteins are co-translationally 

transported into ER through the Sec61 translocon (reviewed by Hsieh et al., 2021). 

A special class of IMPs, called TA proteins, lacks the signal peptide at the N-terminus. 

Instead, it is the only TMD at the C-terminus of the protein that carries the targeting 

information (Kutay et al., 1993). Therefore, this group of proteins must be targeted to the 

ER post-translationally without the participation of SRP. Most of the TA proteins are 

targeted to the membrane through a specialised GET pathway, which has been so far well 

studied in mammals (Favaloro et al., 2008; Stefanovic et Hegde, 2007), yeast (Schuldiner et 

al., 2008), and also in plants (Srivastava et al., 2017; Xing et al., 2017). 

An alternate SRP-independent pathway (SND) has been found in yeast. Proteins with 

centrally positioned TMDs are captured by SND1 and directed to membrane localized SND2 

and SND3, which associate with the Sec translocon (Aviram et al., 2016). The mammalian 

homolog of SND2 participates in protein targeting into ER, but mammalian homologs of 

SND1 and SND3 have not yet been identified (Casson et al., 2017; Haßdenteufel et al., 

2017). Lastly, a subset of TA proteins is transported into the ER membrane through the ER 

membrane protein complex (EMC), of which the details were recently discovered 

(Chitwood et al., 2018; Guna et al., 2018). 
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2.1  Tail-anchored proteins 

TA proteins represent a special class of membrane proteins, that carry a single 

C-terminal TMD targeting and anchoring them to the ER membrane. TMD emerges from 

the ribosome when translation is completed, and therefore TA proteins must be inserted 

into the membrane post-translationally (Kutay et al., 1993). TA proteins make up 

approximately 2 – 5 % of all IMPs; specifically, more than 50 TA proteins were identified in 

yeast, over 400 in humans and more than 500 in plants (Burri et Lithgow, 2004; Kalbfleisch 

et al., 2007; Kriechbaumer et al., 2009). They are distributed across various cell 

compartments such as the ER, mitochondria, Golgi apparatus, peroxisomes, nuclear 

envelope, plasma membrane, or plastids (Borgese et al., 2003; Brito et al., 2019). Due to 

the conserved membrane topology the N-terminus of TA proteins is always exposed to 

the cytosol where it can participate in a number of cellular processes: SNARE mediate 

the membrane fusion during the vesicular transport (Y. Zhang et Hughson, 2021), Sec61β 

and Sec61γ are components of the ER translocon (Gemmer et Förster, 2020), Tom5 and 

Tom6 are part of the outer mitochondrial translocase (TOM) complex (Gupta et Becker, 

2021), and proteins from the Bcl-2 family serve as regulators of apoptosis (Wanderoy et al., 

2020). 

Although all TA proteins share C-terminal TMDs, the hydrophobicity and the length of 

TMDs can differ as well as the charge of surrounding amino acids. The combination of these 

features determines their terminal destination and the functional requirement of the GET 

pathway (Beilharz et al., 2003). In general, medium and highly hydrophobic TMDs are 

typical for the ER TA proteins, whereas long and strongly hydrophobic TMDs routes 

TA proteins to the Golgi apparatus or the plasma membrane. Mitochondria destined 

TA proteins usually carry weakly or medium hydrophobic TMDs and a positively charged 

C-terminal tail (Borgese et al., 2007; Costello et al., 2017; Figueiredo Costa et al., 2018; Rao 

et al., 2016). 

Besides the terminal destination, the hydrophobicity of TMD is crucial for the initial 

entry in the ER membrane. Highly hydrophobic TMDs are recognized by Get3 and 

transported through Get1/Get2 complex (Mariappan et al., 2011). However, up to one half 
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of TMDs are insufficiently hydrophobic to utilize the GET pathway. Experimentally, both in 

vitro and in vivo studies showed that TA proteins with lower hydrophobicity are inserted 

into the ER membrane by EMC complex. Nevertheless, Sec61β, the TA protein with 

moderate hydrophobicity has showed partial dependence on both insertases, suggesting 

overlap of these two pathways (Guna et al., 2018). 

Relatively little data exist about TA proteins in G. intestinalis. So far, 17 SNARE proteins 

were found in G. intestinalis (Elias et al., 2008). One of the identified G. intestinalis SNARE 

proteins is a homolog of Sec20. It has been previously shown that Sec20 is localized in 

the ER where it functions in retrograde transport to the ER (Burri et al., 2003; Sweet et 

Pelham, 1992). However, unexpectedly, G. intestinalis Sec20 homolog was localized in 

mitosomes (Elias et al., 2008). 

Therefore, we explored this atypical localization of Sec20 in more detail. The localization 

of Sec20 in G. intestinalis was determined either via its episomal expression as in 

the original study (Elias et al. 2008) or via specific polyclonal antibody raised against Sec20. 

Interestingly, while the episomally expressed Sec20 was always found in the mitosomes, 

the immunolabeling of the endogenous protein via specific antibody showed always the ER 

localization. Later, we studied the effect of the recombinant protein tag, the level of protein 

expression or the involvement of 3´UTR on Sec20 localization (Voleman, 2011). While up 

today we have not been able to explain the molecular basis for mistargeting of episomally 

encoded Sec20, these experiments prompted us to study general aspects of TA protein 

targeting in G. intestinalis. 

3. GET pathway 

According to current model, after the release of their hydrophobic C-tail from 

the ribosome, TA proteins are bound by the ribosome-associated chaperone Sgt2 (small 

glutamine-rich tetratricopeptide repeat [TPR]-containing protein 2) (F. Wang et al., 2010). 

Subsequently, Sgt2 recruits Get5 subunit of heterotetrameric Get4/Get5 complex. Through 

this connection, Sgt2 mediates the binding of Get3 ATPase to Get4 and allows the transfer 

of the TA protein to Get3. Sgt2 and Get4/Get5 complex act at the beginning of the GET 

pathway; hence, they are sometimes called as cytosolic or pre-targeting complex of 
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the GET pathway (Chartron et al., 2010, 2011; Gristick et al., 2015). Get3 with the bounded 

TA protein is released from the cytosolic complex and delivers TA protein to the membrane 

complex consisting of Get1 and Get2. These proteins recruit TA protein from Get3 and 

mediate the insertion of TA protein into the ER membrane (Aviram et Schuldiner, 2017; 

Borgese et al., 2019; Hegde et Keenan, 2011; Mariappan et al., 2011; McDowell et al., 2020). 

In metazoan, the GET pathway is named as transmembrane domain complex (TRC) 

pathway and includes homologs of all known yeast GET pathway components known under 

different names: Sgt2 (SgtA), Get3 (TRC40), Get4 (TRC35), Get5 (Ubl4A), and Get1/Get2 

(WRB/CAML). For simplicity, in this thesis the fungal nomenclature (Sgt2, Get1-Get5) will 

be used (Table 1). In addition to fungal homologs, the metazoan GET pathway contains Bag6 

protein which together with Get4 and Get5 homologs forms a heterotrimeric Bag complex. 

The complex facilitates the transfer of the TA protein from Sgt2 to Get3 and represents 

functional parallel to the heterotetrameric fungal Get4/Get5 complex (Leznicki et al., 2010; 

Mariappan et al., 2010; Mock et al., 2015; Vilardi et al., 2011; Yamamoto et Sakisaka, 2012). 

Models of both GET pathways are summarized in Figure 1. 

 

 

Table 1 Nomenclature of GET pathway components. 

 

Small glutamine-rich tetratricopeptide repeat-containing protein 2 (Sgt2); Guided entry 

of tail-anchored proteins (Get); Transmembrane domain complex (TRC); BCL2-associated 

athanogene 6 (Bag6); tryptophan rich basic protein (WRB); calcium-modulating ligand 

(CAML) 

yeast metazoan 

Guided Entry of TA proteins – GET pathway Transmembrane domain complex – TRC pathway 

Sgt2 SgtA 

Get3 TRC40 

Get4 TRC35 

Get5 Ubl4A 

- Bag6 

Get1 WRB 

Get2 CAML 
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Figure 1. Scheme of yeast and metazoan GET pathway 

TA protein is captured by Sgt2 chaperon with the help of Hsp70 chaperone. Subsequently 

TA protein is transported to Get5/Get4 complex in yeast (top) or to Get4/Bag6/Get5 

complex in metazoan (bottom). TA protein is then captured by Get3 which delivers it to 

the membrane complex of Get1/Get2 for the insertion into ER membrane. 

 

 

3.1 Chaperones and first steps of GET pathway 

The existence of different ways of transporting proteins from the ribosome to their 

destination raises the question of how exactly proteins are sorted during translation. It is 

known, that SRP is ribosome binding protein and recognizes the cargo at the beginning of 

translation (Halic et al., 2004; Hsieh et al., 2021). Recognition of nascent TA proteins 

emerging from the ribosome is a dynamic multi-step process. Key to the process is to 

minimize the exposure of the hydrophobic C-tail to the aqueous environment of the cytosol 

and limit the protein aggregation. Capture of TA protein by chaperone Sgt2 was a generally 

accepted as a first step of the GET pathway. However, recent reports showed that Sgt2 itself 

is not sufficient to maintain the solubility of TA proteins as they require initial capture by 

cytosolic Hsp70 (yeast Ssa1). Upon TA protein binding Hsp70, transfer the protein to Sgt2 

hereby initiating the cascade of TA protein transfers in the GET pathway. The importance 

of Hsp70 for TA protein targeting was confirmed by the fact that Hsp70 deletion disrupted 
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the delivery of TA protein into ER membrane in vivo (Cho et Shan, 2018). Additional two J-

domain containing cochaperones, Ydj1 and Sis1, have been shown to play essential roles in 

regulating Hsp70 activity. (Cho et al., 2021). 

The chaperone Sgt2 forms a homodimer through its N-terminal dimerization domain, 

which also interacts with ubiquitin-like (UBL) domain of Get5 in yeast or UBL domain of 

Bag6 in mammals (Chartron, VanderVelde, et al., 2012; Darby et al., 2014; Winnefeld et al., 

2006). The central highly conserved TPR domain interacts with multiple heat shock 

proteins. Affinity purifications of yeast Sgt2 confirmed the interaction with Hsp70 (yeast 

Ssa1/Ssa2), Hsp90 (yeast Hsc82) and Hsp104 (Chartron et al., 2011; Krysztofinska et al., 

2017; F. Wang et al., 2010) and similar interactions were also observed for mammalian Sgt2 

homolog (Roberts et al., 2015). Mutations within TPR domain impair the TA protein loading 

onto Sgt2 although TMD of TA protein occurs in the C-terminal glutamine rich region of Sgt2 

(Cho et Shan, 2018; Liou et Wang, 2005). Recently, structural model of Sgt2 showed that 

the C-terminal domain forms a hydrophobic groove which binds TMD at least 11 amino 

acids long. Structural similarities of Sgt2 with chaperone Sti1/HOP (STI1 domain, TPR 

repeats) indicated conserved role and common evolutionary origin of these chaperones 

(K. F. Lin et al., 2021; Schmid et al., 2012). 

In addition to the TA protein targeting, Sgt2 is also involved in regulation of mislocalized 

membrane protein in cytosol (Leznicki et High, 2012; Wunderley et al., 2014) and in 

retrograde protein transport by ER-associated degradation (ERAD) system for subsequent 

proteasomal degradation (Y. Xu et al., 2012). Both yeast and human Sgt2 proteins were 

identified as part of polyglutamine-formed protein aggregates, which are common 

pathological hallmarks of neurogenerative diseases such as Parkinson´s disease or 

amyotrophic lateral sclerosis (S. Kubota et al., 2021; Soto et Pritzkow, 2018). 

 

 

 



12 

3.2 Get4/Get5 and Bag6 

Get5 was originally described as a factor required for yeast mating and Get5 disruption 

led to growth defect (Hu et al., 2006; Iwanejko et al., 1999). Get4 was identified as a protein 

of unknown function that interacts with Get5 in a systematic screen of ribosomal associated 

proteins (Fleischer et al., 2006). Bioinformatic analysis of Get4 homolog from fish (Cee) 

revealed high conservation of the protein metazoan, yeast and also in Alveolata, but no 

Get4 orthologs were found in bacteria or archaea. Get4 was found to lack any known 

conserved domains or motifs, which complicated the initial function estimation (Fernandes 

et al., 2008). It was the experimental characterization of Get4 (and Get5) that showed 

protein(s) participation in TA protein targeting in yeast and mammals (Jonikas et al., 2009; 

Mariappan et al., 2010; F. Wang et al., 2010). 

Crystal structures of yeast Get4/Get5 complex revealed it as a heterodimer, which is 

mediated by the C-terminal dimerization domain of Get5. The Get4/Get5 interface is 

formed by C-terminus of Get4 (helix13 and14) and the N- terminal domain of Get5. Given 

the interaction of Get5 via the N-terminal UBL domain with Sgt2, it constitutes a bridge 

between Sgt2 and Get4. Several structural characterizations also revealed Get3 binding site 

on N-terminus of Get4 (Bozkurt et al., 2010; Chang et al., 2010; Chartron et al., 2010; 

Gristick et al., 2014). 

As mentioned above, in addition to Get4 and Get5, the metazoan cytosolic GET complex 

contains also Bag6 protein. The protein binds Get4 and Get5 independently on its 

C-terminal part of Bag6 (Mock et al., 2015) and this binding thus does not require mutual 

Get4 and Get5 interaction. This difference is reflected by distinct domain structure of both 

metazoan Get4 and Get5. While Get5 lacks the N-terminal domain, Get4 is missing the 

C-terminal helices 13 and 14, which mediate yeast counterpart interaction. (Leznicki et al., 

2010; Mariappan et al., 2010). 

Human Bag6 homolog is a large protein (1132 amino acids) that includes UBL domain at 

the N-terminus, central proline-rich domain, nuclear localization signal sequence (NLS) and 

modified BAG domain (mock BAG) at the C-terminus which is responsible for binding of 

Get4 and Get5 (Mock et al., 2015). Binding of Get4 to Bag6 conceals the NLS signal and 
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hence prevents Bag6 nuclear localization (Q. Wang et al., 2011). From the evolutionary 

perspective, Bag6 has so far been identified only in metazoan. 

Bag6 is a member of the BAG (Bcl-2 associated athanogene) family and it was originally 

described as human leukocyte antigen (HLA)-B-associated transcript 3 (BAT3) as a part of 

gene clusters on chromosome 6 together with human major histocompatibility complex 

(MHC) class III (Spies et al., 1989). Later, Bag6 was found to play a role in the immune 

response by regulating the expression of MHC class II, Th1 cells survival and activity of 

natural killer cells (Kämper et al., 2012; Pogge von Strandmann et al., 2007; Rangachari et 

al., 2012). Bag6 was also described as apoptosis regulator by interacting with Reaper 

protein, a central apoptosis effector in Drosophila melanogaster (Thress et al., 1998). Other 

studies reported various Bag6 roles in meiosis and spermatogenesis (Sasaki et al., 2008), 

gene expression (Nguyen et al., 2008), microtubules organization during ciliogenesis (He et 

al., 2020), ERAD and mislocalized proteins degradation (Hessa et al., 2011; Q. Wang et al., 

2011). The N-terminal part (UBL domain) of Bag6 was shown to interact with the Rpn10 

proteasome subunit, and the Bag complex together with the FBXO7-SCF E3 ubiquitin ligase 

is required for proper proteasome function (Kikukawa et al., 2005). Bag complex together 

with Sgt2 is involved in various cellular process and defect of these protein are associated 

with many human diseases, such as cancer or neurodegenerative diseases (Benarroch et 

al., 2019; Q. Wang et al., 2021). 

 

3.3 Get3 

The first identified and key component of the GET pathway is cytoplasmic ATPase Get3 

(Stefanovic et Hegde, 2007). Get3 undergoes ATP-dependent conformational changes to 

shuttle TA protein between the cytosolic and the ER membrane complex (Rome et al., 2013; 

Simpson et al., 2010; F. Wang et al., 2010). Several solved structures of different 

opisthokont Get3 homologs revealed that the protein functions as a homodimer stabilized 

by Zn2+ binding via four conserved cysteines. Get3 is composed of N-terminal nucleotide 

binding domain (NBD) and flexible α-helical region that forms the client-binding domain 
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(CBD) (Bozkurt et al., 2009; Gristick et al., 2014; Mateja et al., 2015; McDowell et al., 2020; 

Suloway et al., 2009). 

Conformational changes and dynamics of Get3 function have been intensively studied 

and resulted into a mechanistic model which connects the ATPase cycle to protein binding. 

Briefly, the ATP-bound Get3 is selectively captured by cytosolic GET complex. This 

interaction inhibits Get3 ATPase activity and induces TA protein transfer from Sgt2 to Get3. 

Dissociation of Get3-TA protein from the cytosolic complex activates ATP hydrolysis 

(Chartron, Clemons, et al., 2012; Chio et al., 2017; Hegde et Keenan, 2011). Subsequently, 

TA protein is released from Get3 after binding to the Get1/Get2 membrane complex and 

Get3 is dissociated after new ATP molecule is bound (Gristick et al., 2014; K. Kubota et al., 

2012; Mariappan et al., 2011; Rome et al., 2013, 2014; Stefer et al., 2011). 

Bacterial homologue of Get3 (ArsA) shares high sequence similarity with the eukaryotic 

protein. However, ArsA is not involved in protein transport and instead provides heavy 

metal resistance. Soluble ATPase ArsA in association with membrane channel ArsB 

mediates resistance by pumping toxic anions out of the cell (Chen et al., 1986). It contains 

two NBD and a metal binding site with three cysteine residues that are not conserved in 

eukaryotic homologs (Zhou et al., 2000). Archaeal homolog of Get3 exists as a tetramer and 

is capable of binding TA protein and delivery it to membrane. These data suggest 

an archaeal TA protein targeting pathway, although other archaeal orthologs of GET 

pathway components have not been identified yet (Borgese et Righi, 2010; Sherrill et al., 

2011; Suloway et al., 2012). 

Interestingly, several reports showed that Get3 serves not only in TA protein targeting 

but takes on additional role of an ATP-independent chaperone during stress conditions. 

Upon oxidative stress Get3 was observed to form reversible higher oligomeric assemblies 

via disulfide bridges and colocalizes with unfolded proteins and chaperons (Powis et al., 

2013; Ulrich et al., 2022; Voth et al., 2014). 

3.4 Membrane insertases Get1/Get2 

The first step of TA protein insertion into the ER membrane is mediated by 

the interaction of Get3 with the cytosolic domains of the transmembrane complex 
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Get1/Get2 in yeast (Schuldiner et al., 2008) or WRB/CALM in mammals (Vilardi et al., 2011; 

Yamamoto et Sakisaka, 2012). Positively charged amino acid residues within the soluble N-

terminal domain of Get2 are required for the recognition and capture of the Get3-TA 

protein complex (Stefer et al., 2011; Yamamoto et Sakisaka, 2012). Subsequently, the 

soluble coiled-coil domain of Get1 likely stabilizes the open form of the Get3 dimer, leading 

to nucleotide (ADP) release and disruption of the Get3-TA protein interaction. TA protein is 

then delivered to the lipid bilayer while Get3 is recycled (K. Kubota et al., 2012; Mariappan 

et al., 2011; Stefer et al., 2011; F. Wang et al., 2011). 

Get1 and Get2 create a stoichiometric complex (Get1/Get2) with an unclear structure 

(F. Wang et al., 2011, 2014). Three models of interaction between Get1/2 and Get3 are 

currently recognized: (i) static heterotetramer, (ii) static heterodimer and (iii) dynamic 

complex mode. In the first model, Get1/2 complex exists as a heterotetramer which binds 

single Get3 dimer at its opposite sites first by Get2 and later by Get1 or Get1/Get2 cytosolic 

domains (K. Kubota et al., 2012; Mariappan et al., 2011; Stefer et al., 2011). In the second 

model, the Get3-TA protein complex is captured by one copy of Get2 within a heterodimer 

and this interaction is later displaces by binding of one copy of Get1 (Zalisko et al., 2017). 

The dynamic model proposes assembly of Get1/Get2 tetramer from two heterodimer upon 

the arrival of Get3-TA protein complex (K. Kubota et al., 2012). The presence of Get1 is 

required for the correct topology and for post-translational insertion of Get2 into 

the membrane. If Get1 is not present, Get2 forms atypical topologies that are degraded by 

the proteasome (Carvalho et al., 2019). 

Interestingly, the bioinformatic analyses revealed unexpected relationship between 

Get1, mitochondrial, bacterial and archaeal protein insertases that belong to the Oxa1 

superfamily of protein (Oxa1/Alb3/YidC). Bacterial YidC mediates post-/co-translational 

protein insertion into cytoplasmic membrane mostly in concert with Sec translocase 

(Dalbey et al., 2014). Its eukaryotic homologues are found in the inner mitochondrial 

membrane (Oxa1 and Cox18) and the thylakoid membrane of plastids (Alb3 and Alb4) 

(Petrů et al., 2021). For a long time, the endomembrane system member of the Oxa1 

superfamily was not known until the identification of the archaeal homolog. Ylp1 (YidC-like 
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protein1) is a member of the protein family named “Domain of unknown function 106” 

(DUF106) (Borowska et al., 2015). Deep analyses of the DUF106 family revealed that this 

family includes not only archaeal proteins but also three eukaryotic proteins. Based on 

structural, functional and biochemical similarities, EMC3 (ER membrane complex subunit3), 

TMCO1 (transmembrane and coiled coil domains1) and Get1 protein families were assigned 

as members of Oxa1 superfamily. All proteins are located in ER membrane and they contain 

three TMD helices, cytosolic coiled coil part between the first and the second TMDs, 

orientation N-terminus in/C-terminus out, and hydrophilic groove for substrate binding 

(Anghel et al., 2017). 

The EMC3 protein is a component of the EMC complex that co-translationally inserts 

a multi-pass IMP into the ER membrane (Shurtleff et al., 2018). Defect in EMC3 in humans 

leads to retinal bipolar cell degeneration (Shurtleff et al., 2018; Zhu et al., 2020). TMCO1 

protein is a part of ER protein translocon, which function as insertase (McGilvray et al., 

2020) and also actively protects the ER from overfilling of Ca2+ (Q. C. Wang et al., 2016). 

Depletion of TMCO1 causes human cerebro-facio-thoracic dysplasia (Xin et al., 2010). 

In humans, Get1 encoding gene was located in the region of chromosome 21 associated 

with heart disease in individuals with Down syndrome. Therefore, Get1 is also called CHD5 

(congenital heart disease protein5) (Egeo et al., 1998). Cardiac abnormalities associated 

with Get1 homologs were also observed in other organisms: Danio rerio (Milan et al., 2009), 

medaka fish (Oryzias latipes) (Murata et al., 2009), Xenopus sp. (Sojka et al., 2014). 

Much less is known about the function and the evolution of Get2. Both yeast and 

mammalian Get2 homologs contain three predictable TMDs at the C-terminus, but this 

topology was not confirmed experimentally (Yamamoto et Sakisaka, 2012). While 

the soluble N-terminal part of Get2 is involved in the primary contact with the Get3-TA 

protein complex (Vilardi et al., 2014), the membrane embedded C-terminus of Get2 

interacts with Get1. This interaction was found for both the yeast and mammalian proteins 

(Colombo et al., 2016; Vilardi et al., 2014; Yamamoto et Sakisaka, 2012). Interestingly, yeast 

Get2 and mammalian CAML are so divergent in sequence that they were not considered as 

homologous proteins. Yet, recent bioinformatic search suggested a common evolutionary 
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origin for Get2 and CAML proteins at least across metazoan, fungi and plants (Borgese, 

2020). In addition, defects in CAML were also associated human pathogenesis, specifically, 

depletion of the protein plays role in the proliferation of cancer cells (Shing et al., 2017). 

 

4. RNA-binding protein and their role in protein targeting 

As was mentioned above (2.1.), the ER-destined Sec20 was mislocalized to mitosomes 

when episomally expressed in G. intestinalis. Our unpublished data showed that when 

expressed from the plasmid with the native 3´UTR partially Sec20 could be partially found 

in the ER (Voleman, 2011). These observations led us to investigate the potential role of 

3´UTR and RNA-binding proteins in localization of proteins in G. intestinalis. 

In addition to traditional co- and post-translational protein transport, new model based 

on SRP and translation independent mRNA targeting was described. Targeting of mRNA 

within the cell provide an effective mechanism for gene regulation, protein targeting and 

sorting (Cui et Palazzo, 2014). For example, protein p180 is ER-destined transmembrane 

protein, which represents a mRNA receptor mediating mRNA localization to the ER in 

mammals (Cui et al., 2012). Surprisingly, mRNA of two TA proteins (Sec61β and nesprin-2) 

were partially localized to the surface of ER and probably without participation of SRP, GET 

pathway proteins or p180 receptor (Cui et al., 2015). 

The well-studied group of RNA binding proteins are Puf (Pumilio and FBF) proteins, 

which interacts with the 3´UTR of mRNA in the cytosol or with rRNA in the nucleolus (Qiu 

et al., 2014; Thomson et al., 2007; Zamore et al., 1997). Every Puf protein contain C-terminal 

RNA binding domain, which is composed of Puf repeats and each of repeat binds a single 

base of RNA (Miller et al., 2008; Y. Wang et al., 2009). The RNA sequence motif recognized 

by Puf proteins is determined by the combination of three amino acids residues called 

tripartite recognition motif (TRM). This motif has been shown to be specific to particular 

base thus it is possible to predict RNA sequence motif that is bound by specific Puf protein 

(Campbell et al., 2014; Dong et al., 2011; C. Zhang et Muench, 2015). 

Based on binding domain composition and biological role, Puf proteins have been 

classified into three groups: (i) classical Puf proteins bind 3´UTR of mRNA and contain eight 
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puf repeats (X. Wang et al., 2002), (ii) Nop9 proteins contain 11 Puf repeats and participate 

in processing and folding of 18S rRNA in nucleolus (J. Zhang et al., 2016), and (iii) PUM3 

proteins contain 11 Puf repeats, bind double-stranded DNA or RNA, and are involved in 

nucleolar processing of the large subunit of the ribosome (Z. Li et al., 2009; Qiu et al., 2014). 

