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Abstract. In this paper we conjecture combinatorial Rogers-Ramanujan type colored

partition identities related to standard representations of the affine Lie algebra of type C
(1)
ℓ

,

ℓ ≥ 2, and we conjecture similar colored partition identities with no obvious connection to

representation theory of affine Lie algebras.

1. Introduction

The seminal work [15] of J. Lepowsky and R. Wilson on a Lie-theoretic in-
terpretation of the Rogers-Ramanujan identities led to the discovery of numer-
ous new combinatorial identities, like in [6] or [16]. Recently several identities
in the style of the Rogers-Ramanujan identities related to the representation
theory of affine Lie algebras have appeared, let us mention only [13] and
[5]. On the other side, some parts of representation theory lead to Rogers-
Ramanujan type colored partition identities, let us mention only [7] and [18]
for this vein of research.

In this paper we conjecture combinatorial Rogers-Ramanujan type colored
partition identities related to standard representations of the affine Lie algebra

of type C
(1)
ℓ , ℓ ≥ 2, and we conjecture similar colored partition identities with

no obvious connection to representation theory of affine Lie algebras.
In Section 3 we start with the array of natural numbers N5 composed as

a multiset of two copies of the set of natural numbers N and the additional
set of odd numbers, arranged in 5 rows, with diagonals of width w = 5. Such
an array appears naturally in the representation theory of the affine Kac-

Moody Lie algebra ĝ of type C
(1)
2 and it is expected that colored partitions
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on N5, satisfying certain difference and initial conditions, should parametrize
bases of standard ĝ-modules—see Remark 3.4 below. In Conjecture 3.3 we
guess, inspired by [20], a possible form of these colored partitions and, by a
computing experiment, we conjecture the corresponding Rogers-Ramanujan
type colored partition identities. Numerical evidence supports the conjecture
for colored partitions on the array N2ℓ+1, related to all standard modules for

affine Lie algebra of type C
(1)
ℓ , ℓ ≥ 2.

In Section 4 we start with the array of natural numbers N4 composed as a
multiset of two copies of the set of natural numbers N, arranged in 4 rows, with
diagonals of width w = 4. In analogy with the “w odd case”, in Conjecture 4.1
we conjecture similar colored partition identities for all w = 2ℓ, ℓ ≥ 2, with no
obvious connection to representation theory of affine Lie algebras, but again
supported by numerical evidence.

The arrays of natural numbers

N2, N3, N4, N5, N6, N7, . . .

form a natural sequence and for each N2ℓ and N2ℓ+1, ℓ ≥ 1, and all nonneg-
ative integers k0, k1, . . . , kℓ, k = k0 + k1 + · · · + kℓ > 0, we have a class of
(k0, k1, . . . , kℓ)-admissible colored partitions (defined in (3.3)–(3.5) and (4.3)–
(4.5) below) for which we conjecture Rogers-Ramanujan type combinatorial
identities. For w = 2ℓ = 2 and k = 1 we have the two Rogers-Ramanujan
identities, and for w = 2ℓ+ 1 = 3 and k = 1 we have two identities (in some
sense) equivalent to the two Capparelli identities1.

In Section 5 we describe an algorithm for constructing admissible col-
ored partitions, and in the Appendix we give a Python code for count-
ing admissible colored partitions (available at https://github.com/aprimc/
new-partition-identities).

2. Lepowsky’s product formula

In this section we give the Lie theoretic origin of the product expres-
sion in Conjecture 3.3 below. Note however that Conjecture 3.3 is a purely
combinatorial statement.

By C
(1)
ℓ we denote the affine Lie algebra of type C

(1)
ℓ , see e.g. [12], Table

Aff 1, page 54 and (7.2.1), page 98. By L(k0, . . . , kℓ) we denote the irreducible
highest weight module L(Λ) with highest weight Λ = k0Λ0 + · · · + kℓΛℓ, see
e.g. [12], page 147. The principally specialized character chqL(k0, . . . , kℓ)
is defined in [12], page 152 together with §10.9, page 181. Associated to
L(k0, . . . , kℓ) set k = k0 + k1 + · · ·+ kℓ.

Let s0, s1, . . . , sℓ ∈ N, s = s0 + s1 + · · · + sℓ. We define the following
triangular scheme of natural numbers:

1See Remarks 3.4 and 4.3 below.
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D(s0, s1, . . . , sℓ) = {s0, . . . , 2s− s0} has 2ℓ+ 1 ascending numbers with
increments s1, s2, . . . , sℓ, sℓ, . . . , s2, s1,

D(s1, . . . , sℓ) = {s1, . . . } has 2ℓ− 1 ascending numbers with increments
s2, . . . , sℓ, sℓ, . . . , s2,

D(s2, . . . , sℓ) = {s2, . . . } has 2ℓ− 3 ascending numbers with increments
s3, . . . , sℓ, sℓ, . . . , s3,

...
D(sℓ−1, sℓ) = {sℓ−1, sℓ−1 + sℓ, sℓ−1 + 2sℓ},
D(sℓ) = {sℓ}

Example 2.1. For example, for (s0, s1, s2, s3, s4) = (3, 2, 1, 1, 2) we have

D(3, 2, 1, 1, 2)
D(2, 1, 1, 2)
D(1, 1, 2)
D(1, 2)
D(2)

=

3 5 6 7 9 11 12 13 15
2 3 4 6 8 9 10

1 2 4 6 7
1 3 5

2

.

Note that we can obtain D(sr+1, . . . , sℓ) from D(sr, . . . , sℓ) by eliminat-
ing endpoints in D(sr, . . . , sℓ) and then subtracting sr from the remaining
elements. We define the congruence triangle as the multiset

∆(s1, . . . , sℓ) = D(s1, . . . , sℓ) ∪D(s2, . . . , sℓ) ∪ · · · ∪D(sℓ)

and we denote by {0}ℓ the multiset consisting of ℓ copies of 0.

Now we can state Lepowsky’s product formula for C
(1)
ℓ , ℓ ≥ 2 (cf. [14],

[4]):

chqLC
(1)
ℓ

(k0, k1, . . . , kℓ) =
∏

a∈{0}ℓ∪D(k0+1,k1+1,...,kℓ+1); b∈∆(k1+1,...,kℓ+1); j≡a,±b mod (2ℓ+2k+2)(1− qj)
∏

j odd(1− qj)
∏

j∈N
(1− qj)ℓ

.

