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Abstract. In this paper, we define the directional edge escaping points set of function

iteration under a given plane partition and then prove that the upper bound of Hausdorff

dimension of the directional edge escaping points set of S(z) = aez + be−z, where a, b ∈ C

and |a|2 + |b|2 6= 0, is no more than 1.

1. Introduction

The Julia sets of transcendental entire functions always have very com-
plicated fractal structures (see [11]). We often use the Hausdorff dimension
to describe them. Many profound results about the Hausdorff dimension of
Julia sets of transcendental entire functions have been obtained. For exam-
ple, Stallard and Bishop proved that there is a transcendental entire function
such that the Hausdorff dimension of its Julia set is equal to any pre-specified
number in the closed interval [1,2] (see [2, 17, 18]).

In addition to Julia set, the closely related escaping set (see [4]) is also
the subject of increasing interest. In particular, there are many studies on the
escaping sets of specific transcendental entire functions. Take the escaping set
of the exponential function for example. Schleicher and Zimmer proved that
the escaping points set of λez with λ 6= 0 is the Cantor set of curves and has
a peculiar phenomenon of ”dimension paradox”, which was first found by
Karpińska (see [8, 9]); that is, the Hausdorff dimension of the hairs without
endpoints is 1, while, the Hausdorff dimension of the set of endpoints is 2 (see
[16]). Furthermore, it is not only the escaping points set of the exponential
function that has been intensively studied, but also the escaping parameters
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set of a family of the exponential functions. For example, Schleiher, Forster,
Rempe, Bailesteanu and Balan proved that the escaping parameters set of
a family of exponential functions also has the properties of Cantor bundle
structure and ”dimension paradox” (see [12, 14, 1, 6]). Of course, there are
many other entire functions that have been studied deeply, such as the cosine
function aez + be−z, where ab 6= 0 (see [7, 10, 12, 13, 15, 19]).

In this paper, we will combine exponential and cosine functions to study
the function aez + be−z, where a, b ∈ C and |a|2 + |b|2 6= 0. Moreover, we will
also study escaping points set of a special kind, which we call directional edge
escaping points set. For a function S(z), its directional edge escaping points
set under a given plane partition is defined below.

First, we divide the complex plane into squares. Denote by Sn(z) the n-
fold iterate of S(z), where n ∈ N. Take one of the squares arbitrarily, denote
it by B0. A point z in it is called directional edge escaping point if it satisfies

• Sn(z)→∞ as n→∞,
• | ImSn(z)| ≤ λ|Sn(z)| for all n ∈ N,
• Bn+1(z) ∩ ∂S(Bn(z)) 6= ∅ for all n ∈ N,

where λ ∈ (0, 1) is a constant, Bn+1(z) is the square Sn+1(z) belongs to,
∂S(Bn(z)) is the boundary of the image of Bn(z) under function S(z). See
Figure 1.

Figure 1. directional edge escaping point

As we all know, a very important method is to study the transcendental
dynamics by dividing the plane (see [3]). If we imagine a series of objects
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connected by one rope, see Figure 2, the concept of directional edge escaping
point can emerge.

Figure 2. objects connected by one rope

It should be pointed out that the above directional edge escaping points
set is very likely complicated and interesting. In order to be more intuitive,
we limit the observation to the real axis and a simple linear function. Divide
the real axis by partitioning it with integer points as endpoints and consider
the directional edge escaping points set of the map y = 3x, but only in the
interval [0, 1]. According to the concept of directional edge escaping points set,
we can infer that the directional edge escaping points set of map y = 3x in the
interval [0, 1] is a classic Cantor set without {0}, whose Hausdorff dimension
is log3 2. See Figure 3.

Figure 3. the directional edge escaping points set of y = 3x

In this paper, We will prove that the Hausdorff dimension of directional
edge escaping points set of aez+be−z, where a, b ∈ C and |a|2+ |b|2 6= 0, is no
more than 1 under one kind of complex plane partition. In order to state our
conclusion, we turn to briefly introduce the concept of Hausdorff dimension
(see [5]) and some notation.