Classical Puf proteins together with additional protein partners participate in mRNA 

control through posttranscriptional regulation and translation repression (M. Wang et al., 

2018), but they can mediate mRNA localization, as well. Yeast protein Puf3p was shown to 

facilitate the localization of nuclear coding mRNA for mitochondrial proteins in close 

proximity of mitochondrial membrane and play role in mitochondrial biogenesis (Saint-

Georges et al., 2008). 

Hence, in this thesis, we have initiated the characterization of G. intestinalis Puf proteins 

in order to understand their biological role potentially also mediating proper distribution of 

TA proteins in the cell. 
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Aims and Objectives 

1) Characterization of G. intestinalis Get3 homolog 

2) Characterization of the GET pathway in G. intestinalis 

3) Reconstruction of the evolution of GET proteins in eukaryotes 

4) Identification of Puf homologs in G. intestinalis and elucidation of their potential role in 

mRNA/protein targeting 
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Summary and conclusion 

The main aim of my Ph.D. study and this thesis was the characterization of 

post-translational protein transport of TA proteins into the endoplasmic reticulum of 

G. intestinalis. In particular, we focused on the GET pathway, which post-translationally 

targets and inserts TA proteins into the ER membrane. This pathway was discovered 15 

years ago and is intensively studied in yeast and mammalian cell model systems (Schuldiner 

et al., 2008; Stefanovic et Hegde, 2007). Some components of the GET pathway were found 

in Arabidopsis thaliana and recently in Plasmodium falciparum, but less has been known 

about the GET pathway outside the Opisthokonta group of eukaryotes (Kumar et al., 2021; 

Srivastava et al., 2017; Xing et al., 2017). Therefore, the main goals of this thesis were: i) to 

identify homologs of GET pathway in G. intestinalis, ii) to characterize cytosolic complex of 

the GET pathway and iii) to reveal a broader view of the evolution of the GET pathway in 

the eukaryotes. 

The central and most conserved component of GET pathway is Get3 ATPase, which 

serves as a shuttle between the cytosolic complex and the ER membrane insertase (Rome 

et al., 2013; Simpson et al., 2010; Stefanovic et Hegde, 2007; F. Wang et al., 2010). We have 

identified Get3 homolog in G. intestinalis (GiGet3) with sequence identities 42.14% and 

44.67% to human and yeast homologues, respectively. We have used all available 

proteomes and transcriptomes to search Get3 homologs across eukaryotic diversity. 

Following phylogenetic analyses separated eukaryotic Get3 proteins into two clades (Fry et 

al., 2022), as previously described in the analyses with smaller datasets (Xing et al., 2017). 

This Get3 diversification suggests that LECA contained two Get3 homologs. Using 

the purified recombinant protein specific polyclonal antibody was raised against GiGet3 for 

further protein characterization of GiGet3 in vivo and in vitro. Cytosolic localization with 

partial ER signal of GiGet3 was confirmed by immunofluorescence assay and western blot 

analyses of cellular fractions. This localization is consistent with the known localization and 

function of Get3 (Rome et al., 2014; Stefanovic et Hegde, 2007). 

The ability of GiGet3 to bind and hydrolyse ATP was determined by in vitro ATPase assay 

(Fry et al., 2022). Analogously, the point mutation in ATP binding of GiGet3 site led to 
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enzyme inactivation as previously described (Mateja et al., 2009; Suloway et al., 2009). To 

show if GiGet3 is capable of TA protein binding, we first predicted a subset of possible 

G. intestinalis TA proteins. Co-expression of selected TA proteins with GiGet3 in Escherichia 

coli and subsequent affinity purification revealed a clear interaction of two TA proteins with 

GiGet3. The hydrophobicity values (transmembrane tendency scale) of the two identified 

G. intestinalis substrates correspond to the hydrophobicity of known TA proteins, which are 

transported by the GET pathway (Fry et al., 2021; Rao et al., 2016). 

In order to identify GiGet3 interaction partners, we adapted previously established 

method based of in vivo enzymatic tagging technique by biotin ligase (BirA) from E. coli 

(Martincová et al., 2015). Instead of chemical crosslinking and purification under strong 

denaturing conditions, we used milder native conditions without crosslinkers. This 

approach allowed us to find additional components (GiGet2 and GiGet4) of the GET 

pathway in G. intestinalis that we could not identify by bioinformatic approaches. This, 

however, was possible for Sgt2 homologue in G. intestinalis (GiSgt2). 

Several structural studies of opisthokont Get3 delineated current model of Get3 

functional cycle, which includes nucleotide free, ATP bound, and TA protein bound states. 

Briefly, when the open state Get3 binds ATP, the conformation is changed to the closed 

state and the binding of TA protein is allowed. When Get3 with the TA protein is targeted 

to the ER membrane, the conformational change after ATP hydrolysis allows TA protein to 

be released and inserted into the ER membrane by Get1/Get2 complex (Bozkurt et al., 

2009; Gristick et al., 2014; Mariappan et al., 2011; Mateja et al., 2009, 2015; Stefer et al., 

2011; Suloway et al., 2009). However, some steps and conformational details were still 

incomplete. Specifically, how Get3 changes from an open to a closed conformation and how 

the hydrophobic groove is shielded before TA protein binding. In all current structural 

analyzes, these regions were observed without enough structural detail (Mateja et al., 

2009; Suloway et al., 2009; Yamagata et al., 2010). 

The series of five structures of GiGet3, including three functional states, complete 

the mechanistic picture of the Get3 cycle. Nucleotide free forms of GiGet3 confirm 

previously describer fungal structures of open form of Get3 (Mateja et al., 2009; Suloway 
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et al., 2009; Yamagata et al., 2010). The semi-open form of GiGet3, and GiGet3 bound to 

ATP alone (without any client or binding partner), were first described conformations of 

any Get3 homologue. These structures also revealed how the hydrophobic binding groove 

is shielded in the apo Get3 states. Hence, the structural characterization of GiGet3 with the 

bound TA protein in the post-hydrolysis state represents a missing piece of the Get3 cycle. 

We have shown that apo states fluctuate in the cytosol between open, semi-open, and 

closed states until ATP binding stabilizes the closed conformation and creates a binding site 

for Get4 (Fry et al., 2022). Rearrangements and subsequent opening of the binding groove 

allow binding of the TA protein, as previously described in yeast Get3/Get4/Get5 structure 

(Gristick et al., 2014). Correct binding of TA protein to the Get3 binding groove induces 

hydrolysis, leading to opening of the Get3 dimer and subsequent release of Get4. Although 

Get3 slightly opens its dimer, the shielding of the TA protein by the hydrophobic groove 

remains undisturbed and the TA protein can be transferred to the ER membrane. 

Finally, the identification of additional components of the GET pathway (GiSgt2, GiGet4, 

and GiGet2) in highly divergent organism such as a G. intestinalis indicates a broad 

conservation of the GET pathway across eukaryotes (Fry et al., 2022). 

These results are summarized in Publication 1 “Structurally derived universal 

mechanism for the catalytic cycle of the tail-anchored targeting factor Get3” and 

accomplished first aim “Characterization of G. intestinalis Get3 homolog” and partly the 

second aim “Characterization of the GET pathway in G. intestinalis”. 

To complete the characterization of all of GET pathway components in G. intestinalis, 

the same native in vivo tagging method was applied for the isolation of GiSgt2 and GiGet4 

identified in Fry et al. (2022). Proteins specifically co-purified with GiSgt2 and GiGet4 

confirmed the interaction of known GET pathway components GiGet3, GiGet4, and GiSgt2 

with two significantly enriched proteins of unknown function (GL50803_19378 and 

GL50803_5069). Subsequent inspection of these proteins revealed that they represent 

highly divergent homologs of GiGet5 and GiBag6, respectively. Analogous purification of 

GiGet5 and GiBag6 validated that the GET pathway in G. intestinalis is composed of GiSgt2, 

GiGet3, GiGet4, GiGet5 and GiBag6 (Najdrová et al., unpublished). 
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In Sgt2-specific dataset, we have also identified significantly enriched homolog of 

cytosolic Hsp70 (Ssa1) (Najdrová et al., unpublished), which is a known member of GET 

pathway (Stefanovic et Hegde, 2007). Isolation of cytosolic Hsp70 as a protein partner of 

Sgt2 in G. intestinalis suggested that cytosolic Hsp70 could be the most upstream member 

of the GET pathway as it was recently shown in the yeast system (Cho et Shan, 2018). In 

the same dataset, we have also found homolog of Ydj1 the J-domain containing 

co-chaperone, which participates in regulation of cytosolic Hsp70 (Cho et al., 2021; Cho et 

Shan, 2018). Therefore, the involvement of chaperones and co-chaperones in GET pathway 

seems to be evolutionary conserved. 

Further analyses of GiGet5 sequence shown structural conservation of the C-terminal 

part of human, yeast and G. intestinalis proteins (Najdrová et al., unpublished). GiGet5 lacks 

the N-terminal part that is present in yeast Get5 and which is herein responsible for Get4 

binding. Our identification of missing N-terminal domain in GiGet5 was supported by 

GiBag6 identification, which shows that G. intestinalis pre-targeting complex composition 

is to the human counterpart, where Get4 and Get5 homologs are bound by Bag6 separately 

(Bozkurt et al., 2010; Chang et al., 2010; Chartron et al., 2010; Mariappan et al., 2010; Mock 

et al., 2015). GiBag6 sequence is also highly divergent, but sequence alignment revealed 

conserved C-terminal part of this protein (Najdrová et al., unpublished), which is 

responsible for Get4 and Get5 binding (Mock et al., 2015a). GiBag6 dual cytosolic and 

nuclear localization of GiBag6 (Najdrová et al., unpublished) suggests additional functional 

similarities with human Bag6 function, but detailed conditions for nuclear localization must 

be further examined (Manchen et Hubberstey, 2001; Nguyen et al., 2008). Another possible 

function of GiBag6 was outlined by detection of a small subunit of DNA-directed RNA 

polymerases (RPB10; GL50803_14413), Lysyl-tRNA synthetase (GL50803_16766), putative 

tRNA-dihydrouridine (47) synthase (GL50803_3565) and ribosomal subunit L38e 

(GL50803_34093). All these proteins were co-purified with GiBag6 and suggest a potential 

role for GiBag6 in the regulation of transcription and translation (Najdrová et al., 

unpublished). 
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Comparison of datasets obtained from the purification of GiSGt2, GiGet4, and GiBag6, 

revealed a subset of proteasomal and proteasome-interacting proteins. Composition of 

G. intestinalis proteasome is known, although three (Rpn12, Rpn13, Rpn15) proteasomal 

proteins have not been identified yet (Jerlström-Hultqvist et al., 2012). It was previously 

shown, that human Sgt2 binds to the Rpn13 subunit of the proteasome (Leznicki et al., 

2015) and Bag6 (Xenopus) binds to the proteasomal subunit Rpn10 (Kikukawa et al., 2005). 

However, situation in G. intestinalis remains complicated, because Rpn13 subunit has not 

been identified yet in G. intestinalis (Jerlström-Hultqvist et al., 2012) and Rpn10 protein was 

not identified as significantly enriched in any of our datasets (Najdrová et al., unpublished). 

Regardless these facts, our data suggest that interaction of the pre-targeting complex with 

proteasome is a universal and conserved mechanism of the misfolded protein response. 

All experimentally obtained divergent sequences of GET pathway components in 

G. intestinalis were included into HMM profiles for the analyses of the conservation of GET 

pathway components across eukaryotes. The central element of the GET pathway, Get3 

ATPase, was identified in all eukaryotic groups (Najdrová et al., unpublished), which is 

consistent with a previously established homology search, which shows high conservation 

of Get3 in most of the eukaryotic groups and presence of the homologues in archaea and 

bacteria (Farkas et al., 2019). Similarly, our analyses confirmed that Get1 is evolutionarily 

highly conserved member of the Oxa1 superfamily. Surprisingly, in contrast to other 

eukaryotes, which contain three different paralogues of the Oxa1 superfamily in the ER 

(Get1, EMC3 and TMCO1) (Anghel et al., 2017), Get1 is the only member of the superfamily 

identified in G. intestinalis. Our results together with the fact that the EMC complex is 

missing in G. intestinalis (Wideman, 2015), raise the question of how other membrane 

proteins are transported into the ER membrane and how the loss of the TMCO1 and EMC 

complex is replaced. The common origin of all three subfamilies (Get1, TMCO1, EMC3) 

suggests their potential functional overlap. Indeed, recently data showed that 

mitochondria targeted EMC3-EMC6 and Get1-Get2 proteins were able to partially replace 

the function of mitochondrial Oxa1 (Güngör et al., 2022). Homology search for Get2 

homologs was previously carried out among metazoan, plants, and fungi (Borgese, 2020). 
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Our search was applied in expanded datasets and confirmed the conservation of Get2 in all 

eukaryotic groups. Similarly, our search showed that Sgt2 and Get4 represent highly 

conserved proteins of pre-targeting complex and were identified in all eukaryotic groups 

(Najdrová et al., unpublished). 

However, reconstructing the occurrence of Get5 and Bag6 in eukaryotes has proven 

very difficult. In case of Bag6, despite being considered as absent outside metazoan, we 

have been able to define the C-terminal part of Bag6, which has also shown as the minimal 

domain necessary for Bag6 function (Mock et al., 2015, 2017) as a conserved signature of 

Bag6 homologues across eukaryotic tree of life. Similarly, the C-terminal part of Get5 could 

be used for Get5 determination and the homology search and our homology searches 

revealed conservation of the protein in eukaryotes (Najdrová et al., unpublished). Our data 

thus strongly suggest that LECA contained all GET pathway components (Sgt2, Get1-Get5, 

Bag6) and therefore Bag6 was secondarily lost in some lineages like yeast. Our results from 

both experimental and bioinformatical studies suggest that the GET pathway is an ancestral 

pathway and has ancient and crucial role in the biology of the eukaryotic cell. 

These results are summarized in Manuscript 2 “Highly diverged pre-targeting complex 

in Giardia intestinalis reveals the ancestral presence of Bag6 and the evolution of GET 

pathway in eukaryotes”. These data accomplished second and third aims “Characterization 

of GET pathway in G. intestinalis” and “Reconstruction of the evolution of GET proteins in 

eukaryotes”, respectively. 

In addition to protein targeting signals, the localization of protein can also be directed 

by the site-specific translation that takes advantage of mRNA targeting towards the places 

of action (Cui  et Palazzo, 2014). Our preliminary data showed that episomally expressed 

Sec20 with native 3´UTR partially localized the protein to its correct compartment 

(Voleman, 2011). These observations led us to investigate the potential role of 3´UTR and 

RNA-binding proteins in localization of proteins in G. intestinalis. We have decided to 

examine the role of RNA binding proteins from the Puf family. Concretely, we were inspired 

by the ability of yeast Puf3 to localize mRNAs encoding some mitochondrial proteins on 
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the mitochondrial surface and thus play role in the mitochondrial biogenesis (Saint-Georges 

et al., 2008). 

We identified six Puf proteins in G. intestinalis and classified them as four classical Puf 

homologues, one Nop9, and one PUM3. All Puf proteins were episomally expressed with 

a BAP tag to determine their cellular localization and function. Unfortunately, the 

expression of almost all constructs (not Puf4) was highly unstable and diminished rapidly 

after establishing stable cell line. However, Puf proteins in G. intestinalis were analyzed by 

combining bioinformatic prediction and immunofluorescence assay (Najdrová et al., 2020). 

Unexpectedly, we observed that PUM3 is localized in the nuclear periphery and Nop9 in 

the cytosol, which is different from other cell systems (Andersen et al., 2002; Gu et al., 

2004; Liang et al., 2018) Puf1, Puf2, and Puf4 were localized in different kinds of vesicular 

structures, but they did not colocalize with Sec20 signal. Only Puf3 showed predicted 

cytosolic localization (Najdrová et al., 2020). 

Due to the unstable expression of the G. intestinalis Puf proteins, their putative target 

mRNAs were predicted by bioinformatics. We have predicted cognate mRNAs for all Pufs in 

G. intestinalis genome (Najdrová et al., 2020). Compared to other organisms, the number 

of target mRNAs is smaller in G. intestinalis, which could be due to extremely short UTRs in 

G. intestinalis, and which thereby limit in the available area for interaction (Elmendorf et 

al., 2001; Hogan et al., 2015). Although none of the predicted targets are TA proteins and 

we have not shown any role of Puf in the targeting of TA proteins, we have characterized 

Puf proteins in G. intestinalis and showed the distribution of Puf proteins in eukaryotes. 

These results are summarized in Publication 3 “The evolution of the Puf superfamily of 

proteins across the tree of eukaryotes” and complete the fourth aim “Determine Puf 

homologs in G. intestinalis and their potential role in mRNA/protein targeting”. 
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The delivery and insertion of integral membrane proteins 
(IMPs) into designated membranes is a complex process. 
Most IMPs are targeted cotranslationally to the endoplas-

mic reticulum (ER) membrane via the signal recognition particle 
pathway1. One class of IMPs, tail-anchored (TA) proteins, contain 
a single transmembrane domain (TMD) near their C terminus and 
must be targeted to cellular membranes posttranslationally, as their 
signal cannot access the signal recognition particle pathway2–5. TA 
proteins account for roughly 2% of all proteomes and targeting of 
these proteins has been studied primarily in the opishtokont clade 
that includes both fungi and metazoans1,6–8.

The best-studied pathway for targeting TA proteins to the ER 
membrane is the conserved guided entry of TA protein (GET) path-
way. The central targeting component is the homodimeric ATPase 
Get3, which uses multiple ATP-dependent large conformational 
changes to drive targeting of TA proteins5,9–11. Upstream from 
Get3 is a cochaperone, SGTA in mammals and Sgt2 in fungi, that 
binds specifically to TA proteins being delivered to the ER6,12. On 
binding to ATP, Get3 transitions from a ‘open’ to ‘closed’ confor-
mation that is recognized by a loading complex, the mammalian 
Bag6 complex or fungal Get4–Get5, which facilitates the transfer 
of the TA protein (client) from the cochaperone to Get3 (refs. 13–15). 
Once a client binds, ATP hydrolysis occurs driving Get3 into an 
‘intermediate’ state releasing Get3 from the loading complex13. A 
membrane-bound receptor complex, Get1–CAML (mammals) or 
Get1–Get2 (fungi), recruits the client-bound Get3 to the ER, drives 
the release of the client from Get3 by favoring Get3 in an ‘open’ state 
and then facilitates insertion of the client into the ER membrane16,17.

Various structures from different homologs of opisthokont Get3 
provide a working model, albeit incomplete, of the TA protein tar-
geting cycle16–23. In all structures, Get3 is a homodimer stabilized 
through a coordinated Zn2+ ion liganded by four conserved cyste-
ines. Two distinct structural regions are observed, a well-ordered 

nucleotide binding domain (NBD) and a flexible α-helical region 
that forms the client-binding domain (CBD). Parts that are char-
acteristic of G-type hydrolases are present in the NBD10, a P-loop 
(formed by a deviant Walker A motif19,24), A-loop and Switches I 
and II (Fig. 1a). In the current targeting model, binding of ATP 
drives the transition from the ‘open’ to the ‘closed’ state causing the 
α-helices in the CBD to rearrange to form a hydrophobic groove 
that is the presumed site of TA protein binding18.

Despite the considerable effort to characterize the dynamic con-
formational landscape of Get3, several key mechanistic questions 
remain. Various ‘open’ states are seen for the nucleotide-free Get3, 
yet a clear picture for how the dimer can transition to a ‘closed’ state 
while continuing to bury the CBD hydrophobic surfaces is miss-
ing. These regions are observed to be exposed and disordered in 
current structures18,19,25. In the closed transition-state structure18, 
which is argued to mimic the ATP-bound state that is prepared for 
client capture, the formed hydrophobic groove remains exposed. 
A previous structure of a Get3–TA complex stabilized by antibod-
ies23 revealed that the transmembrane helix binds to the groove in 
the CBD but saw no conformational changes relative to either the 
transition-state or Get4 bound structures18,22. This is incompatible 
with both a requirement for release from the loading complex for 
delivery to the ER and a need for Get3 to recognize and protect the 
client. Critically, the structure of a posthydrolysis Get3–client com-
plex is required. This state requires a substantial conformational 
change, as evidenced by single-molecule Forster resonance energy 
transfer (smFRET) studies that show an opening of the CBD on cli-
ent binding and nucleotide hydrolysis13. In summary, the mechanis-
tic picture of the nucleotide cycle is incomplete and dependent on 
crystal structures that likely do not reflect the states of Get3 in vivo.

Outside the opisthokont supergroup, there has been little char-
acterization of the GET pathway. Some GET components have been 
demonstrably identified in Archaeplastida, Arabidopsis thaliana26 
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and most recently in a SAR supergroup (a clade including stra-
menopiles, alveolates and Rhizaria) member, the apicomplexan 
Plasmodium falciparum27. Plants evolved four compartment-specific 
paralogs of Get3. While Get3a exhibits the conserved cytosolic 
function26, other proteins appear to function at the membranes of 
mitochondria and chloroplasts28,29. A deletion of the AtGet3a gene 
resulted in a stunted root growth phenotype. A S. cerevisiae Get3 
deletion phenotype was rescued by expression of P. falciparum Get3 
(ref. 27). These works begin to demonstrate the conservation of the 
GET pathway throughout eukaryotes, but conservation of mecha-
nistic details has yet to be demonstrated.

Here, we identify key GET pathway components in G. intesti-
nalis of the Excavata supergroup: homologs of Get3, Get4, Get2 
and Sgt2. The protist G. intestinalis causes giardiasis, a neglected 
disease that affects up to 30% of the population in developing 
countries30. We present a series of five structures of GiGet3, out-
side opisthokonts, that complete the mechanistic picture. This 
includes a cryogenic-electron microscopy (cryo-EM) structure 
of client-bound Get3 in the missing posthydrolysis state, which 
reveals the conformational changes that lead to disassociation from 
the loading complex and a reordering of the CBD that results in a 
more open groove with a shielded TMD of the bound client. Three 
structures of GiGet3 in the apo (nucleotide-free) state illustrate the 
range of Get3 conformations and resolve the occluded CBD. Finally, 
an ATP-bound (prehydrolysis) Get3 structure shows that nucleo-
tide binding is not sufficient for reorganizing the CBD to expose 
the hydrophobic groove. Altogether, these structures represent 
three functional states of the Get3 ATPase cycle revealing dramatic 
transitions in the CBD that resolves how Get3 prevents exposure of 
hydrophobic surfaces in the absence of client and protects the cli-
ent TMD during targeting. These findings provide a comprehensive 
picture of the Get3 catalytic cycle, notably from a single organism, 
explaining the conformational changes in Get3 necessary for driv-
ing the successful targeting of TA proteins.

Results
Identifying GET pathway components in G. intestinalis. Initially, 
we began with a search for Get3 homologs in G. intestinalis and 
identified a clear single hit to the gene GL50803_007953 (GiGet3) 
with a sequence identity of 42.14% and 44.67% to human and yeast 
homologs, respectively (Fig. 1a). This search was expanded and 
resulted in the identification of Get3 homologs in all eukaryotic 
supergroups (Fig. 1b). An early evolutionary branchpoint separated 
Get3 homologs into two distinct clades as demonstrated previ-
ously26, of which Excavata and Opisthokonta are both in Clade II 
(Fig. 1, Supplementary Fig. 1 and Supplementary Table 1). An align-
ment of GiGet3 to other homologs reveals all conserved compo-
nents including residues important to binding other GET proteins 
are present (Fig. 1a and Extended Data Fig. 1)22. To identify cel-
lular localization, cells expressing a labeled ER-marker (HA-tagged 
PDI2) were immunostained with antibodies against either GiGet3 
or the ER-marker and visualized by fluorescence microscopy  

(Fig. 1c,d). GiGet3 was broadly expressed, localizing primarily to 
the cytoplasm as expected. Western blots of the soluble or mem-
brane fractions showed most of the Get3 was in the soluble fraction, 
supporting the imaging results (Fig. 1e). Some Get3 is associated 
with the membrane, which agrees with Get3 function and previous 
mammalian studies17,31. Hydrolase activity of GiGet3 was verified 
by an ATPase assay using purified protein (Extended Data Fig. 2A). 
A D53N point mutation corresponding to an ATPase inactivating 
mutation in yeast (D57N) also was inactive in G. intestinalis18,19.

We next sought to identify other GET components. Crude lysate 
of G. intestinalis cells expressing both biotinylated BAP-tagged Get3 
and biotin ligase (BirA) was passed over a streptavidin affinity col-
umn and the resulting eluate was analyzed by mass spectrometry to 
identify potential Get3 binding partners. Of the highest enriched 
proteins, two likely GET components were identified, homologs of 
Get4 (GL50803_00112893) and Get2 (GL50803_0017617) (Fig. 1f 
and Supplementary Table 2). The putative Get4 has high structural 
homology, as predicted by AlphaFold2 (ref. 32) and a 33.3% sequence 
identity to yeast Get4 that includes conservation of residues critical 
for Get3 binding, suggesting a similar mode of interaction (Extended 
Data Fig. 3). Get2 homologs are less conserved33,34; the identified Get2 
homolog has a 15.1% identity to yeast Get2 with a similar predicted 
architecture, three TMDs and an extended N-terminal tether that 
contains potential Get3 binding residues (Extended Data Fig. 4a)16.  
Immunostained G. intestinalis cells reveal that, as expected, GiGet2 
localizes to the ER (Extended Data Fig. 4b,c).