Example 2.2. By using Example 2.1 we see that the principally special-
ized character chqLC

(1)
4

(2, 1, 0, 0, 1) is equal to

∏

j odd;j≡1,1,2,3,4,4,5,5,6,7,7,8,8,9,10,10,11,11,12,13,13,14,14,15,16,17,17 mod 18

(1− qj)−1.

Note that in this product the factor (1− q1)−1 appears three times.
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3. Arrays with odd width w ≥ 5

Let N = N5 = N
C

(1)
2

be the array of natural numbers

(3.1)

1 3 5 7 9
2 4 6 8 10

1 3 5 7 9
2 4 6 8 10

1 3 5 7 9

. . . .

This array consists of two copies of the set of natural numbers N and the
additional set of odd numbers, arranged in 5 rows, with diagonals of width
w = 5. Numbers increase by one going to the right on any diagonal. We shall
consider elements in these sets as different, say “colored” by their position in
the array. For example, the number 7 appears three times on three different
places of the array N and we consider 7 in the first row different from the
other two. We say that two elements in an array are adjacent if they are
simultaneously on two adjacent rows and two adjacent diagonals. For exam-
ple, 6 and 8 in the second row are adjacent to 7 in the first row and, just as
well, adjacent to 7 in the third row. We say that the set {a1, a2, a3, . . . } is
a downward path Z in an array if ai is in the i-th row and if (ai, ai+1) is a
pair of two adjacent elements for all i. For example, Z = {7, 6, 5, 4, 5} is a
downward path in N and there are altogether 24 downward paths through 7
in the first row. In Section 5 we shall consider downward paths which start
from the top row, but need not reach the bottom row. Z = {7, 6, 5, 4} is an
example of such downward path—we shall say that this Z = {7, 6, 5, 4} ends
at 4 in the fourth row.

We consider colored partitions

(3.2) n =
∑

a∈N

fa · a,

where fa is the frequency of the part a ∈ N in the colored partition (3.2) of n.
Let k0, k1, k2 ∈ N0, k = k0 + k1 + k2 > 0. We say that an array of frequencies
F

(3.3)

f1 f3 f5 f7
f2 f4 f6 f8

f1 f3 f5 f7
f2 f4 f6 f8

f1 f3 f5 f7

. . .
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is (k0, k1, k2)-admissible if the extended array of frequencies F (k0,k1,k2)

(3.4)

k2 f1 f3 f5 f7
0 f2 f4 f6 f8

k1 f1 f3 f5 f7
0 f2 f4 f6 f8

k0 f1 f3 f5 f7

. . .

satisfies the difference condition

(3.5)
∑

m∈Z

m ≤ k

for all downward paths Z in F (k0,k1,k2). So, for example, f1 in the first row
must be ≤ k2 because of (3.5) for the downward path Z = {f1, 0, k1, 0, k0}.
We say that colored partitions (3.2) with (k0, k1, k2)-admissible arrays of fre-
quencies (3.3) are (k0, k1, k2)-admissible colored partitions.

As explained, we consider the natural numbers at different places in the
array (3.1) as different. Likewise, in the array of frequencies (3.3) the entry
f1 in the first row denotes the frequency of the part 1 in the first row, which
may be different from the entry f1 in the third row denoting the frequency of
the part 1 in the third row. However, sometimes we need to write explicitly
the coloring of elements in the array (3.1) and change the notation of fre-
quency arrays (3.3) and extended frequency arrays (3.4) accordingly, like in
the following example.

Example 3.1. Here we list all (2, 0, 0)-admissible colored partitions for
n ≤ 8. First we write explicitly one possible coloring of elements in the array
(3.1)

(3.6)

11 31 51 71 91
21 41 61 81 101

12 32 52 72 92
22 42 62 82 102

13 33 53 73 93

. . . .

and change the notation for the extended array of frequencies (3.4) accordingly

(3.7)

0 f11 f31 f51 f71
0 f21 f41 f61 f81

0 f12 f32 f52 f72
0 f22 f42 f62 f82

2 f13 f33 f53 f73

. . .
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Then we have (2, 0, 0)-admissible colored partitions for n ≤ 8:

1 = 13

2 = 22 = 13 + 13

3 = 32 = 33 = 22 + 13

4 = 41 = 42 = 32 + 13 = 33 + 13 = 22 + 22

5 = 51 = 52 = 53 = 41 + 13 = 42 + 13 = 32 + 22 = 33 + 22 = 33 + 13 + 13

6 = 61 = 62 = 51 + 13 = 52 + 13 = 53 + 13 = 41 + 22= 42 + 22= 42 + 13 + 13

7 = 71 = 72 = 73 = 61 + 13 = 62 + 13 = 51 + 22 = 52 + 22 = 53 + 22

= 52 + 13 + 13 = 53 + 13 + 13 = 41 + 32 = 41 + 33 = 42 + 32 = 42 + 33

= 42 + 22 + 13 = 32 + 33 + 13 = 33 + 33 + 13

8 = 81 = 82= 71 + 13= 72 + 13= 73 + 13= 61 + 22= 62 + 22= 61 + 13 + 13

= 62 + 13 + 13 = 51 + 32 = 51 + 33 = 52 + 32= 52 + 33= 53 + 32= 53 + 33

= 52 + 22 + 13 = 53 + 22 + 13 = 41 + 41 = 41 + 42= 42 + 42= 41 + 33 + 13

= 42 + 33 + 13 = 42 + 32 + 13 = 42 + 22 + 22 = 33 + 33 + 13 + 13 .

Note that for any (2, 0, 0)-admissible colored partition n =
∑

a∈N fa · a dif-
ference conditions (3.5) imply

f11 = f21 = f31 = f12 = 0.

Also note that, for example, 8 = 33 + 33 + 13 + 13 is a (2, 0, 0)-admissible
colored partition, and 8 = 32 + 32 + 13 + 13 is not since difference condition
(3.5) is violated:

f32 + f13 = 2 + 2 = 4 > 2.

Remark 3.2. The partitions in the above example are (essentially) the
partitions in Example 3 in [19]; only the coloring of the array (3.1) is different.

We extend these notions for C
(1)
ℓ , ℓ ≥ 1, by starting with the array

N = N2ℓ+1 = N
C

(1)
ℓ

of ℓ copies of the set of natural numbers N and the

additional set of odd numbers, arranged in 2ℓ+1 rows and diagonals of width
w = 2ℓ + 1; with numbers in N increasing by one going to the right on any
diagonal. For example, for ℓ = 3 we have the extended array of frequencies
F (k0,k1,k2,k3)

(3.8)

k3 f1 f3 f5 f7
0 f2 f4 f6 f8

k2 f1 f3 f5 f7
0 f2 f4 f6 f8

k1 f1 f3 f5 f7
0 f2 f4 f6 f8

k0 f1 f3 f5 f7

. . .
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and the corresponding notion of (k0, k1, k2, k3)-admissible colored partitions
on the array N7.

