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Abstract. The aim of this paper is to give some Datko and Barbashin type character-

izations for the uniform h-instability of evolution families in Banach spaces, by using some

important sets of growth rates. We prove four characterization theorems of Datko type

and two characterization theorems of Barbashin type for uniform h-instability. Variants

for uniform h-instability of some well-known results in stability theory (Barbashin (1967),

Datko (1972)) are obtained.

1. Introduction

The topic of exponential stability and instability of dynamical systems
on Banach spaces have been intensively investigated for many years. In the
last decades, various results concerning this subject have witnessed consider-
able development. There are two momentous and fundamental results in the
exponential stability theory which were obtained by Barbashin in 1967 ([1])
and Datko in 1972 ([10]).

Theorem 1.1 (Barbashin). An evolution family U = {U(t, s)}t≥s≥0 with
uniform exponential growth is uniformly exponentially stable if and only if

sup
t≥0

∫ t

0

‖U(t, s)x‖ ds < ∞, ∀x ∈ X.

Theorem 1.2 (Datko). An evolution family U = {U(t, s)}t≥s≥0 with
uniform exponential growth is uniformly exponentially stable if and only if
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there is p ∈ [1,∞) such that

sup
s≥0

∫ ∞

s

‖U(t, s)x‖
p
dt < ∞, ∀x ∈ X.

Note that the Theorem 1.2 was originally proved by Datko in 1970 ([11])
for C0-semigroups acting on Hilbert spaces and p = 2. Later, Pazy in [28]
showed the case p ∈ [1,∞) on Banach spaces.

After the path-breaking research of Barbashin and Datko, through the us-
age of Datko-Pazy theorem, admissibility, Banach function spaces, Lyapunov
functions, discrete-time methods and other ways, there has been numerous
extensions and generalizations devoted to this area (see [2, 6, 9, 12, 13, 14,
15, 16, 17, 18, 22, 23, 24, 27, 30, 31] and the references therein). For instance,
in [12] Dragičević obtained some continuous and discrete versions of Datko
type theorem for the concept of the exponential stability in average. In [6]
and [23], the Datko and Barbashin type integral characterizations for uniform
exponential instability of evolution operators were studied by Boruga and
Megan. Also, a significant contribution in this direction was made by Bento
et al. in [5] who obtained an interesting Datko type characterization for
nonuniform µ-dichotomy. They observed that the uniform Datko’s condition
(Theorem 1.2) can be generalized to a more enhanced level, by means of differ-
entiable growth rates. The notion of nonuniform µ-dichotomy is very general
to cover some particular notions, such as uniform µ-dichotomy, (non)uniform
exponential dichotomy, (non)uniform exponential stability, etc.

Since many differential equations arising in nature or engineering involve
the discussion of nonexponential asymptotic behaviors and the notion of ex-
ponential stability is too restrictive for dynamical systems, there has been an
increasing trend to look for more general types of stable behaviors. In recent
years, many researcher focused on the polynomial stability and instability of
solutions of evolution equations in Banach spaces. The concept of polynomial
behaviors was proposed respectively by Bento and Silva in [4] and Barreira
and Valls in [3] with slight differences, in the case of discrete and continu-
ous time systems. After the two notable papers appeared, some remarkable
and various results of polynomial stability and instability were investigated
by Megan et al. in [6, 7, 23, 25, 26, 32] and Hai in [19, 20, 21]. It is worth
noting that in [8] the authors proposed a more general concept, the so-called
uniform h-stability. This concept includes the classical concepts of uniform
exponential stability and uniform polynomial stability as particular cases. In
addition, some Datko and Barbashin type conditions for uniform h-stability
of evolution operators were obtained in [8]. Naturally, the question arises
whether Datko and Barbashin type theorems can be generalized to the case
of a uniform h-instability. This paper will give an affirmative answer.

Motivated by the recent work of Boruga, Megan and Toth ([8]), in this
paper, we introduce the concept of uniform h-instability for evolution families
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which is an extension of classical concepts of uniform exponential instability
and uniform polynomial instability. Our main objective is to give some neces-
sary and sufficient conditions of Datko type and Barbashin type for the uni-
form h-instability concept of evolution families on Banach spaces, and variants
for uniform h-instability of some well-known results in stability theory (Bar-
bashin ([1]), Datko ([10]), Boruga et al. ([8])) and instability theory (Boruga
and Megan, [6, 23]) are obtained. We emphasize that the set of growth rates
considered in this paper are different from that used in [5]. Our approach is
based on the properties of Definition 2.12, but the growth functions utilized
in [5] only require differentiability. Moreover, although the concept of uniform
h-instability can be considered as a particular case of the notion of nonuni-
form µ-dichotomy, we point out that all Datko type characterizations in this
paper do not imply those in [5], and vice versa.