With clear evidence for a GET pathway in G. intestinalis, we 
searched more broadly for other pathway components. Using a 
structure-based sequence search of the G. intestinalis genome we 
identified an Sgt2 homolog (GL50803_007287) that has a 27.2% 
identity to yeast and contains the conserved domains including the 
N-terminal dimerization, the central cochaperone binding tetratrico-
peptide repeat and the predicted C-terminal ‘helical-hand’ for client 
binding (Extended Data Fig. 5)35. To functionally validate GiSgt2, an 
in vitro capture assay was used to demonstrate that GiSgt2 can capture 
a yeast TA protein from a yeast Hsp70 (Extended Data Fig. 2b,c)35,36.

Last, we sought to identify potential clients for this newly identi-
fied GET pathway. A list of putative Giardia TA proteins was gener-
ated based on previously used criteria (Supplementary Table 3)37. 
Seven proteins were selected with hydrophobicities of the TMDs 
covering the full range of ER TA proteins (12.9 to 31.1)1 and their 
TMDs were tagged with a small ubiquitin-like modifier- (SUMO-) 
and coexpressed with GiGet3 in Escherichia coli. Potential com-
plexes were purified using the affinity tag on the TA protein and 
Get3–TA complexes were detected by western blots using either 
anti-GiGet3 or anti-SUMO antibodies (Extended Data Fig. 2d). 
Clear bands for both the TA protein and Get3 were present for 
GL50803_009489 and GL50803_0024512, the latter annotated 
as a hypothetical protein in the GiardiaDB38. GL50803_009489 is 
annotated as the v-SNARE Sec22, a known ER-targeted GET client 
in yeast39. Calculated hydrophobicities using the transmembrane  
tendency scale40 of these TMDs are 25.76 and 33.05, respectively, 

Fig. 1 | Identification of the GET pathway in G. intestinalis. a, Sequence alignments of the conserved Get3 features across several eukaryotes. Residue 
colors are based on ClustalX46 and numbered by sequence position in Giardia. Colors for the conserved Get3 features are used throughout the text: P-loop 
(green), Switch I (magenta), Switch II (blue), TRC40 insert (black), CxxC (black) and A-loop (orange). b, A phylogenetic tree of eukaryotic Get3 homologs 
colored by supergroup and cartoons for organisms discussed with arrows pointing to the sequence. Supergroups are Excavata (G. intestinalis, yellow), 
Opisthokonta (H. sapiens and S. cerevisiae, magenta), Amoebozoa (blue), Archaeplastida (A. thaliana, green), Haptophyta (orange), Cryptophyta (cyan) 
and SAR (P. falciparum, purple). c, Detection of GiGet3 localization through immunofluorescent projections of z-stacks of Giardia trophozites (brightfield 
image, bottom panel). Get3 (yellow) and the ER (magenta) were identified using antibodies against GiGet3 and an HA-tagged PDI2. In the merged image 
(third panel) DAPI stains the nucleus (cyan). Scale bar, 5 μm. d, A 3D representation of the z-stacks in c. e, Western blots of GiGet3 trophozite high-speed 
centrifugation fractions: lysate, soluble and pellet were probed with antibodies against GiGet3, enolase (cytosol), PDI2 (ER)47 and GL50803_009296 
(mitosomes)48. All were repeated at least five times. f, A volcano plot of the mass spectrometry analysis of the eluate from Get3 pull-downs (the 
enrichment or log2 of the fold-change of Get3 versus mock pull-down (x axis) and the significance or −log10 (y axis) determined using a two-sided t-test). 
Get2 and Get4 (orange) were identified in a list of 26 significant hits (right of dashed line, data available in Supplementary Table 2).
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and correlate well with the expected hydrophobicity for both Get3 
binding and ER targeting1,37.

Structures of apo Get3 in a range of conformations. While struc-
tures reveal nucleotide-free Get3 adopts an open conformation, 

experimental evidence supports a range of conformations. To struc-
turally characterize these states, GiGet3 was cloned and expressed in 
E. coli followed by purification, where it eluted as a dimer (Extended 
Data Fig. 6a,b). Apo GiGet3 crystallized in space group P21212 and 
a data set was collected and a crystal structure was refined to 3.0 Å 
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resolution (full statistics provided in Table 1). The asymmetric unit 
contained two monomers that generated two distinct symmetry 
related dimer conformations, which we refer to as apo1 and apo2 
(Fig. 2a, Extended Data Fig. 6c–g and Table 1). The two GiGet3 
monomers have an r.m.s.d. of 0.7 Å to each other and overall are 
structurally similar to opisthokont Get3s. Both form symmet-
ric homodimers that contain the well-ordered NBD and α-helical 
CBD, consisting of helices 4–9 (H4–9). The two forms are consistent 
with an ‘open’ conformation, with apo1 most closely resembling the 
open conformation seen in fungal structures (Protein Data Bank 
(PDB) 3IBG, 2WOO and 3A36) (Fig. 2a and Supplementary Fig. 
2a,c,d)18,19,25. The second conformation, apo2, has not yet been seen 
and is between the fungal ‘open’ and ‘closed’ conformations.

The range of possible conformations should include a ‘closed’ 
apo structure, which we captured using single-particle analysis 
cryo-EM (Extended Data Fig. 7a–f). Purified apo GiGet3 was used 
to collect a large data set. Despite starting with >10 million particles, 
a small subset of 51,340 particles could be classified into a single 
group resulting in a map with a resolution of 8.4 Å (Extended Data  
Fig. 7a–f and Table 2). The reconstruction gave a model that is a 
hybrid of the nucleotide-bound ‘closed’ fungal Get3 structures and 
the apo1 and 2 conformations (Fig. 2b and Extended Data Fig. 7a–f).  
As only a small percentage of particles are in this conformation, the 
rest of the particles in the data set are likely in a range of open con-
formations. Combined with the crystal structures, these structures 
represent the full range of Get3 conformations in the apo state.

Additionally, the structures reveal how the CBD of Get3 is 
occluded in the apo state to protect the hydrophobic surfaces that 
bind to the client. In previous structures, much of the CBD loops 
are disordered with the hydrophobic surfaces exposed, likely due 
to the inherent flexibility of this domain and crystal packing. 
Here, we see that the amphipathic helix 5 (H5) packs under H8 
and against H7 and H9 covering H6. This buries the hydrophobic 
residues in these helices resulting in an overall hydrophilic surface 
and masks the client-binding hydrophobic groove (Supplementary 
Fig. 2b). While H8 has been modeled in two fungal ‘open’ struc-
tures, the positioning differs from what is seen here (PDB 
3IBG and 2WOO, Supplementary Fig. 2c,d). The G. intestinalis  
apo structures reveal that H8 is critical to stabilizing H5 and com-
pletes the exposed hydrophilic surface. The active site resembles 
the fungal open structures where the catalytic loops all adopt sim-
ilar conformations (Supplementary Fig. 2b)19. These structures 
both capture the range of apo Get3 conformations and demon-
strate how the hydrophobic surfaces of the CBD are occluded in 
the absence of nucleotide.

The groove remains occluded in the ATP-bound state. The fully 
closed structure requires the binding of ATP. To capture this state, 
crystals were obtained of a catalytically dead mutant (D53N) in the 
presence of ATP and MgCl2 (Extended Data Figs. 2a and 8a,b). A 
data set was collected and refined to 2.2 Å resolution in the space 
group P3221 and contained a monomer in the asymmetric unit 
that formed a symmetry related dimer (Fig. 2c and Extended Data 
Fig. 8c–i). This structure is the first of Get3 bound to ATP alone, 
that is without any client or binding partners, and adopts a ‘closed’ 
form with the two monomers rotating closer together relative to the 
apo-closed state. All but one stretch (residues 88–114) can be mod-
eled in this structure, providing the most complete structure of a 
‘closed’ Get3 (Fig. 2c and Supplementary Fig. 3a,b). In the active 
site of the ATP-bound structure a Mg2+ ion is hexavalently coor-
dinated by the γ- and β-phosphates of ATP, three water molecules 
and Thr28. A water molecule is coordinated by the asparagine resi-
due that replaced the catalytic aspartate and is positioned proximal 
to the γ-phosphate of the ATP molecule, primed for nucleophilic 
attack. Lys22 reaches across the dimer interface interacting with the 
β-phosphate of the ATP molecule in the other active site (Fig. 2d). 
The interactions between the two active sites stabilizes the canonical 
‘closed’ form.

Notably, there are few differences in the positioning of α-helices 
within the Get3 monomer compared to the apo state. In particu-
lar, H5 continues to occlude the CBD concealing the hydrophobic 
groove distinct from other ‘closed’ Get3 structures (Supplementary 
Fig. 3c). In the recent structure of a metazoan pretargeting com-
plex (Get3 bound to the loading complex) H8 forms a cap for the 
CBD41. Our structure confirms that H8 is amphipathic, but in the 
ATP-bound state its role is to stabilize H5, which occludes the CBD, 
and not to cap the hydrophobic pocket. H6 adopts a conforma-
tion similar to the apo state in an upward position away from the 
nucleotide pocket, whereas in the structure of the transition state 

Table 1 | Data collection and refinement statistics

Apo (PDB 7SPZ)a ATP (PDB 7SPY)a

Data collection

Space group P21212 P3221

Cell dimensions

  a, b, c (Å) 54.1, 102.6, 138.8 81.0, 81.0, 130.1

  α, β, γ (°) 90.0, 90.0, 90.0 90.0, 90.0, 120.0

Resolution (Å) 50–3.0 (3.1–3.0) 50–2.23 (2.27–2.23)

Wavelength (Å) 0.97946 0.97946

Rmerge 0.272 (3.09) 0.108 (1.132)

Rpim 0.086 (0.078) 0.035 (0.453)

I/σ 21.0 (3.8) 22.6 (1.75)

Completeness (%) 91.4 (58.8) 97.4 (79.6)

Redundancy (%) 11.9 (12.5) 8.9 (55)

Refinement

Resolution (Å) 34.7–3.0 30.47–2.23

No. reflections 14,734 23,301

Rwork / Rfree (%) 29.5 / 34.8 17.9 / 20.9

No. atoms

  Protein 5,072 2,544

  Ligand/ion 2 39

  Solvent 178

B factors

  Protein 48.12 40.62

  Ligand/ion 40.49 24.77

R.m.s. deviations

  Bond lengths (Å) 0.01 0.01

  Bond angles (°) 1.62 1.74

Validation

 MolProbity score 1.20 1.13

 Clashscore 1.59 1.57

 Rotamer outliers (%) 0 0

 Cβ outliers (%) 0 0

Ramachandran outliers 
(%)

0 0

Ramachandran favored 
(%)

96 97

Ramachandran unfavored 
(%)

4 3

aValues in parentheses are for the highest-resolution shell.
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(ADP·AlF4 complex) and structures representing states further in 
the hydrolysis cycle (the pretargeting and Get2-fragment com-
plexes) H6 has shifted down toward the nucleotide binding pocket, 
forming the bottom of the hydrophobic groove17,18,20,22,23. This shift is 
also not observed in the AMPPNP-bound Chaetomium thermophi-
lum, CtGet3, crystal structure (Supplementary Fig. 3d). Binding of 
ATP or its analogs are not sufficient to generate the reorganization 
of the CBD to form the hydrophobic groove, demonstrating the 
transition state represents Get3 in a conformation later in the cycle. 
The shift of H6 toward the active site likely requires H5 to rearrange 
from the occluded position. The previous fungal structures where 
H6 has shifted down likely represent the next steps that require Get4 
binding to facilitate the transition state for client capture. In the 
ATP-bound state, ATP primes Get3 for Get4 binding by stabilizing 
the fully closed form, creating the Get4 binding interface and likely 
readies the CBD for subsequent rearrangement to form the groove 
for client capture. Together, the four structures of Get3 illustrate the 
range of conformations sampled by the ATPase detailing how regu-
lation of client targeting is more complicated than a simple ‘open’ 
versus ‘closed’ conformation binary.

The structure of the posthydrolysis client-bound complex. We 
next sought to fill in the key missing piece of the Get3 ATPase cycle 
by structurally characterizing Get3 bound to a TA client in the 
posthydrolysis state. We turned to single-particle analysis cryo-EM 
to accomplish this. Wild-type GiGet3 was recombinantly expressed 
with a His-tagged client, BRIL-Bos1TMD, that had previously been 
used to investigate the binding mechanism of Sgt2 (Extended Data 
Fig. 9a)35. The complex was purified by affinity and size-exclusion 

chromatography (SEC) and the elution fraction correlating to 
150 kDa was frozen on grids. Movies were collected and used 
to determine a reconstruction with an overall resolution of 4.1 Å 
where parts of the map had less well-defined density than others. A 
mask was generated that included regions with strong density and 
was used in a focus refinement resulting in a map with an average 
resolution of 3.7 Å (Fig. 3a,b and Extended Data Fig. 9b–e). This 
map has clear density for all of Get3 except for H8, the C terminus 
of H7 and the N terminus of H9, which were part of the masked 
low-density regions, likely due to disorder and are also regions miss-
ing in previous ‘closed’ structures. At this resolution (ranging from 
3.6 to 7.0 Å), we were able to fully build the NBD as well as the sec-
tions of the CBD that form the hydrophobic groove (Extended Data 
Fig. 10a). Three new tubular densities are observed in the CBD that 
do not correspond to Get3 helices accounted for by previous ‘closed’ 
Get3 structures (highlighted in red and purple in Fig. 3a,b). These 
were modeled as poly-alanine helices as the registry could not be 
unambiguously assigned. The density colored in red coincides with 
the positioning of the TMD of the client in the prehydrolysis com-
plex and the length is sufficient to accommodate a TMD, suggesting 
this density represents the Bos1 TMD. The two remaining densi-
ties in purple are symmetry related and can be accounted for by 
the previous loop between H4 and H5 that has transitioned to form 
two new features, which we refer to as H4/5 (Extended Data Fig. 1).  
Clear density for an ADP molecule and an Mg2+ ion is visible in 
the nucleotide binding pocket indicating that this map reflects the 
posthydrolysis form of the Get3–TA complex (Fig. 3c). The ADP is 
tightly associated with GiGet3–TA complex as no nucleotide was 
added during purification.
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Table 2 | Cryo-EM data collection, refinement and validation statistics

Apo (EMD-25375) Get3–TA (overall) (EMD-25374) Get3–TA (Get3 only)
(EMD-25373), (PDB 7SQ0)

Data collection and processing
Microscope FEI Titan Krios FEI Titan Krios

Voltage (kV) 300 300

Camera Gatan K3 Gatan K3

Energy filter BioQuantum Gatan Imaging Filter Quantum

Energy filter slit width (eV) 20 20

Magnification (nominal) 88,000 105,000

Defocus range (μm) −0.5 to −2.5 −0.7 to −3.0

Calibrated pixel size (Å/pix) 0.5295 0.433

Electron exposure (e−/Å2) 50 63.2

Exposure rate (e−/Å2 per frame) 1 1.58

Number of frames per video 50 40

Automation software SerialEM SerialEM

Number of micrographs 9,300 2,732

Initial particle images (no.) 11,596,225 1,790,962

Final particle images (no.) 51,340 70,330

Estimated accuracy of rations (°) (RELION) 3.355 3.461 3.302

Local resolution range 6.0–8.45 4.15–7.36 3.61–7.06

Map resolution (Å, FSC 0.143) 8.46 6.77 3.71

Model fitting
Software (FLEX-EM) CCPEM v.1.5.0

Initial model used apo1 (GiGet3 chain A)

Refinement
Software (phenix.real_space_refine) PHENIX v.1.16-3549

Initial model used (PDB code) 5BW8

Resolution of unmasked reconstruction (Å, FSC 0.5) 4.4 3.9

Resolution of masked reconstructions (Å, FSC 0.5) 4.2 3.6

Correlation coefficient (CCmask) 0.69 0.83

Map sharpening B factor (Å2) −145 −121

Model composition

  Nonhydrogen atoms 4,691 4,691

  Protein residues 593 593

  Ligand 5 5

B factors (Å2) Minimum/maximum/mean Minimum/maximum/mean

  Protein 52.25/165.11/81.59 52.25/165.11/81.59

  Ligand 6.9/184.58/129.64 6.9/184.58/129.64

R.m.s. deviations

  Bond lengths (Å) (no. >4σ) 0.003 (4) 0.003 (4)

  Bond angles (°) (no. >4σ) 1.119 (17) 1.119 (17)

Validation
MolProbity score 1.06 1.08

Clashscore 1.97 1.97

Rotamer outliers (%) 0 0

Cβ outliers (%) 0 0

CaBLAM outliers (%) 0.67 0.67

EMRinger score 1.6 3.99

Ramachandran plot

  Favored (%) 97.4 97.4

  Allowed (%) 2.6 2.6

  Disallowed (%) 0 0
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Additional features of the posthydrolysis complex are revealed 
by the structure (Fig. 3d). The Get3 dimer adopts a more open 
conformation consistent with the intermediate state observed 
from smFRET data (Fig. 4a and Supplementary Video 1)13. While 
disordered in the apo and ATP structures, in the posthydroly-
sis state H4 forms part of the sides of the client-binding groove 
in a position parallel to H7 and H9. H6 has moved to the lower 
position toward the active site that pulls H5 down and away from 
its position occluding the groove. H5 then joins H4, H7 and H9 
in forming the walls of the hydrophobic groove. Relative to the 
transition-state structure, H4 shifts away from the center of the 
groove to accommodate the change in H6, resulting in an over-
all expansion of the CBD (Fig. 4b and Supplementary Video 1). 
H8, no longer stabilized by H5, becomes disordered. This is con-
sistent with biochemical work that demonstrated that the dele-
tion of H8 does not affect the targeting of TA proteins by Get3 
and suggested another part of the protein forms the lid with cli-
ent bound42. The most striking new feature in the posthydrolysis 
structure is that H4/5 docks on top of the client TMD completing 
the hydrophobic chamber and protecting the entire hydrophobic 
client TMD from solvent (Figs. 3 and 4c,d and Supplementary  
Fig. 5). Mechanistically, H8 likely regulates the opening of the 
hydrophobic groove to allow client capture, while H4/5 protects 

the client TMD. The posthydrolysis structure completes the over-
all cycle of TA protein targeting to the ER.

The binding and hydrolysis of ATP drives remodeling in Get3. 
The structure reveals that the various nucleotide states lead to con-
siderable remodeling of Get3. Apo Get3 adopts a range of confor-
mations swinging between fully open and closed. The ‘closed’ apo 
Get3 has a more expanded NBD relative to the ATP-bound state, 
likely to allow access of the active site by the nucleotide (Fig. 2a,b 
and Supplementary Fig. 6a). Upon ATP binding, the ‘closed’ Get3 
state is stabilized, generating the binding interface for Get4 (Fig. 4a,e  
and Supplementary Fig. 6b). When transitioning from the apo to 
ATP-bound state, Switch I moves toward the nucleotide, placing the 
catalytic Asp53 above the γ-phosphate in the ATP molecule to posi-
tion the water for nucleophilic attack (Figs. 2d and 4b, Extended 
Data Fig. 8h and Supplementary Videos 1 and 2). The backbone 
of the P-loop interacts with the α- and β-phosphates of the ATP 
molecule, wrapping around the nucleotide and Lys27 rotates toward 
the nucleotide, interacting with the β-phosphate. Switch II moves 
toward H10. The ‘deviant Walker A’ Lys22 in the P-loop shifts away to 
interact across the dimer interface with the β-phosphate of the ATP 
molecule of the other subunit. These changes result in the NBD 
of the two Get3 monomers coming closer together in a stabilized 
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colored in red. Active site features are colored as in Fig. 1a. c, Surface representation of the CBD of the views in b and helices are numbered in both b and c. 
A black arrow highlights the twist in H7. d, Top views of each state reveal the hydrophobic groove is exposed in the posthydrolysis state and H5 occludes 
this binding site in apo1 and ATP-bound. Hydrophobic surfaces are colored from blue (hydrophilic) to orange (hydrophobic) using the transmembrane 
tendency scale40. e, GiGet3–TA (wheat) with helices that interact with Get4 colored in teal. ScGet4 was modeled onto GiGet3–TA using an alignment to 
the ScGet3/4/5 structure (PDB 4PWX) (blue), highlighting how the movement of H10 disrupts the Get4 binding interface.
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‘closed’ form. In this conformation, the Get4 binding interface is 
generated, priming Get3 for client capture. This interface is possi-
bly further stabilized by a conserved cation-π interaction across the 
dimer interface between Phe250 and Arg324 (Supplementary Fig. 7).  
Cation-π interactions are known to stabilize protein interfaces43. 

While observed in fungal ‘closed’ Get3 structures (PDB 2WOJ, 
4PWX and 4XTR), the cation-π is absent in the apo state (both 
fungal and G. intestinalis) (Supplementary Fig. 7a–d)18,22,23. Phe250 
and Arg324 are conserved across Get3s and mutating these to Ala in 
yeast resulted in a phenotypic growth defect and decrease in Get4 
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binding19,22. These interactions demonstrate how nucleotide bind-
ing regulates interactions between Get3 and Get4 even though apo 
Get3 adopts a ‘closed’ conformation.

Additional specific changes are observed in the posthydrolysis 
state. First, the Get3 dimer rotates to an intermediate conformation 
between the apo2 and the ATP-bound state (Fig. 4a,d). In this inter-
mediate state the, cation-π interaction between Phe250 and Arg324 is 
preserved (Supplementary Fig. 7f). The most notable change in the 
active site is where Pro166 moves away from the nucleotide allowing 
the C terminus of Switch II to transition from a loop into a helix 
resulting in a twist in H7 and the formation of a new N terminus for 
the helix (Fig. 4b and Extended Data Fig. 1). This twist in H7 results 
in the hydrophobic residues of the helix turning inward toward the 
center of the client-binding groove, creating the hydrophobic inte-
rior (Fig. 4b–d). This helical transition of Switch II results in H10 
moving away from the nucleotide and accommodates the down-
ward movement of H6. H4 shifts away from the active site avoiding a 
clash with H6 and, together with H10 movements, results in a swell-
ing of the Get3 monomer. As the cation-π and other interactions 
across the dimer interface are preserved, most of the changes in the 
intermediate conformation are consequences of the rearrangements 
to Switch II and the resulting shift in H10 (Fig. 4e).

While the Get3–Get4 binding interface has been explored bio-
chemically and structurally, how this interface is disrupted by cli-
ent recognition was unknown. Here, the observed shift in H10 and 
slight opening of the dimer explains the disruption of the Get4 

binding interface. Aligning a Get3 monomer between the posthy-
drolysis Get3–TA complex and the yeast–Get3/4/5 crystal structure 
(PDB 4PWX) allows visualization of the Get4 interaction and shows 
that the Get3 H10 movement generates clashes with residues on H2 
of Get4 (Fig. 4e)22. These changes do not disrupt the hydrophobic 
groove, clarifying how TA proteins remain bound to Get3 after Get4 
disassociation (Fig. 4b–e and Supplementary Fig. 7).

Discussion
This study provides a comprehensive view of the catalytic cycle of 
Get3, demonstrating the conformational changes regulated by nucle-
otide binding and hydrolysis (Fig. 4 and Supplementary Video 1)  
and completes the model of TA protein targeting by Get3 (Fig. 5). In 
the apo state, Get3 fluctuates between the ‘closed’ and ‘open’ forms 
as highlighted by our three apo structures. H5 hides the hydropho-
bic surfaces of the CBD. Nucleotide binding results in a stabilized 
‘closed’ complex where Get3 can bind to Get4 in preparation for 
client capture. Evidence suggests that H8 plays an important role 
in client loading42 where the interaction with Get4 in the pretarget-
ing complex may facilitate the release of H5 leading to the other 
CBD conformational changes. Get4 binding induces the confor-
mational changes in Get3 to prime it for client capture, specifi-
cally the formation of the client-binding pocket with H5 moving 
to become parallel with H7 and H9. H6 must shift down to drive 
catalysis and the lower orientation is most likely stabilized by client 
binding. This interaction would result in ATP hydrolysis followed 

ATP bound

Get4 transfer 
complex

SGTA/
TA client

Pi and get4 transfer 
complex

ER 
membrane

ADP

Posthydrolysis
client-bound

Get1/2
receptors

Apo

ATP

Fig. 5 | Universal model of the Get3 conformations that drive targeting. In the apo state, Get3 samples between the fully open and closed conformations. 
Binding of ATP stabilizes the ‘closed’ form, generating the Get4 binding interface and prepares for opening of the groove. Likely on Get4 binding, H5 
in Get3 is released and rearrangements in the CBD reveal the hydrophobic groove, as seen in the structure of the yeast–Get3/4/5 complex22. Correct 
client binding would then cause H6 to move toward the nucleotide binding pocket, resulting in hydrolysis. Phosphate release allows the Get3 NBD to 
adopt a slightly more open conformation while maintaining the hydrophobic groove. In this state, the bound TA client is completely shielded by the loop 
connecting H4 and H5 and the Get4 binding interface is disrupted, resulting in release from the Get4 transfer complex. The Get3–TA complex is now 
primed for delivery to the ER membrane where the receptors facilitate ADP release and client insertion.

Nature Structural & Molecular Biology | www.nature.com/nsmb

https://doi.org/10.2210/pdb4PWX/pdb
http://www.nature.com/nsmb


Articles NATurE STruCTurAl & MolECulAr BIoloGy

by phosphate release. Get3 detaches from Get4 through conforma-
tional changes transmitted to the Get3 surface by changes in the 
active site. Disassociated from Get4 causes the release of H4 and the 
proceeding loop, resulting in the formation of H4 and H4/5. In this 
form, Get3 remains bounds to TA proteins completely shielding the 
hydrophobic TMD with the lid formed by H4/5.