Conjecture 3.3. Let ℓ ≥ 2. The principally specialized character
∏

a∈{0}ℓ∪D(k0+1,k1+1,...,kℓ+1); b∈∆(k1+1,...,kℓ+1); j≡a,±b mod (2ℓ+2k+2)(1− qj)
∏

j odd(1 − qj)
∏

j∈N
(1− qj)ℓ

is the generating function for the number of (k0, k1, . . . , kℓ)-admissible parti-

tions

n =
∑

a∈N2ℓ+1

fa · a.

Remark 3.4. Conjecture 3.3 is true for (1, 0, . . . , 0)-admissible colored
partitions and any ℓ ≥ 2 (see [18]). In [19] Conjecture 3.3 is formulated for
(k, 0, . . . , 0)-admissible colored partitions with ℓ ≥ 2 and k ≥ 2, and it was
checked for some small values of ℓ, k and n (cf. [17]).

In [16] the product formula for the generating function for the number of
(k0, k1)-admissible partitions on the array N3 is given; in the ℓ = 1 case it is

Lepowsky’s product formula for A
(1)
1 and the key ingredient—a construction

of combinatorial bases of standard A
(1)
1 -modules—is independently obtained

in [8] and [9].
The combinatorial identities for (1, 0)-admissible partitions and for (0, 1)-

admissible partitions are equivalent2 to the two Capparelli identities [6].
Moreover, it seems that these identities are related to the purely combina-
torial approach in [1], based on Capparelli’s identity which was found using

representation theory of A
(2)
2 .

Example 3.5. Conjecture 3.3 is based on a computer experiment. Here
we present some results for admissible partitions for n up to 20.

We write

(1, 0, 1) ∼ (r ≡ 1, 1, 3, 4, 4, 6, 6, 7, 9, 9 mod 10)

if the number of (1, 0, 1)-admissible colored partitions of n is equal to the
number of colored partitions of n with parts r ≡ 1, 1, 3, 4, 4, 6, 6, 7, 9, 9 mod 10
for n ≤ 20 (here r ≡ 1, 1 mod 10 means that parts r ≡ 1 mod 10 come in two
colors). Since the parameters (k0, k1, k2) and (k2, k1, k0) give “isomorphic”
colored partitions, we list below only mutually different conjectured identities.

2In [16] certain spanning sets B(Λ0) ⊂ L(Λ0) and B(Λ1) ⊂ L(Λ1) of the two funda-

mental A
(1)
1 -modules are constructed. The following three statements are equivalent: (i)

B(Λ0) and B(Λ1) are linearly independent, (ii) the generating functions for (1, 0)-admissible
and (0, 1)-admissible partitions are the principally specialized characters chqL(Λ0) and

chqL(Λ1), and (iii) the two Capparelli identities hold.
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For w = 5 we have:

(1, 0, 0) ∼ (r odd; r ≡ 4 mod 8),

(2, 0, 0) ∼ (r odd; r ≡ 2, 4, 5, 6, 8 mod 10),

(1, 1, 0) ∼ (r odd; r ≡ 1, 3, 5, 7, 9 mod 10),

(1, 0, 1) ∼ (r ≡ 1, 1, 3, 4, 4, 6, 6, 7, 9, 9 mod 10),

(0, 2, 0) ∼ (r ≡ 1, 2, 2, 3, 3, 7, 7, 8, 8, 9 mod 10),

(3, 0, 0) ∼ (r odd; r ≡ 2, 3, 4, 5, 6, 7, 8, 9, 10 mod 12),

(2, 1, 0) ∼ (r odd; r ≡ 1, 2, 4, 5, 6, 7, 8, 10, 11 mod 12),

(2, 0, 1) ∼ (r odd; r ≡ 1, 2, 4, 5, 6, 7, 8, 10, 11 mod 12),

(1, 2, 0) ∼ (r odd; r ≡ 1, 2, 3, 4, 6, 8, 9, 10, 11 mod 12),

(0, 3, 0) ∼ (r odd; r ≡ 2, 3, 4, 5, 6, 7, 8, 9, 10 mod 12),

(3, 0, 1) ∼ (r odd; r ≡ 1, 2, 3, 4, 6, 6, 7, 8, 8, 10, 11, 12, 13 mod 14),

(2, 1, 1) ∼ (r, r odd; r ≡ 1, 4, 6, 8, 10, 13 mod 14),

(2, 0, 2) ∼ (r ≡ 1, 1, 2, 2, 3, 5, 5, 5, 6, 6, 8, 8, 9, 9, 9, 11, 12, 12, 13, 13 mod 14),

(0, 4, 0) ∼ (r ≡ 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 9, 9, 10, 10, 11, 11, 11, 12, 12, 13 mod 14),

(3, 0, 2) ∼ (r, r odd; r ≡ 2, 2, 6, 6, 8, 10, 10, 14, 14 mod 16).

For w = 7 we have:

(1, 0, 0, 1) ∼ (r odd; r ≡ 1, 3, 4, 5, 7, 8, 9, 11 mod 12),

(0, 1, 1, 0) ∼ (r odd; r ≡ 1, 2, 3, 5, 7, 9, 10, 11 mod 12),

(2, 0, 0, 1) ∼ (r odd; r ≡ 1, 2, 3, 4, 5, 6, 6, 8, 8, 9, 10, 11, 12, 13 mod 14),

(2, 0, 0, 2) ∼ (r, r odd; r ≡ 2, 2, 4, 6, 6, 6, 10, 10, 10, 12, 14, 14 mod 16).

For w = 9 we have:

(1, 0, 0, 0, 1) ∼ (r ≡ 1, 1, 3, 3, 4, 4, 5, 6, 6, 8, 8, 9, 10, 10, 11, 11, 13, 13 mod 14),

(0, 1, 1, 0, 0) ∼ (r odd; r ≡ 1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13 mod 14),

(0, 1, 1, 0, 1) ∼ (r odd; r ≡ 1, 1, 2, 3, 4, 4, 6, 6, 7, 8,

9, 10, 10, 12, 12, 13, 14, 15 mod 16),

(2, 1, 0, 0, 1) ∼ (r, r odd; r ≡ 1, 2, 4, 4, 5, 6, 7, 8, 8,

10, 10, 11, 12, 13, 14, 14, 16, 17 mod 18).