For any set U ⊆ C, denote the diameter of U by |U | := sup{|z − w| :
z, w ∈ U}. Let F be a set in C, and s a positive number. Define s-dimensional
measure Hs(F ) of F by

Hs(F ) := lim
δ→0

inf
{ ∞∑

i=1

|Ui|s : |Ui| < δ, F ⊆
⋃

i

Ui

}

and define the Hausdorff dimension dim(F ) of F by

dim(F ) := inf
{
s ≥ 0 : Hs(F ) = 0

}
= sup

{
s ≥ 0 : Hs(F ) =∞

}
.
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For convenience, we might as well denote function aez + be−z, where
a, b ∈ C and |a|2 + |b|2 6= 0, by S(z).

Define I := {z ∈ C : Sn(z)→∞, as n→∞ and | ImSn(z)| ≤ λ|Sn(z)|
for all n ∈ N}. Denote by E∞ the directional edge escaping points set, that
is E∞ := {z ∈ I : Bn+1(z) ∩ ∂S(Bn(z)) 6= ∅ for all n ∈ N} and divide the
complex plane as follows.

C := ∪∞k=−∞Pk

:= ∪∞k=−∞{z ∈ C : −π

2
+ kπ ≤ Im z <

π

2
+ kπ}

:= ∪∞k=−∞ ∪∞j=−∞ Bj,k

:= ∪∞k=−∞ ∪∞j=−∞ {z ∈ Pk : jπ ≤ Re z < (j + 1)π},
see Figure 4.

Figure 4. plane division

Theorem 1.1. If E∞ is the directional edge escaping points of S(z) under
the aforementioned division of the plane, then dim(E∞) ≤ 1.

2. Preliminaries

Lemma 2.1. Let F be a subset of C, S(z) = aez + be−z, where a, b ∈ C

and |a|2 + |b|2 6= 0. Then dim(F ) = dim(S(F )).

Proof. If a = 0 or b = 0, S′(z) 6= 0.
If ab 6= 0, let S′(z) = aez − be−z = 0, then z = 1

2 log | ba | + i
2 Arg(

b
a
). So
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S′(z) 6= 0 on C \ {z : z = 1
2 log | ba | + i

2 Arg(
b
a
)}, which means that S(z)

is locally univalent except for a countable set. By noting that ignoring a
countable subset has no effect on the Hausdorff dimension of the original set,
we get dim(F ) = dim(S(F )).

For z ∈ I, according to

|Sn(z)| ≤ |a| exp(ReSn−1(z)) + |b| exp(−ReSn−1(z)),

we have {z ∈ I : |Re(Sn(z))| → ∞ as n→∞}. So we can limit our discussion
to the points in

Hq := {z ∈ C : |Re z| ≥ q},
where q is large enough. Otherwise, by Lemma 2.1, we consider the set
Sn(E∞ ∩Bj,k).

Lemma 2.2. Let S(z) = aez + be−z, where a, b ∈ C and |a|2 + |b|2 6= 0,
m,n be nonnegative integers, q > 0 be sufficiently large and z ∈ Hq. Then

(a) S(m)(z) 6= 0 , where S(m)(z) is the m-order derivative, S(0)(z) = S(z);
(b) the horizontal strip domain with width smaller than 2π and the real

part no less than q (or no more than −q) is the univalent domain of
S(m)(z);

(c) e < 2
3 min{|a|, |b|}e|Re z| < |S(m)(z)| < 3

2 max{|a|, |b|}e|Re z|;

(d) 1
2eπ < |S(m)(z1)|

|S(n)(z2)|
< 2eπ, where |Re z1−Re z2| < π and zi ∈ Hq, i = 1, 2.

Proof. (a) If S(m)(z) = aez± be−z = 0, then z = 1
2 log | ba |+ i

2 Arg(± b
a
).

Because |Re z| ≥ q > | 12 log | ba ||, then S(m)(z) 6= 0.

(b) Note that S(m)(z) = aez±be−z =
√
ab(

√
a
b
ez±

√
b
a
e−z). If S(m)(z1) =

S(m)(z2), then
√

a

b
ez1 =

√
a

b
ez2 or |

√
a

b
ez1 ·

√
a

b
ez2 | = 1.