The work presented here is a comprehensive picture of Get3 
from a single organism. Despite the evolutionary distance, the GET 
pathway shows remarkable conservation across eukaryotes, high-
lighting the importance of this essential process. The fully masked 
TA-binding groove in the apo and ATP state would prevent inadver-
tent association with nonspecific targets, explaining why, in vitro, 
Get3 alone cannot capture a TA client and requires Get4 (ref. 9). 
After release from Get4, the Get3–TA complex would be capable of 
binding to Get2 at the ER as the membrane-bound receptor does not 
bind across the Get3 dimer interface17. Once localized to the mem-
brane, the released H8 may then bind the membrane, destabilizing 
the Get3–TA complex so that Get3 can be opened and release the 
client that is favored due to Get1 binding an open Get3. These struc-
tures demonstrate that Get3 is a dynamic protein, sampling many 
different conformational states during client targeting. Altogether, 
this work completes the composite model across multiple organ-
isms for TA protein targeting by the GET pathway, providing 
detailed mechanistic insight into nucleotide regulation and demon-
strating a universal Get3 mechanism in eukaryotes. Questions for 
the pathway remain as to how Sgt2 hands off to Get3 in a privileged 
transaction44 and how the Get1–Get2 complex facilitates TA protein 
insertion. As the GET pathway is a drug target45, this deeper under-
standing may prove critical to facilitating that potential.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.
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Methods
Sequence alignments. Alignments of Get3, Get4 and Sgt2 were created 
by downloading genes from G. intestinalis, Homo sapiens, Saccharomyces 
cerevisiae, Amphimedon queenslandica, Schizosaccharomyces pombe, Neisseria 
crassa, Aspergillus fumigata, Methanocaldococcus jannaschii and P. falciparum 
from UniProt. Sequences were aligned with PROMALS3D (ref. 50) along with 
all experimentally determined structures of Get3, Get4 and Sgt2 homologs. 
PROMALS3D provides a way of integrating a variety of costs into the alignment 
procedure, including 3D structure, secondary structure predictions and known 
homologous positions. Alignments were visualized using Jalview51.

Phylogenetic tree. Homologs of Get3 were identified using a local HMMER 
search52 against the UniProt database53 and against the EukProt database54. 
Annotated sequences were selected for alignment using MAFFT55 and this 
alignment was used for the initial search. Sequences with positive hits were 
verified by reverse analysis by HHpred algorithm56 against the Pfam database57. 
Multiple sequence alignments were enriched by newly classified homologs and 
used for future searches. Sequences were clustered in MMseqs2 (ref. 58) using the 
easy-cluster algorithm with a minimum sequence identity cutoff of 0.5. Sequences 
were aligned using MAFFT55 using the default LINS-i algorithm parameters. Poorly 
aligned regions with a gap threshold greater than 0.5 were automatically removed 
by trimAI59. Phylogenetic analysis was conducted with IQ-TREE2 software60 
and the best fitting model was selected using ModelFinder61. Computational 
effort was reduced by implementing the UFBoot2 (ultrafast bootstrap) method62. 
Visualization of the tree was done using the iTOL online tool63.

Cell culture, cloning and transfection in G. intestinalis. The G. intestinalis strain 
WB (ATCC 30957) was grown in TYI-S-33 medium supplemented with 10% 
heat-inactivated bovine serum, 0.1% bovine bile and antibiotics at 37 °C (ref. 64). 
The gene encoding the Get3 homolog (GL50803_007953) was amplified from 
genomic DNA and inserted into the pOndra plasmid65 with a C-terminal BAP-tag. 
Then 1 × 107 cells expressing cytosolic BirA48 were electroporated with a Bio-Rad 
Gene Pulser using an exponential protocol (U = 30 V; C = 1,000 μF; R = 750 Ω). The 
transfected cells were grown in medium supplemented with antibiotics (58 μg ml−1 
puromycin and 600 μg ml−1 G418) and used for biotinylated Get3 isolation to 
establish protein partners.

Immunofluorescence microscopy. G. intestinalis trophozoites were fixed in 
1% paraformaldehyde for 30 min at 37 °C, collect by centrifugation at 1,000g for 
5 min, washed in PEM buffer (100 mM PIPES pH 6.9, 1 mM EGTA and 0.1 mM 
MgSO4) and placed on cover slips (previously described in ref. 66). The cells were 
permeabilized by 0.2% Triton X-100 for 20 min, washed three times with PEM 
buffer. For confocal microscopy, G. intestinalis cells expressing HA-tagged PDI2 
were used (Fig. 1c). PDI2 was detected by primary anti-HA tag antibody at a 
1:1,000 dilution (Roche) and GiGet3 was detected with polyclonal anti-Get3 
antibody raised in rat at a 1:1,000 dilution. Recombinant GiGet3 protein was 
used as an antigen for in-house production of a polyclonal antibody in rats. The 
antibody was validated on the western blot using the recombinant protein. This 
band corresponded to the same protein band as a commercial anti-BAP antibody 
(Genescript) at a 1:1,000 dilution when detecting a BAP-tagged GiGet3. As 
secondary antibodies, Alexa Fluor 488-conjugated goat antirat IgG and Alexa 
Fluor 594-conjugated donkey antirabbit IgG (Invitrogen) were used at a 1:1,000 
dilution. Slides were mounted with Vectashield containing DAPI (4′,6-diamidino-
2-phenylindole, Vector Laboratories) and imaged with a Leica SP8 FLIM inverted 
confocal microscope. The images were deconvolved using the Scientific Volume 
Imaging Huygens software with the CMLE algorithm (http://svi.nl). Maximum 
intensity projections and brightness/contrast corrections were performed in the 
FIJI ImageJ software67.

For stimulated emission depletion (STED) microscopy, cells expressing 
HA-tagged Get3 and V5-tagged Get2 were used (Extended Data Fig. 4b,c). Rat 
anti-HA tag monoclonal antibody for Get3 (1:1,000 dilution) (Roche), rabbit 
anti-V5 tag monoclonal antibody for Get2 (1:1,000 dilution) (Abcam) and mouse 
anti-GiPDI2 polyclonal antibody produced in house and verified through western 
blot of recombinant proteins and bands corresponded to the same protein band as 
tagged proteins detected by commercial anti-BAP antibody and against previously 
published work47 were used. Thereafter, secondary antibodies Abberior STAR 580 
goat antirabbit IgG and Abberior STAR 635 goat antimouse IgG (Extended Data 
Fig. 4b), and Abberior STAR 580 goat antirat IgG and Abberior STAR 635 goat 
antirabbit IgG (Extended Data Fig. 4c) were used at a 1:1,000 dilution (Abberior 
Instruments GmbH). The slides were mounted with Abberior mounting medium. 
STED microscopy was performed on a commercial Abberior STED 775 QUAD 
scanning microscope (Abberior Instruments GmbH) equipped with a Ti-E Nikon 
body, QUAD beam scanner, Easy3D STED Optics Module and Nikon CFI Plan 
Apo ×60 oil immersion objective (numerical aperture 1.40).

Fractionation of G. intestinalis cells. G. intestinalis cells were gathered in cold 
phosphate buffered saline (PBS), pH 7.4 by centrifugation 1,000g at 4 °C for 
10 min, washed with 20 mM MOPS, 250 mM sucrose, pH 7.4 and again collected 
by centrifugation. The pellet was resuspended in 20 mM MOPS, 250 mM sucrose, 

pH 7.4 supplemented with protease inhibitors (cOmplete Protease Inhibitor 
Cocktail). The cells were lysed on ice by sonication for 2 min (1 s pulses, 40% 
amplitude). The lysate was subjected to centrifugation at 2,680g and 4 °C, for 
20 min to sediment nuclei, cytoskeleton and remaining unbroken cells. The 
supernatant was subjected to centrifugation at 180,000g, for 30 min at 4 °C. The 
resulting supernatant corresponded to the cytosolic fraction and the high-speed 
pellet contained organelles including mitosomes and the ER.

Pull-down assays of Get3. G. intestinalis cells coexpressing biotintylated 
BAP-tagged Get3 and BirA were grown in TYI-S-33 medium with 50 µM biotin 
for 24 h before collection. The cell lysate was diluted to a final concentration of 
1 mg ml−1 in PBS (pH 7.4) supplemented with protease inhibitors and incubated with 
50 μl of streptavidin-coupled magnetic beads (Dynabeads MyOne Streptavidin C1, 
Invitrogen) for 1 h at 4 °C with gentle rotation. Isolation was made in quadruplicates, 
where each sample contained 5 mg of proteins. The magnetic beads were washed 
three times in 50 mM HEPES pH 7.4, 150 mM potassium acetate, 5 mM magnesium 
acetate, 1 mM DTT and 10% glycerol then were washed three times in PBS. Beads 
with bound proteins were submitted to tandem mass spectrometry (MS/MS) 
analysis as previously described except without the detergent washing steps68. In 
brief, captured samples were released from beads by trypsin cleavage. Peptides 
were separated by reverse phase liquid chromatography and eluted peptides 
were converted to gas-phase ions by electrospray and analyzed using an Orbitrap 
(Thermo Scientific) followed by MS/MS to fragment the peptides through a 
quadropole for final mass detection. Data was analyzed using MaxQuant (v.1.6.3.4)69 
with a false discovery rate of 1% for both proteins and peptides and a minimum 
peptide length of seven amino acids. The Andromeda search engine70 was used for 
the MS/MS spectra search against the G. intestinalis protein database (downloaded 
on 11 July, 2020)38. We carried out data analysis using Perseus v.1.6.1.3 (ref. 71) and 
visualized as a volcano plot using the online tool VolcaNoseR72.

Protein cloning, expression and purification in E. coli. Full-length GiGet3 used 
to form Get3–TA complexes was cloned into a pET28a vector. For experiments 
using only GiGet3 and single point mutants, the gene was cloned in a pET28a 
vector that was modified to have an N-terminal His-tag and SUMO fusion protein. 
To create the TA protein variant used for cryo-EM experiments, a BRIL fusion 
protein, a thermostabilized apocytochrome b562 (with mutations M7W, H102I and 
R106L)73, followed by the TMD of ScBos1 was cloned into a pACYC-Duet vector 
modified to contain a tobacco etch virus cleavage site between an N-terminal 
His-tag and the fusion protein. The TMD of GiTA proteins were cloned into a 
pET21b vector and flanked by an N-terminal 3xStrep-tag followed by a modified 
noncleavable SUMO fusion protein and a C-terminal opsin tag42.

GiGet3 and mutants were expressed in E. coli NiCo21(DE3) cells 
(New England BioLabs) in 2xYT broth at 37 °C and induced by 0.3 mM 
isopropyl-β-d-thiogalactoside (IPTG) at an optical density (OD600) of around 0.6. 
Cells were gathered 4 h after induction. Cells were disrupted in lysis buffer (50 mM 
Tris pH 7.5, 300 mM NaCl, 20 mM imidazole and 10 mM β-ME) supplemented 
with protease inhibitors, 1 mM phenylmethylsulfonyl fluoride (PMSF) and 1 mM 
benzamidine using a M-110 Microfluidizer Processor (Microfluidics). Lysate was 
centrifuged to separate the soluble and membrane fractions. Protein was purified 
by batch incubation with NiNTA resin at 4 °C for 1.5 h. Resin was washed with lysis 
buffer and GiGet3 and mutants were eluted in 50 mM Tris, 300 mM NaCl, 300 mM 
imidazole and 10 mM β-ME, pH 7.5. The affinity tag was removed from the elution 
collected after nickel chromatography by an overnight ULP1 digestion in dialysis 
buffer (20 mM Tris, 150 mM NaCl and 10 mM β-ME). The dialyzed fraction flowed 
over a nickel column again to remove the His-SUMO particles and GiGet3 was 
collected in the flowthrough. This pool was further purified using SEC through a 
HiLoad 16/600 Superdex 200 (GE). Protein purified for crystallography purposes 
were purified in 10 mM Tris, 75 mM NaCl and 10 mM β-ME while protein used in 
ATPase assays was purified in 50 mM HEPES, 150 mM KOAc and 10 mM β-ME.

Get3–TA complexes were formed by coexpressing TA proteins with tag-less 
GiGet3 in E. coli NiCo21(DE3) cells in 2xYT broth at 37 °C and induced by 0.5 mM 
IPTG at an OD600 of around 0.7. Cells were lysed in 50 mM Tris, 300 mM NaCl 
and 10 mM β-ME, pH 7.5 supplemented with 1 mM PMSF and benzamidine using 
a M-110 Microfluidizer Processor (Microfluidics). The lysate was separated by 
centrifugation. Complexes used for structural determination via cryo-EM were 
purified by incubating the soluble fraction with NiNTA resin at 4 °C for 1.5 h. Resin 
was washed with 50 mM Tris, 300 mM NaCl, 35 mM imidazole and 10 mM β-ME, 
pH 7.5 and protein was eluted in 50 mM Tris, 300 mM imidazole and 10 mM β-ME, 
pH 7.5. The elutate was further purified via SEC using a HiLoad 16/600 Superdex 
200 (GE) column.

GiGet3–TA complexes used for pull-down experiments were purified by 
affinity chromatography using Strep-tactin resin (IBA Lifesciences). The resin was 
washed with lysis buffer and complexes were eluted in lysis buffer plus 2.5 mM 
desthiobiotin.

Full-length GiSgt2 was cloned into a pET33b vector that was modified to have 
an N-terminal His-tag and tobacco etch virus cleavage site. GiSgt2 was expressed 
in E. coli NiCo21(DE3) cells in 2xYT broth at 37 °C and induced by 0.3 mM 
IPTG at and OD600 of roughly 0.6. Cells were gathered 4 h after inductions and 
disrupted in lysis buffer (50 mM Tris pH 7.5, 300 mM NaCl, 10 mM imidazole and 
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10 mM β-ME) supplemented with protease inhibitors, 1 mM PMSF and 1 mM 
benzamidine using a M-110 Microfluidizer Processor (Microfluidics). Lysate was 
centrifuged to separate the soluble and membrane fractions. Protein was purified 
by batch incubation with NiNTA resin at 4 °C for 1.5 h. Resin was washed with 
wash buffer (20 mM Tris pH 7.5, 150 mM NaCl, 20 mM imidazole and 10 mM 
β-ME) and protein was eluted in 20 mM Tris, 150 mM NaCl, 300 mM imidazole 
and 10 mM β-ME, pH 7.5.

Crystallization. Purified GiGet3 or GiGet3-D53N were concentrated to 
10–12 mg ml−1 and crystal trays were set using the hanging-drop vapor-diffusion 
method by equilibrating equal volumes of protein and well liquor in VDX plates 
with sealant (Hampton Research). Apo GiGet3 crystals formed in 0.1 M MES 
pH 5.3, 0.1 M MgCl2 and 21% PEG3350 at 4 °C. GiGet3D53N was incubated with 
5 mM ATP and 2 mM MgCl2 on ice for 1 h before setting trays and ATP-bound 
crystals formed in 0.1 M Tris pH 7.5, 0.2 M ammonium sulfate and 15% PEG3350 
at room temperature. Crystals were cryoprotected by transfer into 30 μl of well 
liquor supplemented with 2 mM MgCl2 and, in the case of GiGet3D53N, 5 mM ATP 
and increasing amounts of glycerol (10%, 15% and 20%). Crystals were incubated 
in each cryoprotectant drop for <5 min before flash freezing in liquid nitrogen.

Data collection, structure determination and refinement. Both the apo and ATP 
structures were solved using data sets collected from single crystals on beamline 
12-2 at Stanford Synchrotron Radiation Lightsource (SSRL) at 12.6 keV using 
Blu-Ice (SSRL, https://smb.slac.stanford.edu/facilities/software/blu-ice/). Data for 
both the apo and ATP data sets were integrated and scaled using HKL3000 (ref. 
74) to a resolution of 3.0 and 2.23 Å, respectively. For the rest of the refinement 
both structures were determined using the same methods. Phases were obtained 
via molecular replacement in PHENIX75–77, using the monomer of yeast–Get3 
from PDB 3IBG (ref. 19) and sequences were adjusted using Sculptor78. Refmac5 
and phenix.refine were used for refinement and MolProbity was used to identify 
outliers77,79,80. Manual building was done using COOT with the final refinement 
done in Refmac5 in the CCP4 package suite79,81. For the apo crystal structure, the 
two monomers in the asymmetric unit contained residues 1–85, 106–153 and 156–
347 (328 out of 357) for apo1 and residues 1–85, 118–134 and 138–345 (313 out of 
357) for apo2 with a zinc ion for each on a symmetry axis. The final apo model had 
an R / Rfree of 0.3 / 0.35 with no Ramachandran outliers. For the ATP crystal structure, 
the asymmetric unit contained a monomer with residues 1–88 and 115–346 (322 out 
of 357) modeled, an ATP, a Mg2+ ion, two coordinated zinc molecules on symmetry 
axes and a sulfate ion. The final ATP model had an R / Rfree of 0.18 / 0.21 with no 
Ramachandran outliers. Full refinement statistics are in Table 1.

In the apo structure, each of the two modeled Zn2+ ions are coordinated across 
a dimer interface by the same cysteine pair, Cys287 and Cys290, from two symmetry 
related monomers (Extended Data Fig. 6e,f). For the ATP structure, the same pair 
also coordinates a Zn2+ ion between a symmetry related dimer (Extended Data 
Fig. 8c,d). A second Zn2+ ion is present at a crystallographic interface coordinated 
by residues His6 and Asp10 between symmetry related monomers (Extended Data 
Fig. 8e). All the Zn2+ ions were refined as half occupancy to account for their 
special positions. In addition, in the ATP structure the ATP molecule and Mg2+ 
ion are located in the protein active site (Extended Data Fig. 8f–g). Due to the high 
concentration of ammonium sulfate in the crystallization solution, extra electron 
density for a tetrahedral molecule was modeled as a SO4

2− ion and is bound to two 
arginines (Arg291 and Arg291, Extended Data Fig. 8i).

Cryo-EM grid preparation and data collection. EM samples for the GiGet3–
His-BRIL-Bos1TMD complex were collected from elution fractions from SEC. 
Then 3 μl at a concentration of roughly 0.73 mg ml−1 were placed on Holey carbon 
grids (Quantifoil R1.2/1.3, 300 mesh) that were glow discharged in air with a 20 A 
plasma current for 2 min using a Pelco easiGlow, Emeritech K100X. Grids were 
blotted at a force of 10 for 3.5 s and frozen in liquid ethane with the chamber at 4 °C 
and 100% humidity using a FEI Vitrobot Mark v4 x2. Data were collected using 
an automated data collection program, SerialEM82, on a FEI Titan Krios equipped 
with an energy filter (20 eV slit width) at 300 keV and a Gatan K3 direct detector. 
Beam illumination was adjusted to a fluence of 13 e−/upixels per Å. Images were 
collected using a defocus range of −0.7 to −3.0 μm using super resolution mode 
at a calibrated pixel size of 0.433 Å per pixel. Using counting mode, 1.82-s images 
were collected with a frame rate of 45.5 ms and dosage of 1.58 e−/Å per frame.

EM samples for the purified apo GiGet3 were collected from elution fractions 
from SEC and diluted to around 0.55 mg ml−1. Then 3 μl of sample was placed on 
Holey carbon grids (Quantifoil R2/2, 100 mesh NH2 Finders), which were treated 
in the same manner as the grid prep for the complex. Data were collected using 
SerialEM on a FEI Titan Krios equipped with an energy filter (Gatan Imaging 
Filter) at 300 keV and a Gatan K3 direct electron detector. Images were collected 
using a defocus range of −0.5 to −2.5 μm using super resolution mode at a calibrate 
pixel size of 0.5295 Å per pixel. In counting mode, a total of 50 frames were 
collected for a total dosage of 50 e−/Å2.

Image processing. For the GiGet3–TA complex data set, 2,732 videos were initially 
processed using cryoSPARCv.3.2.0 (ref. 83) to produce aligned dose-weighted 
micrographs (Extended Data Fig. 9c,d). During motion correction, videos were 

downsampled to a corrected pixel size of 0.866 Å per pixel and all downstream 
processing was done at this pixel size. Of the 2,732 videos, 2,356 were manually 
selected for contrast transfer function (CTF) refinement (CTFFIND4, ref. 84) and 
further processing. A small set of particles were manually picked and used for 
template-based picking and manually filtered to remove obvious debris, resulting 
in 1,790,962 particles. An initial round of two-dimensional (2D) classification 
was used for further particle filtration, resulting in 555,998 particles. Four ab 
initio models were generated using cryoSPARC and two classes were consistent 
with the expected shape and size of Get3 (a total of 362,614 particles). Several 
rounds of three-dimensional (3D) heterogeneous refinement were carried out to 
produce a class of 156,446 particles. 2D templates were generated using this class of 
particles and these templates were used for template picking. The 1,561,353 picked 
particles were extracted at a 4× bin, followed by 3D heterogeneous refinement 
to filter out bad particles and good particles were reextracted at a 2× bin. These 
803,265 particles were subjected to a 3D heterogeneous refinement again. Two 
models had similar levels of detail and shape. The 568,836 particles that result 
in these two models were reextracted with no binning and underwent a round 
of 3D heterogeneous refinement again. This resulted in two classes with high 
resemblance (338,011 particles).

These particles were exported using the cryosparc2star.py program from UCSF 
pyem package85 and imported into RELION v.3.1.2 (ref. 86). Particles underwent a 
round of 3D homogeneous refinement and local CTF refinement. It became clear 
that there was weaker density above the NBD, which could suggest lower order 
partially due to the expected flexible BRIL. Using Segger87 in Chimera v.1.3 (ref. 88) 
we created a mask to isolate the NBD and applied a soft mask of 6 pixels extended 
by 4 to the particles using particle subtraction. These particles underwent a round 
of 3D classification into four different classes. One class, 70,330 particles, with the 
most detail refined to 3.86 Å. C2 symmetry was imposed and the map refined to 
3.72 Å. Postprocessing was performed with a soft mask of 6 pixels extended by 4 
and the B factor was estimated by RELION. Local resolution was estimated using 
RELION’s own implementation. The disordered region could not be refined.

For the GiGet3 apo data set, 9,300 videos were first processed in cryoSPARC 
v.3.2.0, producing aligned dose-weighted micrographs (Extended Data Fig. 7a). 
Videos were downsampled to a corrected pixel size of 1.059 Å per pixel and all 
future processing was done at this pixel size (Extended Data Fig. 7b,c). A subset of 
7,607 videos were manually selected for particle picking. A small set of particles 
were manually picked and used to create 2D templates for template-based picking. 
Particles picked were filtered to remove debris, resulting in 11,596,225 particles 
that were then filtered using 2D classification resulting in 552,716 particles. Four 
ab initio models were generated, and one class was consistent with the expected 
shape and size of Get3 (174,3012 particles). Several rounds of 3D heterogeneous 
refinement were carried out to produce a class of 74,013 particles. 2D templates 
were then generated using these particles and the resulting templates were used 
for template picking, resulting in 17,238,072 picked particles. These particles were 
then extracted at 4× bin, followed by 3D heterogeneous refinement to filter out 
bad particles, and particles belonging to classes that resembled Get3 were then 
reextracted at 2× bin. These 7,599,636 particles were filtered by 3D heterogeneous 
refinement and particles in 3D classes that resembled Get3 were again reextracted, 
this time without any binning. These particles were filtered using several rounds 
of 3D heterogeneous refinement and the resulting 580,912 particles underwent 
homogeneous refinement.

These particles were exported using the cryosparc2star.py program and 
imported into RELION v.3.1.2. Particles underwent several rounds of 3D 
classification into six different classes. Five classes resembled Get3 and the 
combined 51,340 particles refined to 8.46 Å. Postprocessing was performed with 
a soft mask of 6 pixels extended by 4 and the B factor was again estimated by 
RELION. Local resolution was estimated using RELION’s own implementation.

Model building into the cryo-EM map. For the GiGet3–TA complexes, using 
phenix.dock in map two molecules were searched for in the map using the 
monomer of ScGet3 from PDB 5BW8 as a model22. The G. intestinalis sequence 
was then imposed using phenix.sculptor. Manual model building was conducted 
in COOT and the final model was run through phenix.real space refinement. 
Poly-alanine sequences were built into the three tubular densities in the CBD 
(H4/5 and the Bos1 TMD) for residues that could not be ambiguously assigned. 
Residues making up H4/5 are denoted as UNK the deposited structure.

Apo1 (chain A) from the apo GiGet3 crystal structure was used as a search 
model in the apo GiGet3 map using phenix.dock in map. Two molecules were 
found to fit. Residues that did not fit into the density map were deleted. To provide 
an initial model for FLEX-EM in the CCPEM suite, missing residues were placed 
in the model as a random loop (residues 85–116) and the resulting model was then 
refined using FLEX-EM89. In the final model, residues that did not fit in the map 
were deleted (85–116). ChimeraX v.1.2 (ref. 90) and Chimera v.1.3 were used to 
visualize maps and models.

ATPase assays. ATPase assays were carried out using EnzChek Phosphate Assay 
Kit (Thermo Fisher). Assays were carried out with 5.03 µM of GiGet3 or 4.51 μM 
of GiGet3-D53N in a buffer of 50 mM HEPES, 150 mM potassium acetate, 5 mM 
magnesium acetate and 10 mM β-ME, pH 7.5 at 37 °C. The reaction mixtures were 
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incubated in 96-well plates (Corning Costar Assay Plate) at 37 °C before initiating 
the reaction with ATP at concentrations of 0 μM, 37.25 μM, 62.5 μM, 125 μM, 
250 μM, 500 μM, 1 mM and 2 mM. Measurements were taken of three distinct 
samples for each concentration by a Tecan Infinite M Nano+ at an Abs = 360 nm 
every 20 sections for a total of 10 min. This method was programmed using 
Magellan v.7.2 software (Tecan). Data were analyzed using IceKat91.

In vitro capture assays. The in vitro transfer assays were performed as in previous 
reports42,44. Specifically, 39 μM Bos1 BPA (50 mM HEPES, 300 mM NaCl, 0.05% 
LDAO, 20% glycerol) was diluted to a final concentration of 0.1 μM and added to 
4 μM Ssa1 supplemented with 2 mM ATP (25 mM HEPES pH 7.5, 150 mM KOAc). 
After 1 min, 0.3 µM of full-length GiSgt2 or mutant was added to the reaction. 
Samples were flash frozen after 1 min and placed under a 365-nm ultraviolet lamp 
for 2 h on dry ice to allow for BPA crosslinking.