Example 3.6. In the following identities, the right hand sides can be in-
terpreted as the number of colored partitions satisfying congruence conditions,
with the extra requirement that in one color the parts have to be distinct.
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Associated to the module L(0, 1, 0) we have that, for n ≤ 20, the number
of (0, 1, 0)-admissible colored partitions of n equals

coeffqn

∏

r≡2 mod 4

(1 + qr)
/ ∏

r≡1,3,5,7 mod 8

(1− qr).

Associated to the module L(1, 1, 1) we have that, for n ≤ 20, the number of
(1, 1, 1)-admissible colored partitions of n equals

coeffqn

∏

rodd

(1 + qr)
/ ∏

rodd

(1− qr)2.

4. Arrays with even width w ≥ 4

Let N e = N4 be the array of natural numbers

(4.1)

1 3 5 7 9
2 4 6 8 10

1 3 5 7 9
2 4 6 8 10

. . .

This array consists of two copies of the set of natural numbers N arranged in
4 rows, with diagonals of width w = 4. We consider colored partitions

(4.2) n =
∑

a∈N e

fa · a,

where fa is the frequency of the part a ∈ N e in the colored partition (4.2)
of n. Let k0, k1, k2 ∈ N0, k = k0 + k1 + k2 > 0. We say that an array of
frequencies Fe

(4.3)

f1 f3 f5 f7
f2 f4 f6 f8

f1 f3 f5 f7
f2 f4 f6 f8

. . .

is (k0, k1, k2)
e-admissible if the extended array of frequencies Fe(k0,k1,k2)

(4.4)

k2 f1 f3 f5 f7
0 f2 f4 f6 f8

k1 f1 f3 f5 f7
k0 f2 f4 f6 f8

. . .

satisfies the difference condition

(4.5)
∑

m∈Z

m ≤ k

for all downward paths Z in Fe(k0,k1,k2). So, for example, f1 in the first row
must be ≤ k2 because of (4.5) for downward path Z = {f1, 0, k1, k0}. We say
that colored partitions (4.2) with (k0, k1, k2)

e-admissible arrays of frequencies
(4.3) are (k0, k1, k2)

e-admissible colored partitions.
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We extend these notions for ℓ ≥ 1 by starting with the array N e = N2ℓ

of ℓ copies of the set of natural numbers N arranged in 2ℓ rows and diagonals
of width w = 2ℓ; with numbers in N e increasing by one going to the right on
any diagonal. For example, for ℓ = 3 (w = 6) instead of (4.4) we have the
extended array of frequencies Fe(k0,k1,k2,k3)

(4.6)

k3 f1 f3 f5 f7
0 f2 f4 f6 f8

k2 f1 f3 f5 f7
0 f2 f4 f6 f8

k1 f1 f3 f5 f7
k0 f2 f4 f6 f8

. . .

and the corresponding notion of (k0, k1, k2, k3)
e-admissible colored partitions

on the array N6.

Conjecture 4.1. Let k0, k1, . . . , kℓ ∈ N0, k = k0+k1+· · ·+kℓ > 0. Then
the generating function for the number of (k0, k1, . . . , kℓ)

e-admissible colored

partitions

n =
∑

a∈N2ℓ

fa · a

is the infinite periodic product

(4.7)

∏
a∈{0}ℓ; b∈∆(k1+1,...,kℓ+1); j≡a,±b mod (2ℓ+2k+1)(1− qj)

∏
j∈N

(1− qj)ℓ
.

Example 4.2. By using Example 2.1 for the congruence triangle
∆(2, 1, 1, 2), we see that the conjectured product (4.7) for (2, 1, 0, 0, 1)e-
admissible colored partitions is

∏

j≡1,1,2,3,3,4,4,5,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12,13,13,14,14,15,16,16 mod 17

(1−qj)−1.

Remark 4.3. Conjecture 4.1 is true for ℓ = 1: the extended array of
frequencies Fe(k0,k1) is

(4.8)
k1 f1 f3 f5 f7

k0 f2 f4 f6 f8
. . . ,

and (k0, k1)
e-admissible colored partitions are classical partitions

n =
∑

a∈N

fa · a

satisfying difference and initial conditions

fa + fa+1 ≤ k, f1 ≤ k1.
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So the generating functions for the number of (1, 0)e-admissible and (0, 1)e-
admissible partitions are the product sides of two Rogers-Ramanujan iden-
tities, and for k = k0 + k1 > 1 we have the product sides of Gordon iden-
tities (cf. [2], [3], [11]). These combinatorial identities have a Lie-theoretic
interpretation (see [15]), but for 2ℓ > 2 there is no obvious connection of
(k0, k1, . . . , kℓ)

e-admissible colored partitions (4.2) with representation the-
ory of affine Lie algebras.

Example 4.4. In this example we write

(0, 0, 1)e ∼ (r ≡ 1, 3, 4, 6 mod 7)

if the number of (0, 0, 1)e-admissible colored partitions of n is equal to the
number of colored partitions of n with parts r ≡ 1, 3, 4, 6 mod 7 for n ≤ 20.

For w = 2 we have Rogers-Ramanujan and Gordon identities:

(1, 0)e ∼ (r ≡ 2, 3 mod 5),

(0, 1)e ∼ (r ≡ 1, 4 mod 5),

(2, 0)e ∼ (r ≡ 2, 3, 4, 5 mod 7),

(1, 1)e ∼ (r ≡ 1, 3, 4, 6 mod 7),

(0, 2)e ∼ (r ≡ 1, 2, 5, 6 mod 7),

(3, 0)e ∼ (r ≡ 2, 3, 4, 5, 6, 7 mod 9),

(2, 1)e ∼ (r ≡ 1, 3, 4, 5, 6, 8 mod 9),

(1, 2)e ∼ (r ≡ 1, 2, 4, 5, 7, 8 mod 9),

(0, 3)e ∼ (r ≡ 1, 2, 3, 6, 7, 8 mod 9).