2. Notations and preliminaries

In this section, we give some notations, definitions and preliminary facts
which will be used in the sequel. Let R be the set of all real numbers. We
denote by R+ = [0,+∞), by ∆ =

{

(t, s) ∈ R
2
+ : t ≥ s ≥ 0

}

and by T =
{

(t, r, s) ∈ R
3
+ : t ≥ r ≥ s ≥ 0

}

. We assume that X is a Banach space, X∗ its
dual space and B(X) the Banach algebra of all linear and bounded operators
from X into itself. The norm on X , X∗ and B(X) will be denoted by || · ||.

Definition 2.1. A family U = {U(t, s)}t≥s≥0 ⊆ B(X) is called an evo-
lution family if the following three conditions are satisfied:

(i) U(t, t) = I (where I is the identity operator on X) for all t ∈ R+;
(ii) U(t, s) = U(t, r)U(r, s) for all (t, r, s) ∈ T ;
(iii) U(·, s)x is continuous on [s,∞), for all (s, x) ∈ R+ × X, U(t, ·)x is

continuous on [0, t], for all (t, x) ∈ R+ ×X.

Definition 2.2. An evolution family U is said to be injective if ‖U(t, s)x‖
> 0 for all (t, s) ∈ ∆ and all x ∈ X \ {0}.

Definition 2.3 ([29]). A nondecreasing function h : R+ −→ [1,∞) is
said to be a growth rate if it is bijective.

In what follows, we suppose that h : R+ −→ [1,∞) is a growth rate.

Definition 2.4. We say that an evolution family U has uniform h-decay
(u.h.d.) if there are M > 1 and ω > 0 such that

(2.1) Mh(t)ω ‖U(t, s)x‖ ≥ h(s)ω ‖x‖ , ∀(t, s, x) ∈ ∆×X.

Obviously, if an evolution family U has uniform h-decay, then it is injec-
tive.

Remark 2.5. As particular cases of Definition 2.4, we have the following.
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(i) If h(t) = et, then we say that an evolution family U has uniform
exponential decay (u.e.d.).

(ii) If h(t) = t + 1, then we say that an evolution family U has uniform
polynomial decay (u.p.d.).

Remark 2.6. An evolution family U has uniform h-decay if and only if
there are M > 1 and ω > 0 such that

(2.2) Mh(t)ω ‖U(t, s)x‖ ≥ h(r)ω ‖U(r, s)x‖ , ∀(t, r, s, x) ∈ T ×X.

Definition 2.7. An evolution family U is said to be uniformly h-unstable
(u.h.us.) if there are N > 1 and v ∈ (0, 1) such that

(2.3) Nh(s)v ‖U(t, s)x‖ ≥ h(t)v ‖x‖ , ∀(t, s, x) ∈ ∆×X.

Remark 2.8. As particular cases of Definition 2.7, we give the following.

(i) If h(t) = et, then we say that an evolution family U is uniformly
exponentially unstable (u.e.us.).

(ii) If h(t) = t + 1, then we say that an evolution family U is uniformly
polynomially unstable (u.p.us.).

Remark 2.9. An evolution family U is uniformly h-unstable if and only
if there are N > 1 and v ∈ (0, 1) such that

(2.4) Nh(r)v ‖U(t, s)x‖ ≥ h(t)v ‖U(r, s)x‖ , ∀(t, r, s, x) ∈ T ×X.

Remark 2.10. If an evolution family U is uniformly h-unstable, then it
has uniform h-decay. The converse is not necessarily valid. To show this, we
consider the following example.

Example 2.11. Let X = R. An evolution family U defined by

U(t, s)x =
h(s)

h(t)
x,

for all (t, s, x) ∈ ∆×X . It is easy to check that U satisfies Definition 2.4 for
ω = 1 and for all M > 1. It results that U has u.h.d.

If we suppose that U is u.h.us., then there are N > 1 and v ∈ (0, 1) such
that

Nh(s)v ·
h(s)

h(t)
≥ h(t)v,

for all (t, s) ∈ ∆. In particular, for s = 0, we obtain
(

h(t)
h(0)

)v+1

≤ N , which is

absurd for t → ∞. Hence, U is not u.h.us.