Proteins were detected using western blots. Protein samples were run on 
an SDS–PAGE gel and then transferred onto nitrocellulose membranes by the 
Trans-Blot Turbo Transfer System (Bio-Rad). Membranes were blocked for 1 h 
in 5% nonfat dry milk and the incubated with antibodies in TTBS buffer for 1 h 
at 24 °C. The primary antibodies, either an anti-penta-His mouse monoclonal 
(Qiagen) or anti-Strep II rabbit polyclonal (Abcam), were used at a 1:1,000 and 
1:3,000 dilution, respectively. A secondary antibody antimouse or antirabbit 
(LI-COR Biosciences) conjugated 800 nm fluorophore at a 1:15,000 dilution was 
used, and the blotting signals were chemically visualized with an infrared scanner.

Visualization of GiGet3 and GiTA clients using western blots. For detection of 
GiGet3 in the cytosolic or membrane fractions of G. intestinalis, the whole cell 
lysate and cytosolic and membrane pellet were run on a 12.5% SDS–PAGE gel. 
The gels were blotted onto 0.45-µm nitrocellulose membranes. The blots were 
blocked for 1 h with a 5% dry milk in TTBS buffer. Then the blots were incubated 
with anti-Get3 antibody (1:5,000), anti-endolase antibody (1: 10,000), anti-PDI2 
antibody (1:10,000) or anti-GL80503_9296 antibody (1:2,000) for 1 h at 25 °C. 
The anti-endolase antibody was validated by western blot of recombinant proteins 
and bands corresponded to the same protein band as tagged proteins detected by 
commercial anti-BAP antibody. Blots were rinsed in PBS and incubated for 1 h with 
the appropriate secondary antibody (antirat-horseradish peroxidase (HRP) conjugate 
or antirabbit HRP conjugate (Thermo Fisher), 1:2,000). For immuodetection and 
visualization Immobilon Classico Western HRP substrate (SigmaAldrich) and 
Amersham Imager 600 (Vanderbilt School of Medicine) were used.

GiGet3–GiTA protein complexes were run on a 12.5% SDS–PAGE gel. The gels 
were blotted onto 0.45-μm nitrocellulose membranes that were then cut in half 
and blocked for 1 h with a 5% dry milk in TTBS buffer. Then the higher molecular 
weight upper half of the blot was incubated with an anti-Get3 antibody (1:5,000 
dilution) while the lower molecular weight half was incubated with an anti-SUMO 
antibody at a 1:1,000 dilution (Rockland Immunochemicals, Inc.) for putative 
GiTA proteins at 4 °C for 4 h. Blots were rinsed with TTBS and then incubated 
with a secondary antibody (antirat or antirabbit conjugated to an IR680 fluorophore 
(LI-COR Biosciences) at a dilution of 1:15,000. The presence of GiGet3 and GiTA 
proteins were visualized by imaging the blots at a wavelength of 680 nm.

Data availability
Atomic coordinates and structure factors for the apo GiGet3 crystal structure 
and ATP-bound GiGet3 have been deposited in the PDB under accession codes 
7SPZ and 7SPY, respectively. The atomic coordinates and cryo-EM maps for the 
ADP-bound GiGet3–TA complex have been deposited to the PDB under the 
accession code 7SQ0 and Electron Microscopy Data Bank (EMDB) under the 
accession codes EMD-25374 (overall Get3–TA complex) and EMD-25373 (NBD of 
the Get3–TA complex). The apo GiGet3 cryo-EM map was deposited to the EMDB 
under the accession code EMD-25375. Source data are provided with this paper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Alignment of Get3. The full alignment of Get3 homologs partially shown in Fig. 1A. Conserved Get3 features are marked by 
bars below the alignment: P-loop (green), Switch I (magenta), Switch II (blue), A-loop (orange), the TRC40 insert (black), and the CXXC motif (black). 
Secondary structure for the Get3/TA•ATP complex (cyan) and Get3D53N •ATP (orange) are depicted above the alignment – cylinders for α-helices, arrows 
for β-sheets, and dashed lines for residues that were disordered. The region that contains H4/5 highlighted in purple. Conserved residues that were 
demonstrated to play a role in Get4 binding have asterisks below the alignment. Residues are colored using the ClustalX color scheme46.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Validation of G. intestinalis GET components. A) ATPase assays with GiGet3 (blue) & GiGet3D53N (orange). Absorbance was 
measured at a wavelength of 360nm at varying ATP concentrations. Experiment was done in triplicate. The lines represent the data fit using a LOESS 
(LOcally Estimated Scatterplot Smoothing) regression92. B) A schematic of experimental set-up which was conducted twice. ScSsa1 transfers ScBos1 
with an engineered BPA crosslinking site to GiSgt2. Crosslinking is initiated by UV exposure. C) A western blot visualizing the crosslinked GiSgt2/ScBos1 
complexes before and after transfer and with and without UV light treatment. C) GiGet3 and putative GiTA proteins were recombinantly expressed in E. coli 
then purified 2-3 times (depending on putative client) utilizing an affinity column to the Strep-tag on the TA proteins. Get3 could only be visualized if the 
TA protein expressed and bound to the TA protein. For western analysis, eluted samples were run on a gel and transferred to a membrane. The membrane 
was split in half, marked by dotted line, with the top blotted with an anti-GiGet3 antibody and the bottom by an anti-SUMO antibody. Putative TA proteins 
tested (GL50803_005161, GL50803_003896, GL50803_0015983, GL50803_003869, GL50803_0010803, GL50803_009849 and GL50803_0024512) 
are arranged by increasing TMD hydrophobicity (labeled in parentheses) using the TM tendency scale. GiGet3 was clearly identified in the eluates of 
GL50803_0024512 and GL50803_009849.
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Extended Data Fig. 3 | Alignment of Get4 homologs. A) (Left) AlphaFold2 structural prediction of the identified GiGet4 colored based on confidence 
from blue (most confident) to orange (least confident). Experimentally determined structure of the yeast Get4 (center)14 and human Get4 (PDBID: 6AU8) 
(right)93 are colored from N- to C-terminus using the viridis color scheme (purple to yellow). B) Alignment of Get4 homologs including: G. intestinalis, H. 
sapiens, S. cerevisiae, A. queenslandica, S. pombe, N. crassa, A. fumigatus, and P. falciparum. Conserved residues that were demonstrated to play a role in Get3 
binding are highlighted with asterisks above. Residues are colored as in Extended Data Fig. 1 22.
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Extended Data Fig. 4 | Identification of a Get2 homolog in G. intestinalis. A) An alignment of the identified Get2 from G. intestinalis with CAML from H. 
sapiens and Get2 from S. cerevisiae. The three predicted TMDs are shown with red cylinders above the alignment and the conserved N-terminal helices that 
tether to Get3 are shown as blue cylinders. The two conserved residues involved in Get3 binding are marked by asterisks below the alignment. Residues 
are colored using the ClustalX color scheme. Representative images from three experiments for (B) detection of GiGet2 using Stimulated Emission 
Depletion (STED) microscopy images of G. intestinalis trophozites. Get2 with a C-terminal V5 tag was detected by an anti-V5 antibody (yellow) and the 
ER membrane was labeled by an anti-PDI2 antibody (magenta). Images are merged in the third panel. (C) The ER localization of GiGet2 differs from the 
cellular localization of GiGet3. GiGet3 with a N-terminal HA-tag was labeled by an anti-HA antibody (yellow) and GiGet2 is labeled by the same method in 
(A) (magenta). Images are merged in the third panel. Scale bars represent 5µm.
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Extended Data Fig. 5 | Structures and alignment of Sgt2. A) AlphaFold2 structural prediction of the identified GiSgt2 colored based on confidence as 
in Extended Data Fig. 3A. Structural models of fungal Sgt2 domains: the N-terminal domain from S. cerevisiae (orange) (PDBID:2LXB)94, the TPR domain 
from A. fumigatus (yellow) (PDBID:3SZ7)12 and the C-domain from S. cerevisiae (green)35. B) An alignment of Sgt2 homologs: G. intestinalis, H. sapiens, S. 
cerevisiae, S. pombe, A. fumigatus, C. thermophium, and C. savignyi. The three domains are indicated by lines above the alignment, N-terminal dimerization 
(yellow), TPR-domain (orange), and substrate binding C-domain (green). Residues are colored using the ClustalX color scheme.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | The crystal structure of apo GiGet3. A) Size exclusion chromatograms of nickel eluate for Get3 and (B) SDS-PAGE gels of the 
peak highlighted in (A). GiGet3 was purified 10-20 separate times in order to produce enough material for crystal trays and cryo-EM analysis. B) The 
asymmetric unit of apo GiGet3 contains two distinct monomers of Get3 (gray), which are designated apo1 and apo2. Each monomer pairs with its 
respective symmetry equivalent in the neighboring asymmetric unit to form two distinct dimers. One dimer, apo1 (magenta), has the ’open’ conformation. 
The other dimer, apo2 (purple), has a conformation that is slightly more closed than the previously seen ‘open’ conformations. C) Alignment of the two 
monomers highlighting additional slight differences between. Apo1 is colored from N to C terminus using the viridis color map and apo2 in grey. The 
monomers are aligned to the P-loops and there are no notable differences in the NBD. The flexibility of the CBD is demonstrated here. Most distinct is a 
shift in the loop between H5 and H6 (residues 121-139) with most of this region disordered in apo2. Additionally, H5 is shorter at the N-terminus in apo2 
compared to apo1 due to a close contact with a symmetry mate that presumably disrupts the helix (red arrows in F). A 2Fo-Fc map shown as blue mesh 
at 1.0 sigma showing the region that includes the Zn2+ ions on the symmetry axes for (D) apo1 (outlined in cyan) and (E) apo2 (outlined in orange); these 
positions correspond to the arrows in (B). F) A single layer of the crystal lattice for apo GiGet3 crystals. Grey monomers define the asymmetric unit and 
symmetry related dimers are colored for either apo1 (magenta) or apo2 (purple).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | SPA data processing of apo GiGet3. A) An aligned and dose weighted micrograph from the data collection (7,607 micrographs) 
with apo GiGet3 sample particles selected with green circles. Scale bar represents 50nm. B) 2D class averages of particles used for the reconstruction. C) 
Processing of data through cryoSPARCv3.2.0 and RELION 3.1.2. D) Two views of the angular distribution of particles. Particle concentration is displayed by 
color and length (blue to red). Density filtered to 7 sigma for various helices that are shown as sticks: E) H7 (cyan) & H9 (magenta) and F) H10 (magenta) & 
H11 (cyan).
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Extended Data Fig. 8 | See next page for caption.

Nature Structural & Molecular Biology | www.nature.com/nsmb

http://www.nature.com/nsmb


Articles NATurE STruCTurAl & MolECulAr BIoloGy

Extended Data Fig. 8 | The crystal structure of GiGet3D53N •ATP. A) Size exclusion chromatograms of nickel eluate for Get3D53N and (B) a SDS-PAGE gel of 
the peak highlighted in (A). GiGet3D53N was purified 10-20 separate times in order to produce enough material for crystal trays. C) A cartoon model of the 
GiGet3D53N •ATP crystals. The asymmetric unit is shown in (yellow) with symmetry related molecules in grey. Regions of interest in the crystals are shown 
with arrows. Corresponding close-up views are shown in outlined panels boxed corresponding to the arrows in (C) each shown in sticks colored as before 
with 2Fo-Fc density contoured at 1.5 σ and colored blue in C-I. D) The bridging Zn2+ ion coordinated by four cysteines, two from each monomer (Cys287 & 
Cys290, magenta arrow). E) Similar representation as in B for the Zn2+ ion coordinated via a crystal contact by the surface residues His6, Asp10 and the same 
residues in a symmetry related molecule. In C & D the identity of the Zn2+ ions are confirmed by positive density (magenta mesh) in an anomalous double 
difference map obtained from data collected at two energies, 9.669keV and 9.659keV, which are just above and below the absorption K-edge of zinc. The 
anomalous double difference map is contoured at 6 sigma. F-H) Three views of the active site. F) The ATP molecule, surrounding loops, and coordinated 
waters within the active site. G) The residues and waters coordinating the Mg2+ ion. H) In the active site a Pro167 and Asn53 orient the catalytic water 
molecule above the γ-phosphate in the ATP molecule. I) A SO4

2- ion from the buffer bound to two arginines (Arg291 & Arg295).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | SPA data processing of GiGet3-TA complexes. A) Size exclusion chromatogram of nickel eluate of Get3-TA complexes and 
an SDS-page gel of the peak from one of the 10 separate purifications of the complex. A single fraction was used for structure determination B) An 
aligned micrograph from the data collection (2,732 micrographs) with sample particles selected with yellow circles. Scale bar represents 50nm. C) 2D 
class averages of particles used for the reconstruction. D) Processing of data through cryoSPARCv3.2.0 and RELION 3.1.2. E) Two views of the angular 
distribution of particles. Particle concentration is displayed by color and length (blue to red).
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Extended Data Fig. 10 | Representative resolution and density of GiGet3-TA complex. A) The local resolution of the unsharpened map presented in 
Extended Data Fig. 9. Representative density of (B) H11, (C) H7 & H9, (D) active site with ADP molecule and Mg2+ ion, and (E) β-sheet 1. F) Representative 
density (grey) of the reconstruction without any symmetry imposed of H11 as shown in (B). G) The unsharpened map of the reconstruction before 
imposing symmetry. Density corresponding to the TA protein and H4/5 are colored as they are in Fig. 3A,B.

Nature Structural & Molecular Biology | www.nature.com/nsmb

http://www.nature.com/nsmb


 



1 
 

Highly diverged pre-targeting complex in Giardia intestinalis reveals the 1 

ancestral presence of Bag6 and the evolution of GET pathway  2 

in eukaryotes 3 

 4 

Najdrová Vladimíra 1, Dohnálek Vít 1, Voleman Luboš1, Doležal Pavel 1 5 

1Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 6 

595, 252 50, Vestec, Czech Republic 7 

 8 

ABSTRACT 9 

Approximately one-fourth of proteins in cells represent integral membrane proteins. 10 

Tail-anchored proteins carry a single C-terminal transmembrane domain that anchor 11 

them to organelle membranes. This topology enables TA proteins to mediate interaction 12 

among the compartments in processes such as vesicular transport, apoptosis and protein 13 

translocation. TA proteins are targeted post-translationally to the ER membrane by 14 

the Guided Entry of TA proteins (GET) pathway, which is well studied in metazoan and 15 

yeast. Some of GET pathway components were identified in plants and recently in 16 

Plasmodium falciparum and Giardia intestinalis. Here, we identified all missing 17 

components of the GET pathway in G. intestinalis, including divergent Bag6 homolog, 18 

which was considered to be present only in metazoan until now. Moreover, 19 

the interactome of GiGET components revealed the involvement of GET proteins in the 20 

other cellular pathways such as protein degradation. Our results from both experimental 21 

and bioinformatical studies suggest that the GET pathway is an ancestral eukaryotic 22 

pathway and has ancient and crucial role in cellular function. 23 

 24 
Keywords: Giardia intestinalis, protozoan, tail-anchored protein targeting, Guided Entry 25 
of tail-anchored protein pathway, native isolation, evolution 26 
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INTRODUCTION 27 

Tail-anchored (TA) proteins represent a special class of integral membrane 28 

proteins characterized by the presence of a single C-terminal transmembrane domain 29 

(TMD) and the absence of any N-terminal signal sequence (Kutay et al., 1993). Targeting 30 

information of TA proteins is contained within the TMD and hereby hidden within 31 

the ribosome until the end of translation. Therefore, TA proteins must be targeted and 32 

inserted into the membrane post-translationally and without SRP participation (Guna et 33 

Hegde, 2018; Jiang, 2021). Most of the TA proteins are targeted to the endoplasmic 34 

reticulum (ER) membrane through the Guided Entry of TA proteins (GET) insertion 35 

pathway (named as TRC in metazoan) (Schuldiner et al., 2008; Stefanovic et Hegde, 2007). 36 

After translation, TA proteins are first bound by the ribosome-associated 37 

chaperone Sgt2 (small glutamine-rich tetratricopeptide repeat-containing protein 2) and 38 

this process is facilitated by cytosolic Hsp70 (Cho et Shan, 2018; F. Wang et al., 2010). 39 

Subsequently, Sgt2 recruits Get5 that together with Get4 builds a heterotetrameric 40 

Get4/Get5 complex. The entire so-called pre-targeting (or cytosolic) complex then passes 41 

TA protein to Get3 ATPase (Chartron et al., 2010; Chio et al., 2017; Gristick et al., 2015). 42 

Get3 with the bounded TA protein is released from the pre-targeting complex and 43 

delivered to the membrane complex containing Get1 and Get2 proteins. These 44 

components mediate the dissociation of TA protein from Get3 and further facilitate the 45 

insertion of TA protein into ER membrane (Aviram et Schuldiner, 2017; Borgese et al., 46 

2019; Hegde et Keenan, 2011; Mariappan et al., 2011; McDowell et al., 2020). 47 

The metazoan pre-targeting complex also involves Bag6 (also named Bat3 or Scythe) that 48 

combines together with Get4 and Get5 into a heterotrimeric complex (Leznicki et al., 49 

2010; Mariappan et al., 2010; Mock et al., 2015; Vilardi et al., 2011; Yamamoto et 50 

Sakisaka, 2012). Get4 and Get5 bind separately to Bag6 and this is reflected by the 51 

absence of domains that mediate the interaction of the yeast counterparts (Bozkurt et al., 52 

2010; Chang et al., 2010; Chartron et al., 2010; Mariappan et al., 2010; Mock et al., 2015). 53 

Bag6 itself is a multifaceted protein containing N- terminal ubiquitin-like domain 54 

(UBL), central proline-rich domain, bipartite nuclear localization signal (NLS), and the 55 

C-terminal Bag6 domain that is responsible for Get4 and Get5 binding (Mock et al., 2015). 56 

In addition to Bag6 role in the targeting of TA proteins, it participates in other diverse 57 
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cellular processes, regulation of gene expression and apoptosis (Minami et al., 2007; P. 58 

Nguyen et al., 2008; Thress et al., 1998). Moreover, UBL domain of Bag6 interacts with 59 

the Rpn10 proteasome subunit and together with the FBXO7-SCF E3 ubiquitin ligase is 60 

required for proper proteasome function. The Bag6 defect leads to various human 61 

diseases, including Parkinson’s disease (Kikukawa et al., 2005; Q. Wang et al., 2021). 62 

Therefore, depending on Bag6, the TA proteins are successfully transferred from SgtA to 63 

Get3 (Mariappan et al., 2010) or polyubiquitinated by the E3 ubiquitin ligase RNF126 and 64 

degraded in the proteasome (Rodrigo-Brenni et al., 2014; Shao et al., 2017). 65 

Previous work showed that Get3, which is the most conserved component of 66 

the GET pathway, undergoes a catalytic cycle of protein binding and release in manner 67 

conserved from metazoans (Bozkurt et al., 2009; Gristick et al., 2014; Mateja et al., 2009, 68 

2015; Stefer et al., 2011; Suloway et al., 2009) to unicellular eukaryotes such as 69 

G intestinalis (Fry et al., 2022). Given the significant functional differences between the 70 

pre-targeting complexes of yeast and metazoan, both members of Opisthokonta 71 

supergroup of eukaryotes, we decided to characterize the complex in G. intestinalis from 72 

very distant Metamonada supergroup. Via the characterization of the in situ interactome, 73 

cell localization and in vitro protein interaction assays, we could characterize 74 

G. intestinalis pre-targeting complex that involves GiSgt2, GiGet4, GiGet5 and GiBag6 75 

quartet. We used comparative genomics to define the ancestral pre-targeting complex in 76 

the last eukaryotic common ancestor (LECA) and the evolution of the GET pathway in 77 

eukaryotes. 78 

RESULTS 79 

Identification of the missing pre-targeting components in G. intestinalis 80 

Previous characterization of G. intestinalis Get3 revealed the presence of 81 

additional three components of the GET pathway (Fry et al., 2022). GiGet4 82 

(GL50803_00112893) and GiGet2 (GL50803_0017617) were found among GiGet3-binding 83 

partners, while GiSgt2 was identified (GL50803_007287) via structure-based sequence 84 

search (Fry et al., 2022). The latter was further showed to capture client TA proteins from 85 

Hsp70. These data prompted us to identify the missing components of the pre-targeting 86 

complex in G. intestinalis, that could either diverge beyond the homology-detection 87 
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algorithms or represent a lineage-specific components. To this aim, both known 88 

pre-targeting complex components GiSgt2 and GiGet4 were separately expressed in 89 

G. intestinalis together with biotin ligase (BirA) and the crude cell lysates purified on 90 

streptavidin-coupled magnetic beads (Figure S1). The eluates were analyzed by mass 91 

spectrometry to identify GiSgt2 and GiGet4 binding partners. 92 

In total, 51 significantly enriched proteins were co-purified with GiSgt2 (Fig.1A; 93 

Table S1), of which GiSgt2 itself was the second most enriched protein (394-fold 94 

enrichment, FE) while a ubiquitin-like domain-containing protein (GL50803_007287) was 95 

found as the most abundant (1,197 FE). Of the known GET pathway components, 96 

the dataset contained highly enriched GiGet4 and GiGet3, and also cytosolic chaperone 97 

Hsp70 (Ssa1; GL50803_0088765). The rest included DnaJ subfamily A protein (Ydj1; 98 

GL50803_009808), heat shock factor binding protein (GL50803_007351), Rac/Rho-like 99 

protein (GL50803_008496), and 14 proteins with yet unknown function or domain 100 

homology. Interestingly, ten proteasome subunits of the 19S regulatory particle (RP) 101 

(Figure 2), ubiquitin (GL50803_007110) and ubiquitin-conjugating enzyme E2 102 

(GL50803_005921) were also identified, suggesting specific co-purification of 103 

the proteasome complex. 104 

 Isolation of GiGet4 returned a dataset with 67 significantly enriched hits, among 105 

which GL50803_0019378 was the top hit (11,000 FE) followed by the bait protein GiGet4 106 

and also GL50803_005069 (Fig. 1B; Table S1). Both GiGet3 and GiSgt2 were also found 107 

among the significantly enriched proteins. Similarly to GiSgt2 data, a set of proteasome 108 

subunits of both the 19S RP and the 20S catalytic particle (CP) (Figure 2), ubiquitin and 109 

ubiquitin carboxyl-terminal hydrolase 14 were identified. The dataset contained 110 

additional 14 proteins of unknown function. The comparison of two experiments using 111 

hierarchical clustering showed a common co-purification of 19 proteins including known 112 

GET pathway components (Fig. 1C). 113 

Two proteins GL50803_0019378 and GL50803_005069 of unknown function, 114 

which were placed on top of both datasets, were selected for further analyses. 115 

GL50803_0019378 represents a protein of theoretical Mw 16.74 kDa but 116 

the bioinformatic tools including highly sensitive HHpred algorithm failed to identify any 117 

homologous domains within the amino acid sequence. The structural prediction by 118 
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Alphafold2 did not result in a high confidence model, as most of the polypeptide chain 119 

remained unstructured (Fig. 3A). Only the C-terminal part of 56 (91-147) residues was 120 

predicted to fold into three helices of mutual conformation similar to the C-terminal part 121 

of yeast and human Get5 (Fig. 3B). Specific comparison with the human Get5 showed that 122 

the proteins are similar in size and share only 20,4% similarity (Fig. 3C), but it is 123 

comparable to 20.8 % similarity between yeast and human Get5 orthologs. This data 124 

indicated that GL50803_0019378 could correspond to highly diverged Get5 orthologue in 125 

G. intestinalis. The identified protein was hereafter referred to as GiGet5 (Fig. 3C). 126 

In case of GL50803_005069, the homology detection Hhpred algorithm showed 127 

similarity to UBL on the N-terminus of the protein (Fig. 4A). No further sequence or 128 

structural similarity has been identified but the presence of UBL on the N-terminus of 129 

the protein is characteristic feature of human Bag6 protein (Banerji et al., 1990; Mock et 130 

al., 2015) . Detailed comparison of the human and G. intestinalis proteins showed that 131 

their UBL domains are very similar when modelled by Alphafold2 (Fig. 4B) and additional 132 

similarity could be identified at the C-terminal region (Fig. 4C). In human Bag6, this region 133 

comprises Get4 binding part, the nuclear localization signal (NLS) and Bag6 domain 134 

(Mock et al., 2015). The inspection of G. intestinalis sequence within the protein sequence 135 

alignment indicated the presence of all three components (Fig. 4C). This data suggested 136 

that GL50803_005069 represents highly divergent Bag6 homolog in G. intestinalis, 137 

hereafter labelled as GiBag6. Using the immunofluorescence microscopy, the BAP-tagged 138 

GiBag6 was found in spotted pattern across the cytosol and approximately 10 % of 139 

the cells showed nuclear localization (Figure S2). All cells were found to accumulate 140 

the protein in the posterior end of the cell (Fig. 4D). 141 

 142 

Get5 and Bag6 interactomes show stable in vivo interaction within the pre-targeting 143 

complex. 144 

In order to support the involvement of these newly identified highly diverged 145 

components in the G. intestinalis GET pathway, analogous native isolations of GiGet5 and 146 

GiBag6 were performed (Figure S1). The purification of GiGet5 returned 16 significantly 147 

enriched proteins (Fig. 5A; Table S1). Bellow GiGet5 that was found as the top enriched 148 

protein (5,800 FE) other GET pathway components GiGet4, GiBag6, GiSgt2, and GiGet3 149 
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were identified. Other hits included two variant surface proteins (VSP; 150 

GL50803_00113439; GL50803_00113450), eukaryotic translation initiation factor 2 151 

(GL50803_0091398), DNA mismatch repair protein (GL50803_0034058), DNA-directed 152 

RNA polymerases I and III (GL50803_0010840), A49-like RNA polymerase I associated 153 

factor (GL50803_0016615), DUF4485 domain-containing protein (GL50803_005183), and 154 

four proteins of unknown function (GL50803_005324; GL50803_0086815; 32668; 155 

GL50803_004259). 156 

The isolation of GiBag6 returned dataset of 14 significantly enriched proteins with 157 