For w = 4 we have:

(1, 0, 0)e ∼ (r ≡ 2, 3, 4, 5 mod 7),

(0, 1, 0)e ∼ (r ≡ 1, 2, 5, 6 mod 7),

(0, 0, 1)e ∼ (r ≡ 1, 3, 4, 6 mod 7),

(2, 0, 0)e ∼ (r ≡ 2, 3, 4, 4, 5, 5, 6, 7 mod 9),

(1, 1, 0)e ∼ (r ≡ 1, 2, 3, 4, 5, 6, 7, 8 mod 9),

(1, 0, 1)e ∼ (r ≡ 1, 2, 3, 4, 5, 6, 7, 8 mod 9),

(0, 2, 0)e ∼ (r ≡ 1, 2, 2, 3, 6, 7, 7, 8 mod 9),

(0, 1, 1)e ∼ (r ≡ 1, 1, 3, 4, 5, 6, 8, 8 mod 9),

(0, 0, 2)e ∼ (r ≡ 1, 2, 3, 4, 5, 6, 7, 8 mod 9),

(3, 0, 0)e ∼ (r ≡ 2, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9 mod 11),

(2, 1, 0)e ∼ (r ≡ 1, 2, 3, 4, 5, 5, 6, 6, 7, 8, 9, 10 mod 11),

(2, 0, 1)e ∼ (r ≡ 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10 mod 11),
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(1, 2, 0)e ∼ (r ≡ 1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 9, 10 mod 11),

(1, 1, 1)e ∼ (r ≡ 1, 1, 3, 3, 4, 5, 6, 7, 8, 8, 10, 10 mod 11),

(1, 0, 2)e ∼ (r ≡ 1, 2, 2, 3, 5, 5, 6, 6, 8, 9, 9, 10 mod 11),

(0, 3, 0)e ∼ (r ≡ 1, 2, 2, 3, 3, 4, 7, 8, 8, 9, 9, 10 mod 11),

(0, 2, 1)e ∼ (r ≡ 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10 mod 11),

(0, 1, 2)e ∼ (r ≡ 1, 1, 2, 4, 4, 5, 6, 7, 7, 9, 10, 10 mod 11),

(0, 0, 3)e ∼ (r ≡ 1, 2, 3, 3, 4, 5, 6, 7, 8, 8, 9, 10 mod 11).

For w = 6 we have:

(1, 0, 0, 0)e ∼ (r ≡ 2, 3, 4, 5, 6, 7 mod 9),

(0, 1, 0, 0)e ∼ (r ≡ 1, 2, 4, 5, 7, 8 mod 9),

(0, 0, 1, 0)e ∼ (r ≡ 1, 2, 3, 6, 7, 8 mod 9),

(0, 0, 0, 1)e ∼ (r ≡ 1, 3, 4, 5, 6, 8 mod 9),

(2, 0, 0, 0)e ∼ (r ≡ 2, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9 mod 11),

(1, 1, 0, 0)e ∼ (r ≡ 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10 mod 11).

For w = 8 we have:

(0, 1, 1, 0, 1)e ∼(r ≡ 1, 1, 1, 2, 3, 4, 4, 4, 6, 6, 6, 7,

8, 9, 9, 9, 11, 11, 11, 12, 13, 14, 14, 14 mod 15),

(2, 1, 0, 0, 1)e ∼(r ≡ 1, 1, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7, 7, 8, 8,

9, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 15, 16, 16 mod 17),

(0, 1, 1, 1, 1)e ∼(r ≡ 1, 1, 1, 1, 3, 3, 3, 4, 5, 5, 5, 6, 7, 7, 8, 8,

9, 9, 10, 10, 11, 12, 12, 12, 13, 14, 14, 14, 16, 16, 16, 16 mod 17).

Remark 4.5. It seems that for pairs (level k, rank ℓ) there is some sort
of duality

(k, ℓ)←→ (ℓ, k).

In particular, the Rogers-Ramanujan case k = 1, w = 2 is self-dual and
k = 2, w = 2 is dual to k = 1, w = 4. In the self-dual case k = 2, w = 4
we see that (1, 1, 0)e-admissible, (1, 0, 1)e-admissible and (0, 0, 2)e-admissible
partitions have the same product formula, but already for n = 1 and n = 2
we see that three types of colored partitions on N4 are mutually different.

5. An algorithm for constructing admissible arrays of

frequencies

In this section we describe an algorithm for constructing (k0, k1, . . . , kℓ)-
admissible and (k0, k1, . . . , kℓ)

e-admissible arrays of frequencies. First we con-
sider the simplest case of (k, 0, 0)-admissible arrays of frequencies F . The



NEW PARTITION IDENTITIES 173

difference condition (3.5) forces the extended array of frequencies F (k,0,0) to
look like

(5.1)

0 0 0 f51 f71
0 0 f41 f61 f81

0 0 f32 f52 f72
0 f22 f42 f62 f82

k f13 f33 f53 f73

. . .

In order to avoid any confusion and facilitate the exposition, here we have
colored our arrays as in Example 3.1.

At the beginning we let F = 0, i.e. all the frequencies in F are zero. Then
we construct a nontrivial (k, 0, 0)-admissible array of frequencies by changing
F in steps. We start our construction from the top 51 till the bottom 13
of the first diagonal {51, 41, 32, 22, 13} ⊂ N of lenght 5, then from the top
till the bottom of the second diagonal {71, 61, 52, 42, 33} of lenght 5, and so
on. At each step for a ∈ N we choose a frequency fa and determine the
corresponding maximum

(5.2) ma = max
{∑

c∈Z

fc | Z is a downward path which ends in a
}
.

So we start with a = 51 and we choose any value f51 ∈ {0, 1, . . . , k}. For
the first point 51 there is only one downward path Z = {51} which ends in
51, so

m51 = f51 .

For the second point 41 we should choose f41 . There are two downward paths
which end in 41: Z1 = {51, 41} and Z2 = {31, 41}. Since f31 = 0, we have

m41 = f51 + f41

and the level k difference condition m41 ≤ k forces us to choose

f41 ≤ k − f51 .

At each step we choose fa and determine ma, so assume we completed a list
of frequencies fa and maxima ma in the first two diagonals and in the top
two places 91, 81 in the third diagonal. Next we should choose fb for b = 72.
Denote the points 61 and 81—the points above and adjacent to b—as x and
y:

(5.3)

• • •
• x y

• • b

• •
• •
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Then choose a frequency fb so that fb + max{mx,my} ≤ k. Since every
downward path Z comes to b via x or via y, it is clear that

(5.4) mb = fb +max{mx,my} ≤ k.

In this sequence of steps we have constructed the frequencies fc for c

denoted as x, y, b or • in (5.3), and all the other frequencies in F are (still)
0. By construction, i.e. by the recursive condition (5.4) for each constructed
fc, the difference condition (3.5) holds for all downward paths Z in F (k,0,0).
Hence the (so far) constructed sequence of frequencies is (k, 0, 0)-admissible.
In this way we proceed till the end of a finite (chosen in advance) number of
diagonals.