It is worth noting that Definition 2.4 is an important tool in proving our
main results. It is clear that the uniform h-decay is the necessary condition
for the uniform h-instability. In other words, if an evolution family U does not
have uniform h-decay, then it is not uniformly h-unstable. This is the reason
why all the main results in this paper need to assume that an evolution family
exhibits uniform h-decay.
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Definition 2.12. We introduce the following sets of growth rates, which
are very useful to our study:

(i) H0 is the set of all growth rates h : R+ −→ [1,∞) with

(2.5) h(t) ≥ t+ 1, ∀t ≥ 0;

(ii) H is the set of all growth rates h : R+ −→ [1,∞) with the property that
there is H > 1 such that

(2.6) h(t+ 1) ≤ Hh(t), ∀t ≥ 0;

(iii) H1 is the set of all growth rates h : R+ −→ [1,∞) with the property
that there is H1 > 1 such that

(2.7)

∫ ∞

t

h(s)α−1ds ≤ H1h(t)
α, ∀α < 0, t ≥ 0;

(iv) H2 is the set of all growth rates h : R+ −→ [1,∞) with the property
that there is H2 > 1 such that

(2.8)

∫ ∞

t

h(s)αds ≤ H2h(t)
α, ∀α < 0, t ≥ 0;

(v) H3 is the set of all growth rates h : R+ −→ [1,∞) with the property
that there is H3 > 1 such that

(2.9)

∫ t

0

h(s)αds ≤ H3h(t)
α, ∀α > 0, t ≥ 0;

(vi) H4 is the set of all growth rates h : R+ −→ [1,∞) with the property
that there is H4 ≥ 2 such that

(2.10) h(H4h(t)) ≤ (H4)
2h(t), ∀t ≥ 0;

(vii) H5 is the set of all growth rates h : R+ −→ [1,∞) with the property
that there is H5 > 1 such that

(2.11)

∫ t

0

h(s)α−1ds ≤ H5h(t)
α, ∀α ∈ (0, 1), t ≥ 0;

(viii) H6 is the set of all growth rates h : R+ −→ [1,∞) with the property
that there is H6 > 1 such that

(2.12)

∫ t

0

h(s)αds ≤ H6h(t)
α, ∀α ∈ (0, 1), t ≥ 0.

Remark 2.13. Let f, g : R+ −→ [1,∞), f(t) = ξt, g(t) = (ηt+1)ζ , where
ξ ≥ e and η, ζ ≥ 1. Then we have the following assertions:

(i) f, g ∈ H0;
(ii) f ∈ (H2 ∩H3) ⊂ (H1 ∩H3);
(iii) g ∈ H1 \ (H2 ∪H3);
(iv) f ∈ (H ∩H6) ⊂ (H ∩H5);
(v) if ζ = 1, then g ∈ H4 ∪ (H5 \ H6).
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3. Datko type theorems for uniform h-instability

In this section we give some Datko type characterizations for the uniform
h-instability of evolution families on Banach spaces.

Theorem 3.1. Let h ∈ H0 ∩ H1 ∩ H4 and U = {U(t, s)}t≥s≥0 be an
evolution family with uniform h-decay. Then U is uniformly h-unstable if and
only if there are two constants D > 1 and d ∈ (0, 1) such that

(3.1)

∫ ∞

r

h(t)d−1

‖U(t, s)x‖
dt ≤

Dh(r)d

‖U(r, s)x‖
, ∀(r, s, x) ∈ ∆× (X \ {0}).

Proof. Necessity. If U is u.h.us., then by Remark 2.9, there are N > 1
and v ∈ (0, 1) such that the relation (2.4) holds. Let d ∈ (0, v). By (2.4) and
(2.7) we have
∫ ∞

r

h(t)d−1

‖U(t, s)x‖
dt ≤ N

∫ ∞

r

(

h(r)

h(t)

)v
h(t)d−1

‖U(r, s)x‖
dt

=
Nh(r)v

‖U(r, s)x‖

∫ ∞

r

h(t)d−v−1dt ≤
Nh(r)v

‖U(r, s)x‖
·H1h(r)

d−v =
Dh(r)d

‖U(r, s)x‖
,

for all (r, s, x) ∈ ∆× (X \ {0}), where D = NH1.
Sufficiency. Let (t, r, s) ∈ T and x ∈ X \ {0}.
If h(t) ≥ 2r, then by (2.2), (2.5), (2.10) and (3.1), we have

h(t)d

‖U(t, s)x‖
=

2

h(t)

∫ h(t)

h(t)
2

h(t)d

‖U(t, s)x‖
dτ =

2

h(t)

∫ h(t)

h(t)
2

h(t)d

‖U(t, τ)U(τ, s)x‖
dτ

≤ 2M

∫ h(t)

h(t)
2

(

h(t)

h(τ)

)ω+d
h(τ)

h(t)

h(τ)d−1

‖U(τ, s)x‖
dτ

≤ 2M

∫ h(t)

h(t)
2

(

h(t)

τ

)ω+d
h(τ)

h(t)

h(τ)d−1

‖U(τ, s)x‖
dτ

≤ 2M

∫ h(t)

h(t)
2

(

h(t)

2−1h(t)