GiBag6 as the most enriched protein (40 FE), followed by GiGet4 and GiGet5 (Fig 5B; Table 158 

S1). Additional enriched proteins involved four proteasomal 19S subunit proteins 159 

(GL50803_0033166; GL50803_0015454; GL50803_0086683; GL50803_0016659), 160 

putative dihydrouridine synthase (GL50803_003565), DNA-directed RNA polymerase 161 

subunit RPB10 (GL50803_0014413), ribosomal protein L28e (GL50803_0034093), 162 

lysyl-tRNA synthetase (GL50803_0016766), and three proteins of unknown function 163 

(GL50803_009605; GL50803_0014997; GL50803_0014984). These reciprocal 164 

co-purification data showed that both GiGet5 and GiBag6 are specific components of 165 

G. intestinalis GET pathway. 166 

The specificity of the interaction among the GET components was further 167 

demonstrated via hierarchical clustering built upon the datasets derived from all four pre-168 

targeting complex components (Fig 5 C). Of 115 identified hits single strongly supported 169 

cluster comprising already known components of pre-targeting complex, GiSgt2 and 170 

GiGet4, their newly identified partners GiGet5 and GiBag6 as well as the TA-protein 171 

targeting component GiGet3 (Fig. 5D). Interestingly, the cluster included additional 172 

protein of unknown function (GL50803_005324) without any similarity to known 173 

domains. The protein thus may represent G. intestinalis specific GET pathway component. 174 

  175 
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Evolution of the GET pathway in eukaryotes. 176 

The identification of diverged GET pathway components in G. intestinalis was only 177 

possible via the isolation of relatively well evolutionarily conserved proteins Sgt2 and 178 

Get4. The protein sequences of G. intestinalis are generally highly diverged when 179 

compared to their opisthokont orthologues (Morrison et al., 2007; Xu et al., 2020) but in 180 

case of the newly identified GiGet5 and GiBag6, even the most sensitive homology 181 

detection algorithms such as HHpred failed to identify these in the genomic data. This 182 

indicated that while some of the GET pathway components are well conserved across 183 

the eukaryotic diversity (Get3, Sgt2, Get4, Get1), some of the components thought to be 184 

missing in eukaryotes could diverge beyond the recognition of the bioinformatics when 185 

opisthokont sequences are used as queries. 186 

Hence, when we set up HMM-based searches for the identification of GET pathway 187 

components across eukaryotic diversity, we thus used as diverse dataset as possible, 188 

including G. intestinalis proteins, to build the protein specific HMMs. The models were 189 

used against the proteomes and transcriptomes of representatives of ten eukaryotic 190 

supergroups (Fig. 6, Table S2). Of all GET pathway components proteins Sgt2, Get4, and 191 

Get3, were found as the most conserved and they could be identified in all supergroups 192 

(Fig. 6, Table S2). Similarly, homologs of the membrane complex components, Get1 and 193 

Get2, were identified in most eukaryotes (Fig. 6, Table S2). In case of Get5 and Bag6 194 

proteins, the sensitivity of the searches was highly increased by the inclusion of 195 

G. intestinalis and other Metamonada sequences. This enabled to identify at least one 196 

representative of Get5 in the genome/transcriptome also in Discoba, Fungi, Metazoa, 197 

Telonema sp., Alveolata and Rhizaria (Fig. 6, Table S2). 198 

In the case of Bag6, the C-terminal domain of Bag6 (Figure 4C) was identified as 199 

a key identifier for the recognition of divergent Bag6 homologs. This allowed as to identify 200 

homologs of Bag6 in Metamonada, Metazoa, Amoebozoa, Archaeplastida (including 201 

Chloroplastida, Rhodophyta, and Glaucophyta), TSAR (including Telonema sp., 202 

Stramenopia, Alveolata, and Rhizaria), Haptista, CRuMs, and non-classified organism 203 

Ancoracysta twista (Fig. 6, Table S2). 204 

 205 
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DISCUSSION 206 

Post-translational targeting of TA-proteins has been intensively studied over 207 

the last fifteen years, which resulted in the identification of the key GET pathway 208 

components and the characterization of their interaction (Schuldiner et al., 2008; 209 

Stefanovic et Hegde, 2007). Yeast and metazoan cell systems played crucial role in these 210 

discoveries but interestingly, significant functional differences were already found 211 

between these two systems, such as the involvement of Bag6 in humans (Mariappan et 212 

al., 2010; Q. Wang et al., 2011), suggesting that the components of the GET pathway may 213 

vary in different eukaryotes. 214 

Recently, the study of the GET pathway was also extended to Archaeplastida 215 

(Xing et al., 2017) and Alveolata (Kumar et al., 2021). Moreover, our recent 216 

characterization of GiGet3 revealed full molecular mechanism, by which this targeting 217 

factor controls ATP hydrolysis and the substrate binding and its release (Fry et al., 2022). 218 

G. intestinalis is a member of highly diverged Metamonada supergroup of eukaryotes that 219 

are commonly adopted to anaerobic environments (Adl et al., 2012) and while many 220 

aspects of their cell biology underwent unique adaptations and dramatic simplification 221 

(Adam, 2021), core components of pathway such as those involved in the protein 222 

transport have remained conserved (Fry et al., 2022). For this reason, G. intestinalis 223 

represents a great model for the evolutionary cell biology. 224 

Together with Get3, G. intestinalis was also shown to possess Get4, Get2, and Sgt2 225 

homologs (Fry et al., 2022). Both Get5 and Bag6 of the pre-targeting complex were found 226 

which prompted us to identify if Get5 and Bag6 are truly missing in G. intestinalis or just 227 

diverged beyond recognition. In case of Bag6, its absence would be expected because of 228 

its previous identification only in Metazoa (Leznicki et al., 2010; Mariappan et al., 2010; 229 

Minami et al., 2007). Using GiSgt2 and GiGet4 as baits resulted in specific co-purification 230 

of two proteins, subsequently designated as GiGet5 and GiBag6, which represent highly 231 

divergent homologs of Get5 and Bag6, respectively. Although GiGet5 sequence appears 232 

as highly divergent, structural alignment of GiGet5 and other homologs revealed 233 

the conservation of the C-terminal part, that, we proposed, could serve as a general 234 

determinant for Get5 identification in eukaryotes. GiGet5 lacks the N-terminal part that 235 

is present in yeast Get5 and is responsible for Get4 binding. Interestingly, this is analogous 236 
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to human GET pathway, where human Get5 also lacks the N-terminal domain. Herein, 237 

Get4 and Get5 are bound separately by Bag6, which is not present in yeast. (Bozkurt et 238 

al., 2010; Chang et al., 2010; Chartron et al., 2010; Mariappan et al., 2010; Mock et al., 239 

2015). In this light, G. intestinalis GET pathway is reminiscent to the human pathway. 240 

The identification of Bag6 in G. intestinalis actually represents first report of Bag6 241 

homolog outside Metazoan. When compared to human protein, GiBag6 is shorter in 242 

sequence and lacks any similarity in the central part of the protein, however both proteins 243 

share the N-terminal UBL domains and multi-functional C-terminal part (Mock et al., 244 

2015). The C-terminus of Bag6 was shown to carry NLS that targets human Bag6 to 245 

nucleus, where the protein participates in gene regulation processes (Manchen et 246 

Hubberstey, 2001; P. Nguyen et al., 2008). Both cytosolic and nuclear localization found 247 

also for GiBag6 suggesting similar functional repertoire for Bag6 in both cellular systems. 248 

However, detailed inspection of GiBag6 targeting is required to understand if it is also 249 

Get4 binding to Bag6 that prevents the nuclear translocation of the protein via masking 250 

the NLS (Q. Wang et al., 2011). Of 14 proteins co-purified with GiBag6 two possible 251 

interactors small subunit of DNA-directed RNA polymerases (RPB10; GL50803_14413) and 252 

putative tRNA-dihydrouridine synthase (GL50803_3565) point to the nuclear function of 253 

GiBag6, while Lysyl-tRNA synthetase (GL50803_16766) and ribosomal subunit L38e 254 

(GL50803_34093) suggest the potential role for GiBag6 in the regulation of translation. 255 

In addition to canonical GET pathway components, GiSgt2 shown interaction with 256 

the cytosolic chaperone hsp70 (GL50803_88765), the chaperone Ydj1 (GL50803_9808) 257 

and the heat shock factor binding protein (GL50803_7351). These results correspond with 258 

the fact that Sgt2 itself is not sufficient to maintain the solubility of TA proteins and 259 

TA proteins recognition and transfer are facilitated by cytosolic chaperones from hsp70 260 

family and J-domain containing cochaperones (Cho et al., 2021; Cho et Shan, 2018). 261 

Importantly, the purification of GiSGt2, GiGet4, and GiBag6 showed specific 262 

presence of multiple proteasomal proteins of both the catalytic and regulatory complexes 263 

in the datasets. According to the number of co-purified subunits, these data show strong 264 

interaction of the proteasome with GiGet4 and GiSgt2 but also some interaction with 265 

GiBag6. In this regard, the role of pre-targeting complex in quality control of mislocalized 266 

membrane proteins was previously shown for Sgt2 and Bag6 (Leznicki et High, 2012; 267 
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Minami et al., 2010; Shao et al., 2017; Wunderley et al., 2014). Human Sgt2 and Xenopus 268 

Bag6 were found to bind Rpn13 and Rpn10 subunits of the proteasome, respectively 269 

(Kikukawa et al., 2005; Leznicki et al., 2015). Despite the fact, different proteasome 270 

subunits were found among the significantly enriched proteins with GET components in 271 

G. intestinalis, our data support the interaction of the pre-targeting complex with 272 

proteasome in a cellular system entirely different from Metazoa. Thus, the interaction 273 

likely reflects ancestral mechanism of protein binding and degradation. 274 

The GET pathway, or at least its central element, Get3, has been considered as 275 

the evolutionarily ancient feature of eukaryotes as it could be identified not only in all 276 

eukaryotic groups, but its homologues function also in bacteria and archaea (Farkas et al., 277 

2019). In this work, we show that the conservation of the GET pathway can be extended 278 

to all seven GET components. While also homologues of Sgt2, Get4 can be readily 279 

identified in all eukaryotic supergroups, remaining GET components are often difficult to 280 

identify (Chang et al., 2010; Fry et al., 2022; Kumar et al., 2021; Mariappan et al., 2010; 281 

Srivastava et al., 2017). The identification of GiGet5 and GiBag6 enabled us to define 282 

signature motifs at the C-terminal part of both proteins (Mock et al., 2015, 2017) that 283 

proved to be very specific in identifying other diverged homologues across eukaryotic tree 284 

of life. 285 

Similarly, the GET components of the membrane complex that is responsible for 286 

inserting the TA-protein into the membrane are also prone to diverge quickly in different 287 

lineages of eukaryotes. Get1 protein is a member of OXA1 superfamily of proteins that 288 

also includes two other ER-destined insertases, TMCO1 and EMC3 (Anghel et al., 2017). 289 

While our search of Get1 homologs showed common presence of the protein to all 290 

eukaryotic supergroups, several eukaryotes including G. intestinalis carry only Get1 291 

homolog. The missing homolog of TMCO1 (Transmembrane and coiled-coil domain 1) is 292 

a Ca2+ channel responsible for homeostasis in ER (Q. C. Wang et al., 2016). The EMC3 is 293 

a subunit of the EMC complex (ER membrane protein complex) through which multi-pass 294 

transmembrane proteins (Chitwood et al., 2018; Tian et al., 2019) and some TA-proteins 295 

are inserted into the ER membrane (Guna et al., 2018). Our results together with the fact 296 

that the EMC complex is missing in G. intestinalis (Wideman, 2015), raise the question of 297 

how other membrane proteins are transported into the ER membrane and how the loss 298 
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of the TMCO1 and EMC complex is replaced. The common origin of all three subfamilies 299 

(Get1, TMCO1, EMC3) suggests potential functional redundancy. Recent report shows 300 

that mitochondria targeted EMC3-EMC6 and Get1-Get2 proteins are able to partially 301 

rescue the function of mitochondrial Oxa1 mutant (Güngör et al., 2022). 302 

Homology search for Get2 homologs was previously carried out among metazoan, 303 

plants, and fungi (Borgese, 2020). The protein was experimentally identified in  304 

yeast and human (Schuldiner et al., 2008, Yamamoto et Sakisaka, 2012), recently also in 305 

Alveolata (P. falciparum) (Kumar et al., 2021) and plants (Arabidopsis thaliana) (Asseck et 306 

al., 2021) and G. intestinalis (Fry et al., 2022). Our search showed the presence of Get2 in 307 

an extended dataset and demonstrated the conservation of Get2 in almost all eukaryotic 308 

groups. 309 

Altogether, these data show that LECA already contained all GET pathway 310 

components (Sgt2, Get1-Get5, Bag6) and some organisms such as yeast lost Bag6 while 311 

simultaneously extended their Get4 and Get5 proteins to allow their mutual interaction 312 

in the absence of Bag6. Our result also suggests that the interaction of the pre-targeting 313 

complex with the proteasome may represent another ancestral eukaryotic feature. Yet, 314 

more experiments are needed to understand the biological role of the interaction and its 315 

conservation across eukaryotic tree of life. 316 

 317 

Methods 318 

Bioinformatic searches 319 

Seed alignments from Pfam of homologs of GET proteins were searched by local 320 

HMMER search v3.3.2 (http://hmmer.org/) (Mistry et al., 2013, 2021) against UniProt 321 

protein databases released 2022-02 (Bateman et al., 2021) and against the the EukProt 322 

database v2 (Richter et al., n.d.). Sequences were aligned using MAFFT v.7 (Katoh et al., 323 

2019). Returned positive hits were verified using by HHpred algorithm (Zimmermann et 324 

al., 2018) (https://toolkit.tuebingen.mpg.de/tools/hhpred) against the Pfam-A_v33.1 325 

database. Multiple sequence alignments were enriched with newly classified homologs 326 

and used for subsequent searches. The distribution of protein domains was determined 327 

by combination of the Pfam and InterPro online search (El-Gebali et al., 2019; Mitchell et 328 

http://hmmer.org/
https://toolkit.tuebingen.mpg.de/tools/hhpred
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al., 2019). Protein similarity was calculated from sequence alignment by online tool Ident 329 

and Sim (Stothard, 2000). 330 

Phylogenetic analyses 331 

  MMseqs2 (Steinegger et Söding, 2017) was used to cluster datasets using the easy-332 

cluster algorithm with different minimum sequence identity thresholds that were 333 

the most suitable for each dataset. Representative sequences were aligned using MAFFT 334 

version 7 (Katoh et al., 2019). The L-INS-i algorithm with default parameters was used. 335 

Poorly aligned regions were subsequently automatically removed by trimAl (Capella-336 

Gutiérrez et al., 2009) with the gappyout mode. Phylogenetic analysis was performed with 337 

IQ-TREE2 software (L. T. Nguyen et al., 2015). The best fitting model was obtained with 338 

the ModelFinder (Kalyaanamoorthy et al., 2017). To reduce the computing time, UFBoot 339 

method (ultra-fast bootstrap) method was employed (Hoang et al., 2018). 340 

 341 

Cell culture, cloning, and transfection 342 

The G. intestinalis strain WB (ATCC 30957) was grown in TYI-S-33 medium 343 

supplemented with 10% heat-inactivated bovine serum, 0.1% bovine bile and antibiotics 344 

at 37 °C (Keister, 1983). The genes encoding GiSgt2 (GL50803_7287), GiGet4 345 

(GL50803_112893), GiGet5 (Gl50803_19378) and GiBag6 (GL50803_5069) were amplified 346 

from genomic DNA and inserted into plasmid pOndra (Dolezal et al., 2005) with C- or 347 

N-terminal BAP tag (Table S3). Then 1 × 107 cells expressing cytosolic BirA (Martincová et 348 

al., 2015) were electroporated with Bio-Rad Gene Pulser using an exponential protocol (U 349 

= 30 V; C = 1,000 μF; R = 750 Ω). The transfected cells were grown in TYI-S-33 media 350 

supplemented with antibiotics (58 μg/ml 351 

puromycin and 600 μg/ml G418) and used for native isolation to establish GET 352 

components in G. intestinalis. 353 

 354 
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Native isolation of Get proteins, proteomics. 355 

Native isolation of biotinylated proteins was made as previously described (Fry et 356 

al., 2022). In brief, lysate from G. intestinalis cells co-expressing BAP-tagged GET pathway 357 

component and BirA was incubated with streptavidin-coupled magnetic beads 358 

(Dynabeads MyOne Streptavidin C1, Invitrogen, Waltham, MA) for 1 hr at 4°C with gentle 359 

rotation. The magnetic beads were washed 3 times in wash solution (50mM HEPES pH 360 

7.4, 150 mM potassium acetate, 5mM magnesium acetate, 1 mM DTT, and 10% glycerol) 361 

then washed 3 times in PBS. Magnetic beads with bound proteins were submitted to 362 

tandem mass spectrometry analysis. Isolation was made in triplicates and lysate from 363 

G. intestinalis cells expressing only BirA was used as control for protein quantification. 364 

Data analyses was performed using Perseus 1.6.1.3 (Tyanova et al., 2016) and visualized 365 

as a volcano plot using online tool VolcaNoseR with Fold change 1 and Significance 366 

threshold 2 (Goedhart et Luijsterburg, 2020). 367 

Immunofluorescence microscopy 368 

 Trophozoites of G. intestinalis were fixed in 1% paraformaldehyde, placed on cover 369 

slip as previously described (Voleman et al., 2017). BAP-tagged proteins were detected by 370 

a commercial anti-BAP mouse primary antibody (dilution 1:1000) and Get3 was detect by 371 

anti-Get3 rabbit antibody (dilution 1:1000) (Fry et al., 2022). Alexa Fluor 488-conjugated 372 

donkey anti mouse (cat. nr. A-21202) and Alexa Fluor 594-conjugated donkey anti-rabbit 373 

IgG (cat. nr. A-21207) were used at a 1:1000 dilution as secondary antibodies. Slides were 374 

mounted with Vectashield containing DAPI (cat. nr. H-1200-10) and imaged with a Leica 375 

SP8 FLIM inverted confocal microscope. Maximum intensity projection and 376 

brightness/contrast corrections were performed in the FIJI ImageJ software (Schindelin et 377 

al., 2012). 378 

 379 

 380 

 381 

 382 

 383 
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Figures384 

 385 

Figure 1 386 

A. Isolation of GiSgt2 under native conditions revealed specific co-purification of 51 387 

proteins including known GET pathway components (Get3 and Get4) and two yet 388 

unknown binding partners (GL50803_005069 and GL50803_0019378). B, Analogous 389 

isolation of GiGet4 returned same two partner proteins among 67 identified hits. Specific 390 

co-purification of 19 S proteasome subunits was revealed for both GET pathway 391 

components. C, Combination of GiSgt2- and GiGet4-specific dataset comprised 19 392 

common proteins with four proteins (GiSgt2, GiGet4, GL50803_0019378, and 393 

GL50803_005069) at the centre of the mutual interactome. 394 

 395 
 396 
 397 
 398 
 399 
 400 
 401 
 402 
 403 
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404 
Figure 2 405 

Proteasome subunits co-purified with GiSgt2, GiGet4 and GiBag6. (Left) Scheme of G. 406 

intestinalis proteasome: subunits of base and lid of 19S subparticle are shown in green 407 

and brown, respectively. The  a  rings of 20 CP subunits are shown in orange yellow, 408 

respectively. Three subunits were not identified in G. intestinalis (Jerlström-Hultqvist et 409 

al. 2012) (grey). (Right) Proteasome subunits identified among the significantly enriched 410 

proteins co-purified with the GET pathway components. 411 

 412 
 413 
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 414 

Figure3 415 

Identification of highly divergent Get5 orthologue in G. intestinalis A, Except for the 416 

C-terminal part of the protein, Alphafold2 prediction of GL50803_0019378 did not result 417 

in a high confidence model, as most of the protein sequence remained unstructured. B, 418 

Comparison of Alphafold2 structural prediction of the C-terminal dimerization domains of 419 

yeast (blue), human (green), and G. intestinalis (red) Get5 orthologues. C, The protein 420 

sequence alignment shows the missing N-terminal Get4 binding domain in human and 421 

G. intestinalis proteins. 422 

 423 
 424 
 425 
 426 
 427 
 428 
 429 
 430 
 431 
 432 
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 433 

Figure 4. Identification of Bag6 homologue in G. intestinalis 434 

A, Domain arrangement in human and G. intestinalis Bag6 sequences. B, Aplhafold2model 435 

of UBL domain in human and G. intestinalis Bag6. C, sequence alignment of conserved C-436 

terminal part of Bag6. GIAIN - G. intestinalis; HOMSA - H. sapiens; RIGRA - Rigifila ramosa; 437 

PLAFU - Planoprotostelium fungivorum; PLABR - Plasmodiophora brassicae; PHYPA - 438 

Physcomitrella patens; CHOs - Choanocystis sp.; GALSU - Galdieria sulphuraria; TELSU - 439 

Telonema subtile; PHYKE - Phytophthora kernoviae; CRYPA - Cryptosporidium parvum 440 

D, Localization of BAP-tagged GiBag6. Using immunofluorescence microscopy, GiBag6 was 441 

found in spotted pattern across the cytosol. Approximately 10 % of the cells showed 442 

localization in nucleus and in the posterior end of the cell. GiBag6 (purple); GiGet3 443 

(yellow); nucleus – DAPI (blue) 444 
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 445 

Figure 5. The interactomes of GiGet5 and GiBag6 revealed stable in vivo interaction of 446 

the GET pathway components. 447 

A, Isolation of GiGet5 under native conditions revealed specific co-purification of 16 448 

proteins including GiGet4, GiBag6, GiSgt2, and GiGet3. B, Analogous isolation of GiBag6 449 

returned 14 proteins including GiIGet4 and GiGet5. C, The isolated interactomes of four 450 

GET components using hierarchical clustering. D, Core of the cytosolic complex of the GET 451 

pathway in G. intestinalis, which is composed of pre-targeting proteins GiSgt2, GiGet4, 452 

GiGet5 and GiBag6, targeting factor GiGet3 and G. intestinalis-specific protein of unknown 453 

function GL50803_005324).454 

 455 
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 456 
 457 
 458 

Figure 6. Presence of GET pathway in eukaryotes 459 

The experimentally obtained divergent sequence of G. intestinalis GET pathway homologs 460 

facilitated the identification of GET proteins in almost all eukaryotic groups. The most 461 

conserved GET pathway components are Sgt2, Get4, Get3, Get1, and Get2, which were 462 

identified in almost all eukaryotic groups. Presence of Get5 homologs was identified in 463 

Metamonada, Discoba, Metazoa, Fungi, Telonema, Alveolata, and Rhizaria. Bag6 464 

homologs were found in Metamonada, Metazoa, Amoebozoa, Telonema, Alveolata and 465 

Rhizaria. Our data show that LECA contained all GET pathway components. 466 

 467 

 468 
 469 
 470 
 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
 479 
 480 
 481 
 482 
 483 
 484 
 485 
 486 



20 
 

Supplementary figures 487 

 488 
 489 
Figure S1. Native co-purification of G. intestinalis GET components 490 

Lysate (A0) of G. intestinalis cell co-expressing BirA and BAP-tagged GiSgt2 (A), GiGet4 (B), 491 

GiGet5 (C) or GiBag6 (D) was incubated with streptavidin-coupled magnetic beads. After 492 

incubation (A1), the magnetic beads were washed 3 times in wash solution (A2) and then 493 

washed 3 times in PBS (A3). One fifth of the sample was boiled in sample buffer to eluate 494 

(E) bait protein with bound protein partners to test the efficiency by western blot 495 

analyses. 496 

 497 

 498 
 499 
 500 
 501 
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 502 
 503 
Figure S2. Quantification of GiBag6 dual localization 504 

From ten figures of cells of G. intestinalis expressing BAP-tagged GiBag6, which were fixed 505 

and detect by fluorescence antibody, the total number of cells were counted. The cells 506 

with nuclear localization visible in all z-layers were counted as well. The resulting ration 507 

show that 10 % cells have GiBag6 localized also in nucleus. 508 

 509 
 510 
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Figure S3. G. intestinalis possess only one ER-destined OXA1 family protein 518 

A, HHsearch revealed only one OXA1 family candidate in G. intestinalis genome. 519 

Phylogenetic analyses of all OXA1 family members showed that G. intestinalis OXA1 520 

candidate (GL50803_14915) clustered with Get1 homologs. B, Sequence alignment of 521 

Get1 homologs from representative organisms and G. intestinalis show Get1 topology, 522 

which include three TMDs and conserved soluble domain (between first and second 523 

TMDs). 524 
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Abstract

Background: Eukaryotic gene expression is controlled by a number of RNA-binding proteins (RBP), such as the
proteins from the Puf (Pumilio and FBF) superfamily (PufSF). These proteins bind to RNA via multiple Puf repeat
domains, each of which specifically recognizes a single RNA base. Recently, three diversified PufSF proteins have
been described in model organisms, each of which is responsible for the maturation of ribosomal RNA or the
translational regulation of mRNAs; however, less is known about the role of these proteins across eukaryotic
diversity.

Results: Here, we investigated the distribution and function of PufSF RBPs in the tree of eukaryotes. We determined
that the following PufSF proteins are universally conserved across eukaryotes and can be broadly classified into
three groups: (i) Nop9 orthologues, which participate in the nucleolar processing of immature 18S rRNA; (ii)
‘classical’ Pufs, which control the translation of mRNA; and (iii) PUM3 orthologues, which are involved in the
maturation of 7S rRNA. In nearly all eukaryotes, the rRNA maturation proteins, Nop9 and PUM3, are retained as a
single copy, while mRNA effectors (‘classical’ Pufs) underwent multiple lineage-specific expansions. We propose that
the variation in number of ‘classical’ Pufs relates to the size of the transcriptome and thus the potential mRNA
targets. We further distinguished full set of PufSF proteins in divergent metamonad Giardia intestinalis and initiated
their cellular and biochemical characterization.