Remark 5.1. Assume we want to construct and count all colored parti-
tions

n =
∑

a∈N5

fa · a for n ≤ 15,

with (k, 0, 0)-admissible frequencies fa. Since the biggest part in a partition
of n ≤ 15 is at most 15, it is enough to consider only the first eight nontrivial
diagonals of frequency array (5.1). We can write compactly the first eight
full-length diagonals in the array (3.1), the constructed part of the frequency
array (5.3), and the constructed part of the maxima array as3

(5.5)
13 22 32 41 51
33 42 52 61 71
53 62 72 81 91
73 82 92 101 111
93 102 112 121 131
113 122 132 141 151
133 142 152 161 171
153 162 172 181 191

f13 f22 f32 f41 f51
f33 f42 f52 f61 f71
· · · f81 f91
· · · · ·

· · · · ·

· · · · ·

· · · · ·

· · · · ·

m13 m22 m32 m41 m51

m33 m42 m52 m61 m71

· · · m81 m91

· · · · ·

· · · · ·

· · · · ·

· · · · ·

· · · · ·

Then we can choose a frequency 0 ≤ f72 ≤ k for 72 so that the recursive
condition (5.4) holds, i.e.

(5.6) m72 = f72 +max{m61 ,m81} ≤ k.

In this way we proceed till the end of the eighth row.

Now we consider, again for ℓ = 2, a construction of (k0, k1, k2)-admissible
or (k0, k1, k2)

e-admissible arrays of frequencies F or Fe with non-zero fre-
quencies in a finite (chosen in advance) number of diagonals. We denote with
◦ the places of the array of not yet constructed frequencies in the chosen finite

3The diagram (5.5) is obtained from (5.1) by a (clockwise) 45 degree rotation, followed
by the shear linear transformation (x, y) 7→ (x + y, y). In particular, the rows in (5.5) are
obtained from diagonals in (5.1).
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number of diagonals as

◦ ◦ ◦
◦ ◦

◦ ◦ ◦
◦ ◦

◦ ◦ ◦

. . . or

◦ ◦ ◦
◦ ◦

◦ ◦ ◦
◦ ◦

. . .

and we extend them on the left with the prescribed fixed frequencies

k2 ◦ ◦
0 0 ◦

k1 k1 ◦ ◦
0 0 0 ◦

k0 k0 k0 ◦ ◦

. . . or

k2 ◦ ◦
0 0 ◦

k1 k1 ◦ ◦
k0 k0 k0 ◦

. . .

Note that added fixed frequencies satisfy the difference conditions (3.5) or
(4.5). Now the first diagonal is fixed and “constructed”, and the corresponding
diagonal of the maxima is

k2 ◦ ◦
k2 ◦ ◦

k′ ◦ ◦ ◦
k′ ◦ ◦ ◦

k ◦ ◦ ◦ ◦

. . . or

k2 ◦ ◦
k2 ◦ ◦

k′ ◦ ◦ ◦
k ◦ ◦ ◦

. . .

with k′ = k1 + k2 and k = k0 + k1 + k2. So we pass to the first point in the
second diagonal, choose a frequency from the set {0, 1, . . . , k} and determine
the corresponding maximum. After that we pass to the second point and so
on, just like before, except that in the second diagonal four or three frequencies
are already fixed and if the condition (3.5) or (4.5) does not hold, we should
return to the beginning of the diagonal and give another try with the frequency
of the first point. In the third diagonal we have to construct frequency for
three points—the other two or one are already given and fixed, and so on. It
is clear that the constructed sequence of frequencies is (k0, k1, k2)-admissible.

In the Python code below we consider the w odd and w even cases simulta-
neously with the general initial conditions for parameters [k1, k2, . . . , kw−1, kw]:
for a frequency array F for Nw we have the extended frequency array
F [k1,k2,...,kw−1,kw]

kw ◦ ◦
kw−1 kw−1 ◦

kw−2 kw−2 ◦ ◦ . . . .

kw−3 kw−3 kw−3 ◦
...

...

and the corresponding notion of [k1, k2, . . . , kw−1, kw]-admissible colored par-
titions on the array Nw. Note that
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• (k0, k1, . . . , kℓ)-admissible = [k0, 0, k1, 0, . . . , 0, kℓ]-admissible for w =
2ℓ+ 1,
• (k0, k1, . . . , kℓ)

e-admissible = [k0, k1, 0, . . . , 0, kℓ]-admissible for w = 2ℓ.

We conjecture product formulas for generating functions for the number of the
corresponding admissible colored partitions, and it seems that for any other
[k1, . . . , kw] there is no infinite periodic product formula for the generating
function for the number of the corresponding [k1, . . . , kw]-admissible colored
partitions.

Remark 5.2. In higher ranks it may be convenient to write the extended
[k1, . . . , kw]-admissible frequency arrays compactly as infinite matrices

(5.7) F = (fij)i=0,1,...; j=w,...,1

with fixed prescribed frequencies in the upper left corner of the matrix, de-
pending on odd w = 2ℓ + 1 or even w = 2ℓ. Here j = w denotes the left
column, and j = 1 the right column. For ℓ = 4 we have matrices of the form

k1 k2 k3 k4 k5 k6 k7 k8 k9
k1 k2 k3 k4 k5 k6 k7 k8 •
k1 k2 k3 k4 k5 k6 • • •
k1 k2 k3 k4 • • • • •
k1 k2 • • • • • • •
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

...

or

k1 k2 k3 k4 k5 k6 k7 k8
k1 k2 k3 k4 k5 k6 k7 •
k1 k2 k3 k4 k5 • • •
k1 k2 k3 • • • • •
k1 • • • • • • •
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

...

.

For a frequency matrix (5.7) we assume that there are finitely many non-zero
elements fij and we say that F has a finite support. We can write the matrix
F as an infinite sequence of rows

(5.8) F = (φi)i=0,1,..., φi = (fij)j=w,...,1.

Like in (5.5), for a frequency matrix F we have the associated maxima matrix

(5.9) M = (mij)i=0,1,...; j=w,...,1,

defined for i = 0 as

m0j = kw + · · ·+ kw−j+1, j = 1, . . . , w,

and for i = 1, 2, . . . recursively like in (5.6),

(5.10) mi1 = fi1, mij = fij +max{mi−1,j−1,mi,j−1}, j = 2, . . . , w.