Since q is large enough such that |
√

a
b
ez1 ·

√
a
b
ez2 | 6= 1, we have

√
a
b
ez1 =√

a
b
ez2 and then z1 = z2 (width of strip < 2π).
(c) Suppose Re z ≥ q > 0, as q is large enough. Then

|S(m)(z)| ≥ ||a|eRe z − |b|e−Re z| > |a|eRe z − 1

3
|a|eRe z

=
2

3
|a|eRe z ≥ 2

3
min{|a|, |b|}e|Re z| > e,

|S(m)(z)| ≤ |a|eRe z + |b|e−Re z < |a|eRe z +
1

2
|a|eRe z

=
3

2
|a|e|Re z| ≤ 3

2
max{|a|, |b|}e|Re z|.

The proof is very similar when Re z ≤ −q < 0.
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(d) Without losing generality, suppose Re z ≥ q > 0. The claim can be
proved similarly when Re z ≤ −q < 0.

||a|eRe z1 − |b|e−Re z1 |
|a|eRe z2 + |b|e−Re z2

≤ |S
(m)(z1)|
|S(n)(z2)|

≤ |a|e
Re z1 + |b|e−Re z1

||a|eRe z2 − |b|e−Re z2 | .

If q > 0 is large enough and |Re z1 − Re z2| < π, then Re z1 and Re z2 are
positive and large enough, so

1

2
e−π <

|S(m)(z1)|
|S(n)(z2)|

≈ eRe z1−Re z2 < 2eπ.

According to Lemma 2.2, we can further observe S(z). For any given
small positive number θ, as long as q > 0 is large enough, we have that

max{|a|, |b|}e−|Re z| < θ.(2.1)

Thus, S(z) ≈ aez or S(z) ≈ be−z in Hq.
Take B := Bj,k and j > 0 for example; S(B) contains a half-annulus with

inner radius |a|ejπ+θ and outer radius |a|e(j+1)π−θ. At the same time, S(B)
is contained in a half-annulus with inner radius |a|ejπ − θ and outer radius
|a|e(j+1)π + θ. As the positive number θ is very small, S(B) can be viewed as
’approximate-half-annulus’.

Let R(S(B)) := sup |S(B)|, r(S(B)) := inf |S(B)|, and
Ã(r(S(B)), R(S(B))) := S(B) ∩Hq ∩ {z ∈ C : | Im z| ≤ λ|z|, λ ∈ (0, 1)},

which is a partial approximate-annulus.

Denote Ã(a0r(S(B)) + a1, b0R(S(B)) + b1) as the ’approximate-half-
annulus’ in Hq, which is enclosed by the image of inner and outer boundary
of S(B) under linear transformation a0z+a1 and b0z+ b1, respectively, along
radial direction, where a0, a1, b0, b1 are real numbers.

Since {z, S1(z), S2(z), . . .} stay in Hq, for every n ≥ 0 there exists a
unique square Bn(z) ⊆ Hq such that

Sn(z) ∈ Bn(z).

If necessary, we can ask q to be sufficiently large that the above Lemma 2.2
holds when |Re z| > q

2 . It follows immediately from Lemma 2.2 (b) and (c)

that there exists a unique holomorphic inverse branch S−n
z : Bn(z) → Hq−π

:= {z ∈ C : |Re z| ≥ q − π} of Sn sending Sn(z) to z. Denote

Kn(z) = S−n
z (Bn(z)).

In addition, denote R(S(Bn−1(z))) and r(S(Bn−1(z))), i.e. R(Sn(Kn−1(z)))
and r(Sn(Kn−1(z))), respectively, byRn(z) and rn(z). See Figure 5 to become
familiar with the above symbols.
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Figure 5. diagrammatic sketch of symbols

Lemma 2.3. Let S(z) = aez + be−z, where a, b ∈ C and |a|2 + |b|2 6= 0.
If q is large enough, then there exist constants K1 and K2 independent of n
and z such that

|(S−n
z )′(x)|

|(S−n
z )′(y)| ≤ K1

for all x, y ∈ Bn(z), and

|(Sn)′(x)|
|(Sn)′(y)| ≤ K2

for all x, y ∈ Kn−1(z), i.e. Sn−1(x), Sn−1(y) ∈ Bn−1(z).

Proof. Denote by B̃i(z) ⊃ Bi(z) the open square of side length 2π with
sides parallel to Bi(z) and center coincident with Bi(z). By Lemma 2.2 (b),

we know that S(z) is univalent on B̃i(z) and S(B̃i(z)) contains B̃i+1(z) for
i = 0, 1, 2, . . .. See Figure 6.