Conclusions: Our data suggest that the last eukaryotic common ancestor (LECA) already contained all three types
of PufSF proteins and that ‘classical’ Pufs then underwent lineage-specific expansions.

Keywords: RNA-binding protein, RNA processing, LECA, Puf superfamily proteins, Giardia intestinalis

Background
The Puf superfamily (PufSF) of proteins encompasses a
class of eukaryotic RNA-binding proteins (RBPs), which
interact with the 3′-untranslated regions (3′-UTRs) of
mRNA in the cytosol or with the precursors of rRNA mol-
ecules in the nucleolus [1–3]. The name of the protein
family is derived from Pumilio and Fem-3 binding factor
of Drosophila melanogaster and Caenorhabditis elegans,
respectively [4, 5]. PufSF proteins are defined by the pres-
ence of Puf repeats, each of which binds a single base of

an RNA molecule [6–9]. In the past two decades, three
types of PufSF proteins (i.e. Puf, Nop9, and PUM3, dis-
cussed below) have been distinguished according to their
biological role and structural arrangement [2, 10–12].
The so-called classical Puf proteins (Pufs) bind 3′-

UTRs of mRNA and usually have eight Puf repeats that
organize into a crescent-shaped structure [13]. Each Puf
repeat contains a tripartite recognition motif (TRM),
and it is the combinations of eight TRMs, which speci-
fies the sequence motif at which a particular Puf binds.
In vivo, a single Puf protein can recognize hundreds of
transcripts and, together with additional protein part-
ners, regulate protein translation [1]. Puf proteins can
mediate the repression [14–16], the activation [17] of
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gene expression, or the site-specific translation [18, 19].
These proteins function in the cytoplasm.
The two other types of PufSF proteins operate pre-

dominantly within the nucleolus, where ribosome bio-
genesis takes place [20]. Nop9 proteins carry 11 Puf
repeats organized into a U-shaped structure, which par-
ticipate in the processing and folding of 18S rRNA in
the nucleolus [10, 21, 22], while PUM3 proteins (includ-
ing the human PUM3/PufA and yeast Puf6) bind
double-stranded DNA or RNA without a sequence spe-
cificity [2, 23]. Similar to Nop9, PUM3 proteins carry 11
Puf repeats, although organized in L-shaped domain,
and they are involved in the nucleolar processing of the
large subunit of the ribosome [23], potentially during the
processing of 7S to 5.8S rRNA [2].
Although the PufSF proteins are essential for core pro-

cesses of the eukaryotic cell, such as rRNA maturation,
investigations of PufSF proteins have been restricted to
only a few lineages of eukaryotes (e.g. Opisthokonta and
Viridiplantae). These studies recognized that the number
of PufSF proteins within and between lineages of eukary-
otes is highly variable [24, 25]. Due to the number of dif-
ferent splice isoforms and the repetitive nature of the
proteins, it has been difficult to delineate the evolution-
ary history of this essential protein family throughout
eukaryotic evolution. Moreover, given the role of PufSF
proteins in regulating the translation of a complex net-
work of transcripts in modern eukaryotes [19, 26], it is
tempting to speculate that PufSF proteins played a role
in the origin of cellular complexity in eukaryotes. In-
deed, such information is critical to understand the true
nature of the last eukaryotic common ancestor (LECA);
a concept of which can be drawn upon by examining the
cellular properties of diverse eukaryotes, including the
highly diverged organisms [27].
Metamonada represent highly diverged unicellular an-

aerobic eukaryotes [28] carrying specialized mitochon-
dria [29]. Some Metamonada are important human and
animal pathogens [30]. One of the best studied species
of Metamonada is the human intestinal parasite Giardia
intestinalis. Although the RNA metabolism in G. intesti-
nalis is poorly understood, we would argue that this or-
ganism can be useful in studying various aspects of
eukaryotic RNA biology owing to its transcriptome
streamlining and overall extreme biology. For example,
unlike most eukaryotes, the processing of rRNA and the
actual nature of G. intestinalis nucleolus are still under
debate [31]. Moreover, G. intestinalis generates large
number of sterile transcripts of unknown function,
which are both capped and polyadenylated [32]. To date,
only six cis-spliced and two trans-spliced transcripts
have been described in G. intestinalis making it easier to
predict the transcriptome purely from genomic data [33,
34]. The 5′-untranslated regions (5′-UTRs) of G.

intestinalis mRNAs are efficiently capped and bound by
the ribosome despite being extremely short (i.e. 0–14
nucleotides) [35, 36]. Therefore, posttranscriptional
regulation of gene expression is mostly limited to the
stability and sequestration of the mRNAs [37]. Thus, 3′-
UTRs remain the key regions of mRNAs, which affect its
stability and localization via the interaction with RNA-
binding proteins [37].
Here, we report systematic bioinformatic survey of dis-

tribution of PufSF proteins with sampling across major
eukaryotic supergroups. Our analyses show three groups
of proteins encompassing (i) Nop9, (ii) Puf, and (iii)
PUM3 homologues. In a given organism, Nop9 and
PUM3 are usually represented by a single gene, while
the number of Pufs is highly variable. However, the ac-
tual number of Pufs correlates with the number of tran-
scripts of the particular lineages and thus the number of
putative mRNA targets. These data also suggest that the
LECA already contained one Nop9, one PUM3, and two
Puf proteins and that the large copy number of Pufs in
modern organisms can be explain by lineage-specific
expansions.
We were able to identify all three PufSF proteins even

within G. intestinalis. However, their initial characterization
points to unique adaptations in G. intestinalis RNA
metabolism.

Results
Classification of PufSF proteins
We initially classified the PufSF proteins across
eukaryotic diversity. First, we performed a clustering
analysis based on sequence similarity. This unbiased ap-
proach is based on mutual pairwise BLAST comparisons,
and it is especially useful for the analysis of large protein
datasets [38]. The initial dataset contained 4469 unique
eukaryotic proteins carrying Puf repeat domain(s)
(PF00806). No PufSF proteins were identified in Archaea
or Bacteria, confirming the eukaryotic origin of the fam-
ily. The clustering analysis revealed three major groups
of PufSF proteins (Fig. 1, Additional file 1: Table S1): the
Puf cluster, consisting of 2955 proteins containing eight
Puf repeats in the C-terminal part of the protein; the
PUM3 cluster, consisting of 674 PUM3 orthologues, in-
cluding plant PUM24 proteins, with up to eleven Puf re-
peats; and the Nop9 cluster, consisting of 675 Nop9
proteins including the plant PUM23 proteins.
The proximity of the Puf and PUM3 proteins in our

clustering analysis suggests that these proteins are more
similar at the sequence level when compared to Nop9s,
despite carrying different numbers of Puf repeats. Given
the conservation of 11 Puf repeats in both the rRNA-
binding proteins PUM3 and Nop9 proteins, we suspect
that this was the ancestral domain arrangement of all
members of the PufSF. Following adaptation to
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interaction with mRNA molecules, the Puf proteins
adopted a domain arrangement of only eight Puf do-
mains [2, 21, 22]. The clustering approach was not sensi-
tive enough to reveal detailed taxon-specific grouping of
PufSF proteins except for the most represented
eukaryotic groups of animals, plants, and fungi. The only
exception was the formation of two clear large subclus-
ters within the Puf cluster (Fig. 1) containing proteins of
mixed taxonomic affiliation, which indicated the exist-
ence of at least two different Puf orthologues in the last
common ancestor of eukaryotes. The position of
eukaryotic supergroups encompassing protist lineages

was rather dispersed across the subclusters. Metamonad
proteins including the G. intestinalis sequences repre-
sented one of the most diverge proteins of the family.

Taxonomic distribution of PufSF proteins
The number of PufSF proteins encoded in a given gen-
ome differs significantly across the eukaryotic diversity
(e.g. [4, 25]). Hence, we surveyed the distribution of
PufSF of proteins on a species level across the tree of eu-
karyotes. To this aim, we retrieved all eukaryotic 1180
reference proteomes from UniProtKB and classified
them as Puf, PUM3, or Nop9 orthologues. While the

Fig. 1 Clustering analysis of Puf family proteins. PufSF proteins were analysed by CLANS. A total of 4469 proteins formed three major clusters of
proteins corresponding to Nop9 homologues (Nop9 cluster), ‘classical’ Puf proteins (Puf cluster), and PUM3 orthologues (PUM3 cluster). The
protein sequences were colour-coded according to the taxonomic affiliation to the eukaryotic supergroup. The details of each large cluster show
mostly lineage-specific subclusters, except two large subclusters of Puf proteins. The diagrams above the cluster details depict the general
domain arrangement of PufSF proteins; PF00806 corresponds to Puf RNA-binding repeat. The x and y axes represent relative positions of the
protein sequence in 2D CLANS

Najdrová et al. BMC Biology           (2020) 18:77 Page 3 of 18



dataset is biassed towards the proteomes from Opistho-
konta and plants, it also contains curated proteomes of
species from other eukaryotic supergroups. We used
combination of InterPro precomputed protein families
as a final determiner for the affiliation to one of the
PufSF members (IPR001313—Puf repeat, IPR040000—
Nop9, IPR040059—PUM3). In total, 7762 proteins were
identified, and the proteins were classified according to
hierarchic taxonomic groups (Fig. 2, Additional file 2:
Table S2). Plotting the taxonomic distribution of the
proteins showed that the highest number of PufSF pro-
teins can be found in most of the plant species (Strepto-
phyta), where the number of proteins ranged from 10 to
50. Extremely high number of proteins was also identi-
fied in ciliate Paramecium tetraurelia (43) but not in
other ciliates or alveolates. In addition, all organism of
analysed Euglenozoa group such as parasitic Trypano-
soma and Leishmania species showed higher number of
proteins (12–22). On the opposite end of the spectrum
were parasites with reduced genomes, especially micro-
sporidia or Cryptosporidium species with only one or
two PufSF proteins. However, many animal taxa includ-
ing insect and nematodes were also found to have only
two or three proteins. Hence, at this point, we observed
no clear relationship between the number of PufSF pro-
teins and the biology or complexity of the surveyed
organisms.

Three types of PufSF proteins have undergone different
evolution in eukaryotes
Of all 7762 proteins from the reference proteomes, 1135
Nop9s, 5423 Pufs, and 1204 PUM3 proteins were identi-
fied (Additional file 2: Table S2). Interestingly, on aver-
age, each eukaryotic species contains a single Nop9 and
PUM3 homologue and five Pufs (Fig. 3a). Moreover,
while the number of Pufs is highly variable among line-
ages, the occurrence of single Nop9 and PUM3 proteins
seems to be retained across eukaryotic diversity. The
high number of PufSF proteins found in plants, Eugleno-
zoa, and other species reflects lineage-specific amplifica-
tion of the Puf proteins and not the ancestral state of
early eukaryotes (Fig. 3a). The discrepancy observed be-
tween Nop9 and PUM3 gene copy number compared to
Puf copy number might be related to different selective
pressures experienced by these proteins owing to their
role in the biogenesis of ribosomal RNA. On the other
hand, given the Pufs’ role in controlling the translation
of multiple mRNAs—which will vary between organ-
isms—it is possible that the number of Pufs will differ
and could instead relate to the total number of the
protein-coding genes in the cell. In order to test this hy-
pothesis, we normalized the number of Pufs with respect
to the total number of the protein-coding genes in the
corresponding species (Fig. 3b) (Additional file 2: Table
S2). Interestingly, the resulting ratio between Pufs and

Fig. 2 PufSF proteins in major groups of eukaryotes. Puf family proteins identified in all UniProt reference proteomes were grouped according to
taxonomic affiliation as specified in Additional file 2: Table S2 and showed in circle packing plot. Each dot corresponds to a genome of particular
eukaryotic species, and the size of the dot represents a number of Puf family proteins in the predicted proteome and the colour-codes to the
taxonomic affiliation to the eukaryotic supergroup. Grey circles depict taxonomic groups
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the pool of putative target transcripts seem to be very
similar across eukaryotes (Fig. 3b) with the average num-
ber of one Puf for every 3.47 × 104 protein-coding genes.

Phylogenetic reconstruction of PufSF proteins
In order to get insight into the evolution of PufSF pro-
teins, we performed the phylogenetic analyses on a data-
set containing all three types of the proteins or the just a
particular subset of either Puf, PUM3, or Nop9 ortholo-
gues (see the ‘Materials and methods’ section for more
details). While the phylogenetic reconstructions proved
to be problematic due to the repetitive structure of
PufSF proteins, the overall tree (Fig. 4, Additional File 3:

Fig. S1) shows three distinct clades corresponding to
Puf, PUM3, and Nop9. Subsequent subtrees of PUM3
and Nop9 proteins, which are present as single proteins,
resolved all major eukaryotic groups with some unex-
pected position of orthologues mainly from the Meta-
monada supergroup (Additional File 3: Fig. S1), most
likely caused by their high sequence divergence.
Given the presence of several Pufs in most eukaryotes,

we endeavoured to resolve their evolutionary relation-
ships and specifically if the presence of multiple Pufs re-
flects the ancestral state of LECA or rather they are
independent paralogues arisen by linage-specific gene
duplication(s). The phylogenetic reconstructions of Pufs

Fig. 3 Three types of PufSF proteins in major groups of eukaryotes. a The number of Nop9, Puf, and PUM3 orthologues was identified for each proteome in
the dataset, and the values were averaged for the taxonomic group of eukaryotes. The error bars correspond to the standard deviation of variance of values
within the particular taxonomic group. Error bars for Streptophyta and Ciliophora were cut for better visualization. b The number of Pufs normalized with
respect to the total number of the protein coding; colour-codes correspond to the taxonomic affiliation to the eukaryotic supergroups
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remained very problematic, and despite using distinct
alignment strategies, they did not return clear separation
among individual Pufs and the eukaryotic taxa (Add-
itional File 3: Fig. S1). However, we could identify two
clear groups (labelled ‘I’ and ‘II’) (Fig. 4) that encompass
the vast majority of eukaryotic taxa. This possibly re-
flects the presence of only two Pufs in LECA. Within
group I and group II, there have been a number of
lineage-specific duplications giving rise to the multitude
of Pufs seen in different genomes.

PufSF proteins in the metamonad G. intestinalis
To test whether PufSF proteins are conserved in some of
the most divergent eukaryotes, we specifically investigated
the presence of PufSF proteins in G. intestinalis. Using a
variety of sensitive sequence searching strategies (see the
‘Materials and methods’ section), we identified six proteins
in G. intestinalis. The position and number of Puf repeats
within the domain were predicted using HHpred and the
alignments with the structurally characterized classical
Pufs, Nop9, or PUM3 proteins, respectively. The

classification of the proteins into the three types was con-
firmed by comparison with the domains defined at Inter-
Pro. Based on these classifications, we identified four G.
intestinalis Puf homologues (GiPuf1–GiPuf4), one Nop9
(GiNop9), and PUM3 (GiPUM3) homologue (Fig. 5a). All
four G. intestinalis Pufs were predicted to contain eight
Puf repeats corresponding to eight TRMs (Fig. 5b), while
both Nop9 and PUM3 homologues contained 11 Puf re-
peats similar to their homologues in Saccharomyces cerevi-
siae (Additional File 4: Fig. S2 and S3). The prediction of
TRMs was performed by HHpred against the structurally
characterized orthologues from S. cerevisiae and D. mela-
nogaster (PDB ACNO. 5BZ1and 5KLA). However, the ob-
tained TRMs for more divergent GiPuf1 and GiPuf2 were
not in full agreement with the protein sequence alignment
containing other G. intestinalis Puf proteins (Fig. 5b) as
their Puf domain appeared shifted by two Puf repeats to-
wards the C-terminus. At present, it is difficult to resolve
if just the two Puf repeats were re-arranged or the entire
domain was modified in these two proteins.

Fig. 4 Phylogenetic analysis of PufSF proteins. Maximum likelihood phylogenetic inference of PufSF proteins with sequences from H. sapiens, C.
elegans, S. cerevisiae, and A. thaliana is shown as triangles with the indicated colours. For visualization purposes, support values were removed.
Full phylogenies of the PUM3, Nop9, and Puf proteins can be found in Additional file 3: Fig. S1
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According to the phylogenetic reconstruction, the four
G. intestinalis Pufs grouped together with the ortholo-
gues from closely related diplomonad species Spironu-
cleus salmonicida and Trepomonas sp. distributed in
group I and group II (Additional File 3: Fig. S1). GiPuf3,
the most conserved Puf homologue of G. intestinalis,
branched with group I Puf proteins while GiPuf1,
GiPuf2, and GiPuf4 affiliated with the proteins from
group II (Additional File 3: Fig. S1). The latter proteins
thus likely represent lineage-specific gene duplications.

Cellular localization of G. intestinalis PufSF proteins
In general, PufSF proteins localize to the nucleus or
cytosol. In the cytosol, Puf proteins often associate with
the cytoplasmic face of cellular compartments [1].
To test the cellular localizations of each PufSF protein

in G. intestinalis, we explored bioinformatic and experi-
mental strategies. For bioinformatic predictions, we used
DeepLoc [39], which uses neural networks to assess the
localization of proteins based on a training set of experi-
mentally localized proteins on UniProt. This algorithm

Fig. 5 Domain structure of G. intestinalis PufSF proteins. a The Pumilio homology domain containing Puf repeats was predicted using HHPred
against Pfam database and denoted as oval for each of the Giardia intestinalis proteins (shades of brown). The numbers in the ovals represent the
position of the domain within the protein (black lines). The expectation value (E value) of the domain detection is shown in brackets. The fruit fly,
human, and fungal orthologues are shown for comparison. Gi, Giardia intestinalis; Dm, Drosophila melanogaster; Hs, Homo sapiens; Sc,
Saccharomyces cerevisiae. b Protein sequence alignment of G. intestinalis Pufs with selected proteins from S. cerevisiae, D. melanogaster, and H.
sapiens. Open red rectangles highlight TRMs. Light and dark grey rectangles depict Puf repeats. Fraction of identical amino acids at the particular
position is coloured: dark blue > 80%, blue > 60%, light blue > 40%, white < 40%
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predicted a cytoplasmic localization for all four G. intes-
tinalis Pufs and Nop9 homologue and nuclear
localization for only GiPUM3 (Fig. 6a). The cytosolic
localization of the Pufs and the nuclear localization of
GiPUM3 are in agreement with the expected roles of
PufSF proteins, which control the stability and the
localization of mRNAs in the cytosol and the nucleolar

processing of 7S rRNA, respectively [2, 3]. However,
given the role of Nop9 proteins in the maturation of
pre-18S rRNA, the protein is expected to be in the nu-
clear compartment.
To test these subcellular localization predictions, we

expressed all the G. intestinalis PufSF proteins with a C-
terminal BAP (biotin acceptor peptide) tag in G.

Fig. 6 Cellular localization of G. intestinalis Puf and Nop9 proteins. a The scores obtained by DeepLoc prediction indicate cytosolic localization of
all but GiPUM3 protein, which is predicted as nuclear protein. Colouring gradient represents the values from 0 (red) to 1 (green). Cyt, cytosol; Nuc,
nucleus; CM, cytoplasmic membrane; ER, endoplasmic reticulum; Mit, mitochondrion; Extra, extracellular. b Western blot analysis of G. intestinalis
expressing BAP-tagged PufSF proteins (one of at least three independent cell experiments is show). SDS-PAGE and immunoblots show total
lysate (Lys), cytosolic (Cyt), and high-speed pellet (HSP) fraction. c Immunofluorescence analysis of the same cell lines shows cellular localization
of the proteins. PufSF proteins in green, Sec20-endomembrane system marker in red. DIC, Differential Interference Contrast. d Detailed imaging of
GiPUM3 by confocal and 2D STED (GiPUM3 in green, DNA in blue). 3D STED of GiPUM3 with the orthogonal projections (GiPUM3 in red)
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intestinalis and analysed their localizations with cell
fractionation and microscopy using antibodies directed
at the BAP tag. Expression of all constructs but one
(GiPuf4) was highly unstable and diminished quickly
after establishing stable cell lines. Therefore, G. intesti-
nalis cell lysates were obtained as soon as possible and
separated into two fractions: (i) the high-speed pellet,
containing sedimentable membrane-bound organelles
such as the nucleus, endoplasmic reticulum, peripheral
vacuoles, or mitosomes, and (ii) the cytoplasmic fraction
[40] (Fig. 6b). In general, the Puf proteins showed three
different types of distribution: GiPuf3 and GiNop9 were
found specifically in the cytosolic fraction, while GiPuf1
and GiPUM3 were present predominantly in high-speed
pellet fraction. Finally, GiPuf2 and GiPuf4 showed the
presence in both cytosolic and high-speed pellet frac-
tions indicating their partial association with the cellular
membranes.
In agreement with the western blot analyses, the im-

munofluorescence confocal microscopy of GiPuf3 and
GiNop9 showed mainly cytosolic localization of the pro-
teins with some punctate distribution in the cell that do
not co-localize with the endomembrane marker Sec20
(Fig. 6c). While the data are in agreement with the bio-
informatic prediction, the cytosolic presence of G. intes-
tinalis Nop9 homologue remains puzzling. GiPuf1,
GiPuf2, and GiPuf4 were present in different kinds of
vesicular structures likely corresponding to specific re-
gions of the endomembrane system, which however did
not co-localize, with our endomembrane marker protein
Sec20 (Fig. 6c). In addition, GiPuf2 and GiPuf4 showed
also a perinuclear staining, which indicated that the pro-
tein is associated with the nuclear membrane. Con-
versely, a very specific labelling of two G. intestinalis
nuclei was observed for GiPUM3. In other eukaryotes,
PUM3 localizes to discrete nucleolar spots in the nuclear
matrix [3, 10]. To determine the subnuclear localization
of GiPUM3, we performed high-resolution STED mi-
croscopy. In both 2D and 3D STED microscopy, we ob-
served GiPUM3 localizing to the periphery of the
nucleus (Fig. 6d).
To determine potential Puf-interacting proteins in G.

intestinalis, we explored the Puf-interactome using a
high-resolution proximity labelling coupled to mass
spectrometry. By determining potential interaction part-
ners of the G. intestinalis Pufs, we could better predict
their involvement in gene expression control. Unfortu-
nately, the expression of tagged Pufs was highly unstable
and diminished quickly after the cell transformation and
we thus could not perform larger scale experiments re-
quired for protein- or RNA-pull down experiments. We
were, however, able to generate a cell line weakly ex-
pressing BAP-tagged GiPuf4 in the presence of cytosolic
biotin ligase BirA [41]. Upon crosslinking and

purification of GiPuf4 on streptavidin-coupled Dyna-
beads, the triplicate samples were analysed by mass
spectrometry. The purified GiPuf4 was found to be spe-
cifically enriched in our sample, although the experiment
did not reveal any specific interacting partner protein
above the statistical threshold (Additional file 5: Fig. S4,
Additional file 6: Table S3). Thus, any functional predic-
tions could not be drawn at this stage.

Prediction of binding motifs of G. intestinalis Pufs and
their target mRNA
While we could not identify the interacting factors for
G. intestinalis Pufs by mass spectrometry, we decided to
predict the sets of recognized mRNAs for each
homologue. The RNA sequence motif recognized by
Puf/Nop9 proteins is determined by the combination of
three amino acid residues, referred to as tripartite recog-
nition motif (TRM). TRM is part of five residues in the
second α-helix of each Puf repeat represented as 1-2-X-
X-5 (where X is any hydrophobic residues). Within the
TRM, positions 1 and 5 bind the edge of the RNA base,
while the position 2 makes a stacking interaction with
RNA molecule [42]. Some TRMs have been shown to be
specific for particular base [11]. Hence, upon the identi-
fication of the TRMs in each Puf repeat, it is possible to
predict its sequence-specific binding properties [9].
However, it should be noted that for some naturally oc-
curring TRMs, the specificity has not been determined.
By comparing the most closely related sequences to each
G. intestinalis Puf identified with HHpred, we predicted
the putative binding motif by manually checking the
position of individual Puf repeats (Fig. 5b), and we could
predict putative RNA-binding motifs for all G. intestina-
lis Pufs (Fig. 7a). Several predicted TRMs located in
GiPuf1, GiPuf2, and GiPuf4 contained experimentally
unidentified amino acid combinations which left these
putative binding motifs incomplete. Interestingly, a
complete binding motif predicted for GiPuf3 (5′-
UGUAUUUA-3′) was found to be highly similar to 5′-
UGUAUAUA-3′motif of prototypical members of the
protein family such as human PUM1 or yeast Puf3 [43].
The predicted motifs of G. intestinalis Pufs were then

used to search the dataset of theoretical 3′-UTR of all
9747G. intestinalis genes retrieved from GiardiaDB.
Given that the 3′-UTRs of G. intestinalis mRNAs are
very short [30, 32, 44], the length of the UTRs was lim-
ited to 50 bases only.
Using the FIMO (Find Individual Motif Occurrence)

algorithm [45], a specific set of possible cognate mRNAs
for GiPuf1–GiPuf4 was retrieved (Fig. 7, Additional file 8:
Table S5). Each of the G. intestinalis Puf proteins was
predicted to interact with the different number of tran-
scripts, and this number was also inversely proportional
to the G. intestinalis length of the predicted binding
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Fig. 7 (See legend on next page.)
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motif: where GiPuf3, GiPuf1, GiPuf2, and GiPuf4 were
predicted to interact with 7, 9, 24, and 44 transcripts, re-
spectively. These numbers are substantially lower than
other Puf proteins that are predicted to interact with
hundreds of RNA targets [19, 46]. We next explored the
putative function and subcellular localization of the pro-
tein products of the predicted target transcripts (Add-
itional file 8: Table S5). Interestingly, the target
transcripts included other RNA-processing proteins (e.g.
fibrillarin) and a component of the ERAD (endoplasmic
reticulum-associated degradation) pathway (e.g. Derlin
1) (Additional file 8: Table S5).
Unlike Pufs, Nop9s use their 11 Puf repeats [21, 22] to

specifically bind to the pre-18S rRNA at the central
pseudoknot region [22] and regulate its processing pos-
sibly by competing with Nob1 nuclease [21]. However,
how Nop9 TRMs interact with the rRNA was unknown
until recently where it was shown that yeast Nop9 binds
to a specific 11-nucleotide region of the pre-18S rRNA
[22]. The alignment of 18S rRNA sequences showed that
this region is very well conserved across eukaryotes in-
cluding species from the Metamonada group (Fig. 6b)
suggesting that Nop9 might also recognize this region.
However, in G. intestinalis, the cytoplasmic (and not nu-
clear) localization of this protein challenges whether
GiNop9 and rRNA processing occurs in the nucleus.
Finally, when GiPUM3 was aligned with its characterized

human and yeast counterparts, no previously identified
TRMs could be identified within the sequence. This sup-
ported the absence of recognizable binding motif for this
type of PufSF proteins (Additional File 4: Fig. S3) [2, 23].