)ω+d
h(τ)

h(t)

h(τ)d−1

‖U(τ, s)x‖
dτ

≤ 2ω+d+1M

∫ h(t)

h(t)
2

h(h(t))

h(t)

h(τ)d−1

‖U(τ, s)x‖
dτ

≤ 2ω+d+1M

∫ h(t)

h(t)
2

h(H4h(t))

h(t)

h(τ)d−1

‖U(τ, s)x‖
dτ

≤ 2ω+d+1M

∫ h(t)

h(t)
2

(H4)
2h(t)

h(t)

h(τ)d−1

‖U(τ, s)x‖
dτ

≤ 2ω+d+1M(H4)
2

∫ ∞

r

h(τ)d−1

‖U(τ, s)x‖
dτ ≤

2ω+d+1M(H4)
2Dh(r)d

‖U(r, s)x‖
.
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This implies that

(3.2) 2ω+d+1M(H4)
2Dh(r)d ‖U(t, s)x‖ ≥ h(t)d ‖U(r, s)x‖ , if h(t) ≥ 2r.

If h(t) < 2r, then by (2.2) and (2.5) we have

h(t)d

‖U(t, s)x‖
≤ M

(

h(t)

h(r)

)ω+d
h(r)d

‖U(r, s)x‖
≤ M

(

h(t)

r + 1

)ω+d
h(r)d

‖U(r, s)x‖

≤ M

(

h(t)

r

)ω+d
h(r)d

‖U(r, s)x‖
≤ M

(

2r

r

)ω+d
h(r)d

‖U(r, s)x‖

=
2ω+dMh(r)d

‖U(r, s)x‖
.

It follows that

(3.3) 2ω+dMh(r)d ‖U(t, s)x‖ ≥ h(t)d ‖U(r, s)x‖ , if h(t) < 2r.

Using (3.2) and (3.3), we have that there exist N = 2ω+d+1M(H4)
2D and

v = d such that relation (2.4) holds for all (t, r, s, x) ∈ T ×X . By Remark 2.9
we conclude that U is u.h.us.

Corollary 3.2 ([6]). Let U = {U(t, s)}t≥s≥0 be an evolution family with
uniform polynomial decay. Then it is uniformly polynomially unstable if and
only if there are two constants D > 1 and d ∈ (0, 1) such that

∫ ∞

r

(t+ 1)d−1

‖U(t, s)x‖
dt ≤

D(r + 1)d

‖U(r, s)x‖
, ∀(r, s, x) ∈ ∆× (X \ {0}).

Proof. It follows immediately from Theorem 3.1 for h(t) = t+ 1.

Theorem 3.3. Let h ∈ H ∩ H2 and U = {U(t, s)}t≥s≥0 be an evolution
family with uniform h-decay. Then U is uniformly h-unstable if and only if
there are two constants D > 1 and d ∈ (0, 1) such that

(3.4)

∫ ∞

r

h(t)d

‖U(t, s)x‖
dt ≤

Dh(r)d

‖U(r, s)x‖
, ∀(r, s, x) ∈ ∆× (X \ {0}).

Proof. Necessity. If U is u.h.us., then by Remark 2.9, there are N > 1
and v ∈ (0, 1) such that the relation (2.4) holds. Let d ∈ (0, v). By (2.4) and
(2.8) we have

∫ ∞

r

h(t)d

‖U(t, s)x‖
dt ≤ N

∫ ∞

r

(

h(r)

h(t)

)v
h(t)d

‖U(r, s)x‖
dt

=
Nh(r)v

‖U(r, s)x‖

∫ ∞

r

h(t)d−vdt ≤
Nh(r)v

‖U(r, s)x‖
·H2h(r)

d−v =
Dh(r)d

‖U(r, s)x‖
,

for all (r, s, x) ∈ ∆× (X \ {0}), where D = NH2.
Sufficiency. Let (t, r, s) ∈ T and x ∈ X \ {0}.
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If t ≥ r + 1, then by (2.1), (2.6) and (3.4), we have

h(t)d

‖U(t, s)x‖
=

∫ t

t−1

h(t)d

‖U(t, τ)U(τ, s)x‖
dτ ≤ M

∫ t

t−1

(

h(t)

h(τ)

)ω
h(t)d

‖U(τ, s)x‖
dτ

= M

∫ t

t−1

(

h(t)

h(τ)

)ω+d
h(τ)d

‖U(τ, s)x‖
dτ

≤ M

∫ t

t−1

(

h(t)

h(t− 1)

)ω+d
h(τ)d

‖U(τ, s)x‖
dτ

≤ MHω+d

∫ t

t−1

h(τ)d

‖U(τ, s)x‖
dτ ≤ MHω+d

∫ ∞

r

h(τ)d

‖U(τ, s)x‖
dτ

≤
MDHω+dh(r)d

‖U(r, s)x‖
.