Figure 6. deviation property of S(z)
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The module of B̃i(z) \ Bi(z) is constant and, by distortion theorem, for
all x, y ∈ Bn(z)

|(S−n
z )′(x)|

|(S−n
z )′(y)| ≤ K1.

By Lemma 2.2 (d)

|(Sn)′(x)|
|(Sn)′(y)| =

|S′(Sn−1(x))|
|S′(Sn−1(y))| ·

|(Sn−1)′(x)|
|(Sn−1)′(y)| ≤ 2eπK1 = K2.

If we let K = max{K1,K2}, then K1,K2 can both be replaced with K.

Lemma 2.4. Let S(z) = aez + be−z, where a, b ∈ C and |a|2 + |b|2 6= 0. If
z ∈ I and q is large enough, then |Re(Sn(z))| tends to infinity uniformly.

Proof. For any given z ∈ I, we have

|Re(Sn(z))| =
√
|Sn(z)|2 − (| ImSn(z)|)2

≥
√
|Sn(z)|2 − (λ|Sn(z)|)2

= (1 − λ2)
1
2 |Sn(z)|.

(2.2)

According to Lemma 2.2 (c), if q is large enough, we get

|Sn+1(z)| = |aeSn(z) + be−Sn(z)|

≥ 2

3
min{|a|, |b|}e|ReSn(z)|

≥ 2

3
min{|a|, |b|} exp((1 − λ2)

1
2 |Sn(z)|)

≥ 2

(1− λ2)
1
2

|Sn(z)|.

Hence,

|Re(Sn+1(z))| ≥ (1− λ2)
1
2 |Sn+1(z)| ≥ 2|Sn(z)|

≥ 2|Re(Sn(z))| ≥ · · · ≥ 2n+1q.

Lemma 2.5. Let S(z) = aez + be−z, where a, b ∈ C and |a|2 + |b|2 6= 0.
For any given α > 0 and T > 0, there exist K3 > 0 and n0 ≥ 0 such that for
every n ≥ n0,

|(Sn+1)′(z)| ≥ K3|(Sn)′(z)|α
for all z ∈ I ∩B(0, T ).

Proof. By Lemma 2.4, for any given α > 0, there is n0 ≥ 0 such that

1

2eπ
2

3
min{|a|, |b|}e(1−λ2)

1
2 |Sn+1(z)| ≥ (2eπ)α|Sn+1(z)|α

for all z ∈ I when n ≥ n0.
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We claim that

inf
z∈I∩B(0,T )

|(Sn0+1)′(z)|
|(Sn0)′(z)|α 6= 0.

If there exist no j ∈ {0, 1, . . . , n0} and z0 ∈ I ∩B(0, T ) such that S′(Sj(z0)) =

0, |(Sn0+1)′(z)|
|(Sn0)′(z)|α is a positive continuous function on bounded closed sets, the

claim holds. Suppose that there exist j ∈ {0, 1, . . . , n0} and z0 ∈ I ∩B(0, T )
such that S′(Sj(z0)) = 0. Then there exists {zn} ⊆ I ∩ B(0, T ) such that
zn → z0 or zn ≡ z0. By Lemma 2.2 (d)

|S′(Sj(z0))| ← |S′(Sj(zn))| ≥
1

2eπ
|Sj+1(zn)| ≥

1

2eπ
q,

which contradicts S′(Sj(z0)) = 0.
Let K3 be the infimum of the function z 7→ |(Sn0+1)′(z)||(Sn0)′(z)|−α in

I ∩ B(0, T ). Then K3 is a positive number. Proof by induction. According
to the definition of K3, the lemma holds when n = n0. Suppose it is true for
n ≥ n0, so

|(Sn+2)′(z)| = |(S′(Sn+1(z))| · |(Sn+1)′(z)|
≥ K3|(S′(Sn+1(z))| · |(Sn)′(z)|α.