Our argument above shows that a frequency matrix F is [k1, . . . , kw]-
admissible if and only if

(5.11) mij ≤ k for all i = 1, 2, . . . , j = 1, . . . , w.
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We can also write our arrays of natural numbers N2, N3, N4, N5, . . . as
infinite matrices N0

w, w = 2, 3, 4, 5, . . . of natural numbers, extended with
fixed zeros in the upper left corner of the matrix,

N0
w = (nij)i=0,1,...; j=w,...,1, nij = max{0, 2i− j},

i.e. as infinite matrices N0
2 , N

0
3 , N

0
4 , N

0
5 , . . .

0 0
0 1
2 3
4 5
6 7
8 9
10 11
...

,

0 0 0
0 0 1
1 2 3
3 4 5
5 6 7
7 8 9
9 10 11

...

,

0 0 0 0
0 0 0 1
0 1 2 3
2 3 4 5
4 5 6 7
6 7 8 9
8 9 10 11

...

,

0 0 0 0 0
0 0 0 0 1
0 0 1 2 3
1 2 3 4 5
3 4 5 6 7
5 6 7 8 9
7 8 9 10 11

...

, . . .

Then for each [k1, . . . , kw]-admissible frequency matrix F we have a
[k1, . . . , kw]-admissible colored partition

n =
∞∑

i=0

w∑

j=1

fijnij .

Example 5.3. Here we describe a construction of all (0, 1, 0)-admissible
frequencies with the support in the first 5 diagonals in the array N5. By using
the notation in Remark 5.2, we want to construct all [0, 0, 1, 0, 0]-admissible
frequency matrices F , together with the associated maxima matrices M ,

(5.12) F = (φ0, φ1, φ2, φ3, φ4, φ5), M = (µ0, µ1, µ2, µ3, µ4, µ5),

with φ0 = (0, 0, 1, 0, 0), φ1 = (0, 0, 1, 0, •), φ2 = (0, 0, •, •, •), φ3 =
(◦, ◦, ◦, ◦, ◦), . . . , and µi is i-th row in M . Denote by A(i) the set of all
possible quintuples of frequencies in the i-th row, i.e. the set of quintuples of
frequencies with the total sum ≤ k = 1. A(0) is completely determined, and
for the other we obviously have:

A(0) = {(0, 0, 1, 0, 0)},

A(1) = {(0, 0, 1, 0, 0)},

A(2) = {(0, 0, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)},

A(3) = {(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0),

(0, 0, 0, 0, 1)},

A(4) = {(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0),

(0, 0, 0, 0, 1)},

A(5) = {(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0),

(0, 0, 0, 0, 1)}.
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If we use printouts from the Python code 21AAIC.py in the Appendix, for
N = 6 and ‘highest weight’ = [0, 0, 1, 0, 0], and if we activate “print( ’i =’, i,
’all fs =’, all fs)” on line 76, we get A(1), . . . , A(5) as above (with mixed-up
left and right). We obtain the first six rows of N0

5 if we activate “print( ’i =’,
i, ’row1 =’, row1)” on line 73.

We may construct F in steps i = 0, . . . , 4, and by using (5.10) at each
step we determine the rows of the associated maxima matrix
(5.13)

φ0, φ1, . . . , φi; µ0, µ1, . . . , µi  φ0, φ1, . . . , φi, φi+1; µ0, µ1, . . . , µi, µi+1,

φr ∈ A(r). Since we are using (5.10) to determine µi+1, we have a map

(φi+1, µi) 7→ µi+1,

and if µi+1 does not satisfy the criteria (5.11), we discard the newly con-
structed matrix from the further procedure. In Python code 21AAIC.py this
function is defined on line 29 as “filter frequencies(fs, ms1, *ks)”.

Since in our construction we need only the last maxima row µi to deter-
mine whether the newly constructed frequency matrix in (5.13) is [0, 0, 1, 0, 0]-
admissible, we could have discarded already used up µ0, µ1, . . . , µi−1. On the
other hand, if we are interested in the corresponding [0, 0, 1, 0, 0]-admissible
partitions, we can keep track of the total contribution τi of rows φr, r ≤ i, to
the corresponding [0, 0, 1, 0, 0]-admissible partition,

τi =

i∑

r=1

w∑

j=1

frjnrj.

Hence we should record our steps in the construction with data

(5.14) φ0, φ1, . . . , φi; τi; µi  φ0, φ1, . . . , φi, φi+1; τi+1; µi+1.

Finally, if we are interested only in the number of constructed partitions,
and do not need the constructed [0, 0, 1, 0, 0]-admissible frequency matrices
φ0, φ1, . . . , φi, we should record our steps in the construction only with data

(5.15) τi; µi  φi+1; τi+1; µi+1,

i.e. we should regard the step (5.15) as the map

(5.16) ((τi, µi), φi+1) 7→ (τi+1, µi+1),

and this is what the Python code 21AAIC.py does in two loops “for total0,
ms0 in all total ms0:” and “for fs1 in all fs:” starting at lines 77 and 78. If in
21AAIC.py we change the “While loop” and the “result” into

while True:

all_total_ms1 = []

row1 = get_row(i, w)

all_fs = list(all_frequencies(i, *highest_weight))

for total0, ms0 in all_total_ms0:

for fs1 in all_fs:
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ms = filter_frequencies(fs1, ms0, *highest_weight)

if ms is None:

continue

total1 = row_fs_value(row1, fs1) + total0

all_total_ms1.append((total1, ms))

if i == N:

#if i == w//2:

break

i += 1

all_total_ms0 = all_total_ms1

result = []

for total1, ms1 in all_total_ms1:

if total1 <= 6:

result.append(total1)

print(result)

#print(len(all_total_ms1))

then the activated “print(len(all total ms1))” on line 92 shows that there is
altogether 164 final pairs (τ5, µ5) in our construction of (0, 1, 0)-admissible
partitions with the support in the first N = 5 rows. If we print only the list
of τ5 ≤ 6 which appear in the final step of (5.15) we get

highest_weight = [0, 0, 1, 0, 0]

k = 1 w = 5

[0, 5, 6, 3, 4, 5, 6, 2, 6, 3, 4, 5, 1, 6, 5, 6, 4,

5, 6, 2, 6, 3]

From this list we see that τ = 6 appears 7 times, i.e. there is 7 (0, 1, 0)-
admissible partitions of 6. The Python code 21AAIC.py is just a bit faster
and more polished version of this code and gives for the number of all (0, 1, 0)-
admissible partitions of n ≤ N = 6 the list

highest_weight = [0, 0, 1, 0, 0]

k = 1 w = 5

[[1, 1], [2, 2], [3, 3], [4, 3], [5, 5], [6, 7]]

Of course, this example would have been much shorter if we simply wrote
“by hand” all (0, 1, 0)-admissible partitions of n ≤ 6, as we did for all (2, 0, 0)-
admissible partitions of n ≤ 8 in Example 3.1.
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Remark 5.4. A basis of the finite dimensional representation
LCℓ

(k1, . . . , kℓ) is parametrized in [10] in terms of symplectic Dyck paths–
this result is closely related to our Conjecture 3.3. For ℓ = 4 Feigin-
Fourier-Littelmann’s theorem can be rephrased in terms of (0, k1, k2, k3, k4))-
admissible 5× 9 matrices4

k0 0 k1 0 k2 0 k3 0 k4
k0 0 k1 0 k2 0 k3 0 •
k0 0 k1 0 k2 0 • • •
k0 0 k1 0 • • • • •
k0 0 • • • • • • •

;

in [10] these matrices are written in the form

• • • • • • •
• • • • •
• • •
•

.