The above inequalities imply that

(3.5) MDHω+dh(r)d ‖U(t, s)x‖ ≥ h(t)d ‖U(r, s)x‖ , if t ≥ r + 1.

If t ∈ [r, r + 1), then by (2.2) and (2.6) we have

h(t)d

‖U(t, s)x‖
≤ M

(

h(t)

h(r)

)ω+d
h(r)d

‖U(r, s)x‖

≤ M

(

h(r + 1)

h(r)

)ω+d
h(r)d

‖U(r, s)x‖
≤

MHω+dh(r)d

‖U(r, s)x‖
.

It follows that

(3.6) MHω+dh(r)d ‖U(t, s)x‖ ≥ h(t)d ‖U(r, s)x‖ , if t ∈ [r, r + 1).

Set N = MDHω+d and v = d. Combining (3.5) with (3.6), we have

Nh(r)v ‖U(t, s)x‖ ≥ h(t)v ‖U(r, s)x‖ , ∀(t, r, s, x) ∈ T ×X.

So U is u.h.us.

Corollary 3.4 ([6]). Let U = {U(t, s)}t≥s≥0 be an evolution family with
uniform exponential decay. Then it is uniformly exponentially unstable if and
only if there are two constants D > 1 and d ∈ (0, 1) such that

∫ ∞

r

edt

‖U(t, s)x‖
dt ≤

Dedr

‖U(r, s)x‖
, ∀(r, s, x) ∈ ∆× (X \ {0}).

Proof. It follows immediately from Theorem 3.3 for h(t) = et.

Theorem 3.5. Let h ∈ H ∩ H3 and U = {U(t, s)}t≥s≥0 be an evolution
family with uniform h-decay. Then U is uniformly h-unstable if and only if
there are two constants D > 1 and d ∈ (0, 1) such that

(3.7)

∫ t

s

‖U(r, s)x‖

h(r)d
dr ≤

D ‖U(t, s)x‖

h(t)d
, ∀(t, s, x) ∈ ∆×X.
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Proof. Necessity. If U is u.h.us., then by Remark (2.9), there are N > 1
and v ∈ (0, 1) such that the relation (2.4) holds. Let d ∈ (0, v). By (2.4) and
(2.8) we have

∫ t

s

‖U(r, s)x‖

h(r)d
dr ≤ N

∫ t

s

(

h(r)

h(t)

)v
‖U(t, s)x‖

h(r)d
dr

=
N ‖U(t, s)x‖

h(t)v

∫ t

s

h(r)v−ddr ≤
N ‖U(t, s)x‖

h(t)v

∫ t

0

h(r)v−ddr

≤
N ‖U(t, s)x‖

h(t)v
·H3h(t)

v−d =
D ‖U(t, s)x‖

h(t)d
,

for all (t, s, x) ∈ ∆×X , where D = NH3.
Sufficiency. Let (t, r, s, x) ∈ T ×X .
If t ≥ r + 1, then by (2.2), (2.6) and (3.7), we have

‖U(r, s)x‖

h(r)d
=

∫ r+1

r

‖U(r, s)x‖

h(r)d
dτ ≤ M

∫ r+1

r

(

h(τ)

h(r)

)ω
‖U(τ, s)x‖

h(r)d
dτ

= M

∫ r+1

r

(

h(τ)

h(r)

)ω+d
‖U(τ, s)x‖

h(τ)d
dτ

≤ M

∫ r+1

r

(

h(r + 1)

h(r)

)ω+d
‖U(τ, s)x‖

h(τ)d
dτ

≤ MHω+d

∫ r+1

r

‖U(τ, s)x‖

h(τ)d
dτ ≤ MHω+d

∫ t

s

‖U(τ, s)x‖

h(τ)d
dτ

≤
MDHω+d ‖U(t, s)x‖

h(t)d
,

which is equivalent to

(3.8) MDHω+dh(r)d ‖U(t, s)x‖ ≥ h(t)d ‖U(r, s)x‖ , if t ≥ r + 1.

If t ∈ [r, r + 1), then by (2.2) and (2.6) we have

(3.9)

h(t)d ‖U(r, s)x‖ ≤ M

(

h(t)

h(r)

)ω+d

h(r)d ‖U(t, s)x‖

≤ M

(

h(r + 1)

h(r)

)ω+d

h(r)d ‖U(t, s)x‖

≤ MHω+dh(r)d ‖U(t, s)x‖ .

From inequalities (3.8) and (3.9), we get that there are N = MDHω+d

and v = d such that the relation (2.4) holds for all (t, r, s, x) ∈ T × X . By
Remark 2.9 we conclude that U is u.h.us.