By Lemma 2.2(d), Lemma 2.2(c) and (2.2)

|(S′(Sn+1(z))| ≥ 1

2eπ
|Sn+2(z)| ≥ 1

2eπ
2

3
min{|a|, |b|}e|ReSn+1(z)|

≥ 1

2eπ
2

3
min{|a|, |b|}e(1−λ2)

1
2 |Sn+1(z)| ≥ (2eπ)α|Sn+1(z)|α

≥ (2eπ)α · ( 1

2eπ
)α|S′(Sn(z))|α = |S′(Sn(z))|α.

Therefore

|(Sn+2)′(z)| ≥ K3|S′(Sn(z))|α · |(Sn)′(z)|α = K3|(Sn+1)′(z)|α.

3. The proof of the theorem

Based on the above preliminaries, we can begin proving the main result
of this paper.

Proof. Let En := ∪z∈IS
−n
z (Ã(rn(z), rn(z)+2π)∪Ã(Rn(z)−2π,Rn(z))).

Then E∞ can be covered by the set ∪n≥kEn for every k ≥ 0 and the

approximate-half-annuli Ã(rn(z), rn(z) + 2π) ∪ Ã(Rn(z) − 2π,Rn(z)) can be
covered by M1rn(z) squares with diameters less than 1, where M1 is a con-
stant. Therefore, according to Lemma 2.3, Kn−1(z)∩En can be covered with
no more than M1rn(z) sets Ji,n(z) of diameters less than K|(Sn)′(z)|−1.
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Let T ≥ 2q. Note that any two sets Kn−1(z) and Kn−1(z
′) are either

disjoint or equal, so we can find a set Zn ⊂ I such that Kn−1(z) and Kn−1(z
′)

are disjoint for z, z′ ∈ Zn, z 6= z′ and

En ∩B(0, T ) ⊂ ∪z∈Zn
Kn−1(z) ⊂ B(0, 2T ).

For the given ǫ > 0, let n be large enough such that Lemma 2.5 is satisfied
for α = 2/ǫ and 2T . Using Lemma 2.2 (d), Lemma 2.5 and (2.1), we get
∑

z∈Zn

∑

Ji,n

(diam Ji,n(z))
1+ǫ ≤

∑

z∈Zn

M1K
1+ǫrn(z)|(Sn)′(z)|−(1+ǫ)

≤ 2eπM1K
1+ǫ

∑

z∈Zn

|S′(Sn−1(z))||(Sn)′(z)|−(1+ǫ)

≤ 2eπM1K
1+ǫ

∑

z∈Zn

|S′(Sn−1(z))||S′(Sn−1(z))|−(1+ǫ)|(Sn−1)′(z)|−(1+ǫ)

≤ 2eπM1K
1+ǫ

∑

z∈Zn

|S′(Sn−1(z))|−ǫ|(Sn−1)′(z)|−ǫ|(Sn−1)′(z)|−1

≤ 2eπM1K
1+ǫ

∑

z∈Zn

|(Sn)′(z)|−ǫ|(Sn−1)′(z))|−1

≤ 2eπM1K
1+ǫ

∑

z∈Zn

K−ǫ
3 |(Sn−1)′(z)|−2|(Sn−1)′(z))|−1

≤ 2eπK−ǫ
3 M1K

1+ǫe−(n−1)
∑

z∈Zn

|(Sn−1)′(z)|−2.

Because Kn−1(z) and Kn−1(z
′) are disjoint and the Lebesgue measure of

each set of the form Kn−1(z) is proportional to |(Sn−1)′(z)|−2 by Lemma 2.3,
we get that there exists a constant M2 > 0 such that the last term in the
above inequality is no more than M2e

−(n−1) · area(B(0, 2T )).
Hence,

∞∑

n=k

∑

z∈Zn

∑

Ji,n

(diam Ji,n(z))
1+ǫ ≤M2 · area(B(0, 2T ))

∞∑

n=k

e−(n−1)

= 4πT 2M2
e−k+2

e− 1
.

If we let k → ∞, then 4πT 2M2
e−k+2

e−1 → 0. That is, for any given ǫ > 0,

the (1 + ǫ)-dimensional Hausdorff measure of E∞ ∩ B(0, T ) is equal to zero.
Hence,

dim(E∞) ≤ 1.

Question: Does the same result hold for more general analytic functions?
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[8] B. Karpińska, Hausdorff dimension of the hairs without endpoints for λ exp(z),

C. R. Acad. Sci. Paris Sér. I Math 328 (1999), 1039–1044.
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