6. Appendix: Python code for counting admissible colored

partitions

Here we give the Python code which is in part explained in Example 5.3
where diagonals in the array (3.3) became the rows in the matrix (5.12).

"""The program 21AAIC counts the number P(n) of [k1,k2,...,kw]

-admissible colored partitions of n <= N on the array Nw of w

rows of natural numbers. We input by hand N and k1,k2,...,kw as

the list ’highest_weight’ on line 57. The result is a list of

pairs [n,P(n)]."""

def get_row(i, w):

return [max(0, x) for x in range(i*2 - 1, i*2 - w - 1, -1)]

def all_subfrequencies(c, r):

for g0 in range(r + 1):

if c == 1:

yield [g0]

else:

for gs in all_subfrequencies(c - 1, max(0, r - g0)):

yield [g0] + gs

def all_frequencies(i, *ks):

rest = []

for x in reversed(ks):

rest.append(x)

4Here k0 = 0, but it works for any k0 since LCℓ
(k1, . . . , kℓ) ⊂ L

C
(1)
ℓ

(k0, k1, . . . , kℓ).
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if i > w//2:

for gs in all_subfrequencies(w, k):

yield gs

else:

for gs in all_subfrequencies(i*2-1, sum(ks[-i*2+1:])):

yield gs + rest[2 * i-1:]

def filter_frequencies(fs, ms1, *ks):

k = sum(ks)

ms = []

for j, f in enumerate(fs):

if j:

m = ms1[j - 1]

m0 = ms[-1]

if m0 > m:

m = m0

m += f

if m > k:

return None

ms.append(m)

else:

ms.append(f)

return ms

def row_fs_value(row, fs):

s = 0

for v, f in zip(row, fs):

s += v * f

return s

if __name__ == ’__main__’:

"""One should put by hand N and the ’highest wight’.

For w=2n+1 for (k0,k1,...,kn) put [k0,0,k1,0,...,0,kn].

For w=2n for (k0,k1,...,kn)e put [k0,k1,0,...,0,kn]."""

N = 6

highest_weight = [0, 0, 1, 0, 0]

print("highest_weight =", highest_weight)

w = len(highest_weight)

k = sum(highest_weight)

print(’k =’, k, ’ w =’, w)

i = 1

frequencies = {}

result = []

ms0 = []

for j in range(0, len(highest_weight)):

ms0.append(sum(highest_weight[-j-1:]))

all_total_ms0 = [(0, ms0)]
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while True:

all_total_ms1 = []

row1 = get_row(i, w)

#print( ’i =’, i, ’row1 =’, row1)

min_next_row = get_row(i + 1, w)[-1]

all_fs = list(all_frequencies(i, *highest_weight))

#print( ’i =’, i, ’all_fs =’, all_fs)

for total0, ms0 in all_total_ms0:

for fs1 in all_fs:

ms = filter_frequencies(fs1, ms0, *highest_weight)

if ms is None:

continue

total1 = row_fs_value(row1, fs1) + total0

if total1 <= N:

if total1 > total0:

frequencies[total1] = 1 + frequencies.get(total1, 0)

if total1 <= N - min_next_row:

all_total_ms1.append((total1, ms))

if row1[-2] > 0:

result.append([row1[-1], frequencies.get(row1[-1], 0)])

result.append([row1[-2], frequencies.get(row1[-2], 0)])

if max(row1[-2:]) >= N:

break

i += 1

all_total_ms0 = all_total_ms1

if w%2 == 0:

result.remove([0,0])

print(result)

Example 6.1. In the Rogers-Ramanujan case, i.e. for w = 2 and k = 1
we get:

highest_weight = [0, 1]

[1, 1], [2, 1], [3, 1], [4, 2], [5, 2], [6, 3], [7, 3], [8, 4],

[9, 5], [10, 6], [11, 7], [12, 9], [13, 10], [14, 12],

[15, 14], [16, 17], [17, 19], [18, 23], [19, 26], [20, 31];

highest_weight = [1, 0]

[1, 0], [2, 1], [3, 1], [4, 1], [5, 1], [6, 2], [7, 2], [8, 3],

[9, 3], [10, 4], [11, 4], [12, 6], [13, 6], [14, 8], [15, 9],

[16, 11], [17, 12], [18, 15], [19, 16], [20, 20].

Example 6.2. For (2, 1, 0, 0, 1)e-admissible partitions in Example 4.4 we
get:
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highest_weight = [2, 1, 0, 0, 0, 0, 0, 1]

[1, 2], [2, 4], [3, 8], [4, 15], [5, 27], [6, 47], [7, 78],

[8, 128], [9, 205], [10, 323], [11, 499], [12, 763],

[13, 1148], [14, 1709], [15, 2516], [16, 3669],

[17, 5297], [18, 7589], [19, 10779], [20, 15204].

Example 6.3. Related to Remark 5.4, we can modify slightly the above
Python code for calculating dimensions of representations LCℓ

(k1, . . . , kℓ) (one
way to do it is to use the change described in Example 5.3, activate “if i ==
w//2:” on line 82 and “print(len(all total ms1))” on line 92, deactivate “#if
i == N:” on line 81 and set highest weight = [0,0,1,0,1,0,2,0,2] for dim L [1,
1, 2, 2] ). For example, for ℓ = 4 we have:

dim L [1, 1, 2, 2] = 3459456,

dim L [2, 1, 2, 2] = 9848916,

dim L [0, 2, 2, 2] = 4321512,

dim L [1, 2, 2, 2] = 16358760,

dim L [2, 2, 2, 2] = 43046721.
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