Corollary 3.6 ([6]). Let U = {U(t, s)}t≥s≥0 be an evolution family with
uniform exponential decay. Then it is uniformly exponentially unstable if and
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only if there are two constants D > 1 and d ∈ (0, 1) such that
∫ t

s

‖U(r, s)x‖

edr
dr ≤

D ‖U(t, s)x‖

edt
, ∀(t, s, x) ∈ ∆×X.

Proof. It follows immediately from Theorem 3.5 for h(t) = et.

Theorem 3.7. Let h ∈ H0 ∩ H4 ∩ H5 and U = {U(t, s)}t≥s≥0 be an
evolution family with uniform h-decay. Then U is uniformly h-unstable if and
only if there are two constants D > 1 and d ∈ (0, 1) such that

(3.10)

∫ t

s

‖U(r, s)x‖

h(r)d+1
dr ≤

D ‖U(t, s)x‖

h(t)d
, ∀(t, s, x) ∈ ∆×X.

Proof. Necessity. If U is u.h.us., then by Remark 2.9, there are N > 1
and v ∈ (0, 1) such that the relation (2.4) holds. Let d ∈ (0, v). By (2.4) and
(2.11) we have
∫ t

s

‖U(r, s)x‖

h(r)d+1
dr ≤ N

∫ t

s

(

h(r)

h(t)

)v
‖U(t, s)x‖

h(r)d+1
dr

=
N ‖U(t, s)x‖

h(t)v

∫ t

s

h(r)v−d−1dr ≤
N ‖U(t, s)x‖

h(t)v

∫ t

0

h(r)v−d−1dr

≤
N ‖U(t, s)x‖

h(t)v
·H5h(t)

v−d =
D ‖U(t, s)x‖

h(t)d
,

for all (t, s, x) ∈ ∆×X , where D = NH5.
Sufficiency. Let (t, r, s, x) ∈ T ×X .
Take t ≥ H4h(r), where H4 is given by Definition 2.12 (vi). Then by

(2.2), (2.10) and (3.10), we have

‖U(r, s)x‖

h(r)d
=

1

(H4 − 1)h(r)

∫ H4h(r)

h(r)

‖U(r, s)x‖

h(r)d
dτ

≤
M

(H4 − 1)h(r)

∫ H4h(r)

h(r)

(

h(τ)

h(r)

)ω
‖U(τ, s)x‖

h(r)d
dτ

=
M

H4 − 1

∫ H4h(r)

h(r)

(

h(τ)

h(r)

)ω+d+1
‖U(τ, s)x‖

h(τ)d+1
dτ

≤
M

H4 − 1

∫ H4h(r)

h(r)

(

h(H4h(r))

h(r)

)ω+d+1
‖U(τ, s)x‖

h(τ)d+1
dτ

≤
MH

2(ω+d+1)
4

H4 − 1

∫ H4h(r)

h(r)

‖U(τ, s)x‖

h(τ)d+1
dτ

≤
MH

2(ω+d+1)
4

H4 − 1

∫ H4h(r)

r

‖U(τ, s)x‖

h(τ)d+1
dτ
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≤
MH

2(ω+d+1)
4

H4 − 1

∫ t

s

‖U(τ, s)x‖

h(τ)d+1
dτ

≤
MDH

2(ω+d+1)
4 ‖U(t, s)x‖

(H4 − 1)h(t)d
.

Thus, we obtain

(3.11)
MDH

2(ω+d+1)
4

H4 − 1
h(r)d ‖U(t, s)x‖ ≥ h(t)d ‖U(r, s)x‖ , if t ≥ H4h(r).

If t ∈ [r,H4h(r)), then by (2.2) and (2.10), we have

(3.12)

h(t)d ‖U(r, s)x‖ ≤ M

(

h(t)

h(r)

)ω+d

h(r)d ‖U(t, s)x‖

≤ M

(

h(H4h(r))

h(r)

)ω+d

h(r)d ‖U(t, s)x‖

≤ MH
2(ω+d)
4 h(r)d ‖U(t, s)x‖ .

Based on (3.11) and (3.12) we have that there exist

N = max
{

MDH
2(ω+d+1)
4 (H4 − 1)−1,MH

2(ω+d)
4

}

and v = d such that the relation (2.4) holds for all (t, s, x) ∈ ∆ × X . By
Remark 2.9 we conclude that U is u.h.us.

Corollary 3.8 ([6]). Let U = {U(t, s)}t≥s≥0 be an evolution family with
uniform polynomial decay. Then it is uniformly polynomially unstable if and
only if there are two constants D > 1 and d ∈ (0, 1) such that

∫ t

s

‖U(r, s)x‖

(r + 1)d+1
dr ≤

D ‖U(t, s)x‖

(t+ 1)d+1
, ∀(t, s, x) ∈ ∆×X.