Discussion
RBPs stand at the centre of the regulation of eukaryotic
protein expression by mediating a wide range of post-
transcriptional processes. There are several distinctive
molecular properties of PufSF proteins [4, 5]. The pro-
tein structure is composed of 8–11 units (Puf repeats),
combination of which defines the sequence specificity
towards their RNA targets. They have been shown to
provide molecular basis for long sought processes such
as site-specific translation of proteins, RNA degradation,
or maturation of rRNA [1].
Here, we explored the evolution of PufSF proteins

across the tree of eukaryotes. In addition to the origin-
ally characterized ‘classical’ Pufs [4, 5], which mediate
the turnover of mRNAs via binding to their 3′-UTRs

[19], recent studies in yeast model system have defined
two additional types of PufSF proteins, which perform
distinct cellular functions. Nop9 binds pre-18S rRNA
during its maturation [3, 21, 22], and PUM3 orthologues
are involved in processing 7S rRNA [2, 10, 47] and posi-
tioning of specific mRNAs [48].
Given that PufSF proteins are involved in the core pro-

cesses of the eukaryotic cell (e.g. the maturation of
rRNA and the translational control of mRNAs), we hy-
pothesized that this system should be conserved across
eukaryotic diversity. Indeed, we found that all majority
lineages of eukaryotes encode at least one homologue of
Nop9, PUM3, and two Puf proteins (Figs. 2, 3, and 4;
Additional file 2: Table S2). The lack of PufSF proteins
in prokaryotic genomes (including the closest prokary-
otic relatives of eukaryotes—the Asgard archaea [49])
suggests that these proteins are in fact eukaryotic inno-
vations. Moreover, their ubiquity across the tree of eu-
karyotes (including the highly diverged metamonads)
suggests they were already present in protoeukaryotes
before the emergence of LECA. To uncover the within
protein family evolutionary history of the PufSF proteins,
we performed a clustering analysis on the basis of se-
quence similarity. We found that PufSF proteins form
three larger groups corresponding to the three inde-
pendent biological functions performed by Puf, PUM3,
and Nop9 proteins.
This suggests that the Puf and PUM3 proteins likely

originated from the same ancestral gene. Interestingly,
however, Nop9 and PUM3 proteins, despite belonging
to separate groups of proteins within the family, share
an array of 11 Puf repeats by which they interact with
pre-18S [21] or 7S rRNA [2], respectively. On the basis
of clustering analysis, it seems either that both Nop9
and PUM3 independently evolved into 11 Puf repeat
containing proteins or that Pufs evolved from a larger
11-repeat domain ancestral protein into an 8-repeat do-
main protein by disposing of three Puf repeats. The lat-
ter seems to be more plausible as Pufs acquired
additional long N-terminal part of mostly unknown
function, which may, however, carry additional RNA-
binding motifs [50].
As discussed above, it is most likely that the Nop9,

PUM3, and two Puf proteins evolved during eukaryogen-
esis prior to the emergence of LECA, which was already
indicated by the existence of four eukaryotic orthologous
groups (KOGs) specific for PufSF [51]. The role of PufSF

(See figure on previous page.)
Fig. 7 Predicted binding motifs of G.intestinalis PufSF proteins. a The tripartite recognition motifs (TRMs) of each Puf repeats of G.intestinalis Pufs
were predicted, and the resulting sequence was used to search the conceptual transcriptome. The number of putative mRNA targets, which
contain the motif in the 3′-UTR, is shown in bold. Asterisk denotes the same putative mRNA recognized by two different Pufs. b Sequence
alignment of 18S rRNA shows the conservation of the sequence recognized by Nop9 as it was experimentally identified for S. cerevisae Nop9.
Fraction of identical nucleotides at the particular position is coloured: dark blue > 80%, blue > 60%, light blue > 40%, white < 40%
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proteins in both nuclear and cytoplasmic processes sug-
gests that this protein family likely coincided with the
evolution of a nucleic acid compartment; however, the
exact timing cannot be determined with current data.
Indeed, as protoeukaryotes began to complexify, it is
tempting to speculate that functional networks necessary
to manage an expanding genome and gene repertoire
would demand additional levels of regulation—a role po-
tentially filled by RBPs such as the PufSF proteins. Fu-
ture examination of the relative timing [52] of the
emergence of PufSF proteins and their experimental
characterization in diverse eukaryotic lineages will be
critical in assessing these hypotheses.
The classification of the protein family members also

revealed that while the number of Pufs is highly variable
across lineages, both Nop9 and PUM3 orthologues
remained present as single copy genes with no paralo-
gous sequences in the majority of eukaryotes. This can
likely be attributed to the conserved role of the Nop9
and PUM3 proteins in the maturation of rRNA which is
essential for the biogenesis of eukaryotic ribosome. Our
analysis also demonstrated that the expansion of Pufs in
some lineages of eukaryotes is similar to those docu-
mented before for Arabidopsis thaliana [25]. Interest-
ingly, we showed that the actual number of Pufs in
eukaryotic supergroups corresponds to the size of the
proteome and therefore also the number of putative tar-
get mRNAs within the cell. Importantly, our estimates
are based on the total number of genes present in a gen-
ome and will therefore be an underestimation of the
total number of transcripts present in a cell resulting in
an overestimated Puf to total gene ratio depicted in
Fig. 3. However, in organisms such as G. intestinalis or
yeast, which are intron-poor and lack methods for gen-
erating splice variants, the total number of transcripts is
approximately equal to the total number of protein-
coding genes. Taking this into account, the Puf to total
gene ratio of G. intestinalis is one of the highest across
eukaryotic diversity. This suggests that while the total
number of transcripts might still be determinative of Puf
number in other organisms, additional factors beyond
transcript number seem to govern the persistence of
multiple Pufs in G. intestinalis.
The unique cellular and molecular features of G. intes-

tinalis and its specialization make it an ideal model to
study the extreme limits of cell biology [53]. With re-
spect to RNA metabolism, G. intestinalis is often the ex-
ception to the rule. Previous studies have demonstrated
that G. intestinalis lacks core regulatory components of
transcription [37] and has even repurposed some con-
served RNA metabolic pathways [54]. Our analyses of
PufSF proteins from G. intestinalis have added at least
one piece to the puzzle of RNA metabolism where we
were able to show that like other eukaryotes, G.

intestinalis has retained genes encoding all the three
core RBPs.
However, the initial characterization of the proteins

has uncovered interesting deviations from the eukaryotic
blueprint. G. intestinalis PUM3 orthologue (GiPUM3) is
localized on the nuclear periphery, which is different
from nucleolar localization found in all experimentally
analysed organisms [10, 48, 55]. Similarly, the cytosolic
localization of G. intestinalis Nop9 orthologue contra-
dicts its expected role in pre-18S rRNA processing oc-
curring in the nucleolus.
This raises a question on the nature and localization

of G. intestinalis nucleolus. For long time, G. intestinalis
has been thought to lack nucleolus-like structures since
nucleolar markers have failed to show discrete nuclear
labelling [56]. However, later hybridization of 18S rRNA
and localization of fibrillarin, pseudouridine synthase,
and snoRNA suggested specific distribution of the nucle-
oli on the periphery of both G. intestinalis nuclei [57–
60]. It is therefore likely that the nuclear periphery func-
tionally replaces nucleolar bodies typical of other
eukaryotes [31].
Unexpectedly, we observed that GiNop9 localizes to

the cytosol of G. intestinalis. We have a number of hy-
potheses that could explain this observation. First, we
cannot rule out that the overexpression of the protein
resulted in mistargeting of G. intestinalis Nop9, although
we should be able to observe at least partial nuclear sig-
nal. Alternatively, GiNop9 does not participate in pre-
18S rRNA processing in G. intestinalis or its cytosolic
presence is a consequence of unique nucleolar
localization in G. intestinalis. Nop9 is thought to prevent
rRNA processing by cytosolic Nob1 nuclease by compet-
ing for binding at the same rRNA sequence [21]. Nob1
mediates the late step of pre-rRNA processing which
generates 18S rRNA from 20S intermediate rRNA [61],
and these interactions thus occur at the interface be-
tween the nucleus and cytosol. It is possible that in G.
intestinalis, the relocation of the nucleolus to the nu-
clear periphery also relocated the latter steps of rRNA
processing outside the nucleus whereby GiNop9 partici-
pates in the cytosolic maturation of the ribosome.
The bioinformatic survey for putative target mRNAs,

whose 3′-UTR are bound by one of four G. intestinalis
Pufs, returned only a small set of candidate genes com-
pared to other eukaryotes [8]. This might stem from the
extremely short UTRs in G. intestinalis [32, 37], which
limits the actual region of interaction with RBPs. We
could only confidently predict a complete binding motif
(5′- UGUAUUUA-3′) for GiPuf3, and in this case, the
motif was found to be highly similar to binding motifs of
Pufs from other lineages of eukaryotes. The conservation
of this binding motif in G. intestinalis was surprising
given that G. intestinalis usually lacks many other core
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regulatory elements when compared to model eukary-
otes (e.g. TATA box or Inr element) [62, 63]. Given the
theoretical capabilities of Pufs to bind any possible RNA
sequence [64], it raises an important question on the
functional advantage of this particular binding motif in
RNA-protein interactions.
Obviously, there are many unknowns left concerning

the function of PufSF proteins especially in non-model
organisms like G. intestinalis and other protists. How-
ever, despite numerous differences in posttransriptional
processes found among eukaryotes, this work shows that
PufSF proteins have constituted key RNA-processing
proteins since LECA.

Conclusions
In this study, we show that all three types of PufSF pro-
teins are found across eukaryotic diversity. Moreover, we
found that their role in both rRNA maturation (Nop9,
PUM3) and mRNA translational control (Pufs) is con-
served in all major lineages of eukaryotes and that they
were present in the last eukaryotic common ancestor
(LECA). Finally, we experimentally show the presence of
three types of PufSF family proteins in a Metamonad G.
intestinalis and highlight their several intriguing lineage-
specific adaptations.

Materials and methods
Bioinformatic analyses
For the clustering analyses, the entry dataset of PufSF
proteins was obtained from InterPro/UniProt database.
All duplicates and sequences shorter than 500 amino
acids were filtered out. Clustering analysis with CLANS
was performed using MPI Bioinformatics toolkit avail-
able at https://toolkit.tuebingen.mpg.de/ [38]. The
resulting 2D coordinates were plotted in GraphPad, and
the dots representing the protein sequences were
colour-coded according to current taxonomic descrip-
tors of eukaryotes [65]. To identify putative Puf homo-
logues in G. intestinalis, the protein alignment of PufSF
was used in HHpred search (available at https://toolkit.
tuebingen.mpg.de/#/tools/hhpred) against conceptual G.
intestinalis proteome (Giardia_lamblia_ATCC_50803_
31_Aug_2017) [66]. For the detection of Puf-binding
motifs in 3′-UTRs, the motifs were generated by MEME
(Multiple Em for Motif Elicitation available at http://
meme-suite.org/tools/meme) [67] and used by FIMO
(Find Individual Motif Occurrences) program (available
at http://meme-suite.org/tools/fimo) [45] against our
custom database of all conceptual 50-nt-long 3′-UTRs
(obtained from GiardiaDB http://giardiadb.org/giar-
diadb/) [68]. Dataset of 18S rRNA was obtained from
the high-quality ribosomal RNA database SILVA (avail-
able at https://www.arb-silva.de/) [69]. Sequences were
aligned using mafft –auto [70], and alignment was

coloured according to percentage identity in Jalview
[71]. The proteins co-purified with GiPuf4 and identified
by mass spectrometry were analysed by HHpred for
homology detection and by DeepLoc (available at http://
www.cbs.dtu.dk/services/DeepLoc/) for subcellular
localization [39].

Classification of PufSF proteins in eukaryotes
To assess the distribution of Nop9, PUM3, and Puf se-
quences across the tree of eukaryotes, we used the pre-
computed domain annotation on InterProScan (ftp://ftp.
ebi.ac.uk/pub/databases/interpro/protein2ipr.dat.gz) of
all eukaryotes present in the Reference Proteome data-
base from UniProtKB. Importantly, since we were inter-
ested in understanding how many gene expansions
occurred in each genome, we ignored splice variants by
selecting only one representative protein per variant.
Proteins were classified based on the presence of the fol-
lowing IPR domains/PANTHER family/SMART domain:
Nop9 (IPR040000/PTHR13102), PUM3 (IPR040059/
PTHR13389), and Puf (IPR001313/SM00025).

Phylogenetic dataset construction and analyses
For phylogenetic dataset construction, a subset of repre-
sentative taxa across eukaryotic diversity were selected
from the entry dataset from the clustering analysis. Due
to the variety of different protein lengths, only the region
corresponding to the Puf repeats was analysed; for each
sequences, we extracted the region corresponding to the
start position of the first, until the last position of the
final, Puf repeat using HMMsearch with the SMRT pro-
file (SM00025). Sequences were aligned using mafft-linsi
[70], and ambiguously aligned sites were removed using
trimal with the ‘-gappyout’ option [72]. Initial phylogen-
etic tree of the entire PufSF (i.e. Puf, Nop9, and PUM3
proteins) was generated using FastTree with the -lg op-
tion [73]. This tree was manually examined, and in the
cases where an organism had multiple copies of a para-
logue that were monophyletic, only one sequence was
retained. This refined dataset was realigned as above.
Maximum likelihood inference of the reduced dataset
was performed using IQ-TREE v 2.0 [74] using the LG +
G + F model. Given the large size of the dataset, we did
not perform model testing with the mixture models for
the PufSF tree. A total of 1000 SH-aLRTs (SH-like ap-
proximate likelihood ratio test; -alrt 1000), 1000 ultrafast
bootstraps (-bb 1000) [75], 100 non-parametric boo-
straps (-b 100), and the transfer bootstrap expectation
calculation (--tbe) [76] were performed and mapped
onto the best-scoring maximum likelihood tree. To re-
fine the phylogeny of Nop9, PUM3, and Puf proteins, we
analysed each subclade separately. The sequences were
aligned as above. Maximum likelihood inference of the
reduced dataset was performed using IQ-TREE v 2.0
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[74] under the best-scoring model of evolution selected
by ModelFinder supplemented with the C-series mixture
models using the -mset option [77]. A total of 1000 SH-
aLRTs (SH-like approximate likelihood ratio test; -alrt
1000), 1000 ultrafast bootstraps (-bb 1000) [75], were
mapped onto the best-scoring maximum likelihood tree.
The resulting maximum likelihood tree was used as the
guide tree (-ft) for rapid approximation of posterior
mean site frequency (PMSF) of the C-series of mixture
models [78] to generate 100 non-parametric bootstraps
(-b 100) together with the transfer bootstrap expectation
(--tbe). Alignment features and model parameters are
specified in Additional file 7: Table S4, and datasets are
available on the figshare repository (DOI:https://doi.org/
10.6084/m9.figshare.12097692), see ‘Availability of Data
and Materials’.

Cell culture, cloning, and transfection
The G. intestinalis strain WB (ATCC 30957) was grown
in TYI-S-33 medium [79] supplemented with 10% heat-
inactivated bovine serum, 0.1% bovine bile, and antibi-
otics at 37 °C. The genes encoding G. intestinalis PufSF
proteins [GiardiaDB accession numbers GL50803_17262
(GiPuf1), GL50803_17590 (GiPuf2), GL50803_17325
(GiPuf3), GL50803_4548 (GiPuf4), GL50803_16602
(GiPUM3), and GL50803_14117 (GiNop9)] and 150-bp-
long 5′-UTR of GiPuf1, GiPuf2, GiPuf3, GiPuf4, and
GiNop9 were amplified from genomic DNA using PCR
and inserted to the plasmid pOndra [40] with the C-
terminal biotin acceptor peptide (BAP). Additional file 9:
Table S6 in lists all primers used in this study. Escheri-
chia coli biotin ligase (BirA) in pTG vector was used for
the co-expression with GiPuf4 [80]. G. intestinalis trans-
fection was performed as previously described [40].
Briefly, 1 × 107 cells were electroporated with a Bio-Rad
Gene Pulser using an exponential protocol (U = 350 V;
C = 1,000 μF; R = 750Ω). The transfected cells were
grown in medium supplemented with antibiotics (57 μg/
ml puromycin and 600 μg/ml G418).

Cell fractionation
Trophozoites of G. intestinalis in logarithmic growth
were harvested in ice-cold phosphate-buffered saline
(PBS, pH 7.4) at 1000×g at 4 °C for 10 min, washed in
SM buffer (20 mM MOPS, 250 mM sucrose, pH 7.4),
and collected by centrifugation at 1000×g, for 10 min at
4 °C. The pellet of the cells was resuspended in SM buf-
fer supplemented with protease inhibitors (Roche). The
cells were lysed on ice by sonication with 1-s pulses and
40% amplitude for 2 min (Sonicator ultrasonic processor
Q125, Qsonica). The lysate was subjected to centrifuga-
tion at 2680×g, for 20 min at 4 °C to sediment nuclei,
cytoskeleton, and remaining unbroken cells. The super-
natant was subjected to centrifugation at 180,000×g, for

30 min at 4 °C. The resulting supernatant corresponded
to cytosolic fraction, and the high-speed pellet (HSP)
contained organelles including the mitosomes and the
endoplasmic reticulum.

Crosslinking, protein isolation, and mass spectrometry
(MS)
G. intestinalis cells were grown in TYI-S-33 medium
enriched with 50 μM biotin for 24 h before harvesting.
The cells were lysed by sonication, and the cell lysate (25
mg of total protein) was used for the protein isolation.
The sample was diluted to final protein concentration of
3mg/ml in PBS (pH 7.4) and supplemented with protease
inhibitors (Roche). Crosslinker DSP (dithiobis [succinimi-
dyl propionate]; Thermo Scientific) was added to the final
concentration of 200 μM, and the sample was incubated 1
h on ice. The reaction was stopped by adding 50mM final
concentration of Tris (pH 8.0) for 15min at room
temperature. The sample was diluted 5 times with the
boiling buffer (50mM Tris, 1 mM EDTA, 1% SDS, pH
7.4), incubated at 80 °C for 10min, and collected by cen-
trifugation at 30,000×g, for 10min at room temperature.
Supernatant was diluted 1:10 in the binding buffer (50
mM Tris, 150mM NaCl, 5 mM EDTA, 1% Triton X-100,
pH 7.4). Meanwhile, 100 μl of streptavidin-coupled mag-
netic beads (Dynabeads MyOne Streptavidin C1, Invitro-
gen) was washed 3 times in the binding buffer using a
magnetic stand (according to the instructions of the
manufacturer). The beads were mixed with the super-
natant, and the sample was incubated for 16 h at 4 °C with
gentle rotation. The magnetic beads were washed 3 times
in the binding buffer with 0.1% sodium deoxycholate
(SDC) for 5 min, once in boiling buffer for 5min, once in
washing buffer (60mM Tris, 2% SDC, 10% glycerol) for 5
min, and finally twice in 100mM triethylammonium bi-
carbonate (TEAB) with 0.1% SDC for 5min. One tenth of
the beads was used to analyse the efficiency of the proced-
ure. Specifically, the sample was mixed with the SDS-
PAGE sample buffer containing 20mM biotin and incu-
bated at 95 °C for 5min to elute the proteins from the
beads. The samples were resolved on 12% SDS-PAGE and
transferred to nitrocellulose membrane. For immunode-
tection, the following antibodies were used: 1° anti-BAP
(1:1000) (Genscript) and 2° anti-rabbit polyclonal antibody
coupled to HRP (1:2000) (Sigma). Remaining beads with
bound proteins were submitted to mass spectrometry
analysis.

Tandem mass spectrometry (MS/MS) analyses
The beads were incubated at 5 mM tris (2-carboxyethyl)
phosphine (TCEP) at 60 °C for 1 h to reduce the disul-
fide bridges and blocked with 10 mM final concentration
of methyl methanethiosulfonate (MMTS) for 10 min at
37 °C. Samples were cleaved on the beads with 1 μg of
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trypsin at 37 °C for 16 h. After digestion, samples were
centrifuged, and supernatants were collected and acid-
ified with trifluoroacetic acid (TFA at a final concentra-
tion of 1%). SDC was removed by extraction with
ethylacetate [81]. Peptides were desalted on Michrom
C18 column. Nano Reversed phase column (EASY-Spray
column, 50 cm × 75 μm ID, PepMap C18, 2 μm particles,
100 Å pore size) was used for LC/MS analysis. Mobile
phase buffer A was composed of water and 0.1% formic
acid. Mobile phase B was composed of 0.1% formic acid
in acetonitrile. Samples were loaded onto the trap col-
umn (Acclaim PepMap300, C18, 5 μm, 300 Å Wide Pore,
300 μm× 5mm, 5 Cartridges) for 4 min at 15 μl/min.
Loading buffer was composed of water, 2% acetonitrile,
and 0.1% TFA. Peptides were eluted with mobile phase
B gradient from 4 to 35% B in 1 h. Eluting peptide cat-
ions were converted to gas-phase ions by electrospray
ionization and analysed on a Thermo Orbitrap Fusion
(Q-OT-qIT, Thermo). Survey scans of peptide precur-
sors from 400 to 1600m/z were performed at 120 K
resolution (at 200 m/z) with a 5 × 105 ion count target.
Tandem MS was performed by isolation at 1.5 Th with
the quadrupole, HCD fragmentation with normalized
collision energy of 30, and rapid scan MS analysis in the
ion trap. The MS 2 ion count target was set to 104, and
the max injection time was 35ms. Only those precursors
with charge state 2–6 were sampled for MS 2. The dy-
namic exclusion duration was set to 45 s with a 10-ppm
tolerance around the selected precursor and its isotopes.
Monoisotopic precursor selection was turned on. The
instrument was run in top speed mode with 2-s cycles
[82]. All data were analysed and quantified with the
MaxQuant software (version 1.5.3.8) [83]. The false
discovery rate (FDR) was set to 1% for both proteins
and peptides, and we specified a minimum length of
seven amino acids. The Andromeda search engine
was used for the MS/MS spectra search against the
G. intestinalis database (downloaded from UniProtKB
in September 2017, containing 12,665 entries). En-
zyme specificity was set as C-terminal to Arg and
Lys, also allowing cleavage at proline bonds and a
maximum of two missed cleavages. Dithiomethylation
of cysteine was selected as fixed modification and N-
terminal protein acetylation and methionine oxidation
as variable modifications. The ‘match between runs’
feature of MaxQuant was used to transfer identifica-
tions to other LC-MS/MS runs based on their masses
and retention time (maximum deviation 0.7 min), and
this was also used in quantification experiments.
Quantifications were performed with the label-free al-
gorithms described recently [83]. Data analysis was
performed using Perseus 1.5.2.4 software [84]. The
mass spectrometry proteomics data have been depos-
ited in the ProteomeXchange Consortium via the

PRIDE [85] partner repository with the dataset identi-
fier PXD019608.

Immunofluorescence microscopy
G. intestinalis trophozoites were fixed in 1% paraformal-
dehyde for 30 min at 37 °C and collected by centrifuga-
tion at 1000×g for 5 min at room temperature. The cells
were washed in PEM buffer (100 mM PIPES pH 6.9, 1
mM EGTA, and 0.1 mM MgSO4) and placed on cover
slips. The cells were permeabilized by 0.2% Triton X-100
(Sigma-Aldrich) for 20 min, washed three times with 1×
PEM buffer, and incubated with primary antibodies in
PEMBALG (100 mM PIPES pH 6.9, 1 mM EGTA, 0.1
mM MgSO4, 1% BSA, 0.1% NaN3, 100 mM lysine, and
0.5% cold-water fish skin gelatin) for 1 h. Cells were
probed with the following primary antibodies: rat anti-
HA monoclonal IgG antibody (1:1000 dilution), mouse
anti-BAP monoclonal antibody (1:1000 dilution), and
rabbit anti-Sec20 polyclonal [86] (1:1000 dilution). The
cover slips were washed three times with 1 ml of 1×
PEM and were incubated with secondary antibodies
Alexa Fluor 488-conjugated goat anti-rat IgG and Alexa
594-conjugated donkey anti-rabbit IgG or Alexa594-
conjugated goat anti-mouse IgG for 1 h. After 3 × 5min
washes in PEM buffer, slides were mounted with Vecta-
shield containing DAPI (4′, 6-diamidino-2-phenylindole;
Vector Laboratories) or Hoechst solution (33258). Stim-
ulated emission depletion (STED) microscopy was per-
formed on a commercial Abberior STED 775 QUAD
scanning microscope (Abberior Instruments GmbH,
Germany) equipped with Ti-E Nikon body, QUAD beam
scanner, Easy3D STED Optics Module, and Nikon CFI
Plan Apo Lambda objective (× 60 Oil, NA 1.40). Samples
were illuminated by pulsed 561-nm and 640-nm lasers
and depleted by a pulsed 775-nm STED laser of 2D
donut shape (all lasers: 40MHz repetition rate). Fluores-
cence signal was detected with single photon counting
modules (Excelitas Technologies). Line-interleaved ac-
quisition enabled separated detection of individual chan-
nels in spectral range from 605 to 625 nm and from 650
to 720 nm. The confocal pinhole was set to 1 AU.
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