Proof. It follows immediately from Theorem 3.7 for h(t) = t+ 1.

Remark 3.9. Theorems 3.1, 3.3, 3.5 and 3.7 are the versions of the clas-
sical stability theorems and instability theorems due to Datko ([10]), Boruga
et al. ([6, 8]), for uniform h-instability of evolution families.

4. Barbashin type theorems for uniform h-instability

In this section we give some Barbashin type characterizations for the
uniform h-instability of evolution families. Throughout this section we assume
that the mapping s 7→ ‖U(t, s)∗x∗‖ is measurable on [0, t], for all (t, x∗) ∈
R+ ×X∗.
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Theorem 4.1. Let h ∈ H0 ∩ H4 ∩ H5 and U = {U(t, s)}t≥s≥0 be an
evolution family with uniform h-decay. Then U is uniformly h-unstable if and
only if there are two constants B > 1 and b ∈ (0, 1) such that

(4.1)

∫ t

0

dτ

h(τ)b+1 ‖U(t, τ)∗x∗‖
≤

B

h(t)b ‖x∗‖
, ∀(t, x∗) ∈ R+ × (X∗ \ {0}).

Proof. Necessity. If U is u.h.us., then by Definition 2.7, there are N > 1
and v ∈ (0, 1) such that the relation (2.3) holds. Let b ∈ (0, v). By (2.3) and
(2.11) we have

∫ t

0

dτ

h(τ)b+1 ‖U(t, τ)∗x∗‖
≤ N

∫ t

0

(

h(τ)

h(t)

)v
1

h(τ)b+1 ‖x∗‖
dτ

=
N

h(t)v ‖x∗‖

∫ t

0

h(τ)v−b−1dτ ≤
N

h(t)v ‖x∗‖
·H5h(t)

v−b =
B

h(t)b ‖x∗‖
,

for all (t, x∗) ∈ R+ × (X∗ \ {0}), where B = NH5.
Sufficiency. Let (t, s, x∗) ∈ ∆× (X∗ \ {0}).
Take t ≥ H4h(s), where H4 is given by Definition 2.12 (vi). Then by

(2.1), (2.10) and (4.1), we have

1

h(s)b ‖U(t, s)∗x∗‖

=
1

(H4 − 1)h(s)

∫ H4h(s)

h(s)

dτ

h(s)b ‖U(τ, s)∗U(t, τ)∗x∗‖

≤
M

(H4 − 1)h(s)

∫ H4h(s)

h(s)

(

h(τ)

h(s)

)ω
1

h(s)b ‖U(t, τ)∗x∗‖
dτ

=
M

H4 − 1

∫ H4h(s)

h(s)

(

h(τ)

h(s)

)ω+b+1
1

h(τ)b+1 ‖U(t, τ)∗x∗‖
dτ

≤
M

H4 − 1

∫ H4h(s)

h(s)

(

h(H4h(s))

h(s)

)ω+b+1
1

h(τ)b+1 ‖U(t, τ)∗x∗‖
dτ

≤
M

H4 − 1
H

2(ω+b+1)
4

∫ H4h(s)

h(s)

1

h(τ)b+1 ‖U(t, τ)∗x∗‖
dτ

≤
M

H4 − 1
H

2(ω+b+1)
4

∫ t

0

1

h(τ)b+1 ‖U(t, τ)∗x∗‖
dτ

≤
MBH

2(ω+b+1)
4

(H4 − 1)h(t)b ‖x∗‖
.

Thus, we get that

(4.2)
MBH

2(ω+b+1)
4

H4 − 1
h(s)b ‖U(t, s)∗x∗‖ ≥ h(t)b ‖x∗‖ , if t ≥ H4h(s).
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If t ∈ [s,H4h(s)), then by (2.1) and (2.10), we have

1

h(s)b ‖U(t, s)∗x∗‖
≤ M

(

h(t)

h(s)

)ω+b
1

h(t)b ‖x∗‖

≤ M

(

h(H4h(s))

h(s)

)ω+b
1

h(t)b ‖x∗‖
≤

MH
2(ω+b)
4

h(t)b ‖x∗‖
.

It follows that

(4.3) MH
2(ω+b)
4 h(s)b ‖U(t, s)∗x∗‖ ≥ h(t)b ‖x∗‖ , if t ∈ [s,H4h(s)).

From (4.2) and (4.3), it results that

Nh(s)b ‖U(t, s)∗x∗‖ ≥ h(t)b ‖x∗‖ , ∀(t, s, x∗) ∈ ∆×X∗,

where N = max
{

MBH
2(ω+b+1)
4 (H4 − 1)−1,MH

2(ω+b)
4

}

. Hence U is u.h.us.

Corollary 4.2 ([23]). Let U = {U(t, s)}t≥s≥0 be an evolution family
with uniform polynomial decay. Then it is uniformly polynomially unstable if
and only if there are two constants B > 1 and b ∈ (0, 1) such that

∫ t

0

dτ

(τ + 1)b+1 ‖U(t, τ)∗x∗‖
≤

B

(t+ 1)b ‖x∗‖
, ∀(t, x∗) ∈ R+ × (X∗ \ {0}).

Proof. It follows immediately from Theorem 4.1 for h(t) = t+ 1.

Theorem 4.3. Let h ∈ H ∩ H6 and U = {U(t, s)}t≥s≥0 be an evolution
family with uniform h-decay. Then U is uniformly h-unstable if and only if
there are two constants B > 1 and b ∈ (0, 1) such that

(4.4)

∫ t

0

dτ

h(τ)b ‖U(t, τ)∗x∗‖
≤

B

h(t)b ‖x∗‖
, ∀(t, x∗) ∈ R+ × (X∗ \ {0}).

Proof. Necessity. If U is u.h.us., then by Definition 2.7, there are N > 1
and v ∈ (0, 1) such that the relation (2.3) holds. Let b ∈ (0, v). By (2.3) and
(2.12) we have

∫ t

0

dτ

h(τ)b ‖U(t, τ)∗x∗‖
≤ N

∫ t

0

(

h(τ)

h(t)

)v
1

h(τ)b ‖x∗‖
dτ

=
N

h(t)v ‖x∗‖

∫ t

0

h(τ)v−bdτ ≤
N

h(t)v ‖x∗‖
·H6h(t)

v−b =
B

h(t)b ‖x∗‖
,

for all (t, x∗) ∈ R+ × (X∗ \ {0}), where B = NH6.
Sufficiency. Let (t, s, x) ∈ ∆× (X∗ \ {0}).
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If t ≥ s+ 1, then by (2.1), (2.6) and (4.4), we have

1

h(s)b ‖U(t, s)∗x∗‖
=

∫ s+1

s

dτ

h(s)b ‖U(τ, s)∗U(t, τ)∗x∗‖

≤ M

∫ s+1

s

(

h(τ)

h(s)

)ω
1

h(s)b ‖U(t, τ)∗x∗‖
dτ

= M

∫ s+1

s

(

h(τ)

h(s)

)ω+b
1

h(τ)b ‖U(t, τ)∗x∗‖
dτ

≤ M

∫ s+1

s

(

h(s+ 1)

h(s)

)ω+b
1

h(τ)b ‖U(t, τ)∗x∗‖
dτ

≤ MHω+b

∫ s+1

s

1

h(τ)b ‖U(t, τ)∗x∗‖
dτ

≤ MHω+b

∫ t

0

1

h(τ)b ‖U(t, τ)∗x∗‖
dτ ≤

MBHω+b

h(t)b ‖x∗‖
.

Thus, we get that

(4.5) MBHω+bh(s)b ‖U(t, s)∗x∗‖ ≥ h(t)b ‖x∗‖ , if t ≥ s+ 1.

If t ∈ [s, s+ 1), then by (2.1) and (2.6), we have

1

h(s)b ‖U(t, s)∗x∗‖
≤ M

(

h(t)

h(s)

)ω+b
1

h(t)b ‖x∗‖

≤ M

(

h(s+ 1)

h(s)

)ω+b
1

h(t)b ‖x∗‖
≤

MHω+b

h(t)b ‖x∗‖
.

It follows that

(4.6) MHω+bh(s)b ‖U(t, s)∗x∗‖ ≥ h(t)b ‖x∗‖ , if t ∈ [s, s+ 1).

In virtue of (4.5) and (4.6), it results that

Nh(s)b ‖U(t, s)∗x∗‖ ≥ h(t)b ‖x∗‖ , ∀(t, s, x∗) ∈ ∆×X∗,

where N = MBHω+b. Hence U is u.h.us.

Corollary 4.4 ([23]). Let U = {U(t, s)}t≥s≥0 be an evolution family
with uniform exponential decay. Then it is uniformly exponentially unstable
if and only if there are two constants B > 1 and b ∈ (0, 1) such that

∫ t

0

dτ

ebτ ‖U(t, τ)∗x∗‖
≤

B

ebt ‖x∗‖
, ∀(t, x∗) ∈ R+ × (X∗ \ {0}).

Proof. It follows immediately from Theorem 4.3 for h(t) = et.

Remark 4.5. Theorems 4.1 and 4.3 are the versions of the classical sta-
bility theorems and instability theorems due to Barbashin ([1]), Boruga et al.
([8, 23]), for uniform h-instability of evolution families.
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